Numerical solutions of nonlinear systems of equations

Tsung-Ming Huang

Department of Mathematics
National Taiwan Normal University, Taiwan
E-mail: min@ntnu.edu.tw
October 27, 2014

Outline

(1) Fixed points for functions of several variables

Quasi-Newton methods

Outline

(1) Fixed points for functions of several variables
(2) Newton's method

Quasi-Newton methods

Steepest Descent Techniques

Outline

(1) Fixed points for functions of several variables
(2) Newton's method

3 Quasi-Newton methods

Steepest Descent Techniques

Outline

(1) Fixed points for functions of several variables
(2) Newton's method
(3) Quasi-Newton methods

4 Steepest Descent Techniques

Fixed points for functions of several variables

Theorem 1

Let $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function and $x_{0} \in D$.

Fixed points for functions of several variables

Theorem 1

Let $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function and $x_{0} \in D$. If all the partial derivatives of f exist and $\exists \delta>0$ and $\alpha>0$ such that $\forall\left\|x-x_{0}\right\|<\delta$ and $x \in D$,

[^0]
Fixed points for functions of several variables

Theorem 1

Let $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function and $x_{0} \in D$. If all the partial derivatives of f exist and $\exists \delta>0$ and $\alpha>0$ such that $\forall\left\|x-x_{0}\right\|<\delta$ and $x \in D$, we have

$$
\left|\frac{\partial f(x)}{\partial x_{j}}\right| \leq \alpha, \forall j=1,2, \ldots, n
$$

\square
A function G from $D \subset \mathbb{R}^{n}$ into \mathbb{R}^{n} has a fixed point at $p \in D$ if

Fixed points for functions of several variables

Theorem 1

Let $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function and $x_{0} \in D$. If all the partial derivatives of f exist and $\exists \delta>0$ and $\alpha>0$ such that $\forall\left\|x-x_{0}\right\|<\delta$ and $x \in D$, we have

$$
\left|\frac{\partial f(x)}{\partial x_{j}}\right| \leq \alpha, \forall j=1,2, \ldots, n
$$

then f is continuous at x_{0}.

Fixed points for functions of several variables

Theorem 1

Let $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function and $x_{0} \in D$. If all the partial derivatives of f exist and $\exists \delta>0$ and $\alpha>0$ such that $\forall\left\|x-x_{0}\right\|<\delta$ and $x \in D$, we have

$$
\left|\frac{\partial f(x)}{\partial x_{j}}\right| \leq \alpha, \forall j=1,2, \ldots, n
$$

then f is continuous at x_{0}.

Definition 2 (Fixed Point)

A function G from $D \subset \mathbb{R}^{n}$ into \mathbb{R}^{n} has a fixed point at $p \in D$ if $G(p)=p$.

Theorem 3 (Contraction Mapping Theorem)

Let $D=\left\{\left(x_{1}, \cdots, x_{n}\right)^{T} ; a_{i} \leq x_{i} \leq b_{i}, \forall i=1, \ldots, n\right\} \subset \mathbb{R}^{n}$.

Theorem 3 (Contraction Mapping Theorem)

Let $D=\left\{\left(x_{1}, \cdots, x_{n}\right)^{T} ; a_{i} \leq x_{i} \leq b_{i}, \forall i=1, \ldots, n\right\} \subset \mathbb{R}^{n}$. Suppose $G: D \rightarrow \mathbb{R}^{n}$ is a continuous function with $G(x) \in D$ whenever $x \in D$.

Theorem 3 (Contraction Mapping Theorem)

Let $D=\left\{\left(x_{1}, \cdots, x_{n}\right)^{T} ; a_{i} \leq x_{i} \leq b_{i}, \forall i=1, \ldots, n\right\} \subset \mathbb{R}^{n}$.
Suppose $G: D \rightarrow \mathbb{R}^{n}$ is a continuous function with $G(x) \in D$ whenever $x \in D$. Then G has a fixed point in D.

Theorem 3 (Contraction Mapping Theorem)

Let $D=\left\{\left(x_{1}, \cdots, x_{n}\right)^{T} ; a_{i} \leq x_{i} \leq b_{i}, \forall i=1, \ldots, n\right\} \subset \mathbb{R}^{n}$.
Suppose $G: D \rightarrow \mathbb{R}^{n}$ is a continuous function with $G(x) \in D$ whenever $x \in D$. Then G has a fixed point in D.
Suppose, in addition, G has continuous partial derivatives and a constant $\alpha<1$ exists with

$$
\left|\frac{\partial g_{i}(x)}{\partial x_{j}}\right| \leq \frac{\alpha}{n}, \quad \text { whenever } x \in D
$$

for $j=1, \ldots, n$ and $i=1, \ldots, n$.
for each
converges to the unique fixed point $p \in D$ and

Theorem 3 (Contraction Mapping Theorem)

Let $D=\left\{\left(x_{1}, \cdots, x_{n}\right)^{T} ; a_{i} \leq x_{i} \leq b_{i}, \forall i=1, \ldots, n\right\} \subset \mathbb{R}^{n}$.
Suppose $G: D \rightarrow \mathbb{R}^{n}$ is a continuous function with $G(x) \in D$ whenever $x \in D$. Then G has a fixed point in D.
Suppose, in addition, G has continuous partial derivatives and a constant $\alpha<1$ exists with

$$
\left|\frac{\partial g_{i}(x)}{\partial x_{j}}\right| \leq \frac{\alpha}{n}, \quad \text { whenever } x \in D
$$

for $j=1, \ldots, n$ and $i=1, \ldots, n$. Then, for any $\mathbf{x}^{(0)} \in D$,

$$
\mathbf{x}^{(k)}=G\left(\mathbf{x}^{(k-1)}\right), \quad \text { for each } k \geq 1
$$

converges to the unique fixed point $p \in D$

Theorem 3 (Contraction Mapping Theorem)

Let $D=\left\{\left(x_{1}, \cdots, x_{n}\right)^{T} ; a_{i} \leq x_{i} \leq b_{i}, \forall i=1, \ldots, n\right\} \subset \mathbb{R}^{n}$.
Suppose $G: D \rightarrow \mathbb{R}^{n}$ is a continuous function with $G(x) \in D$ whenever $x \in D$. Then G has a fixed point in D.
Suppose, in addition, G has continuous partial derivatives and a constant $\alpha<1$ exists with

$$
\left|\frac{\partial g_{i}(x)}{\partial x_{j}}\right| \leq \frac{\alpha}{n}, \quad \text { whenever } x \in D
$$

for $j=1, \ldots, n$ and $i=1, \ldots, n$. Then, for any $\mathbf{x}^{(0)} \in D$,

$$
\mathbf{x}^{(k)}=G\left(\mathbf{x}^{(k-1)}\right), \quad \text { for each } k \geq 1
$$

converges to the unique fixed point $p \in D$ and

$$
\left\|\mathbf{x}^{(k)}-p\right\|_{\infty} \leq \frac{\alpha^{k}}{1-\alpha}\left\|\mathbf{x}^{(1)}-\mathbf{x}^{(0)}\right\|_{\infty}
$$

Example 4

Consider the nonlinear system

$$
\begin{aligned}
3 x_{1}-\cos \left(x_{2} x_{3}\right)-\frac{1}{2} & =0 \\
x_{1}^{2}-81\left(x_{2}+0.1\right)^{2}+\sin x_{3}+1.06 & =0 \\
e^{-x_{1} x_{2}}+20 x_{3}+\frac{10 \pi-3}{3} & =0
\end{aligned}
$$

Fixed-point problem

 Change the system into the fixed-point problem
Example 4

Consider the nonlinear system

$$
\begin{aligned}
3 x_{1}-\cos \left(x_{2} x_{3}\right)-\frac{1}{2} & =0 \\
x_{1}^{2}-81\left(x_{2}+0.1\right)^{2}+\sin x_{3}+1.06 & =0 \\
e^{-x_{1} x_{2}}+20 x_{3}+\frac{10 \pi-3}{3} & =0
\end{aligned}
$$

- Fixed-point problem:

Change the system into the fixed-point problem:

$$
\begin{aligned}
& x_{1}=\frac{1}{3} \cos \left(x_{2} x_{3}\right)+\frac{1}{6} \equiv g_{1}\left(x_{1}, x_{2}, x_{3}\right), \\
& x_{2}=\frac{1}{9} \sqrt{x_{1}^{2}+\sin x_{3}+1.06}-0.1 \equiv g_{2}\left(x_{1}, x_{2}, x_{3}\right), \\
& x_{3}=-\frac{1}{20} e^{-x_{1} x_{2}}-\frac{10 \pi-3}{60} \equiv g_{3}\left(x_{1}, x_{2}, x_{3}\right) .
\end{aligned}
$$

Let $G: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $G(x)=\left[g_{1}(x), g_{2}(x), g_{3}(x)\right]^{T}$.

- G has a unique point in $D \equiv[-1,1] \times[-1,1] \times[-1,1]$:
- G has a unique point in $D \equiv[-1,1] \times[-1,1] \times[-1,1]$:
- Existence: $\forall x \in D$,

$$
\begin{aligned}
& \left|g_{1}(x)\right| \leq \frac{1}{3}\left|\cos \left(x_{2} x_{3}\right)\right|+\frac{1}{6} \leq 0.5 \\
& \left|g_{2}(x)\right|=\left|\frac{1}{9} \sqrt{x_{1}^{2}+\sin x_{3}+1.06}-0.1\right| \leq \frac{1}{9} \sqrt{1+\sin 1+1.06}-0.1<0.09 \\
& \left|g_{3}(x)\right|=\frac{1}{20} e^{-x_{1} x_{2}}+\frac{10 \pi-3}{60} \leq \frac{1}{20} e+\frac{10 \pi-3}{60}<0.61
\end{aligned}
$$

it implies that $G(x) \in D$ whenever $x \in D$.

- G has a unique point in $D \equiv[-1,1] \times[-1,1] \times[-1,1]$:
- Existence: $\forall x \in D$,

$$
\begin{aligned}
& \left|g_{1}(x)\right| \leq \frac{1}{3}\left|\cos \left(x_{2} x_{3}\right)\right|+\frac{1}{6} \leq 0.5 \\
& \left|g_{2}(x)\right|=\left|\frac{1}{9} \sqrt{x_{1}^{2}+\sin x_{3}+1.06}-0.1\right| \leq \frac{1}{9} \sqrt{1+\sin 1+1.06}-0.1<0.09, \\
& \left|g_{3}(x)\right|=\frac{1}{20} e^{-x_{1} x_{2}}+\frac{10 \pi-3}{60} \leq \frac{1}{20} e+\frac{10 \pi-3}{60}<0.61,
\end{aligned}
$$

it implies that $G(x) \in D$ whenever $x \in D$.

- Uniqueness:

$$
\left|\frac{\partial g_{1}}{\partial x_{1}}\right|=0,\left|\frac{\partial g_{2}}{\partial x_{2}}\right|=0 \text { and }\left|\frac{\partial g_{3}}{\partial x_{3}}\right|=0
$$

as well as

$$
\left|\frac{\partial g_{1}}{\partial x_{2}}\right| \leq \frac{1}{3}\left|x_{3}\right| \cdot\left|\sin \left(x_{2} x_{3}\right)\right| \leq \frac{1}{3} \sin 1<0.281,
$$

$$
\begin{aligned}
\left|\frac{\partial g_{1}}{\partial x_{3}}\right| & \leq \frac{1}{3}\left|x_{2}\right| \cdot\left|\sin \left(x_{2} x_{3}\right)\right| \leq \frac{1}{3} \sin 1<0.281, \\
\left|\frac{\partial g_{2}}{\partial x_{1}}\right| & =\frac{\left|x_{1}\right|}{9 \sqrt{x_{1}^{2}+\sin x_{3}+1.06}}<\frac{1}{9 \sqrt{0.218}}<0.238, \\
\left|\frac{\partial g_{2}}{\partial x_{3}}\right| & =\frac{\left|\cos x_{3}\right|}{18 \sqrt{x_{1}^{2}+\sin x_{3}+1.06}}<\frac{1}{18 \sqrt{0.218}}<0.119, \\
\left|\frac{\partial g_{3}}{\partial x_{1}}\right| & =\frac{\left|x_{2}\right|}{20} e^{-x_{1} x_{2}} \leq \frac{1}{20} e<0.14, \\
\left|\frac{\partial g_{3}}{\partial x_{2}}\right| & =\frac{\left|x_{1}\right|}{20} e^{-x_{1} x_{2}} \leq \frac{1}{20} e<0.14 .
\end{aligned}
$$

$$
\begin{aligned}
\left|\frac{\partial g_{1}}{\partial x_{3}}\right| & \leq \frac{1}{3}\left|x_{2}\right| \cdot\left|\sin \left(x_{2} x_{3}\right)\right| \leq \frac{1}{3} \sin 1<0.281 \\
\left|\frac{\partial g_{2}}{\partial x_{1}}\right| & =\frac{\left|x_{1}\right|}{9 \sqrt{x_{1}^{2}+\sin x_{3}+1.06}}<\frac{1}{9 \sqrt{0.218}}<0.238 \\
\left|\frac{\partial g_{2}}{\partial x_{3}}\right| & =\frac{\left|\cos x_{3}\right|}{18 \sqrt{x_{1}^{2}+\sin x_{3}+1.06}}<\frac{1}{18 \sqrt{0.218}}<0.119 \\
\left|\frac{\partial g_{3}}{\partial x_{1}}\right| & =\frac{\left|x_{2}\right|}{20} e^{-x_{1} x_{2}} \leq \frac{1}{20} e<0.14 \\
\left|\frac{\partial g_{3}}{\partial x_{2}}\right| & =\frac{\left|x_{1}\right|}{20} e^{-x_{1} x_{2}} \leq \frac{1}{20} e<0.14
\end{aligned}
$$

These imply that g_{1}, g_{2} and g_{3} are continuous on D and $\forall x \in D$,

$$
\left|\frac{\partial g_{i}}{\partial x_{j}}\right| \leq 0.281, \forall i, j
$$

$$
\begin{aligned}
\left|\frac{\partial g_{1}}{\partial x_{3}}\right| & \leq \frac{1}{3}\left|x_{2}\right| \cdot\left|\sin \left(x_{2} x_{3}\right)\right| \leq \frac{1}{3} \sin 1<0.281 \\
\left|\frac{\partial g_{2}}{\partial x_{1}}\right| & =\frac{\left|x_{1}\right|}{9 \sqrt{x_{1}^{2}+\sin x_{3}+1.06}}<\frac{1}{9 \sqrt{0.218}}<0.238 \\
\left|\frac{\partial g_{2}}{\partial x_{3}}\right| & =\frac{\left|\cos x_{3}\right|}{18 \sqrt{x_{1}^{2}+\sin x_{3}+1.06}}<\frac{1}{18 \sqrt{0.218}}<0.119 \\
\left|\frac{\partial g_{3}}{\partial x_{1}}\right| & =\frac{\left|x_{2}\right|}{20} e^{-x_{1} x_{2}} \leq \frac{1}{20} e<0.14 \\
\left|\frac{\partial g_{3}}{\partial x_{2}}\right| & =\frac{\left|x_{1}\right|}{20} e^{-x_{1} x_{2}} \leq \frac{1}{20} e<0.14
\end{aligned}
$$

These imply that g_{1}, g_{2} and g_{3} are continuous on D and $\forall x \in D$,

$$
\left|\frac{\partial g_{i}}{\partial x_{j}}\right| \leq 0.281, \forall i, j
$$

Similarly, $\partial g_{i} / \partial x_{j}$ are continuous on D for all i and j.

$$
\begin{aligned}
\left|\frac{\partial g_{1}}{\partial x_{3}}\right| & \leq \frac{1}{3}\left|x_{2}\right| \cdot\left|\sin \left(x_{2} x_{3}\right)\right| \leq \frac{1}{3} \sin 1<0.281 \\
\left|\frac{\partial g_{2}}{\partial x_{1}}\right| & =\frac{\left|x_{1}\right|}{9 \sqrt{x_{1}^{2}+\sin x_{3}+1.06}}<\frac{1}{9 \sqrt{0.218}}<0.238 \\
\left|\frac{\partial g_{2}}{\partial x_{3}}\right| & =\frac{\left|\cos x_{3}\right|}{18 \sqrt{x_{1}^{2}+\sin x_{3}+1.06}}<\frac{1}{18 \sqrt{0.218}}<0.119 \\
\left|\frac{\partial g_{3}}{\partial x_{1}}\right| & =\frac{\left|x_{2}\right|}{20} e^{-x_{1} x_{2}} \leq \frac{1}{20} e<0.14 \\
\left|\frac{\partial g_{3}}{\partial x_{2}}\right| & =\frac{\left|x_{1}\right|}{20} e^{-x_{1} x_{2}} \leq \frac{1}{20} e<0.14
\end{aligned}
$$

These imply that g_{1}, g_{2} and g_{3} are continuous on D and $\forall x \in D$,

$$
\left|\frac{\partial g_{i}}{\partial x_{j}}\right| \leq 0.281, \forall i, j
$$

Similarly, $\partial g_{i} / \partial x_{j}$ are continuous on D for all i and j. Consequently, G has a unique fixed point in D.

- Approximated solution:
- Fixed-point iteration (I):

Choosing $\mathbf{x}^{(0)}=[0.1,0.1,-0.1]^{T},\left\{\mathbf{x}^{(k)}\right\}$ is generated by

$$
\begin{aligned}
x_{1}^{(k)} & =\frac{1}{3} \cos x_{2}^{(k-1)} x_{3}^{(k-1)}+\frac{1}{6}, \\
x_{2}^{(k)} & =\frac{1}{9} \sqrt{\left(x_{1}^{(k-1)}\right)^{2}+\sin x_{3}^{(k-1)}+1.06}-0.1, \\
x_{3}^{(k)} & =-\frac{1}{20} e^{-x_{1}^{(k-1)} x_{2}^{(k-1)}}-\frac{10 \pi-3}{60} .
\end{aligned}
$$

- Approximated solution:
- Fixed-point iteration (I):

Choosing $\mathbf{x}^{(0)}=[0.1,0.1,-0.1]^{T},\left\{\mathbf{x}^{(k)}\right\}$ is generated by

$$
\begin{aligned}
x_{1}^{(k)} & =\frac{1}{3} \cos x_{2}^{(k-1)} x_{3}^{(k-1)}+\frac{1}{6}, \\
x_{2}^{(k)} & =\frac{1}{9} \sqrt{\left(x_{1}^{(k-1)}\right)^{2}+\sin x_{3}^{(k-1)}+1.06}-0.1, \\
x_{3}^{(k)} & =-\frac{1}{20} e^{-x_{1}^{(k-1)} x_{2}^{(k-1)}}-\frac{10 \pi-3}{60} .
\end{aligned}
$$

- Result:

k	$x_{1}^{(k)}$	$x_{2}^{(k)}$	$x_{3}^{(k)}$	$\left\\|\mathbf{x}^{(k)}-\mathbf{x}^{(k-1)}\right\\|_{\infty}$
0	0.10000000	0.10000000	-0.10000000	
1	0.49998333	0.00944115	-0.52310127	0.423
2	0.49999593	0.00002557	-0.52336331	9.4×10^{-3}
3	0.50000000	0.00001234	-0.52359814	2.3×10^{-4}
4	0.50000000	0.00000003	-0.52359847	1.2×10^{-5}
5	0.50000000	0.00000002	-0.52359877	3.1×10^{-7}

- Approximated solution (cont.):
- Accelerate convergence of the fixed-point iteration:

$$
\begin{aligned}
x_{1}^{(k)} & =\frac{1}{3} \cos x_{2}^{(k-1)} x_{3}^{(k-1)}+\frac{1}{6} \\
x_{2}^{(k)} & =\frac{1}{9} \sqrt{\left(x_{1}^{(k)}\right)^{2}+\sin x_{3}^{(k-1)}+1.06}-0.1 \\
x_{3}^{(k)} & =-\frac{1}{20} e^{-x_{1}^{(k)} x_{2}^{(k)}}-\frac{10 \pi-3}{60}
\end{aligned}
$$

as in the Gauss-Seidel method for linear systems.

- Approximated solution (cont.):
- Accelerate convergence of the fixed-point iteration:

$$
\begin{aligned}
x_{1}^{(k)} & =\frac{1}{3} \cos x_{2}^{(k-1)} x_{3}^{(k-1)}+\frac{1}{6} \\
x_{2}^{(k)} & =\frac{1}{9} \sqrt{\left(x_{1}^{(k)}\right)^{2}+\sin x_{3}^{(k-1)}+1.06}-0.1 \\
x_{3}^{(k)} & =-\frac{1}{20} e^{-x_{1}^{(k)} x_{2}^{(k)}}-\frac{10 \pi-3}{60}
\end{aligned}
$$

as in the Gauss-Seidel method for linear systems.

- Result:

k	$x_{1}^{(k)}$	$x_{2}^{(k)}$	$x_{3}^{(k)}$	$\left\\|\mathbf{x}^{(k)}-\mathbf{x}^{(k-1)}\right\\|_{\infty}$
0	0.10000000	0.10000000	-0.10000000	
1	0.49998333	0.02222979	-0.52304613	0.423
2	0.49997747	0.00002815	-0.52359807	2.2×10^{-2}
3	0.50000000	0.00000004	-0.52359877	2.8×10^{-5}
4	0.50000000	0.00000000	-0.52359877	3.8×10^{-8}

Exercise

Page 636: 5, 7.b, 7.d

Newton's method

First consider solving the following system of nonlinear eqs.:

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, x_{2}\right)=0 \\
f_{2}\left(x_{1}, x_{2}\right)=0
\end{array}\right.
$$

Suppose $\left(x_{1}^{k}, x_{2}^{k}\right)$ is an approximation to the solution of the system above, and we try to compute $h_{1}^{(k)}$ and $h_{2}^{(k)}$ such that satisfies the system

Newton's method

First consider solving the following system of nonlinear eqs.:

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, x_{2}\right)=0 \\
f_{2}\left(x_{1}, x_{2}\right)=0
\end{array}\right.
$$

Suppose $\left(x_{1}^{(k)}, x_{2}^{(k)}\right)$ is an approximation to the solution of the system above,
theorem for two variables,

Newton's method

First consider solving the following system of nonlinear eqs.:

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, x_{2}\right)=0 \\
f_{2}\left(x_{1}, x_{2}\right)=0
\end{array}\right.
$$

Suppose $\left(x_{1}^{(k)}, x_{2}^{(k)}\right)$ is an approximation to the solution of the system above, and we try to compute $h_{1}^{(k)}$ and $h_{2}^{(k)}$ such that $\left(x_{1}^{(k)}+h_{1}^{(k)}, x_{2}^{(k)}+h_{2}^{(k)}\right)$ satisfies the system.

Newton's method

First consider solving the following system of nonlinear eqs.:

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, x_{2}\right)=0, \\
f_{2}\left(x_{1}, x_{2}\right)=0 .
\end{array}\right.
$$

Suppose $\left(x_{1}^{(k)}, x_{2}^{(k)}\right)$ is an approximation to the solution of the system above, and we try to compute $h_{1}^{(k)}$ and $h_{2}^{(k)}$ such that $\left(x_{1}^{(k)}+h_{1}^{(k)}, x_{2}^{(k)}+h_{2}^{(k)}\right)$ satisfies the system. By the Taylor's theorem for two variables,

$$
\begin{aligned}
0 & =f_{1}\left(x_{1}^{(k)}+h_{1}^{(k)}, x_{2}^{(k)}+h_{2}^{(k)}\right) \\
& \approx f_{1}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)+h_{1}^{(k)} \frac{\partial f_{1}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)+h_{2}^{(k)} \frac{\partial f_{1}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \\
0 & =f_{2}\left(x_{1}^{(k)}+h_{1}^{(k)}, x_{2}^{(k)}+h_{2}^{(k)}\right) \\
& \approx f_{2}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)+h_{1}^{(k)} \frac{\partial f_{2}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)+h_{2}^{(k)} \frac{\partial f_{2}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)
\end{aligned}
$$

Put this in matrix form

$\left[\begin{array}{cc}\frac{\partial f_{1}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) & \frac{\partial f_{1}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \\ \frac{\partial f_{2}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) & \frac{\partial f_{2}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)\end{array}\right]\left[\begin{array}{c}h_{1}^{(k)} \\ h_{2}^{(k)}\end{array}\right]+\left[\begin{array}{c}f_{1}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \\ f_{2}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)\end{array}\right] \approx\left[\begin{array}{l}0 \\ 0\end{array}\right]$.

Put this in matrix form

$\left[\begin{array}{cc}\frac{\partial f_{1}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) & \frac{\partial f_{1}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \\ \frac{\partial f_{2}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) & \frac{\partial f_{2}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)\end{array}\right]\left[\begin{array}{c}h_{1}^{(k)} \\ h_{2}^{(k)}\end{array}\right]+\left[\begin{array}{c}f_{1}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \\ f_{2}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)\end{array}\right] \approx\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
The matrix

$$
J\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \equiv\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) & \frac{\partial f_{1}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \\
\frac{\partial f_{2}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) & \frac{\partial f_{2}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)
\end{array}\right]
$$

is called the Jacobian matrix.

Put this in matrix form
$\left[\begin{array}{cc}\frac{\partial f_{1}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) & \frac{\partial f_{1}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \\ \frac{\partial f_{2}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) & \frac{\partial f_{2}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)\end{array}\right]\left[\begin{array}{c}h_{1}^{(k)} \\ h_{2}^{(k)}\end{array}\right]+\left[\begin{array}{c}f_{1}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \\ f_{2}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)\end{array}\right] \approx\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
The matrix

$$
J\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \equiv\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) & \frac{\partial f_{1}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \\
\frac{\partial f_{2}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) & \frac{\partial f_{2}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)
\end{array}\right]
$$

is called the Jacobian matrix. Set $h_{1}^{(k)}$ and $h_{2}^{(k)}$ be the solution of the linear system

$$
J\left(x_{1}^{(k)}, x_{2}^{(k)}\right)\left[\begin{array}{c}
h_{1}^{(k)} \\
h_{2}^{(k)}
\end{array}\right]=-\left[\begin{array}{c}
f_{1}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \\
f_{2}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)
\end{array}\right]
$$

Put this in matrix form
$\left[\begin{array}{cc}\frac{\partial f_{1}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) & \frac{\partial f_{1}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \\ \frac{\partial f_{2}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) & \frac{\partial f_{2}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)\end{array}\right]\left[\begin{array}{c}h_{1}^{(k)} \\ h_{2}^{(k)}\end{array}\right]+\left[\begin{array}{c}f_{1}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \\ f_{2}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)\end{array}\right] \approx\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
The matrix

$$
J\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \equiv\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) & \frac{\partial f_{1}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \\
\frac{\partial f_{2}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) & \frac{\partial f_{2}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)
\end{array}\right]
$$

is called the Jacobian matrix. Set $h_{1}^{(k)}$ and $h_{2}^{(k)}$ be the solution of the linear system

$$
J\left(x_{1}^{(k)}, x_{2}^{(k)}\right)\left[\begin{array}{c}
h_{1}^{(k)} \\
h_{2}^{(k)}
\end{array}\right]=-\left[\begin{array}{c}
f_{1}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \\
f_{2}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)
\end{array}\right]
$$

then

$$
\left[\begin{array}{l}
x_{1}^{(k+1)} \\
x_{2}^{(k+1)}
\end{array}\right]=\left[\begin{array}{l}
x_{1}^{(k)} \\
x_{2}^{(k)}
\end{array}\right]+\left[\begin{array}{l}
h_{1}^{(k)} \\
h_{2}^{(k)}
\end{array}\right]
$$

is expected to be a better approximation.

In general, we solve the system of n nonlinear equations $f_{i}\left(x_{1}, \cdots, x_{n}\right)=0, i=1, \ldots, n$.

In general, we solve the system of n nonlinear equations $f_{i}\left(x_{1}, \cdots, x_{n}\right)=0, i=1, \ldots, n$. Let

$$
\mathbf{x}=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]^{T}
$$

and

$$
F(\mathbf{x})=\left[\begin{array}{llll}
f_{1}(\mathbf{x}) & f_{2}(\mathbf{x}) & \cdots & f_{n}(\mathbf{x})
\end{array}\right]^{T}
$$

The problem can be formulated as solving
where the

In general, we solve the system of n nonlinear equations $f_{i}\left(x_{1}, \cdots, x_{n}\right)=0, i=1, \ldots, n$. Let

$$
\mathbf{x}=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]^{T}
$$

and

$$
F(\mathbf{x})=\left[\begin{array}{llll}
f_{1}(\mathbf{x}) & f_{2}(\mathbf{x}) & \cdots & f_{n}(\mathbf{x})
\end{array}\right]^{T}
$$

The problem can be formulated as solving

$$
F(\mathbf{x})=0, \quad F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} .
$$

where $\mathbf{h}^{(k)} \in \mathbb{R}^{n}$ is the solution of the linear system

In general, we solve the system of n nonlinear equations $f_{i}\left(x_{1}, \cdots, x_{n}\right)=0, i=1, \ldots, n$. Let

$$
\mathbf{x}=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]^{T}
$$

and

$$
F(\mathbf{x})=\left[\begin{array}{llll}
f_{1}(\mathbf{x}) & f_{2}(\mathbf{x}) & \cdots & f_{n}(\mathbf{x})
\end{array}\right]^{T}
$$

The problem can be formulated as solving

$$
F(\mathbf{x})=0, \quad F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

Let $J(\mathbf{x})$, where the (i, j) entry is $\frac{\partial f_{i}}{\partial x_{j}}(\mathbf{x})$, be the $n \times n$ Jacobian matrix.
where $\mathbf{h}^{(}$
is the solution of the linear system

In general, we solve the system of n nonlinear equations $f_{i}\left(x_{1}, \cdots, x_{n}\right)=0, i=1, \ldots, n$. Let

$$
\mathbf{x}=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]^{T}
$$

and

$$
F(\mathbf{x})=\left[\begin{array}{llll}
f_{1}(\mathbf{x}) & f_{2}(\mathbf{x}) & \cdots & f_{n}(\mathbf{x})
\end{array}\right]^{T} .
$$

The problem can be formulated as solving

$$
F(\mathbf{x})=0, \quad F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} .
$$

Let $J(\mathbf{x})$, where the (i, j) entry is $\frac{\partial f_{i}}{\partial x_{j}}(\mathbf{x})$, be the $n \times n$ Jacobian matrix. Then the Newton's iteration is defined as

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\mathbf{h}^{(k)},
$$

where $\mathbf{h}^{(k)} \in \mathbb{R}^{n}$ is the solution of the linear system

$$
J\left(\mathbf{x}^{(k)}\right) \mathbf{h}^{(k)}=-F\left(\mathbf{x}^{(k)}\right) .
$$

Algorithm 1 (Newton's Method for Systems)

Given a function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, an initial guess $\mathbf{x}^{(0)}$ to the zero of F, and stop criteria M, δ, and ε, this algorithm performs the Newton's iteration to approximate one root of F.

Set $k=0$ and $\mathbf{h}^{(-1)}=e_{1}$.
While $(k<M)$ and $\left(\left\|\mathbf{h}^{(k-1)}\right\| \geq \delta\right)$ and $\left(\left\|F\left(\mathbf{x}^{(k)}\right)\right\| \geq \varepsilon\right)$
Calculate $J\left(\mathbf{x}^{(k)}\right)=\left[\partial F_{i}\left(\mathbf{x}^{(k)}\right) / \partial x_{j}\right]$. Solve the $n \times n$ linear system $J\left(\mathbf{x}^{(k)}\right) \mathbf{h}^{(k)}=-F\left(\mathbf{x}^{(k)}\right)$. Set $\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\mathbf{h}^{(k)}$ and $k=k+1$.
End while
Output ("Convergent $\mathbf{x}^{(k) \text { ") or }}$
("Maximum number of iterations exceeded")

Theorem 5

Let \mathbf{x}^{*} be a solution of $G(\mathbf{x})=\mathbf{x}$.
for some M whenever $x \in N_{\delta}$ for each i, j and k

Theorem 5

Let x^{*} be a solution of $G(\mathrm{x})=\mathrm{x}$. Suppose $\exists \delta>0$ with
(i) $\partial g_{i} / \partial x_{j}$ is continuous on $N_{\delta}=\left\{\mathbf{x} ;\left\|\mathbf{x}-\mathbf{x}^{*}\right\|<\delta\right\}$ for all i and j.

Theorem 5

Let x^{*} be a solution of $G(\mathrm{x})=\mathrm{x}$. Suppose $\exists \delta>0$ with
(i) $\partial g_{i} / \partial x_{j}$ is continuous on $N_{\delta}=\left\{\mathbf{x} ;\left\|\mathbf{x}-\mathbf{x}^{*}\right\|<\delta\right\}$ for all i and j.
(ii) $\partial^{2} g_{i}(\mathbf{x}) /\left(\partial x_{j} \partial x_{k}\right)$ is continuous and

$$
\left|\frac{\partial^{2} g_{i}(\mathbf{x})}{\partial x_{j} \partial x_{k}}\right| \leq M
$$

for some M whenever $x \in N_{\delta}$ for each i, j and k.

Theorem 5

Let x^{*} be a solution of $G(\mathrm{x})=\mathrm{x}$. Suppose $\exists \delta>0$ with
(i) $\partial g_{i} / \partial x_{j}$ is continuous on $N_{\delta}=\left\{\mathbf{x} ;\left\|\mathbf{x}-\mathbf{x}^{*}\right\|<\delta\right\}$ for all i and j.
(ii) $\partial^{2} g_{i}(\mathbf{x}) /\left(\partial x_{j} \partial x_{k}\right)$ is continuous and

$$
\left|\frac{\partial^{2} g_{i}(\mathbf{x})}{\partial x_{j} \partial x_{k}}\right| \leq M
$$

for some M whenever $x \in N_{\delta}$ for each i, j and k.
(iii) $\partial g_{i}\left(\mathbf{x}^{*}\right) / \partial x_{k}=0$ for each i and k.

Theorem 5

Let x^{*} be a solution of $G(\mathrm{x})=\mathrm{x}$. Suppose $\exists \delta>0$ with
(i) $\partial g_{i} / \partial x_{j}$ is continuous on $N_{\delta}=\left\{\mathbf{x} ;\left\|\mathbf{x}-\mathbf{x}^{*}\right\|<\delta\right\}$ for all i and j.
(ii) $\partial^{2} g_{i}(\mathbf{x}) /\left(\partial x_{j} \partial x_{k}\right)$ is continuous and

$$
\left|\frac{\partial^{2} g_{i}(\mathbf{x})}{\partial x_{j} \partial x_{k}}\right| \leq M
$$

for some M whenever $x \in N_{\delta}$ for each i, j and k.
(iii) $\partial g_{i}\left(\mathrm{x}^{*}\right) / \partial x_{k}=0$ for each i and k.

Then $\exists \hat{\delta}<\delta$ such that the sequence $\left\{\mathbf{x}^{(k)}\right\}$ generated by

$$
\mathbf{x}^{(k)}=G\left(\mathbf{x}^{(k-1)}\right)
$$

converges quadratically to \mathbf{x}^{*} for any $\mathbf{x}^{(0)}$ satisfying $\left\|\mathbf{x}^{(0)}-x^{*}\right\|_{\infty}<\hat{\delta}$.

Theorem 5

Let x^{*} be a solution of $G(\mathrm{x})=\mathrm{x}$. Suppose $\exists \delta>0$ with
(i) $\partial g_{i} / \partial x_{j}$ is continuous on $N_{\delta}=\left\{\mathbf{x} ;\left\|\mathbf{x}-\mathbf{x}^{*}\right\|<\delta\right\}$ for all i and j.
(ii) $\partial^{2} g_{i}(\mathbf{x}) /\left(\partial x_{j} \partial x_{k}\right)$ is continuous and

$$
\left|\frac{\partial^{2} g_{i}(\mathbf{x})}{\partial x_{j} \partial x_{k}}\right| \leq M
$$

for some M whenever $x \in N_{\delta}$ for each i, j and k.
(iii) $\partial g_{i}\left(\mathbf{x}^{*}\right) / \partial x_{k}=0$ for each i and k.

Then $\exists \hat{\delta}<\delta$ such that the sequence $\left\{\mathbf{x}^{(k)}\right\}$ generated by

$$
\mathbf{x}^{(k)}=G\left(\mathbf{x}^{(k-1)}\right)
$$

converges quadratically to \mathbf{x}^{*} for any $\mathbf{x}^{(0)}$ satisfying $\left\|\mathbf{x}^{(0)}-x^{*}\right\|_{\infty}<\hat{\delta}$. Moreover,

$$
\left\|\mathbf{x}^{(k)}-\mathbf{x}^{*}\right\|_{\infty} \leq \frac{n^{2} M}{2}\left\|\mathbf{x}^{(k-1)}-\mathbf{x}^{*}\right\|_{\infty}^{2}, \forall k \geq 1
$$

Example 6

Consider the nonlinear system

$$
\begin{aligned}
3 x_{1}-\cos \left(x_{2} x_{3}\right)-\frac{1}{2} & =0, \\
x_{1}^{2}-81\left(x_{2}+0.1\right)^{2}+\sin x_{3}+1.06 & =0, \\
e^{-x_{1} x_{2}}+20 x_{3}+\frac{10 \pi-3}{3} & =0 .
\end{aligned}
$$

where

Example 6

Consider the nonlinear system

$$
\begin{aligned}
3 x_{1}-\cos \left(x_{2} x_{3}\right)-\frac{1}{2} & =0, \\
x_{1}^{2}-81\left(x_{2}+0.1\right)^{2}+\sin x_{3}+1.06 & =0, \\
e^{-x_{1} x_{2}}+20 x_{3}+\frac{10 \pi-3}{3} & =0 .
\end{aligned}
$$

- Nonlinear functions: Let

$$
F\left(x_{1}, x_{2}, x_{3}\right)=\left[f_{1}\left(x_{1}, x_{2}, x_{3}\right), f_{2}\left(x_{1}, x_{2}, x_{3}\right), f_{3}\left(x_{1}, x_{2}, x_{3}\right)\right]^{T}
$$

where

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}, x_{3}\right)=3 x_{1}-\cos \left(x_{2} x_{3}\right)-\frac{1}{2}, \\
& f_{2}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}-81\left(x_{2}+0.1\right)^{2}+\sin x_{3}+1.06, \\
& f_{3}\left(x_{1}, x_{2}, x_{3}\right)=e^{-x_{1} x_{2}}+20 x_{3}+\frac{10 \pi-3}{3}
\end{aligned}
$$

- Nonlinear functions (cont.):

The Jacobian matrix $J(x)$ for this system is

$$
J\left(x_{1}, x_{2}, x_{3}\right)=\left[\begin{array}{ccc}
3 & x_{3} \sin x_{2} x_{3} & x_{2} \sin x_{2} x_{3} \\
2 x_{1} & -162\left(x_{2}+0.1\right) & \cos x_{3} \\
-x_{2} e^{-x_{1} x_{2}} & -x_{1} e^{-x_{1} x_{2}} & 20
\end{array}\right]
$$

- Nonlinear functions (cont.):

The Jacobian matrix $J(x)$ for this system is

$$
J\left(x_{1}, x_{2}, x_{3}\right)=\left[\begin{array}{ccc}
3 & x_{3} \sin x_{2} x_{3} & x_{2} \sin x_{2} x_{3} \\
2 x_{1} & -162\left(x_{2}+0.1\right) & \cos x_{3} \\
-x_{2} e^{-x_{1} x_{2}} & -x_{1} e^{-x_{1} x_{2}} & 20
\end{array}\right] .
$$

- Newton's iteration with initial $\mathbf{x}^{(0)}=[0.1,0.1,-0.1]^{T}$:

$$
\left[\begin{array}{l}
x_{1}^{(k)} \\
x_{2}^{(k)} \\
x_{3}^{(k)}
\end{array}\right]=\left[\begin{array}{l}
x_{1}^{(k-1)} \\
x_{2}^{(k-1)} \\
x_{3}^{(k-1)}
\end{array}\right]-\left[\begin{array}{c}
h_{1}^{(k-1)} \\
h_{2}^{(k-1)} \\
h_{3}^{(k-1)}
\end{array}\right],
$$

where

$$
\left[\begin{array}{c}
h_{1}^{(k-1)} \\
h_{2}^{(k-1)} \\
h_{3}^{(k-1)}
\end{array}\right]=J\left(x_{1}^{(k-1)}, x_{2}^{(k-1)}, x_{3}^{(k-1)}\right)^{-1} F\left(x_{1}^{(k-1)}, x_{2}^{(k-1)}, x_{3}^{(k-1)}\right)
$$

- Result:

k	$x_{1}^{(k)}$	$x_{2}^{(k)}$	$x_{3}^{(k)}$	$\left\\|\mathbf{x}^{(k)}-\mathbf{x}^{(k-1)}\right\\|_{\infty}$
0	0.10000000	0.10000000	-0.10000000	
1	0.50003702	0.01946686	-0.52152047	0.422
2	0.50004593	0.00158859	-0.52355711	1.79×10^{-2}
3	0.50000034	0.00001244	-0.52359845	1.58×10^{-3}
4	0.50000000	0.00000000	-0.52359877	1.24×10^{-5}
5	0.50000000	0.00000000	-0.52359877	0

Exercise

Page 644: 2, 8

Quasi-Newton methods

- Newton's Methods

Quasi-Newton methods

- Newton's Methods
- Advantage: quadratic convergence

Quasi-Newton methods

- Newton's Methods
- Advantage: quadratic convergence
- Disadvantage: For each iteration, it requires $O\left(n^{3}\right)+O\left(n^{2}\right)+O(n)$ arithmetic operations:
- n^{2} partial derivatives for Jacobian matrix - in most situations, the exact evaluation of the partial derivatives is inconvenient.
- n scalar functional evaluations of F
- $O\left(n^{3}\right)$ arithmetic operations to solve linear system.
\qquad

Quasi-Newton methods

- Newton's Methods
- Advantage: quadratic convergence
- Disadvantage: For each iteration, it requires $O\left(n^{3}\right)+O\left(n^{2}\right)+O(n)$ arithmetic operations:
- n^{2} partial derivatives for Jacobian matrix - in most situations, the exact evaluation of the partial derivatives is inconvenient.
- n scalar functional evaluations of F
- $O\left(n^{3}\right)$ arithmetic operations to solve linear system.
- quasi-Newton methods

Quasi-Newton methods

- Newton's Methods
- Advantage: quadratic convergence
- Disadvantage: For each iteration, it requires $O\left(n^{3}\right)+O\left(n^{2}\right)+O(n)$ arithmetic operations:
- n^{2} partial derivatives for Jacobian matrix - in most situations, the exact evaluation of the partial derivatives is inconvenient.
- n scalar functional evaluations of F
- $O\left(n^{3}\right)$ arithmetic operations to solve linear system.
- quasi-Newton methods
- Advantage: it requires only n scalar functional evaluations per iteration and $O\left(n^{2}\right)$ arithmetic operations

Recall that in one dimensional case, one uses the linear model
to approximate the function

Quasi-Newton methods

- Newton's Methods
- Advantage: quadratic convergence
- Disadvantage: For each iteration, it requires $O\left(n^{3}\right)+O\left(n^{2}\right)+O(n)$ arithmetic operations:
- n^{2} partial derivatives for Jacobian matrix - in most situations, the exact evaluation of the partial derivatives is inconvenient.
- n scalar functional evaluations of F
- $O\left(n^{3}\right)$ arithmetic operations to solve linear system.
- quasi-Newton methods
- Advantage: it requires only n scalar functional evaluations per iteration and $O\left(n^{2}\right)$ arithmetic operations
- Disadvantage: superlinear convergence

Quasi-Newton methods

- Newton's Methods
- Advantage: quadratic convergence
- Disadvantage: For each iteration, it requires $O\left(n^{3}\right)+O\left(n^{2}\right)+O(n)$ arithmetic operations:
- n^{2} partial derivatives for Jacobian matrix - in most situations, the exact evaluation of the partial derivatives is inconvenient.
- n scalar functional evaluations of F
- $O\left(n^{3}\right)$ arithmetic operations to solve linear system.
- quasi-Newton methods
- Advantage: it requires only n scalar functional evaluations per iteration and $O\left(n^{2}\right)$ arithmetic operations
- Disadvantage: superlinear convergence

Recall that in one dimensional case, one uses the linear model

$$
\ell_{k}(x)=f\left(x_{k}\right)+a_{k}\left(x-x_{k}\right)
$$

to approximate the function $f(x)$ at x_{k}.

Quasi-Newton methods

- Newton's Methods
- Advantage: quadratic convergence
- Disadvantage: For each iteration, it requires $O\left(n^{3}\right)+O\left(n^{2}\right)+O(n)$ arithmetic operations:
- n^{2} partial derivatives for Jacobian matrix - in most situations, the exact evaluation of the partial derivatives is inconvenient.
- n scalar functional evaluations of F
- $O\left(n^{3}\right)$ arithmetic operations to solve linear system.
- quasi-Newton methods
- Advantage: it requires only n scalar functional evaluations per iteration and $O\left(n^{2}\right)$ arithmetic operations
- Disadvantage: superlinear convergence

Recall that in one dimensional case, one uses the linear model

$$
\ell_{k}(x)=f\left(x_{k}\right)+a_{k}\left(x-x_{k}\right)
$$

to approximate the function $f(x)$ at x_{k}. That is, $\ell_{k}\left(x_{k}\right)=f\left(x_{k}\right)$ for any $a_{k} \in \mathbb{R}$.

Quasi-Newton methods

- Newton's Methods
- Advantage: quadratic convergence
- Disadvantage: For each iteration, it requires $O\left(n^{3}\right)+O\left(n^{2}\right)+O(n)$ arithmetic operations:
- n^{2} partial derivatives for Jacobian matrix - in most situations, the exact evaluation of the partial derivatives is inconvenient.
- n scalar functional evaluations of F
- $O\left(n^{3}\right)$ arithmetic operations to solve linear system.
- quasi-Newton methods
- Advantage: it requires only n scalar functional evaluations per iteration and $O\left(n^{2}\right)$ arithmetic operations
- Disadvantage: superlinear convergence

Recall that in one dimensional case, one uses the linear model

$$
\ell_{k}(x)=f\left(x_{k}\right)+a_{k}\left(x-x_{k}\right)
$$

to approximate the function $f(x)$ at x_{k}. That is, $\ell_{k}\left(x_{k}\right)=f\left(x_{k}\right)$ for any $a_{k} \in \mathbb{R}$. If we further require that $\ell^{\prime}\left(x_{k}\right)=f^{\prime}\left(x_{k}\right)$, then $a_{k}=f^{\prime}\left(x_{k}\right)$.

The zero of $\ell_{k}(x)$ is used to give a new approximate for the zero of $f(x)$, that is,

$$
x_{k+1}=x_{k}-\frac{1}{f^{\prime}\left(x_{k}\right)} f\left(x_{k}\right)
$$

which yields Newton's method.

In doing this, the identity
gives

The zero of $\ell_{k}(x)$ is used to give a new approximate for the zero of $f(x)$, that is,

$$
x_{k+1}=x_{k}-\frac{1}{f^{\prime}\left(x_{k}\right)} f\left(x_{k}\right)
$$

which yields Newton's method.
If $f^{\prime}\left(x_{k}\right)$ is not available, one instead asks the linear model to satisfy

$$
\ell_{k}\left(x_{k}\right)=f\left(x_{k}\right) \quad \text { and } \quad \ell_{k}\left(x_{k-1}\right)=f\left(x_{k-1}\right) .
$$

Solving $\ell_{k}(x)=0$ yields the secant iteration

The zero of $\ell_{k}(x)$ is used to give a new approximate for the zero of $f(x)$, that is,

$$
x_{k+1}=x_{k}-\frac{1}{f^{\prime}\left(x_{k}\right)} f\left(x_{k}\right)
$$

which yields Newton's method.
If $f^{\prime}\left(x_{k}\right)$ is not available, one instead asks the linear model to satisfy

$$
\ell_{k}\left(x_{k}\right)=f\left(x_{k}\right) \quad \text { and } \quad \ell_{k}\left(x_{k-1}\right)=f\left(x_{k-1}\right) .
$$

In doing this, the identity

$$
f\left(x_{k-1}\right)=\ell_{k}\left(x_{k-1}\right)=f\left(x_{k}\right)+a_{k}\left(x_{k-1}-x_{k}\right)
$$

gives

$$
a_{k}=\frac{f\left(x_{k}\right)-f\left(x_{k-1}\right)}{x_{k}-x_{k-1}}
$$

Solving

The zero of $\ell_{k}(x)$ is used to give a new approximate for the zero of $f(x)$, that is,

$$
x_{k+1}=x_{k}-\frac{1}{f^{\prime}\left(x_{k}\right)} f\left(x_{k}\right)
$$

which yields Newton's method.
If $f^{\prime}\left(x_{k}\right)$ is not available, one instead asks the linear model to satisfy

$$
\ell_{k}\left(x_{k}\right)=f\left(x_{k}\right) \quad \text { and } \quad \ell_{k}\left(x_{k-1}\right)=f\left(x_{k-1}\right) .
$$

In doing this, the identity

$$
f\left(x_{k-1}\right)=\ell_{k}\left(x_{k-1}\right)=f\left(x_{k}\right)+a_{k}\left(x_{k-1}-x_{k}\right)
$$

gives

$$
a_{k}=\frac{f\left(x_{k}\right)-f\left(x_{k-1}\right)}{x_{k}-x_{k-1}}
$$

Solving $\ell_{k}(x)=0$ yields the secant iteration

$$
x_{k+1}=x_{k}-\frac{x_{k}-x_{k-1}}{f\left(x_{k}\right)-f\left(x_{k-1}\right)} f\left(x_{k}\right)
$$

In multiple dimension, the analogue affine model becomes

$$
M_{k}(\mathbf{x})=F\left(\mathbf{x}^{(k)}\right)+A_{k}\left(\mathbf{x}-\mathbf{x}^{(k)}\right),
$$

where $\mathbf{x}, \mathbf{x}^{(k)} \in \mathbb{R}^{n}$ and $A_{k} \in \mathbb{R}^{n \times n}$, and satisfies

$$
M_{k}\left(\mathbf{x}^{(k)}\right)=F\left(\mathbf{x}^{(k)}\right),
$$

for any A_{k}. The zero of $M_{k}(\mathrm{x})$ is then used to give a new

The Newton's method chooses
and yields the iteration

In multiple dimension, the analogue affine model becomes

$$
M_{k}(\mathrm{x})=F\left(\mathrm{x}^{(k)}\right)+A_{k}\left(\mathrm{x}-\mathrm{x}^{(k)}\right),
$$

where $\mathbf{x}, \mathbf{x}^{(k)} \in \mathbb{R}^{n}$ and $A_{k} \in \mathbb{R}^{n \times n}$, and satisfies

$$
M_{k}\left(\mathbf{x}^{(k)}\right)=F\left(\mathbf{x}^{(k)}\right),
$$

for any A_{k}. The zero of $M_{k}(\mathbf{x})$ is then used to give a new approximate for the zero of $F(\mathbf{x})$, that is,

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-A_{k}^{-1} F\left(\mathbf{x}^{(k)}\right) .
$$

and yields the iteration

In multiple dimension, the analogue affine model becomes

$$
M_{k}(\mathrm{x})=F\left(\mathrm{x}^{(k)}\right)+A_{k}\left(\mathrm{x}-\mathrm{x}^{(k)}\right),
$$

where $\mathbf{x}, \mathbf{x}^{(k)} \in \mathbb{R}^{n}$ and $A_{k} \in \mathbb{R}^{n \times n}$, and satisfies

$$
M_{k}\left(\mathbf{x}^{(k)}\right)=F\left(\mathbf{x}^{(k)}\right),
$$

for any A_{k}. The zero of $M_{k}(\mathbf{x})$ is then used to give a new approximate for the zero of $F(\mathbf{x})$, that is,

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-A_{k}^{-1} F\left(\mathbf{x}^{(k)}\right) .
$$

The Newton's method chooses

$$
A_{k}=F^{\prime}\left(\mathbf{x}^{(k)}\right) \equiv J\left(\mathbf{x}^{(k)}\right)=\text { the Jacobian matrix }
$$

and yields the iteration

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-\left(F^{\prime}\left(\mathbf{x}^{(k)}\right)\right)^{-1} F\left(\mathbf{x}^{(k)}\right)
$$

When the Jacobian matrix $J\left(\mathbf{x}^{(k)}\right) \equiv F^{\prime}\left(\mathbf{x}^{(k)}\right)$ is not available, one can require

$$
M_{k}\left(\mathbf{x}^{(k-1)}\right)=F\left(\mathbf{x}^{(k-1)}\right)
$$

When the Jacobian matrix $J\left(\mathbf{x}^{(k)}\right) \equiv F^{\prime}\left(\mathbf{x}^{(k)}\right)$ is not available, one can require

$$
M_{k}\left(\mathbf{x}^{(k-1)}\right)=F\left(\mathbf{x}^{(k-1)}\right) .
$$

Then

$$
F\left(\mathbf{x}^{(k-1)}\right)=M_{k}\left(\mathbf{x}^{(k-1)}\right)=F\left(\mathbf{x}^{(k)}\right)+A_{k}\left(\mathbf{x}^{(k-1)}-\mathbf{x}^{(k)}\right),
$$

and this is the so-called secant equation. Let

When the Jacobian matrix $J\left(\mathbf{x}^{(k)}\right) \equiv F^{\prime}\left(\mathbf{x}^{(k)}\right)$ is not available, one can require

$$
M_{k}\left(\mathbf{x}^{(k-1)}\right)=F\left(\mathbf{x}^{(k-1)}\right) .
$$

Then

$$
F\left(\mathbf{x}^{(k-1)}\right)=M_{k}\left(\mathbf{x}^{(k-1)}\right)=F\left(\mathbf{x}^{(k)}\right)+A_{k}\left(\mathbf{x}^{(k-1)}-\mathbf{x}^{(k)}\right),
$$

which gives

$$
A_{k}\left(\mathbf{x}^{(k)}-\mathbf{x}^{(k-1)}\right)=F\left(\mathbf{x}^{(k)}\right)-F\left(\mathbf{x}^{(k-1)}\right)
$$

and this is the so-called secant equation.

The secant equation becomes

When the Jacobian matrix $J\left(\mathbf{x}^{(k)}\right) \equiv F^{\prime}\left(\mathbf{x}^{(k)}\right)$ is not available, one can require

$$
M_{k}\left(\mathbf{x}^{(k-1)}\right)=F\left(\mathbf{x}^{(k-1)}\right) .
$$

Then

$$
F\left(\mathbf{x}^{(k-1)}\right)=M_{k}\left(\mathbf{x}^{(k-1)}\right)=F\left(\mathbf{x}^{(k)}\right)+A_{k}\left(\mathbf{x}^{(k-1)}-\mathbf{x}^{(k)}\right),
$$

which gives

$$
A_{k}\left(\mathbf{x}^{(k)}-\mathbf{x}^{(k-1)}\right)=F\left(\mathbf{x}^{(k)}\right)-F\left(\mathbf{x}^{(k-1)}\right)
$$

and this is the so-called secant equation. Let

$$
\mathbf{h}^{(k)}=\mathbf{x}^{(k)}-\mathbf{x}^{(k-1)} \quad \text { and } \quad \mathbf{y}^{(k)}=F\left(\mathbf{x}^{(k)}\right)-F\left(\mathbf{x}^{(k-1)}\right) .
$$

When the Jacobian matrix $J\left(\mathbf{x}^{(k)}\right) \equiv F^{\prime}\left(\mathbf{x}^{(k)}\right)$ is not available, one can require

$$
M_{k}\left(\mathbf{x}^{(k-1)}\right)=F\left(\mathbf{x}^{(k-1)}\right) .
$$

Then

$$
F\left(\mathbf{x}^{(k-1)}\right)=M_{k}\left(\mathbf{x}^{(k-1)}\right)=F\left(\mathbf{x}^{(k)}\right)+A_{k}\left(\mathbf{x}^{(k-1)}-\mathbf{x}^{(k)}\right)
$$

which gives

$$
A_{k}\left(\mathbf{x}^{(k)}-\mathbf{x}^{(k-1)}\right)=F\left(\mathbf{x}^{(k)}\right)-F\left(\mathbf{x}^{(k-1)}\right)
$$

and this is the so-called secant equation. Let

$$
\mathbf{h}^{(k)}=\mathbf{x}^{(k)}-\mathbf{x}^{(k-1)} \quad \text { and } \quad \mathbf{y}^{(k)}=F\left(\mathbf{x}^{(k)}\right)-F\left(\mathbf{x}^{(k-1)}\right) .
$$

The secant equation becomes

$$
A_{k} \mathbf{h}^{(k)}=\mathbf{y}^{(k)}
$$

However, this secant equation can not uniquely determine A_{k}.

However, this secant equation can not uniquely determine A_{k}. One way of choosing A_{k} is to minimize $M_{k}-M_{k-1}$ subject to the secant equation.

However, this secant equation can not uniquely determine A_{k}. One way of choosing A_{k} is to minimize $M_{k}-M_{k-1}$ subject to the secant equation. Note

$$
\begin{aligned}
& M_{k}(\mathbf{x})-M_{k-1}(\mathbf{x}) \\
= & F\left(\mathbf{x}^{(k)}\right)+A_{k}\left(\mathbf{x}-\mathbf{x}^{(k)}\right)-F\left(\mathbf{x}^{(k-1)}\right)-A_{k-1}\left(\mathbf{x}-\mathbf{x}^{(k-1)}\right) \\
= & \left(F\left(\mathbf{x}^{(k)}\right)-F\left(\mathbf{x}^{(k-1)}\right)\right)+A_{k}\left(\mathbf{x}-\mathbf{x}^{(k)}\right)-A_{k-1}\left(\mathbf{x}-\mathbf{x}^{(k-1)}\right) \\
= & A_{k}\left(\mathbf{x}^{(k)}-\mathbf{x}^{(k-1)}\right)+A_{k}\left(\mathbf{x}-\mathbf{x}^{(k)}\right)-A_{k-1}\left(\mathbf{x}-\mathbf{x}^{(k-1)}\right) \\
= & A_{k}\left(\mathbf{x}-\mathbf{x}^{(k-1)}\right)-A_{k-1}\left(\mathbf{x}-\mathbf{x}^{(k-1)}\right) \\
= & \left(A_{k}-A_{k-1}\right)\left(\mathbf{x}-\mathbf{x}^{(k-1)}\right) .
\end{aligned}
$$

However, this secant equation can not uniquely determine A_{k}. One way of choosing A_{k} is to minimize $M_{k}-M_{k-1}$ subject to the secant equation. Note

$$
\begin{aligned}
& M_{k}(\mathbf{x})-M_{k-1}(\mathbf{x}) \\
= & F\left(\mathbf{x}^{(k)}\right)+A_{k}\left(\mathbf{x}-\mathbf{x}^{(k)}\right)-F\left(\mathbf{x}^{(k-1)}\right)-A_{k-1}\left(\mathbf{x}-\mathbf{x}^{(k-1)}\right) \\
= & \left(F\left(\mathbf{x}^{(k)}\right)-F\left(\mathbf{x}^{(k-1)}\right)\right)+A_{k}\left(\mathbf{x}-\mathbf{x}^{(k)}\right)-A_{k-1}\left(\mathbf{x}-\mathbf{x}^{(k-1)}\right) \\
= & A_{k}\left(\mathbf{x}^{(k)}-\mathbf{x}^{(k-1)}\right)+A_{k}\left(\mathbf{x}-\mathbf{x}^{(k)}\right)-A_{k-1}\left(\mathbf{x}-\mathbf{x}^{(k-1)}\right) \\
= & A_{k}\left(\mathbf{x}-\mathbf{x}^{(k-1)}\right)-A_{k-1}\left(\mathbf{x}-\mathbf{x}^{(k-1)}\right) \\
= & \left(A_{k}-A_{k-1}\right)\left(\mathbf{x}-\mathbf{x}^{(k-1)}\right)
\end{aligned}
$$

For any $\mathrm{x} \in \mathbb{R}^{n}$, we express

$$
\mathbf{x}-\mathbf{x}^{(k-1)}=\alpha \mathbf{h}^{(k)}+\mathbf{t}^{(k)},
$$

for some $\alpha \in \mathbb{R}, \mathbf{t}^{(k)} \in \mathbb{R}^{n}$, and $\left(\mathbf{h}^{(k)}\right)^{T} \mathbf{t}^{(k)}=0$.

However, this secant equation can not uniquely determine A_{k}. One way of choosing A_{k} is to minimize $M_{k}-M_{k-1}$ subject to the secant equation. Note

$$
\begin{aligned}
& M_{k}(\mathbf{x})-M_{k-1}(\mathbf{x}) \\
= & F\left(\mathbf{x}^{(k)}\right)+A_{k}\left(\mathbf{x}-\mathbf{x}^{(k)}\right)-F\left(\mathbf{x}^{(k-1)}\right)-A_{k-1}\left(\mathbf{x}-\mathbf{x}^{(k-1)}\right) \\
= & \left(F\left(\mathbf{x}^{(k)}\right)-F\left(\mathbf{x}^{(k-1)}\right)\right)+A_{k}\left(\mathbf{x}-\mathbf{x}^{(k)}\right)-A_{k-1}\left(\mathbf{x}-\mathbf{x}^{(k-1)}\right) \\
= & A_{k}\left(\mathbf{x}^{(k)}-\mathbf{x}^{(k-1)}\right)+A_{k}\left(\mathbf{x}-\mathbf{x}^{(k)}\right)-A_{k-1}\left(\mathbf{x}-\mathbf{x}^{(k-1)}\right) \\
= & A_{k}\left(\mathbf{x}-\mathbf{x}^{(k-1)}\right)-A_{k-1}\left(\mathbf{x}-\mathbf{x}^{(k-1)}\right) \\
= & \left(A_{k}-A_{k-1}\right)\left(\mathbf{x}-\mathbf{x}^{(k-1)}\right)
\end{aligned}
$$

For any $\mathrm{x} \in \mathbb{R}^{n}$, we express

$$
\mathbf{x}-\mathbf{x}^{(k-1)}=\alpha \mathbf{h}^{(k)}+\mathbf{t}^{(k)},
$$

for some $\alpha \in \mathbb{R}, \mathbf{t}^{(k)} \in \mathbb{R}^{n}$, and $\left(\mathbf{h}^{(k)}\right)^{T} \mathbf{t}^{(k)}=0$. Then

$$
M_{k}-M_{k-1}=\left(A_{k}-A_{k-1}\right)\left(\alpha \mathbf{h}^{(k)}+\mathbf{t}^{(k)}\right)=\alpha\left(A_{k}-A_{k-1}\right) \mathbf{h}^{(k)}+\left(A_{k}-A_{k}-1\right)
$$

Since

$$
\left(A_{k}-A_{k-1}\right) \mathbf{h}^{(k)}=A_{k} \mathbf{h}^{(k)}-A_{k-1} \mathbf{h}^{(k)}=\mathbf{y}^{(k)}-A_{k-1} \mathbf{h}^{(k)},
$$

Since

$$
\left(A_{k}-A_{k-1}\right) \mathbf{h}^{(k)}=A_{k} \mathbf{h}^{(k)}-A_{k-1} \mathbf{h}^{(k)}=\mathbf{y}^{(k)}-A_{k-1} \mathbf{h}^{(k)},
$$

both $\mathbf{y}^{(k)}$ and $A_{k-1} \mathbf{h}^{(k)}$ are old values, we have no control over the first part $\left(A_{k}-A_{k-1}\right) \mathbf{h}^{(k)}$.

Since

$$
\left(A_{k}-A_{k-1}\right) \mathbf{h}^{(k)}=A_{k} \mathbf{h}^{(k)}-A_{k-1} \mathbf{h}^{(k)}=\mathbf{y}^{(k)}-A_{k-1} \mathbf{h}^{(k)},
$$

both $\mathbf{y}^{(k)}$ and $A_{k-1} \mathbf{h}^{(k)}$ are old values, we have no control over the first part $\left(A_{k}-A_{k-1}\right) \mathbf{h}^{(k)}$. In order to minimize $M_{k}(\mathbf{x})-M_{k-1}(\mathbf{x})$, we try to choose A_{k} so that

$$
\left(A_{k}-A_{k-1}\right) \mathbf{t}^{(k)}=0
$$

for all $\mathbf{t}^{(k)} \in \mathbb{R}^{n},\left(\mathbf{h}^{(k)}\right)^{T} \mathbf{t}^{(k)}=0$.

Since

$$
\left(A_{k}-A_{k-1}\right) \mathbf{h}^{(k)}=A_{k} \mathbf{h}^{(k)}-A_{k-1} \mathbf{h}^{(k)}=\mathbf{y}^{(k)}-A_{k-1} \mathbf{h}^{(k)},
$$

both $\mathbf{y}^{(k)}$ and $A_{k-1} \mathbf{h}^{(k)}$ are old values, we have no control over the first part $\left(A_{k}-A_{k-1}\right) \mathbf{h}^{(k)}$. In order to minimize $M_{k}(\mathbf{x})-M_{k-1}(\mathbf{x})$, we try to choose A_{k} so that

$$
\left(A_{k}-A_{k-1}\right) \mathbf{t}^{(k)}=0
$$

for all $\mathbf{t}^{(k)} \in \mathbb{R}^{n},\left(\mathbf{h}^{(k)}\right)^{T} \mathbf{t}^{(k)}=0$. This requires that $A_{k}-A_{k-1}$ to be a rank-one matrix of the form

$$
A_{k}-A_{k-1}=\mathbf{u}^{(k)}\left(\mathbf{h}^{(k)}\right)^{T}
$$

for some $\mathbf{u}^{(k)} \in \mathbb{R}^{n}$.

Since

$$
\left(A_{k}-A_{k-1}\right) \mathbf{h}^{(k)}=A_{k} \mathbf{h}^{(k)}-A_{k-1} \mathbf{h}^{(k)}=\mathbf{y}^{(k)}-A_{k-1} \mathbf{h}^{(k)},
$$

both $\mathbf{y}^{(k)}$ and $A_{k-1} \mathbf{h}^{(k)}$ are old values, we have no control over the first part $\left(A_{k}-A_{k-1}\right) \mathbf{h}^{(k)}$. In order to minimize $M_{k}(\mathbf{x})-M_{k-1}(\mathbf{x})$, we try to choose A_{k} so that

$$
\left(A_{k}-A_{k-1}\right) \mathbf{t}^{(k)}=0
$$

for all $\mathbf{t}^{(k)} \in \mathbb{R}^{n},\left(\mathbf{h}^{(k)}\right)^{T} \mathbf{t}^{(k)}=0$. This requires that $A_{k}-A_{k-1}$ to be a rank-one matrix of the form

$$
A_{k}-A_{k-1}=\mathbf{u}^{(k)}\left(\mathbf{h}^{(k)}\right)^{T}
$$

for some $\mathbf{u}^{(k)} \in \mathbb{R}^{n}$. Then

$$
\mathbf{u}^{(k)}\left(\mathbf{h}^{(k)}\right)^{T} \mathbf{h}^{(k)}=\left(A_{k}-A_{k-1}\right) \mathbf{h}^{(k)}=\mathbf{y}^{(k)}-A_{k-1} \mathbf{h}^{(k)}
$$

which gives

$$
\mathbf{u}^{(k)}=\frac{\mathbf{y}^{(k)}-A_{k-1} \mathbf{h}^{(k)}}{\left(\mathbf{h}^{(k)}\right)^{T} \mathbf{h}^{(k)}}
$$

After A_{k} is determined, the new iterate $\mathbf{x}^{(k+1)}$ is derived from solvina $M_{k}(\mathbf{x})=0$. It can be done bv first notina that

which gives

$$
\mathbf{u}^{(k)}=\frac{\mathbf{y}^{(k)}-A_{k-1} \mathbf{h}^{(k)}}{\left(\mathbf{h}^{(k)}\right)^{T} \mathbf{h}^{(k)}}
$$

Therefore,

$$
\begin{equation*}
A_{k}=A_{k-1}+\frac{\left(\mathbf{y}^{(k)}-A_{k-1} \mathbf{h}^{(k)}\right)\left(\mathbf{h}^{(k)}\right)^{T}}{\left(\mathbf{h}^{(k)}\right)^{T} \mathbf{h}^{(k)}} \tag{1}
\end{equation*}
$$

After A_{k} is determined, the new iterate $\mathrm{x}^{(k+1)}$ is derived from solving $M_{k}(\mathrm{x})=0$. It can be done by first noting that
which gives

$$
\mathbf{u}^{(k)}=\frac{\mathbf{y}^{(k)}-A_{k-1} \mathbf{h}^{(k)}}{\left(\mathbf{h}^{(k)}\right)^{T} \mathbf{h}^{(k)}}
$$

Therefore,

$$
\begin{equation*}
A_{k}=A_{k-1}+\frac{\left(\mathbf{y}^{(k)}-A_{k-1} \mathbf{h}^{(k)}\right)\left(\mathbf{h}^{(k)}\right)^{T}}{\left(\mathbf{h}^{(k)}\right)^{T} \mathbf{h}^{(k)}} \tag{1}
\end{equation*}
$$

After A_{k} is determined, the new iterate $\mathbf{x}^{(k+1)}$ is derived from solving $M_{k}(\mathbf{x})=0$.
which gives

$$
\mathbf{u}^{(k)}=\frac{\mathbf{y}^{(k)}-A_{k-1} \mathbf{h}^{(k)}}{\left(\mathbf{h}^{(k)}\right)^{T} \mathbf{h}^{(k)}}
$$

Therefore,

$$
\begin{equation*}
A_{k}=A_{k-1}+\frac{\left(\mathbf{y}^{(k)}-A_{k-1} \mathbf{h}^{(k)}\right)\left(\mathbf{h}^{(k)}\right)^{T}}{\left(\mathbf{h}^{(k)}\right)^{T} \mathbf{h}^{(k)}} \tag{1}
\end{equation*}
$$

After A_{k} is determined, the new iterate $\mathbf{x}^{(k+1)}$ is derived from solving $M_{k}(\mathbf{x})=0$. It can be done by first noting that

$$
\mathbf{h}^{(k+1)}=\mathbf{x}^{(k+1)}-\mathbf{x}^{(k)} \quad \Longrightarrow \quad \mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\mathbf{h}^{(k+1)}
$$

which gives

$$
\mathbf{u}^{(k)}=\frac{\mathbf{y}^{(k)}-A_{k-1} \mathbf{h}^{(k)}}{\left(\mathbf{h}^{(k)}\right)^{T} \mathbf{h}^{(k)}}
$$

Therefore,

$$
\begin{equation*}
A_{k}=A_{k-1}+\frac{\left(\mathbf{y}^{(k)}-A_{k-1} \mathbf{h}^{(k)}\right)\left(\mathbf{h}^{(k)}\right)^{T}}{\left(\mathbf{h}^{(k)}\right)^{T} \mathbf{h}^{(k)}} \tag{1}
\end{equation*}
$$

After A_{k} is determined, the new iterate $\mathbf{x}^{(k+1)}$ is derived from solving $M_{k}(\mathbf{x})=0$. It can be done by first noting that

$$
\mathbf{h}^{(k+1)}=\mathbf{x}^{(k+1)}-\mathbf{x}^{(k)} \quad \Longrightarrow \quad \mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\mathbf{h}^{(k+1)}
$$

and

$$
M_{k}\left(\mathbf{x}^{(k+1)}\right)=0 \Rightarrow A_{k} \mathbf{h}^{(k+1)}=-F\left(\mathbf{x}^{(k)}\right)
$$

which gives

$$
\mathbf{u}^{(k)}=\frac{\mathbf{y}^{(k)}-A_{k-1} \mathbf{h}^{(k)}}{\left(\mathbf{h}^{(k)}\right)^{T} \mathbf{h}^{(k)}}
$$

Therefore,

$$
\begin{equation*}
A_{k}=A_{k-1}+\frac{\left(\mathbf{y}^{(k)}-A_{k-1} \mathbf{h}^{(k)}\right)\left(\mathbf{h}^{(k)}\right)^{T}}{\left(\mathbf{h}^{(k)}\right)^{T} \mathbf{h}^{(k)}} \tag{1}
\end{equation*}
$$

After A_{k} is determined, the new iterate $\mathbf{x}^{(k+1)}$ is derived from solving $M_{k}(\mathbf{x})=0$. It can be done by first noting that

$$
\mathbf{h}^{(k+1)}=\mathbf{x}^{(k+1)}-\mathbf{x}^{(k)} \quad \Longrightarrow \quad \mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\mathbf{h}^{(k+1)}
$$

and

$$
M_{k}\left(\mathbf{x}^{(k+1)}\right)=0 \Rightarrow A_{k} \mathbf{h}^{(k+1)}=-F\left(\mathbf{x}^{(k)}\right)
$$

These formulations give the Broyden's method.

Algorithm 2 (Broyden's Method)

Given $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, an initial vector $\mathbf{x}^{(0)}$ and initial Jacobian matrix $A_{0} \in \mathbb{R}^{n \times n}$ (e.g., $A_{0}=I$), tolerance $T O L$, maximum number of iteration M.
Set $k=1$.
While $k \leq M$ and $\left\|\mathbf{x}^{(k)}-\mathbf{x}^{(k-1)}\right\|_{2} \geq T O L$
Solve $A_{k} \mathbf{h}^{(k+1)}=-F\left(\mathbf{x}^{(k)}\right)$ for $\mathbf{h}^{(k+1)}$
Update $\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\mathbf{h}^{(k+1)}$
Compute $\mathbf{y}^{(k+1)}=F\left(\mathbf{x}^{(k+1)}\right)-F\left(\mathbf{x}^{(k)}\right)$
Update

$$
A_{k+1}=A_{k}+\frac{\left(\mathbf{y}^{(k+1)}+F\left(\mathbf{x}^{(k)}\right)\right)\left(\mathbf{h}^{(k+1)}\right)^{T}}{\left(\mathbf{h}^{(k+1)}\right)^{T} \mathbf{h}^{(k+1)}}
$$

Set $k=k+1$

End While

Solve the linear system $A_{k} \mathbf{h}^{(k+1)}=-F\left(\mathbf{x}^{(k)}\right)$ for $\mathbf{h}^{(k+1)}$:

Solve the linear system $A_{k} \mathbf{h}^{(k+1)}=-F\left(\mathbf{x}^{(k)}\right)$ for $\mathbf{h}^{(k+1)}$:

- $L U$-factorization: cost $\frac{2}{3} n^{3}+O\left(n^{2}\right)$ floating-point operations.

Solve the linear system $A_{k} \mathbf{h}^{(k+1)}=-F\left(\mathbf{x}^{(k)}\right)$ for $\mathbf{h}^{(k+1)}$:

- $L U$-factorization: cost $\frac{2}{3} n^{3}+O\left(n^{2}\right)$ floating-point operations.
- Applying the Shermann-Morrison-Woodbury formula

$$
\left(B+U V^{T}\right)^{-1}=B^{-1}-B^{-1} U\left(I+V^{T} B^{-1} U\right)^{-1} V^{T} B^{-1}
$$

to (1), we have

Solve the linear system $A_{k} \mathbf{h}^{(k+1)}=-F\left(\mathbf{x}^{(k)}\right)$ for $\mathbf{h}^{(k+1)}$:

- $L U$-factorization: cost $\frac{2}{3} n^{3}+O\left(n^{2}\right)$ floating-point operations.
- Applying the Shermann-Morrison-Woodbury formula

$$
\left(B+U V^{T}\right)^{-1}=B^{-1}-B^{-1} U\left(I+V^{T} B^{-1} U\right)^{-1} V^{T} B^{-1}
$$

to (1), we have
A_{k}^{-1}
$=\left[A_{k-1}+\frac{\left(\mathbf{y}^{(k)}-A_{k-1} \mathbf{h}^{(k)}\right)\left(\mathbf{h}^{(k)}\right)^{T}}{\left(\mathbf{h}^{(k)}\right)^{T} \mathbf{h}^{(k)}}\right]^{-1}$
$=A_{k-1}^{-1}-A_{k-1}^{-1} \frac{\mathbf{y}^{(k)}-A_{k-1} \mathbf{h}^{(k)}}{\left(\mathbf{h}^{(k)}\right)^{T} \mathbf{h}^{(k)}}\left(1+\left(\mathbf{h}^{(k)}\right)^{T} A_{k-1}^{-1} \frac{\mathbf{y}^{(k)}-A_{k-1} \mathbf{h}^{(k)}}{\left(\mathbf{h}^{(k)}\right)^{T} \mathbf{h}^{(k)}}\right)^{-1}\left(\mathbf{h}^{(k)}\right)^{T} A_{k}^{-}$
$=A_{k-1}^{-1}+\frac{\left(\mathbf{h}^{(k)}-A_{k-1}^{-1} \mathbf{y}^{(k)}\right)\left(\mathbf{h}^{(k)}\right)^{T} A_{k-1}^{-1}}{\left(\mathbf{h}^{(k)}\right)^{T} A_{k-1}^{-1} \mathbf{y}^{(k)}}$.
－Newton－based methods
accurate approximation
Weakness：an accurate initial approximation to the solution

4ロ〉4司〉4 三〉

- Newton-based methods
- Advantage: high speed of convergence once a sufficiently accurate approximation

> Steepest Descent method converges only linearly to the sol., but it will usually converge even for poor initial approximations.

- Newton-based methods
- Advantage: high speed of convergence once a sufficiently accurate approximation
- Weakness: an accurate initial approximation to the solution is needed to ensure convergence.
- Newton-based methods
- Advantage: high speed of convergence once a sufficiently accurate approximation
- Weakness: an accurate initial approximation to the solution is needed to ensure convergence.
- Steepest Descent method converges only linearly to the sol., but it will usually converge even for poor initial approximations.

- Newton-based methods
- Advantage: high speed of convergence once a sufficiently accurate approximation
- Weakness: an accurate initial approximation to the solution is needed to ensure convergence.
- Steepest Descent method converges only linearly to the sol., but it will usually converge even for poor initial approximations.
- "Find sufficiently accurate starting approximate solution by using Steepest Descent method" + "Compute convergent solution by using Newton-based methods"
- Newton-based methods
- Advantage: high speed of convergence once a sufficiently accurate approximation
- Weakness: an accurate initial approximation to the solution is needed to ensure convergence.
- Steepest Descent method converges only linearly to the sol., but it will usually converge even for poor initial approximations.
- "Find sufficiently accurate starting approximate solution by using Steepest Descent method" + "Compute convergent solution by using Newton-based methods"
- The method of Steepest Descent determines a local minimum for a multivariable function of $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Newton-based methods
- Advantage: high speed of convergence once a sufficiently accurate approximation
- Weakness: an accurate initial approximation to the solution is needed to ensure convergence.
- Steepest Descent method converges only linearly to the sol., but it will usually converge even for poor initial approximations.
- "Find sufficiently accurate starting approximate solution by using Steepest Descent method" + "Compute convergent solution by using Newton-based methods"
- The method of Steepest Descent determines a local minimum for a multivariable function of $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- A system of the form $f_{i}\left(x_{1}, \ldots, x_{n}\right)=0, i=1,2, \ldots, n$ has a solution at x iff the function g defined by

$$
g\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n}\left[f_{i}\left(x_{1}, \ldots, x_{n}\right)\right]^{2}
$$

has the minimal value zero.

Basic idea of steepest descent method:

(i) Evaluate g at an initial approximation $\mathrm{x}^{(0)}$;

Basic idea of steepest descent method:
(i) Evaluate g at an initial approximation $\mathbf{x}^{(0)}$;
(ii) Determine a direction from $\mathbf{x}^{(0)}$ that results in a decrease in the value of g;

Nove an appropriate distance in this direction and call the new Repeat steps (i) through (iii) with $\mathrm{x}^{(0)}$ replaced by x

Basic idea of steepest descent method:
(i) Evaluate g at an initial approximation $\mathbf{x}^{(0)}$;
(ii) Determine a direction from $\mathbf{x}^{(0)}$ that results in a decrease in the value of g;
(iii) Move an appropriate distance in this direction and call the new vector $\mathbf{x}^{(1)}$;

Basic idea of steepest descent method:
(i) Evaluate g at an initial approximation $\mathbf{x}^{(0)}$;
(ii) Determine a direction from $\mathbf{x}^{(0)}$ that results in a decrease in the value of g;
(iii) Move an appropriate distance in this direction and call the new vector $\mathrm{x}^{(1)}$;
(iv) Repeat steps (i) through (iii) with $\mathbf{x}^{(0)}$ replaced by $\mathbf{x}^{(1)}$.

Basic idea of steepest descent method:
(i) Evaluate g at an initial approximation $\mathbf{x}^{(0)}$;
(ii) Determine a direction from $\mathbf{x}^{(0)}$ that results in a decrease in the value of g;
(iii) Move an appropriate distance in this direction and call the new vector $\mathrm{x}^{(1)}$;
(iv) Repeat steps (i) through (iii) with $\mathbf{x}^{(0)}$ replaced by $\mathbf{x}^{(1)}$.

Definition 7 (Gradient)

If $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the gradient, $\nabla g(\mathbf{x})$, at \mathbf{x} is defined by

$$
\nabla g(\mathbf{x})=\left(\frac{\partial g}{\partial x_{1}}(\mathbf{x}), \cdots, \frac{\partial g}{\partial x_{n}}(\mathbf{x})\right)
$$

Basic idea of steepest descent method:
(i) Evaluate g at an initial approximation $\mathbf{x}^{(0)}$;
(ii) Determine a direction from $\mathbf{x}^{(0)}$ that results in a decrease in the value of g;
(iii) Move an appropriate distance in this direction and call the new vector $\mathrm{x}^{(1)}$;
(iv) Repeat steps (i) through (iii) with $\mathbf{x}^{(0)}$ replaced by $\mathbf{x}^{(1)}$.

Definition 7 (Gradient)

If $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the gradient, $\nabla g(\mathbf{x})$, at \mathbf{x} is defined by

$$
\nabla g(\mathbf{x})=\left(\frac{\partial g}{\partial x_{1}}(\mathbf{x}), \cdots, \frac{\partial g}{\partial x_{n}}(\mathbf{x})\right)
$$

Definition 8 (Directional Derivative)

The directional derivative of g at \mathbf{x} in the direction of \mathbf{v} with $\|\mathbf{v}\|_{2}=1$ is defined by

$$
D_{\mathbf{v}} g(\mathbf{x})=\lim _{h \rightarrow 0} \frac{g(\mathbf{x}+h \mathbf{v})-g(\mathbf{x})}{h}=\mathbf{v}^{T} \nabla g(\mathbf{x})
$$

Theorem 9

The direction of the greatest decrease in the value of g at x is the direction given by $-\nabla g(\mathrm{x})$.

Object: reduce $g(x)$ to its minimal value zero
\square
an appropriate choice

for some constant

Theorem 9

The direction of the greatest decrease in the value of g at x is the direction given by $-\nabla g(\mathrm{x})$.

- Object: reduce $g(\mathbf{x})$ to its minimal value zero.

Theorem 9

The direction of the greatest decrease in the value of g at x is the direction given by $-\nabla g(\mathrm{x})$.

- Object: reduce $g(\mathbf{x})$ to its minimal value zero.
\Rightarrow for an initial approximation $\mathbf{x}^{(0)}$, an appropriate choice for new vector $\mathbf{x}^{(1)}$ is

$$
\mathbf{x}^{(1)}=\mathbf{x}^{(0)}-\alpha \nabla g\left(\mathbf{x}^{(0)}\right), \quad \text { for some constant } \alpha>0
$$

then find α^{*} such that

Theorem 9

The direction of the greatest decrease in the value of g at x is the direction given by $-\nabla g(\mathrm{x})$.

- Object: reduce $g(\mathbf{x})$ to its minimal value zero.
\Rightarrow for an initial approximation $\mathbf{x}^{(0)}$, an appropriate choice for new vector $\mathbf{x}^{(1)}$ is

$$
\mathbf{x}^{(1)}=\mathbf{x}^{(0)}-\alpha \nabla g\left(\mathbf{x}^{(0)}\right), \quad \text { for some constant } \alpha>0
$$

- Choose $\alpha>0$ such that $g\left(\mathbf{x}^{(1)}\right)<g\left(\mathbf{x}^{(0)}\right)$:
then find α^{*} such that define

Theorem 9

The direction of the greatest decrease in the value of g at x is the direction given by $-\nabla g(\mathrm{x})$.

- Object: reduce $g(\mathbf{x})$ to its minimal value zero.
\Rightarrow for an initial approximation $\mathbf{x}^{(0)}$, an appropriate choice for new vector $\mathbf{x}^{(1)}$ is

$$
\mathbf{x}^{(1)}=\mathbf{x}^{(0)}-\alpha \nabla g\left(\mathbf{x}^{(0)}\right), \quad \text { for some constant } \alpha>0
$$

- Choose $\alpha>0$ such that $g\left(\mathbf{x}^{(1)}\right)<g\left(\mathbf{x}^{(0)}\right)$: define

$$
h(\alpha)=g\left(\mathbf{x}^{(0)}-\alpha \nabla g\left(\mathbf{x}^{(0)}\right)\right)
$$

then find α^{*} such that

$$
h\left(\alpha^{*}\right)=\min _{\alpha} h(\alpha)
$$

- How to find α^{*} ? polynomial $P(x)$ that interpolates h at α_{1}, α_{2} and α_{3}, i.e.,
to approximate h.
- How to find α^{*} ?
- Solve a root-finding problem $h^{\prime}(\alpha)=0 \Rightarrow$ Too costly, in general.
polynomial $P(x)$ that interpolates h at α_{1}, α_{2} and α_{3}, i.e.,
to approximate h. Use the minimum value
to annroximate $h\left(\sigma^{*}\right)$
- How to find α^{*} ?
- Solve a root-finding problem $h^{\prime}(\alpha)=0 \Rightarrow$ Too costly, in general.
- Choose three number $\alpha_{1}<\alpha_{2}<\alpha_{3}$, construct quadratic polynomial $P(x)$ that interpolates h at α_{1}, α_{2} and α_{3}, i.e.,

$$
P\left(\alpha_{1}\right)=h\left(\alpha_{1}\right), P\left(\alpha_{2}\right)=h\left(\alpha_{2}\right), P\left(\alpha_{3}\right)=h\left(\alpha_{3}\right),
$$

to approximate h.

- How to find α^{*} ?
- Solve a root-finding problem $h^{\prime}(\alpha)=0 \Rightarrow$ Too costly, in general.
- Choose three number $\alpha_{1}<\alpha_{2}<\alpha_{3}$, construct quadratic polynomial $P(x)$ that interpolates h at α_{1}, α_{2} and α_{3}, i.e.,

$$
P\left(\alpha_{1}\right)=h\left(\alpha_{1}\right), P\left(\alpha_{2}\right)=h\left(\alpha_{2}\right), P\left(\alpha_{3}\right)=h\left(\alpha_{3}\right),
$$

to approximate h. Use the minimum value $P(\hat{\alpha})$ in $\left[\alpha_{1}, \alpha_{3}\right]$ to approximate $h\left(\alpha^{*}\right)$.

- How to find α^{*} ?
- Solve a root-finding problem $h^{\prime}(\alpha)=0 \Rightarrow$ Too costly, in general.
- Choose three number $\alpha_{1}<\alpha_{2}<\alpha_{3}$, construct quadratic polynomial $P(x)$ that interpolates h at α_{1}, α_{2} and α_{3}, i.e.,

$$
P\left(\alpha_{1}\right)=h\left(\alpha_{1}\right), P\left(\alpha_{2}\right)=h\left(\alpha_{2}\right), P\left(\alpha_{3}\right)=h\left(\alpha_{3}\right),
$$

to approximate h. Use the minimum value $P(\hat{\alpha})$ in $\left[\alpha_{1}, \alpha_{3}\right]$ to approximate $h\left(\alpha^{*}\right)$. The new iteration is

$$
\mathbf{x}^{(1)}=\mathbf{x}^{(0)}-\hat{\alpha} \nabla g\left(\mathbf{x}^{(0)}\right) .
$$

- How to find α^{*} ?
- Solve a root-finding problem $h^{\prime}(\alpha)=0 \Rightarrow$ Too costly, in general.
- Choose three number $\alpha_{1}<\alpha_{2}<\alpha_{3}$, construct quadratic polynomial $P(x)$ that interpolates h at α_{1}, α_{2} and α_{3}, i.e.,

$$
P\left(\alpha_{1}\right)=h\left(\alpha_{1}\right), P\left(\alpha_{2}\right)=h\left(\alpha_{2}\right), P\left(\alpha_{3}\right)=h\left(\alpha_{3}\right),
$$

to approximate h. Use the minimum value $P(\hat{\alpha})$ in $\left[\alpha_{1}, \alpha_{3}\right]$ to approximate $h\left(\alpha^{*}\right)$. The new iteration is

$$
\mathbf{x}^{(1)}=\mathbf{x}^{(0)}-\hat{\alpha} \nabla g\left(\mathbf{x}^{(0)}\right) .
$$

- Set $\alpha_{1}=0$ to minimize the computation
- How to find α^{*} ?
- Solve a root-finding problem $h^{\prime}(\alpha)=0 \Rightarrow$ Too costly, in general.
- Choose three number $\alpha_{1}<\alpha_{2}<\alpha_{3}$, construct quadratic polynomial $P(x)$ that interpolates h at α_{1}, α_{2} and α_{3}, i.e.,

$$
P\left(\alpha_{1}\right)=h\left(\alpha_{1}\right), P\left(\alpha_{2}\right)=h\left(\alpha_{2}\right), P\left(\alpha_{3}\right)=h\left(\alpha_{3}\right),
$$

to approximate h. Use the minimum value $P(\hat{\alpha})$ in $\left[\alpha_{1}, \alpha_{3}\right]$ to approximate $h\left(\alpha^{*}\right)$. The new iteration is

$$
\mathbf{x}^{(1)}=\mathbf{x}^{(0)}-\hat{\alpha} \nabla g\left(\mathbf{x}^{(0)}\right) .
$$

- Set $\alpha_{1}=0$ to minimize the computation
- α_{3} is found with $h\left(\alpha_{3}\right)<h\left(\alpha_{1}\right)$.
- How to find α^{*} ?
- Solve a root-finding problem $h^{\prime}(\alpha)=0 \Rightarrow$ Too costly, in general.
- Choose three number $\alpha_{1}<\alpha_{2}<\alpha_{3}$, construct quadratic polynomial $P(x)$ that interpolates h at α_{1}, α_{2} and α_{3}, i.e.,

$$
P\left(\alpha_{1}\right)=h\left(\alpha_{1}\right), P\left(\alpha_{2}\right)=h\left(\alpha_{2}\right), P\left(\alpha_{3}\right)=h\left(\alpha_{3}\right),
$$

to approximate h. Use the minimum value $P(\hat{\alpha})$ in $\left[\alpha_{1}, \alpha_{3}\right]$ to approximate $h\left(\alpha^{*}\right)$. The new iteration is

$$
\mathbf{x}^{(1)}=\mathbf{x}^{(0)}-\hat{\alpha} \nabla g\left(\mathbf{x}^{(0)}\right) .
$$

- Set $\alpha_{1}=0$ to minimize the computation
- α_{3} is found with $h\left(\alpha_{3}\right)<h\left(\alpha_{1}\right)$.
- Choose $\alpha_{2}=\alpha_{3} / 2$.

Example 10

Use the Steepest Descent method with $\mathbf{x}^{(0)}=(0,0,0)^{T}$ to find a reasonable starting approximation to the solution of the nonlinear system

$$
\begin{aligned}
\mathrm{f}_{1}\left(x_{1}, x_{2}, x_{3}\right) & =3 x_{1}-\cos \left(x_{2} x_{3}\right)-\frac{1}{2}=0, \\
f_{2}\left(x_{1}, x_{2}, x_{3}\right) & =x_{1}^{2}-81\left(x_{2}+0.1\right)^{2}+\sin x_{3}+1.06=0, \\
f_{3}\left(x_{1}, x_{2}, x_{3}\right) & =e^{-x_{1} x_{2}}+20 x_{3}+\frac{10 \pi-3}{3}=0 .
\end{aligned}
$$

Example 10

Use the Steepest Descent method with $\mathbf{x}^{(0)}=(0,0,0)^{T}$ to find a reasonable starting approximation to the solution of the nonlinear system

$$
\begin{aligned}
f_{1}\left(x_{1}, x_{2}, x_{3}\right) & =3 x_{1}-\cos \left(x_{2} x_{3}\right)-\frac{1}{2}=0, \\
f_{2}\left(x_{1}, x_{2}, x_{3}\right) & =x_{1}^{2}-81\left(x_{2}+0.1\right)^{2}+\sin x_{3}+1.06=0, \\
f_{3}\left(x_{1}, x_{2}, x_{3}\right) & =e^{-x_{1} x_{2}}+20 x_{3}+\frac{10 \pi-3}{3}=0 .
\end{aligned}
$$

Let $g\left(x_{1}, x_{2}, x_{3}\right)=\left[f_{1}\left(x_{1}, x_{2}, x_{3}\right)\right]^{2}+\left[f_{2}\left(x_{1}, x_{2}, x_{3}\right)\right]^{2}+\left[f_{3}\left(x_{1}, x_{2}, x_{3}\right)\right]^{2}$.

Example 10

Use the Steepest Descent method with $\mathbf{x}^{(0)}=(0,0,0)^{T}$ to find a reasonable starting approximation to the solution of the nonlinear system

$$
\begin{aligned}
f_{1}\left(x_{1}, x_{2}, x_{3}\right) & =3 x_{1}-\cos \left(x_{2} x_{3}\right)-\frac{1}{2}=0, \\
f_{2}\left(x_{1}, x_{2}, x_{3}\right) & =x_{1}^{2}-81\left(x_{2}+0.1\right)^{2}+\sin x_{3}+1.06=0, \\
f_{3}\left(x_{1}, x_{2}, x_{3}\right) & =e^{-x_{1} x_{2}}+20 x_{3}+\frac{10 \pi-3}{3}=0 .
\end{aligned}
$$

Let $g\left(x_{1}, x_{2}, x_{3}\right)=\left[f_{1}\left(x_{1}, x_{2}, x_{3}\right)\right]^{2}+\left[f_{2}\left(x_{1}, x_{2}, x_{3}\right)\right]^{2}+\left[f_{3}\left(x_{1}, x_{2}, x_{3}\right)\right]^{2}$. Then

$$
\begin{aligned}
\nabla g\left(x_{1}, x_{2}, x_{3}\right) \equiv & \nabla g(x) \\
= & \left(2 f_{1}(x) \frac{\partial f_{1}}{\partial x_{1}}(x)+2 f_{2}(x) \frac{\partial f_{2}}{\partial x_{1}}(x)+2 f_{3}(x) \frac{\partial f_{3}}{\partial x_{1}}(x),\right. \\
& 2 f_{1}(x) \frac{\partial f_{1}}{\partial x_{2}}(x)+2 f_{2}(x) \frac{\partial f_{2}}{\partial x_{2}}(x)+2 f_{3}(x) \frac{\partial f_{3}}{\partial x_{2}}(x), \\
& \left.2 f_{1}(x) \frac{\partial f_{1}}{\partial x_{3}}(x)+2 f_{2}(x) \frac{\partial f_{2}}{\partial x_{3}}(x)+2 f_{3}(x) \frac{\partial f_{3}}{\partial x_{3}}(x)\right)
\end{aligned}
$$

For $\mathbf{x}^{(0)}=[0,0,0]^{T}$, we have

$$
g\left(\mathbf{x}^{(0)}\right)=111.975 \quad \text { and } \quad z_{0}=\left\|\nabla g\left(\mathbf{x}^{(0)}\right)\right\|_{2}=419.554
$$

For $\mathbf{x}^{(0)}=[0,0,0]^{T}$, we have

$$
g\left(\mathbf{x}^{(0)}\right)=111.975 \quad \text { and } \quad z_{0}=\left\|\nabla g\left(\mathbf{x}^{(0)}\right)\right\|_{2}=419.554
$$

Let

$$
z=\frac{1}{z_{0}} \nabla g\left(\mathbf{x}^{(0)}\right)=[-0.0214514,-0.0193062,0.999583]^{T} .
$$

For $\mathbf{x}^{(0)}=[0,0,0]^{T}$, we have

$$
g\left(\mathbf{x}^{(0)}\right)=111.975 \quad \text { and } \quad z_{0}=\left\|\nabla g\left(\mathbf{x}^{(0)}\right)\right\|_{2}=419.554
$$

Let

$$
z=\frac{1}{z_{0}} \nabla g\left(\mathbf{x}^{(0)}\right)=[-0.0214514,-0.0193062,0.999583]^{T} .
$$

With $\alpha_{1}=0$, we have

$$
g_{1}=g\left(\mathbf{x}^{(0)}-\alpha_{1} z\right)=g\left(\mathbf{x}^{(0)}\right)=111.975 .
$$

Let $\alpha_{3}=1$ so that

For $\mathbf{x}^{(0)}=[0,0,0]^{T}$, we have

$$
g\left(\mathbf{x}^{(0)}\right)=111.975 \quad \text { and } \quad z_{0}=\left\|\nabla g\left(\mathbf{x}^{(0)}\right)\right\|_{2}=419.554
$$

Let

$$
z=\frac{1}{z_{0}} \nabla g\left(\mathbf{x}^{(0)}\right)=[-0.0214514,-0.0193062,0.999583]^{T} .
$$

With $\alpha_{1}=0$, we have

$$
g_{1}=g\left(\mathbf{x}^{(0)}-\alpha_{1} z\right)=g\left(\mathbf{x}^{(0)}\right)=111.975 .
$$

Let $\alpha_{3}=1$ so that

$$
g_{3}=g\left(\mathbf{x}^{(0)}-\alpha_{3} z\right)=93.5649<g_{1} .
$$

For $\mathbf{x}^{(0)}=[0,0,0]^{T}$, we have

$$
g\left(\mathbf{x}^{(0)}\right)=111.975 \quad \text { and } \quad z_{0}=\left\|\nabla g\left(\mathbf{x}^{(0)}\right)\right\|_{2}=419.554
$$

Let

$$
z=\frac{1}{z_{0}} \nabla g\left(\mathbf{x}^{(0)}\right)=[-0.0214514,-0.0193062,0.999583]^{T} .
$$

With $\alpha_{1}=0$, we have

$$
g_{1}=g\left(\mathbf{x}^{(0)}-\alpha_{1} z\right)=g\left(\mathbf{x}^{(0)}\right)=111.975 .
$$

Let $\alpha_{3}=1$ so that

$$
g_{3}=g\left(\mathbf{x}^{(0)}-\alpha_{3} z\right)=93.5649<g_{1} .
$$

Set $\alpha_{2}=\alpha_{3} / 2=0.5$.

For $\mathbf{x}^{(0)}=[0,0,0]^{T}$, we have

$$
g\left(\mathbf{x}^{(0)}\right)=111.975 \quad \text { and } \quad z_{0}=\left\|\nabla g\left(\mathbf{x}^{(0)}\right)\right\|_{2}=419.554
$$

Let

$$
z=\frac{1}{z_{0}} \nabla g\left(\mathbf{x}^{(0)}\right)=[-0.0214514,-0.0193062,0.999583]^{T} .
$$

With $\alpha_{1}=0$, we have

$$
g_{1}=g\left(\mathbf{x}^{(0)}-\alpha_{1} z\right)=g\left(\mathbf{x}^{(0)}\right)=111.975
$$

Let $\alpha_{3}=1$ so that

$$
g_{3}=g\left(\mathbf{x}^{(0)}-\alpha_{3} z\right)=93.5649<g_{1} .
$$

Set $\alpha_{2}=\alpha_{3} / 2=0.5$. Thus

$$
g_{2}=g\left(\mathbf{x}^{(0)}-\alpha_{2} z\right)=2.53557
$$

Form quadratic polynomial $P(\alpha)$ defined as

$$
P(\alpha)=g_{1}+h_{1} \alpha+h_{3} \alpha\left(\alpha-\alpha_{2}\right)
$$

that interpolates $g\left(\mathbf{x}^{(0)}-\alpha z\right)$ at $\alpha_{1}=0, \alpha_{2}=0.5$ and $\alpha_{3}=1$ as follows

Form quadratic polynomial $P(\alpha)$ defined as

$$
P(\alpha)=g_{1}+h_{1} \alpha+h_{3} \alpha\left(\alpha-\alpha_{2}\right)
$$

that interpolates $g\left(\mathbf{x}^{(0)}-\alpha z\right)$ at $\alpha_{1}=0, \alpha_{2}=0.5$ and $\alpha_{3}=1$ as follows

$$
\begin{aligned}
& g_{2}=P\left(\alpha_{2}\right)=g_{1}+h_{1} \alpha_{2} \Rightarrow h_{1}=\frac{g_{2}-g_{1}}{\alpha_{2}}=-218.878, \\
& g_{3}=P\left(\alpha_{3}\right)=g_{1}+h_{1} \alpha_{3}+h_{3} \alpha_{3}\left(\alpha_{3}-\alpha_{2}\right) \Rightarrow h_{3}=400.937 .
\end{aligned}
$$

Form quadratic polynomial $P(\alpha)$ defined as

$$
P(\alpha)=g_{1}+h_{1} \alpha+h_{3} \alpha\left(\alpha-\alpha_{2}\right)
$$

that interpolates $g\left(\mathbf{x}^{(0)}-\alpha z\right)$ at $\alpha_{1}=0, \alpha_{2}=0.5$ and $\alpha_{3}=1$ as follows

$$
\begin{aligned}
& g_{2}=P\left(\alpha_{2}\right)=g_{1}+h_{1} \alpha_{2} \Rightarrow h_{1}=\frac{g_{2}-g_{1}}{\alpha_{2}}=-218.878 \\
& g_{3}=P\left(\alpha_{3}\right)=g_{1}+h_{1} \alpha_{3}+h_{3} \alpha_{3}\left(\alpha_{3}-\alpha_{2}\right) \Rightarrow h_{3}=400.937 .
\end{aligned}
$$

Thus

$$
P(\alpha)=111.975-218.878 \alpha+400.937 \alpha(\alpha-0.5)
$$

Form quadratic polynomial $P(\alpha)$ defined as

$$
P(\alpha)=g_{1}+h_{1} \alpha+h_{3} \alpha\left(\alpha-\alpha_{2}\right)
$$

that interpolates $g\left(\mathbf{x}^{(0)}-\alpha z\right)$ at $\alpha_{1}=0, \alpha_{2}=0.5$ and $\alpha_{3}=1$ as follows

$$
\begin{aligned}
& g_{2}=P\left(\alpha_{2}\right)=g_{1}+h_{1} \alpha_{2} \Rightarrow h_{1}=\frac{g_{2}-g_{1}}{\alpha_{2}}=-218.878 \\
& g_{3}=P\left(\alpha_{3}\right)=g_{1}+h_{1} \alpha_{3}+h_{3} \alpha_{3}\left(\alpha_{3}-\alpha_{2}\right) \Rightarrow h_{3}=400.937
\end{aligned}
$$

Thus

$$
P(\alpha)=111.975-218.878 \alpha+400.937 \alpha(\alpha-0.5)
$$

so that

$$
0=P^{\prime}\left(\alpha_{0}\right)=-419.346+801.872 \alpha_{0} \Rightarrow \alpha_{0}=0.522959
$$

Form quadratic polynomial $P(\alpha)$ defined as

$$
P(\alpha)=g_{1}+h_{1} \alpha+h_{3} \alpha\left(\alpha-\alpha_{2}\right)
$$

that interpolates $g\left(\mathbf{x}^{(0)}-\alpha z\right)$ at $\alpha_{1}=0, \alpha_{2}=0.5$ and $\alpha_{3}=1$ as follows

$$
\begin{aligned}
& g_{2}=P\left(\alpha_{2}\right)=g_{1}+h_{1} \alpha_{2} \Rightarrow h_{1}=\frac{g_{2}-g_{1}}{\alpha_{2}}=-218.878 \\
& g_{3}=P\left(\alpha_{3}\right)=g_{1}+h_{1} \alpha_{3}+h_{3} \alpha_{3}\left(\alpha_{3}-\alpha_{2}\right) \Rightarrow h_{3}=400.937
\end{aligned}
$$

Thus

$$
P(\alpha)=111.975-218.878 \alpha+400.937 \alpha(\alpha-0.5)
$$

so that

$$
0=P^{\prime}\left(\alpha_{0}\right)=-419.346+801.872 \alpha_{0} \Rightarrow \alpha_{0}=0.522959
$$

Since

$$
g_{0}=g\left(\mathbf{x}^{(0)}-\alpha_{0} z\right)=2.32762<\min \left\{g_{1}, g_{3}\right\},
$$

Form quadratic polynomial $P(\alpha)$ defined as

$$
P(\alpha)=g_{1}+h_{1} \alpha+h_{3} \alpha\left(\alpha-\alpha_{2}\right)
$$

that interpolates $g\left(\mathbf{x}^{(0)}-\alpha z\right)$ at $\alpha_{1}=0, \alpha_{2}=0.5$ and $\alpha_{3}=1$ as follows

$$
\begin{aligned}
& g_{2}=P\left(\alpha_{2}\right)=g_{1}+h_{1} \alpha_{2} \Rightarrow h_{1}=\frac{g_{2}-g_{1}}{\alpha_{2}}=-218.878 \\
& g_{3}=P\left(\alpha_{3}\right)=g_{1}+h_{1} \alpha_{3}+h_{3} \alpha_{3}\left(\alpha_{3}-\alpha_{2}\right) \Rightarrow h_{3}=400.937
\end{aligned}
$$

Thus

$$
P(\alpha)=111.975-218.878 \alpha+400.937 \alpha(\alpha-0.5)
$$

so that

$$
0=P^{\prime}\left(\alpha_{0}\right)=-419.346+801.872 \alpha_{0} \Rightarrow \alpha_{0}=0.522959
$$

Since

$$
g_{0}=g\left(\mathbf{x}^{(0)}-\alpha_{0} z\right)=2.32762<\min \left\{g_{1}, g_{3}\right\}
$$

we set

$$
\mathbf{x}^{(1)}=\mathbf{x}^{(0)}-\alpha_{0} z=[0.0112182,0.0100964,-0.522741]^{T}
$$

[^0]: then f is continuous at x_{0}.

