Numerical solutions of nonlinear systems of equations

Tsung-Ming Huang

Department of Mathematics
National Taiwan Normal University, Taiwan
E-mail: min@ntnu.edu.tw

October 27, 2014

- 1 Fixed points for functions of several variables
- 2 Newton's method
- Quasi-Newton methods
- Steepest Descent Techniques

- 1 Fixed points for functions of several variables
- Newton's method
- Quasi-Newton methods
- Steepest Descent Techniques

- 1 Fixed points for functions of several variables
- Newton's method
- Quasi-Newton methods
- Steepest Descent Techniques

- 1 Fixed points for functions of several variables
- Newton's method
- Quasi-Newton methods
- Steepest Descent Techniques

Theorem 1

Fixed points

Let $f: D \subset \mathbb{R}^n \to \mathbb{R}$ be a function and $x_0 \in D$. If all the partial derivatives of f exist and $\exists \ \delta > 0$ and $\alpha > 0$ such that $\forall \ \|x - x_0\| < \delta$ and $x \in D$, we have

$$\left| \frac{\partial f(x)}{\partial x_j} \right| \le \alpha, \ \forall \ j = 1, 2, \dots, n,$$

then f is continuous at x_0 .

Definition 2 (Fixed Point)

A function G from $D \subset \mathbb{R}^n$ into \mathbb{R}^n has a fixed point at $p \in D$ if G(p) = p.

Theorem 1

Let $f:D\subset\mathbb{R}^n\to\mathbb{R}$ be a function and $x_0\in D$. If all the partial derivatives of f exist and $\exists \ \delta > 0$ and $\alpha > 0$ such that $\forall \|x-x_0\| < \delta \text{ and } x \in D, \text{ we have }$

$$\left| \frac{\partial f(x)}{\partial x_j} \right| \le \alpha, \ \forall \ j = 1, 2, \dots, n,$$

Theorem 1

Let $f:D\subset\mathbb{R}^n\to\mathbb{R}$ be a function and $x_0\in D$. If all the partial derivatives of f exist and $\exists \ \delta > 0$ and $\alpha > 0$ such that $\forall \|x - x_0\| < \delta \text{ and } x \in D, \text{ we have }$

$$\left| \frac{\partial f(x)}{\partial x_j} \right| \le \alpha, \ \forall \ j = 1, 2, \dots, n,$$

Theorem 1

Let $f:D\subset\mathbb{R}^n\to\mathbb{R}$ be a function and $x_0\in D$. If all the partial derivatives of f exist and $\exists \ \delta > 0$ and $\alpha > 0$ such that $\forall \|x - x_0\| < \delta \text{ and } x \in D, \text{ we have }$

$$\left| \frac{\partial f(x)}{\partial x_j} \right| \le \alpha, \ \forall \ j = 1, 2, \dots, n,$$

then f is continuous at x_0 .

Theorem 1

Let $f:D\subset\mathbb{R}^n\to\mathbb{R}$ be a function and $x_0\in D$. If all the partial derivatives of f exist and $\exists \ \delta > 0$ and $\alpha > 0$ such that $\forall \|x - x_0\| < \delta \text{ and } x \in D, \text{ we have }$

$$\left| \frac{\partial f(x)}{\partial x_j} \right| \le \alpha, \ \forall \ j = 1, 2, \dots, n,$$

then f is continuous at x_0 .

Definition 2 (Fixed Point)

A function G from $D \subset \mathbb{R}^n$ into \mathbb{R}^n has a fixed point at $p \in D$ if G(p) = p.

Let $D = \{(x_1, \dots, x_n)^T; a_i \leq x_i \leq b_i, \forall i = 1, \dots, n\} \subset \mathbb{R}^n$.

$$\left| \frac{\partial g_i(x)}{\partial x_i} \right| \leq \frac{\alpha}{n}, \text{ whenever } x \in D,$$

$$\mathbf{x}^{(k)} = G(\mathbf{x}^{(k-1)}), \quad \text{for each } k \ge 1$$

$$\|\mathbf{x}^{(k)} - p\|_{\infty} \le \frac{\alpha^k}{1 - m} \|\mathbf{x}^{(1)} - \mathbf{x}^{(0)}\|_{\infty}$$

Let $D = \{(x_1, \dots, x_n)^T; a_i \leq x_i \leq b_i, \forall i = 1, \dots, n\} \subset \mathbb{R}^n$.

Suppose $G: D \to \mathbb{R}^n$ is a continuous function with $G(x) \in D$ whenever $x \in D$. Then G has a fixed point in D.

$$\left| \frac{\partial g_i(x)}{\partial x_i} \right| \le \frac{\alpha}{n}, \text{ whenever } x \in D,$$

$$\mathbf{x}^{(k)} = G(\mathbf{x}^{(k-1)}), \quad \textit{for each } k \ge 1$$

$$\|\mathbf{x}^{(k)} - p\|_{\infty} \le \frac{\alpha^k}{1-\alpha} \|\mathbf{x}^{(1)} - \mathbf{x}^{(0)}\|_{\infty}$$

Let $D = \{(x_1, \dots, x_n)^T; a_i \leq x_i \leq b_i, \forall i = 1, \dots, n\} \subset \mathbb{R}^n$.

Suppose $G: D \to \mathbb{R}^n$ is a continuous function with $G(x) \in D$ whenever $x \in D$. Then G has a fixed point in D.

$$\left| \frac{\partial g_i(x)}{\partial x_i} \right| \le \frac{\alpha}{n}, \text{ whenever } x \in D,$$

$$\mathbf{x}^{(k)} = G(\mathbf{x}^{(k-1)}), \quad \text{for each } k \geq 1$$

$$\| \mathbf{x}^{(k)} - p \|_{\infty} \le \frac{\alpha^k}{1 - \alpha^k} \| \mathbf{x}^{(1)} - \mathbf{x}^{(0)} \|_{\infty}$$

Let $D = \{(x_1, \dots, x_n)^T; a_i \leq x_i \leq b_i, \forall i = 1, \dots, n\} \subset \mathbb{R}^n$.

Suppose $G: D \to \mathbb{R}^n$ is a continuous function with $G(x) \in D$ whenever $x \in D$. Then G has a fixed point in D.

Suppose, in addition, G has continuous partial derivatives and a constant α < 1 exists with

$$\left| \frac{\partial g_i(x)}{\partial x_i} \right| \le \frac{\alpha}{n}, \text{ whenever } x \in D,$$

for j = 1, ..., n and i = 1, ..., n. Then, for any $\mathbf{x}^{(0)} \in D$.

$$\mathbf{x}^{(k)} = G(\mathbf{x}^{(k-1)}), \quad \text{for each } k \geq 1$$

$$\| \mathbf{x}^{(k)} - p \|_{\infty} \le \frac{\alpha^k}{1 - \alpha^k} \| \mathbf{x}^{(1)} - \mathbf{x}^{(0)} \|_{\infty}$$

Let $D = \{(x_1, \dots, x_n)^T; a_i \leq x_i \leq b_i, \forall i = 1, \dots, n\} \subset \mathbb{R}^n$.

Suppose $G: D \to \mathbb{R}^n$ is a continuous function with $G(x) \in D$ whenever $x \in D$. Then G has a fixed point in D.

Suppose, in addition, G has continuous partial derivatives and a constant α < 1 exists with

$$\left| \frac{\partial g_i(x)}{\partial x_i} \right| \le \frac{\alpha}{n}$$
, whenever $x \in D$,

for $j=1,\ldots,n$ and $i=1,\ldots,n$. Then, for any $\mathbf{x}^{(0)}\in D$,

$$\mathbf{x}^{(k)} = G(\mathbf{x}^{(k-1)}), \text{ for each } k \geq 1$$

converges to the unique fixed point $p \in D$ and

$$\|\mathbf{x}^{(k)} - p\|_{\infty} \le \frac{\alpha^k}{1 - \alpha} \|\mathbf{x}^{(1)} - \mathbf{x}^{(0)}\|_{\infty}$$

Let $D = \{(x_1, \dots, x_n)^T; a_i \leq x_i \leq b_i, \forall i = 1, \dots, n\} \subset \mathbb{R}^n$.

Suppose $G: D \to \mathbb{R}^n$ is a continuous function with $G(x) \in D$ whenever $x \in D$. Then G has a fixed point in D.

Suppose, in addition, G has continuous partial derivatives and a constant α < 1 exists with

$$\left| \frac{\partial g_i(x)}{\partial x_i} \right| \le \frac{\alpha}{n}$$
, whenever $x \in D$,

for $i = 1, \ldots, n$ and $i = 1, \ldots, n$. Then, for any $\mathbf{x}^{(0)} \in D$,

$$\mathbf{x}^{(k)} = G(\mathbf{x}^{(k-1)}), \quad \text{for each } k \geq 1$$

converges to the unique fixed point $p \in D$ and

$$\| \mathbf{x}^{(k)} - p \|_{\infty} \le \frac{\alpha^k}{1 - \alpha} \| \mathbf{x}^{(1)} - \mathbf{x}^{(0)} \|_{\infty}.$$

Example 4

Consider the nonlinear system

$$3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0,$$

$$x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0,$$

$$e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0.$$

Change the system into the fixed-point problem:

$$x_1 = \frac{1}{3}\cos(x_2x_3) + \frac{1}{6} \equiv g_1(x_1, x_2, x_3),$$

$$x_2 = \frac{1}{9}\sqrt{x_1^2 + \sin x_3 + 1.06} - 0.1 \equiv g_2(x_1, x_2, x_3),$$

$$x_3 = -\frac{1}{20}e^{-x_1x_2} - \frac{10\pi - 3}{60} \equiv g_3(x_1, x_2, x_3).$$

Let $G:\mathbb{R}^3 \to \mathbb{R}^3$ be defined by $G(x) = [g_1(x), g_2(x), g_3(x)]^T$.

Example 4

Consider the nonlinear system

$$3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0,$$

$$x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0,$$

$$e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0.$$

Fixed-point problem:

Change the system into the fixed-point problem:

$$x_1 = \frac{1}{3}\cos(x_2x_3) + \frac{1}{6} \equiv g_1(x_1, x_2, x_3),$$

$$x_2 = \frac{1}{9}\sqrt{x_1^2 + \sin x_3 + 1.06} - 0.1 \equiv g_2(x_1, x_2, x_3),$$

$$x_3 = -\frac{1}{20}e^{-x_1x_2} - \frac{10\pi - 3}{60} \equiv g_3(x_1, x_2, x_3).$$

Let $G:\mathbb{R}^3 \to \mathbb{R}^3$ be defined by $G(x)=[g_1(x),g_2(x),g_3(x)]^T$.

• G has a unique point in $D \equiv [-1, 1] \times [-1, 1] \times [-1, 1]$:

• Existence:
$$\forall x \in D$$

$$|g_1(x)| \le \frac{1}{3} |\cos(x_2 x_3)| + \frac{1}{6} \le 0.5,$$

$$|g_2(x)| = \left| \frac{1}{9} \sqrt{x_1^2 + \sin x_3 + 1.06} - 0.1 \right| \le \frac{1}{9} \sqrt{1 + \sin 1 + 1.06} - 0.1 < 0.09,$$

$$|g_3(x)| = \frac{1}{29} e^{-x_1 x_2} + \frac{10\pi - 3}{29} \le \frac{1}{29} e^{+\frac{10\pi - 3}{29}} < 0.61,$$

$$\left| \frac{\partial g_1}{\partial x_1} \right| = 0, \ \left| \frac{\partial g_2}{\partial x_2} \right| = 0 \ \text{and} \ \left| \frac{\partial g_3}{\partial x_3} \right| = 0$$

$$\left| \frac{\partial g_1}{\partial x_1} \right| \le \frac{1}{2} |x_3| \cdot |\sin(x_2 x_3)| \le \frac{1}{2} \sin 1 < 0.281,$$

- G has a unique point in $D \equiv [-1, 1] \times [-1, 1] \times [-1, 1]$:
 - Existence: $\forall x \in D$,

$$|g_1(x)| \le \frac{1}{3} |\cos(x_2 x_3)| + \frac{1}{6} \le 0.5,$$

$$|g_2(x)| = \left| \frac{1}{9} \sqrt{x_1^2 + \sin x_3 + 1.06} - 0.1 \right| \le \frac{1}{9} \sqrt{1 + \sin 1 + 1.06} - 0.1 < 0.09,$$

$$|g_3(x)| = \frac{1}{20} e^{-x_1 x_2} + \frac{10\pi - 3}{60} \le \frac{1}{20} e + \frac{10\pi - 3}{60} < 0.61,$$

it implies that $G(x) \in D$ whenever $x \in D$.

$$\left| \frac{\partial g_1}{\partial x_1} \right| = 0, \ \left| \frac{\partial g_2}{\partial x_2} \right| = 0 \ \text{and} \ \left| \frac{\partial g_3}{\partial x_3} \right| = 0.$$

$$\left| \frac{\partial g_1}{\partial x_2} \right| \le \frac{1}{3} |x_3| \cdot |\sin(x_2 x_3)| \le \frac{1}{3} \sin 1 < 0.281,$$

- G has a unique point in $D \equiv [-1,1] \times [-1,1] \times [-1,1]$:
 - Existence: $\forall x \in D$,

$$|g_1(x)| \le \frac{1}{3}|\cos(x_2x_3)| + \frac{1}{6} \le 0.5,$$

$$|g_2(x)| = \left|\frac{1}{9}\sqrt{x_1^2 + \sin x_3 + 1.06} - 0.1\right| \le \frac{1}{9}\sqrt{1 + \sin 1 + 1.06} - 0.1 < 0.09,$$

$$|g_3(x)| = \frac{1}{20}e^{-x_1x_2} + \frac{10\pi - 3}{60} \le \frac{1}{20}e + \frac{10\pi - 3}{60} < 0.61,$$

it implies that $G(x) \in D$ whenever $x \in D$.

Uniqueness:

$$\left| \frac{\partial g_1}{\partial x_1} \right| = 0, \ \left| \frac{\partial g_2}{\partial x_2} \right| = 0 \ \ \text{and} \ \ \left| \frac{\partial g_3}{\partial x_3} \right| = 0,$$

as well as

$$\left| \frac{\partial g_1}{\partial x_2} \right| \le \frac{1}{3} |x_3| \cdot |\sin(x_2 x_3)| \le \frac{1}{3} \sin 1 < 0.281,$$

$$\left| \frac{\partial g_i}{\partial x_j} \right| \le 0.281, \ \forall \ i, j$$

$$\begin{split} \left| \frac{\partial g_1}{\partial x_3} \right| & \leq & \frac{1}{3} |x_2| \cdot |\sin(x_2 x_3)| \leq \frac{1}{3} \sin 1 < 0.281, \\ \left| \frac{\partial g_2}{\partial x_1} \right| & = & \frac{|x_1|}{9 \sqrt{x_1^2 + \sin x_3 + 1.06}} < \frac{1}{9 \sqrt{0.218}} < 0.238, \\ \left| \frac{\partial g_2}{\partial x_3} \right| & = & \frac{|\cos x_3|}{18 \sqrt{x_1^2 + \sin x_3 + 1.06}} < \frac{1}{18 \sqrt{0.218}} < 0.119, \\ \left| \frac{\partial g_3}{\partial x_1} \right| & = & \frac{|x_2|}{20} e^{-x_1 x_2} \leq \frac{1}{20} e < 0.14, \\ \left| \frac{\partial g_3}{\partial x_2} \right| & = & \frac{|x_1|}{20} e^{-x_1 x_2} \leq \frac{1}{20} e < 0.14. \end{split}$$

These imply that g_1 , g_2 and g_3 are continuous on D and $\forall x \in D$,

$$\left| \frac{\partial g_i}{\partial x_i} \right| \le 0.281, \ \forall \ i, j.$$

Similarly, $\partial g_i/\partial x_j$ are continuous on D for all i and j. Consequently,

$$\begin{split} \left| \frac{\partial g_1}{\partial x_3} \right| & \leq & \frac{1}{3} |x_2| \cdot |\sin(x_2 x_3)| \leq \frac{1}{3} \sin 1 < 0.281, \\ \left| \frac{\partial g_2}{\partial x_1} \right| & = & \frac{|x_1|}{9 \sqrt{x_1^2 + \sin x_3 + 1.06}} < \frac{1}{9 \sqrt{0.218}} < 0.238, \\ \left| \frac{\partial g_2}{\partial x_3} \right| & = & \frac{|\cos x_3|}{18 \sqrt{x_1^2 + \sin x_3 + 1.06}} < \frac{1}{18 \sqrt{0.218}} < 0.119, \\ \left| \frac{\partial g_3}{\partial x_1} \right| & = & \frac{|x_2|}{20} e^{-x_1 x_2} \leq \frac{1}{20} e < 0.14, \\ \left| \frac{\partial g_3}{\partial x_2} \right| & = & \frac{|x_1|}{20} e^{-x_1 x_2} \leq \frac{1}{20} e < 0.14. \end{split}$$

These imply that g_1 , g_2 and g_3 are continuous on D and $\forall x \in D$,

$$\left| \frac{\partial g_i}{\partial x_i} \right| \le 0.281, \ \forall \ i, j.$$

Similarly, $\partial g_i/\partial x_j$ are continuous on D for all i and j. Consequently,

$$\begin{split} \left| \frac{\partial g_1}{\partial x_3} \right| & \leq & \frac{1}{3} |x_2| \cdot |\sin(x_2 x_3)| \leq \frac{1}{3} \sin 1 < 0.281, \\ \left| \frac{\partial g_2}{\partial x_1} \right| & = & \frac{|x_1|}{9 \sqrt{x_1^2 + \sin x_3 + 1.06}} < \frac{1}{9 \sqrt{0.218}} < 0.238, \\ \left| \frac{\partial g_2}{\partial x_3} \right| & = & \frac{|\cos x_3|}{18 \sqrt{x_1^2 + \sin x_3 + 1.06}} < \frac{1}{18 \sqrt{0.218}} < 0.119, \\ \left| \frac{\partial g_3}{\partial x_1} \right| & = & \frac{|x_2|}{20} e^{-x_1 x_2} \leq \frac{1}{20} e < 0.14, \\ \left| \frac{\partial g_3}{\partial x_2} \right| & = & \frac{|x_1|}{20} e^{-x_1 x_2} \leq \frac{1}{20} e < 0.14. \end{split}$$

These imply that g_1, g_2 and g_3 are continuous on D and $\forall x \in D$,

$$\left| \frac{\partial g_i}{\partial x_i} \right| \le 0.281, \ \forall \ i, j.$$

Similarly, $\partial g_i/\partial x_j$ are continuous on D for all i and j. Consequently,

G has a unique fixed point in D.

• Fixed-point iteration (I):

Choosing
$$\mathbf{x}^{(0)} = [0.1, 0.1, -0.1]^T$$
, $\{\mathbf{x}^{(k)}\}$ is generated by
$$x_1^{(k)} = \frac{1}{3}\cos x_2^{(k-1)}x_3^{(k-1)} + \frac{1}{6},$$

$$x_2^{(k)} = \frac{1}{9}\sqrt{\left(x_1^{(k-1)}\right)^2 + \sin x_3^{(k-1)} + 1.06} - 0.1,$$

$$x_3^{(k)} = -\frac{1}{20}e^{-x_1^{(k-1)}x_2^{(k-1)}} - \frac{10\pi - 3}{60}.$$

Result

		2.3×10^{-4}
		1.2×10^{-5}
	-0.52359877	3.1×10^{-7}

- Approximated solution:
 - Fixed-point iteration (I): Choosing $\mathbf{x}^{(0)} = [0.1, 0.1, -0.1]^T$, $\{\mathbf{x}^{(k)}\}$ is generated by

$$\begin{split} x_1^{(k)} &=& \frac{1}{3}\cos x_2^{(k-1)}x_3^{(k-1)} + \frac{1}{6}, \\ x_2^{(k)} &=& \frac{1}{9}\sqrt{\left(x_1^{(k-1)}\right)^2 + \sin x_3^{(k-1)} + 1.06} - 0.1, \\ x_3^{(k)} &=& -\frac{1}{20}e^{-x_1^{(k-1)}x_2^{(k-1)}} - \frac{10\pi - 3}{60}. \end{split}$$

Result:

k	$x_1^{(k)}$	$x_2^{(k)}$	$x_3^{(k)}$	$\ \mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\ _{\infty}$
0	0.10000000	0.10000000	-0.10000000	
1	0.49998333	0.00944115	-0.52310127	0.423
2	0.49999593	0.00002557	-0.52336331	9.4×10^{-3}
3	0.50000000	0.00001234	-0.52359814	2.3×10^{-4}
4	0.50000000	0.00000003	-0.52359847	1.2×10^{-5}
5	0.50000000	0.00000002	-0.52359877	3.1×10^{-7}

- Approximated solution (cont.):
 - Accelerate convergence of the fixed-point iteration:

$$x_1^{(k)} = \frac{1}{3}\cos x_2^{(k-1)}x_3^{(k-1)} + \frac{1}{6},$$

$$x_2^{(k)} = \frac{1}{9}\sqrt{\left(x_1^{(k)}\right)^2 + \sin x_3^{(k-1)} + 1.06} - 0.1,$$

$$x_3^{(k)} = -\frac{1}{20}e^{-x_1^{(k)}x_2^{(k)}} - \frac{10\pi - 3}{60},$$

as in the Gauss-Seidel method for linear systems.

Result

		2.8×10^{-5}
		3.8×10^{-8}

- Approximated solution (cont.):
 - Accelerate convergence of the fixed-point iteration:

$$x_1^{(k)} = \frac{1}{3} \cos x_2^{(k-1)} x_3^{(k-1)} + \frac{1}{6},$$

$$x_2^{(k)} = \frac{1}{9} \sqrt{\left(x_1^{(k)}\right)^2 + \sin x_3^{(k-1)} + 1.06} - 0.1,$$

$$x_3^{(k)} = -\frac{1}{20} e^{-x_1^{(k)} x_2^{(k)}} - \frac{10\pi - 3}{60},$$

as in the Gauss-Seidel method for linear systems.

Result:

Fixed points

\overline{k}	$x_1^{(k)}$	$x_2^{(k)}$	$x_3^{(k)}$	$\ \mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\ _{\infty}$
0	0.10000000	0.10000000	-0.10000000	
1	0.49998333	0.02222979	-0.52304613	0.423
2	0.49997747	0.00002815	-0.52359807	2.2×10^{-2}
3	0.50000000	0.00000004	-0.52359877	2.8×10^{-5}
4	0.50000000	0.00000000	-0.52359877	3.8×10^{-8}

Exercise

Page 636: 5, 7.b, 7.d

Newton's method

First consider solving the following system of nonlinear eqs.:

$$\begin{cases} f_1(x_1, x_2) = 0, \\ f_2(x_1, x_2) = 0. \end{cases}$$

$$0 = f_{1}(x_{1}^{(k)} + h_{1}^{(k)}, x_{2}^{(k)} + h_{2}^{(k)})$$

$$\approx f_{1}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{1}^{(k)} \frac{\partial f_{1}}{\partial x_{1}}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{2}^{(k)} \frac{\partial f_{1}}{\partial x_{2}}(x_{1}^{(k)}, x_{2}^{(k)})$$

$$0 = f_{2}(x_{1}^{(k)} + h_{1}^{(k)}, x_{2}^{(k)} + h_{2}^{(k)})$$

$$\approx f_{2}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{1}^{(k)} \frac{\partial f_{2}}{\partial x_{1}}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{2}^{(k)} \frac{\partial f_{2}}{\partial x_{2}}(x_{1}^{(k)}, x_{2}^{(k)})$$

Newton's method

First consider solving the following system of nonlinear eqs.:

$$\begin{cases} f_1(x_1, x_2) = 0, \\ f_2(x_1, x_2) = 0. \end{cases}$$

Suppose $(x_1^{(k)}, x_2^{(k)})$ is an approximation to the solution of the system above, and we try to compute $h_1^{(k)}$ and $h_2^{(k)}$ such that

$$0 = f_{1}(x_{1}^{(k)} + h_{1}^{(k)}, x_{2}^{(k)} + h_{2}^{(k)})$$

$$\approx f_{1}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{1}^{(k)} \frac{\partial f_{1}}{\partial x_{1}}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{2}^{(k)} \frac{\partial f_{1}}{\partial x_{2}}(x_{1}^{(k)}, x_{2}^{(k)})$$

$$0 = f_{2}(x_{1}^{(k)} + h_{1}^{(k)}, x_{2}^{(k)} + h_{2}^{(k)})$$

$$\approx f_{2}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{1}^{(k)} \frac{\partial f_{2}}{\partial x_{1}}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{2}^{(k)} \frac{\partial f_{2}}{\partial x_{2}}(x_{1}^{(k)}, x_{2}^{(k)})$$

Newton's method

First consider solving the following system of nonlinear eqs.:

$$\begin{cases} f_1(x_1, x_2) = 0, \\ f_2(x_1, x_2) = 0. \end{cases}$$

Suppose $(x_1^{(k)}, x_2^{(k)})$ is an approximation to the solution of the system above, and we try to compute $h_1^{(k)}$ and $h_2^{(k)}$ such that $(x_1^{(k)} + h_1^{(k)}, x_2^{(k)} + h_2^{(k)})$ satisfies the system. By the Taylor's

$$0 = f_{1}(x_{1}^{(k)} + h_{1}^{(k)}, x_{2}^{(k)} + h_{2}^{(k)})$$

$$\approx f_{1}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{1}^{(k)} \frac{\partial f_{1}}{\partial x_{1}}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{2}^{(k)} \frac{\partial f_{1}}{\partial x_{2}}(x_{1}^{(k)}, x_{2}^{(k)})$$

$$0 = f_{2}(x_{1}^{(k)} + h_{1}^{(k)}, x_{2}^{(k)} + h_{2}^{(k)})$$

$$\approx f_{2}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{1}^{(k)} \frac{\partial f_{2}}{\partial x_{1}}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{2}^{(k)} \frac{\partial f_{2}}{\partial x_{1}}(x_{1}^{(k)}, x_{2}^{(k)})$$

ewton's method

First consider solving the following system of nonlinear eqs.:

$$\begin{cases} f_1(x_1, x_2) = 0, \\ f_2(x_1, x_2) = 0. \end{cases}$$

Suppose $(x_1^{(k)},x_2^{(k)})$ is an approximation to the solution of the system above, and we try to compute $h_1^{(k)}$ and $h_2^{(k)}$ such that $(x_1^{(k)}+h_1^{(k)},x_2^{(k)}+h_2^{(k)})$ satisfies the system. By the Taylor's theorem for two variables,

$$0 = f_{1}(x_{1}^{(k)} + h_{1}^{(k)}, x_{2}^{(k)} + h_{2}^{(k)})$$

$$\approx f_{1}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{1}^{(k)} \frac{\partial f_{1}}{\partial x_{1}}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{2}^{(k)} \frac{\partial f_{1}}{\partial x_{2}}(x_{1}^{(k)}, x_{2}^{(k)})$$

$$0 = f_{2}(x_{1}^{(k)} + h_{1}^{(k)}, x_{2}^{(k)} + h_{2}^{(k)})$$

$$\approx f_{2}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{1}^{(k)} \frac{\partial f_{2}}{\partial x_{1}}(x_{1}^{(k)}, x_{2}^{(k)}) + h_{2}^{(k)} \frac{\partial f_{2}}{\partial x_{2}}(x_{1}^{(k)}, x_{2}^{(k)})$$

Put this in matrix form

$$\begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_1}{\partial x_2}(x_1^{(k)}, x_2^{(k)}) \\ \frac{\partial f_2}{\partial x_1}(x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_2}{\partial x_2}(x_1^{(k)}, x_2^{(k)}) \end{bmatrix} \begin{bmatrix} h_1^{(k)} \\ h_2^{(k)} \end{bmatrix} + \begin{bmatrix} f_1(x_1^{(k)}, x_2^{(k)}) \\ f_2(x_1^{(k)}, x_2^{(k)}) \end{bmatrix} \approx \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

$$J(x_1^{(k)}, x_2^{(k)}) \equiv \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_1}{\partial x_2}(x_1^{(k)}, x_2^{(k)}) \\ \frac{\partial f_2}{\partial x_1}(x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_2}{\partial x_2}(x_1^{(k)}, x_2^{(k)}) \end{bmatrix}$$

$$J(x_1^{(k)}, x_2^{(k)}) \left[\begin{array}{c} h_1^{(k)} \\ h_2^{(k)} \end{array} \right] = - \left[\begin{array}{c} f_1(x_1^{(k)}, x_2^{(k)}) \\ f_2(x_1^{(k)}, x_2^{(k)}) \end{array} \right]$$

$$\left[\begin{array}{c} x_1^{(k+1)} \\ x_1^{(k+1)} \\ x_2^{(k+1)} \end{array} \right] = \left[\begin{array}{c} x_1^{(k)} \\ x_2^{(k)} \end{array} \right] + \left[\begin{array}{c} h_1^{(k)} \\ h_2^{(k)} \end{array} \right]$$

$$\begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_1}{\partial x_2}(x_1^{(k)}, x_2^{(k)}) \\ \frac{\partial f_2}{\partial x_1}(x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_2}{\partial x_2}(x_1^{(k)}, x_2^{(k)}) \end{bmatrix} \begin{bmatrix} h_1^{(k)} \\ h_2^{(k)} \end{bmatrix} + \begin{bmatrix} f_1(x_1^{(k)}, x_2^{(k)}) \\ f_2(x_1^{(k)}, x_2^{(k)}) \end{bmatrix} \approx \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

The matrix

$$J(x_1^{(k)}, x_2^{(k)}) \equiv \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_1}{\partial x_2}(x_1^{(k)}, x_2^{(k)}) \\ \frac{\partial f_2}{\partial x_1}(x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_2}{\partial x_2}(x_1^{(k)}, x_2^{(k)}) \end{bmatrix}$$

is called the Jacobian matrix. Set $h_1^{(k)}$ and $h_2^{(k)}$ be the solution of the linear system

$$J(x_1^{(k)}, x_2^{(k)}) \begin{bmatrix} h_1^{(k)} \\ h_2^{(k)} \end{bmatrix} = - \begin{bmatrix} f_1(x_1^{(k)}, x_2^{(k)}) \\ f_2(x_1^{(k)}, x_2^{(k)}) \end{bmatrix},$$

then

$$\begin{bmatrix} x_1^{(k+1)} \\ x_2^{(k+1)} \\ x_2^{(k)} \end{bmatrix} = \begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \end{bmatrix} + \begin{bmatrix} h_1^{(k)} \\ h_2^{(k)} \end{bmatrix}$$

is expected to be a better approximation.

Put this in matrix form

$$\begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_1}{\partial x_2}(x_1^{(k)}, x_2^{(k)}) \\ \frac{\partial f_2}{\partial x_1}(x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_2}{\partial x_2}(x_1^{(k)}, x_2^{(k)}) \end{bmatrix} \begin{bmatrix} h_1^{(k)} \\ h_2^{(k)} \end{bmatrix} + \begin{bmatrix} f_1(x_1^{(k)}, x_2^{(k)}) \\ f_2(x_1^{(k)}, x_2^{(k)}) \end{bmatrix} \approx \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

The matrix

$$J(x_1^{(k)}, x_2^{(k)}) \equiv \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_1}{\partial x_2}(x_1^{(k)}, x_2^{(k)}) \\ \frac{\partial f_2}{\partial x_1}(x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_2}{\partial x_2}(x_1^{(k)}, x_2^{(k)}) \end{bmatrix}$$

is called the Jacobian matrix. Set $h_1^{(k)}$ and $h_2^{(k)}$ be the solution of the linear system

$$J(x_1^{(k)}, x_2^{(k)}) \begin{bmatrix} h_1^{(k)} \\ h_2^{(k)} \end{bmatrix} = - \begin{bmatrix} f_1(x_1^{(k)}, x_2^{(k)}) \\ f_2(x_1^{(k)}, x_2^{(k)}) \end{bmatrix},$$

$$\left[\begin{array}{c} x_1^{(k+1)} \\ x_1^{(k+1)} \\ x_2^{(k+1)} \end{array}\right] = \left[\begin{array}{c} x_1^{(k)} \\ x_2^{(k)} \end{array}\right] + \left[\begin{array}{c} h_1^{(k)} \\ h_2^{(k)} \end{array}\right]$$

Put this in matrix form

$$\begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_1}{\partial x_2}(x_1^{(k)}, x_2^{(k)}) \\ \frac{\partial f_2}{\partial x_1}(x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_2}{\partial x_2}(x_1^{(k)}, x_2^{(k)}) \end{bmatrix} \begin{bmatrix} h_1^{(k)} \\ h_2^{(k)} \end{bmatrix} + \begin{bmatrix} f_1(x_1^{(k)}, x_2^{(k)}) \\ f_2(x_1^{(k)}, x_2^{(k)}) \end{bmatrix} \approx \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

The matrix

$$J(x_1^{(k)}, x_2^{(k)}) \equiv \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_1}{\partial x_2}(x_1^{(k)}, x_2^{(k)}) \\ \frac{\partial f_2}{\partial x_1}(x_1^{(k)}, x_2^{(k)}) & \frac{\partial f_2}{\partial x_2}(x_1^{(k)}, x_2^{(k)}) \end{bmatrix}$$

is called the Jacobian matrix. Set $h_1^{(k)}$ and $h_2^{(k)}$ be the solution of the linear system

$$J(x_1^{(k)}, x_2^{(k)}) \begin{bmatrix} h_1^{(k)} \\ h_2^{(k)} \end{bmatrix} = - \begin{bmatrix} f_1(x_1^{(k)}, x_2^{(k)}) \\ f_2(x_1^{(k)}, x_2^{(k)}) \end{bmatrix},$$

then

$$\left[\begin{array}{c} x_1^{(k+1)} \\ x_2^{(k+1)} \end{array}\right] = \left[\begin{array}{c} x_1^{(k)} \\ x_2^{(k)} \end{array}\right] + \left[\begin{array}{c} h_1^{(k)} \\ h_2^{(k)} \end{array}\right]$$

is expected to be a better approximation.

In general, we solve the system of n nonlinear equations

$$f_i(x_1, \dots, x_n) = 0, i = 1, \dots, n.$$
 Let

$$\mathbf{x} = \left[\begin{array}{cccc} x_1 & x_2 & \cdots & x_n \end{array} \right]^T$$

$$F(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) & f_2(\mathbf{x}) & \cdots & f_n(\mathbf{x}) \end{bmatrix}^T$$
.

$$F(\mathbf{x}) = 0, \quad F: \mathbb{R}^n \to \mathbb{R}^n.$$

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{h}^{(k)}.$$

$$J(\mathbf{x}^{(k)})\mathbf{h}^{(k)} = -F(\mathbf{x}^{(k)})$$

$$t = 0, t = 1, \ldots, n$$
. Let

$$\mathbf{x} = \left[\begin{array}{cccc} x_1 & x_2 & \cdots & x_n \end{array} \right]^T$$

Quasi-Newton methods

and

$$F(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) & f_2(\mathbf{x}) & \cdots & f_n(\mathbf{x}) \end{bmatrix}^T$$
.

$$F(\mathbf{x}) = 0, \quad F: \mathbb{R}^n \to \mathbb{R}^n$$

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{h}^{(k)},$$

$$J(\mathbf{x}^{(k)})\mathbf{h}^{(k)} = -F(\mathbf{x}^{(k)})$$

$$\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^T$$

and

$$F(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) & f_2(\mathbf{x}) & \cdots & f_n(\mathbf{x}) \end{bmatrix}^T$$
.

The problem can be formulated as solving

$$F(\mathbf{x}) = 0, \quad F: \mathbb{R}^n \to \mathbb{R}^n.$$

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{h}^{(k)}.$$

$$J(\mathbf{x}^{(k)})\mathbf{h}^{(k)} = -F(\mathbf{x}^{(k)})$$

$$\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^T$$

and

$$F(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) & f_2(\mathbf{x}) & \cdots & f_n(\mathbf{x}) \end{bmatrix}^T$$
.

The problem can be formulated as solving

$$F(\mathbf{x}) = 0, \quad F: \mathbb{R}^n \to \mathbb{R}^n.$$

Let $J(\mathbf{x})$, where the (i,j) entry is $\frac{\partial f_i}{\partial x_i}(\mathbf{x})$, be the $n \times n$ Jacobian matrix. Then the Newton's iteration is defined as

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{h}^{(k)},$$

$$J(\mathbf{x}^{(k)})\mathbf{h}^{(k)} = -F(\mathbf{x}^{(k)})$$

$$\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^T$$

and

$$F(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) & f_2(\mathbf{x}) & \cdots & f_n(\mathbf{x}) \end{bmatrix}^T$$
.

The problem can be formulated as solving

$$F(\mathbf{x}) = 0, \quad F: \mathbb{R}^n \to \mathbb{R}^n.$$

Let $J(\mathbf{x})$, where the (i,j) entry is $\frac{\partial f_i}{\partial x_i}(\mathbf{x})$, be the $n \times n$ Jacobian matrix. Then the Newton's iteration is defined as

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{h}^{(k)}.$$

where $\mathbf{h}^{(k)} \in \mathbb{R}^n$ is the solution of the linear system

$$J(\mathbf{x}^{(k)})\mathbf{h}^{(k)} = -F(\mathbf{x}^{(k)}).$$

Algorithm 1 (Newton's Method for Systems)

Given a function $F: \mathbb{R}^n \to \mathbb{R}^n$, an initial guess $\mathbf{x}^{(0)}$ to the zero of F, and stop criteria M, δ , and ε , this algorithm performs the Newton's iteration to approximate one root of F.

```
Set k=0 and \mathbf{h}^{(-1)}=e_1.

While (k < M) and (\parallel \mathbf{h}^{(k-1)} \parallel \geq \delta) and (\parallel F(\mathbf{x}^{(k)}) \parallel \geq \varepsilon)

Calculate J(\mathbf{x}^{(k)}) = [\partial F_i(\mathbf{x}^{(k)})/\partial x_j].

Solve the n \times n linear system J(\mathbf{x}^{(k)})\mathbf{h}^{(k)} = -F(\mathbf{x}^{(k)}).

Set \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{h}^{(k)} and k=k+1.
```

End while

Output ("Convergent $\mathbf{x}^{(k)}$ ") or ("Maximum number of iterations exceeded")

Let \mathbf{x}^* be a solution of $G(\mathbf{x}) = \mathbf{x}$. Suppose $\exists \ \delta > 0$ with

$$\left| \frac{\partial^2 g_i(\mathbf{x})}{\partial x_j \partial x_k} \right| \le M$$

$$\mathbf{x}^{(k)} = G(\mathbf{x}^{(k-1)})$$

$$\|\mathbf{x}^{(k)} - \mathbf{x}^*\|_{\infty} < \frac{n^2 M}{2} \|\mathbf{x}^{(k-1)} - \mathbf{x}^*\|_{\infty}^2 \quad \forall k > 1.$$

Let \mathbf{x}^* be a solution of $G(\mathbf{x}) = \mathbf{x}$. Suppose $\exists \ \delta > 0$ with

- (i) $\partial g_i/\partial x_j$ is continuous on $N_\delta = \{\mathbf{x}; \|\mathbf{x} \mathbf{x}^*\| < \delta\}$ for all i and j.

$$\left| \frac{\partial^2 g_i(\mathbf{x})}{\partial x_j \partial x_k} \right| \le M$$

$$\mathbf{x}^{(k)} = G(\mathbf{x}^{(k-1)})$$

$$\|\mathbf{x}^{(k)} - \mathbf{x}^*\|_{\infty} \le \frac{n^2 M}{2} \|\mathbf{x}^{(k-1)} - \mathbf{x}^*\|_{\infty}^2, \forall k \ge 1.$$

Let \mathbf{x}^* be a solution of $G(\mathbf{x}) = \mathbf{x}$. Suppose $\exists \ \delta > 0$ with

- (i) $\partial g_i/\partial x_j$ is continuous on $N_\delta = \{\mathbf{x}; \|\mathbf{x} \mathbf{x}^*\| < \delta\}$ for all i and j.
- (ii) $\partial^2 g_i(\mathbf{x})/(\partial x_i \partial x_k)$ is continuous and

$$\left|\frac{\partial^2 g_i(\mathbf{x})}{\partial x_j \partial x_k}\right| \leq M$$

for some M whenever $x \in N_{\delta}$ for each i, j and k.

$$\mathbf{x}^{(k)} = G(\mathbf{x}^{(k-1)})$$

Let \mathbf{x}^* be a solution of $G(\mathbf{x}) = \mathbf{x}$. Suppose $\exists \ \delta > 0$ with

- (i) $\partial g_i/\partial x_j$ is continuous on $N_\delta = \{\mathbf{x}; \|\mathbf{x} \mathbf{x}^*\| < \delta\}$ for all i and j.
- (ii) $\partial^2 g_i(\mathbf{x})/(\partial x_i \partial x_k)$ is continuous and

$$\left| \frac{\partial^2 g_i(\mathbf{x})}{\partial x_j \partial x_k} \right| \le M$$

for some M whenever $x \in N_{\delta}$ for each i, j and k.

(iii) $\partial q_i(\mathbf{x}^*)/\partial x_k = 0$ for each i and k.

$$\mathbf{x}^{(k)} = G(\mathbf{x}^{(k-1)})$$

$$\|\mathbf{x}^{(k)} - \mathbf{x}^*\|_{\infty} \le \frac{n^2 M}{2} \|\mathbf{x}^{(k-1)} - \mathbf{x}^*\|_{\infty}^2, \forall k \ge 1.$$

Let \mathbf{x}^* be a solution of $G(\mathbf{x}) = \mathbf{x}$. Suppose $\exists \ \delta > 0$ with

- (i) $\partial g_i/\partial x_j$ is continuous on $N_\delta = \{\mathbf{x}; ||\mathbf{x} \mathbf{x}^*|| < \delta\}$ for all i and j.
- (ii) $\partial^2 g_i(\mathbf{x})/(\partial x_i \partial x_k)$ is continuous and

$$\left| \frac{\partial^2 g_i(\mathbf{x})}{\partial x_j \partial x_k} \right| \le M$$

for some M whenever $x \in N_{\delta}$ for each i, j and k.

(iii) $\partial g_i(\mathbf{x}^*)/\partial x_k = 0$ for each i and k.

Then $\exists \ \hat{\delta} < \delta$ such that the sequence $\{\mathbf{x}^{(k)}\}$ generated by

$$\mathbf{x}^{(k)} = G(\mathbf{x}^{(k-1)})$$

converges quadratically to \mathbf{x}^* for any $\mathbf{x}^{(0)}$ satisfying $\|\mathbf{x}^{(0)} - x^*\|_{\infty} < \hat{\delta}$.

Let \mathbf{x}^* be a solution of $G(\mathbf{x}) = \mathbf{x}$. Suppose $\exists \ \delta > 0$ with

- (i) $\partial g_i/\partial x_j$ is continuous on $N_\delta = \{\mathbf{x}; \|\mathbf{x} \mathbf{x}^*\| < \delta\}$ for all i and j.
- (ii) $\partial^2 g_i(\mathbf{x})/(\partial x_i \partial x_k)$ is continuous and

$$\left| \frac{\partial^2 g_i(\mathbf{x})}{\partial x_j \partial x_k} \right| \le M$$

for some M whenever $x \in N_{\delta}$ for each i, j and k.

(iii) $\partial q_i(\mathbf{x}^*)/\partial x_k = 0$ for each i and k.

Then $\exists \ \hat{\delta} < \delta$ such that the sequence $\{\mathbf{x}^{(k)}\}$ generated by

$$\mathbf{x}^{(k)} = G(\mathbf{x}^{(k-1)})$$

converges quadratically to \mathbf{x}^* for any $\mathbf{x}^{(0)}$ satisfying $\|\mathbf{x}^{(0)} - x^*\|_{\infty} < \hat{\delta}$. Moreover.

$$\|\mathbf{x}^{(k)} - \mathbf{x}^*\|_{\infty} \le \frac{n^2 M}{2} \|\mathbf{x}^{(k-1)} - \mathbf{x}^*\|_{\infty}^2, \forall k \ge 1.$$

Example 6

Consider the nonlinear system

$$3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0,$$

$$x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0,$$

$$e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0.$$

$$F(x_1,x_2,x_3) = \left[f_1(x_1,x_2,x_3),f_2(x_1,x_2,x_3),f_3(x_1,x_2,x_3)
ight]^T,$$
 where

$$f_1(x_1, x_2, x_3) = 3x_1 - \cos(x_2 x_3) - \frac{1}{2},$$

$$f_2(x_1, x_2, x_3) = x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06,$$

$$f_3(x_1, x_2, x_3) = e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{20x_1^2 + 20x_3^2},$$

$$f_3(x_1, x_2, x_3) = e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{20x_1^2 + 20x_3^2},$$

$$f_3(x_1, x_2, x_3) = e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{20x_1^2 + 20x_3^2},$$

Example 6

Consider the nonlinear system

$$3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0,$$

$$x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0,$$

$$e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0.$$

Nonlinear functions: Let

$$F(x_1,x_2,x_3) = \left[f_1(x_1,x_2,x_3),f_2(x_1,x_2,x_3),f_3(x_1,x_2,x_3)\right]^T,$$
 where

$$f_1(x_1, x_2, x_3) = 3x_1 - \cos(x_2 x_3) - \frac{1}{2},$$

$$f_2(x_1, x_2, x_3) = x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06,$$

$$f_3(x_1, x_2, x_3) = e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3}.$$

Nonlinear functions (cont.): The Jacobian matrix J(x) for this system is

$$J(x_1, x_2, x_3) = \begin{bmatrix} 3 & x_3 \sin x_2 x_3 & x_2 \sin x_2 x_3 \\ 2x_1 & -162(x_2 + 0.1) & \cos x_3 \\ -x_2 e^{-x_1 x_2} & -x_1 e^{-x_1 x_2} & 20 \end{bmatrix}.$$

$$\begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \\ x_3^{(k)} \end{bmatrix} = \begin{bmatrix} x_1^{(k-1)} \\ x_2^{(k-1)} \\ x_3^{(k-1)} \end{bmatrix} - \begin{bmatrix} h_1^{(k-1)} \\ h_2^{(k-1)} \\ h_3^{(k-1)} \end{bmatrix}$$

$$\begin{bmatrix} h_1^{(k-1)} \\ h_2^{(k-1)} \\ h_2^{(k-1)} \end{bmatrix} = J\left(x_1^{(k-1)}, x_2^{(k-1)}, x_3^{(k-1)}\right)^{-1} F(x_1^{(k-1)}, x_2^{(k-1)}, x_2^{(k-1)}, x_2^{(k-1)})$$

Nonlinear functions (cont.): The Jacobian matrix J(x) for this system is

$$J(x_1, x_2, x_3) = \begin{bmatrix} 3 & x_3 \sin x_2 x_3 & x_2 \sin x_2 x_3 \\ 2x_1 & -162(x_2 + 0.1) & \cos x_3 \\ -x_2 e^{-x_1 x_2} & -x_1 e^{-x_1 x_2} & 20 \end{bmatrix}.$$

• Newton's iteration with initial $\mathbf{x}^{(0)} = [0.1, 0.1, -0.1]^T$:

$$\begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \\ x_3^{(k)} \end{bmatrix} = \begin{bmatrix} x_1^{(k-1)} \\ x_2^{(k-1)} \\ x_3^{(k-1)} \end{bmatrix} - \begin{bmatrix} h_1^{(k-1)} \\ h_2^{(k-1)} \\ h_3^{(k-1)} \end{bmatrix},$$

where

$$\begin{bmatrix} h_1^{(k-1)} \\ h_2^{(k-1)} \\ h_3^{(k-1)} \end{bmatrix} = J\left(x_1^{(k-1)}, x_2^{(k-1)}, x_3^{(k-1)}\right)^{-1} F(x_1^{(k-1)}, x_2^{(k-1)}, x_3^{(k-1)})$$

Result:

Fixed points

k	$x_{1}^{(k)}$	$x_2^{(k)}$	$x_3^{(k)}$	$\ \mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\ _{\infty}$
0	0.10000000	0.10000000	-0.10000000	
1	0.50003702	0.01946686	-0.52152047	0.422
2	0.50004593	0.00158859	-0.52355711	1.79×10^{-2}
3	0.50000034	0.00001244	-0.52359845	1.58×10^{-3}
4	0.50000000	0.00000000	-0.52359877	1.24×10^{-5}
5	0.50000000	0.00000000	-0.52359877	0

Exercise

Page 644: 2, 8

Newton's Methods

$$\ell_k(x) = f(x_k) + a_k(x - x_k)$$

- Newton's Methods
 - Advantage: quadratic convergence

$$\ell_k(x) = f(x_k) + a_k(x - x_k)$$

<□ → <□ → < = → < = → = 587139

- Newton's Methods
 - Advantage: quadratic convergence
 - Disadvantage: For each iteration, it requires $O(n^3) + O(n^2) + O(n)$ arithmetic operations:
 - n^2 partial derivatives for Jacobian matrix in most situations, the exact evaluation of the partial derivatives is inconvenient.
 - n scalar functional evaluations of F
 - O(n³) arithmetic operations to solve linear system.

$$\ell_k(x) = f(x_k) + a_k(x - x_k)$$

- Newton's Methods
 - Advantage: quadratic convergence
 - Disadvantage: For each iteration, it requires $O(n^3) + O(n^2) + O(n)$ arithmetic operations:
 - n² partial derivatives for Jacobian matrix in most situations, the exact evaluation of the partial derivatives is inconvenient.
 - ullet n scalar functional evaluations of F
 - $O(n^3)$ arithmetic operations to solve linear system.
- quasi-Newton methods
 - Advantage: it requires only n scalar functional evaluations per iteration and $O(n^2)$ arithmetic operations
 - Disadvantage: superlinear convergence

Recall that in one dimensional case, one uses the linear model

$$\ell_k(x) = f(x_k) + a_k(x - x_k)$$

to approximate the function f(x) at x_k . That is, $\ell_k(x_k) = f(x_k)$ for any $a_k \in \mathbb{R}$. If we further require that $\ell'(x_k) = f'(x_k)$, then $a_k = f'(x_k)$.

- Newton's Methods
 - Advantage: quadratic convergence
 - Disadvantage: For each iteration, it requires $O(n^3) + O(n^2) + O(n)$ arithmetic operations:
 - n² partial derivatives for Jacobian matrix in most situations, the exact evaluation of the partial derivatives is inconvenient.
 - ullet n scalar functional evaluations of F
 - $O(n^3)$ arithmetic operations to solve linear system.
- quasi-Newton methods
 - Advantage: it requires only n scalar functional evaluations per iteration and $O(n^2)$ arithmetic operations
 - Disadvantage: superlinear convergence

Recall that in one dimensional case, one uses the linear model

$$\ell_k(x) = f(x_k) + a_k(x - x_k)$$

to approximate the function f(x) at x_k . That is, $\ell_k(x_k) = f(x_k)$ for any $a_k \in \mathbb{R}$. If we further require that $\ell'(x_k) = f'(x_k)$, then $a_k = f'(x_k)$.

- Newton's Methods
 - Advantage: quadratic convergence
 - Disadvantage: For each iteration, it requires $O(n^3) + O(n^2) + O(n)$ arithmetic operations:
 - n² partial derivatives for Jacobian matrix in most situations, the exact evaluation of the partial derivatives is inconvenient.
 - ullet n scalar functional evaluations of F
 - $O(n^3)$ arithmetic operations to solve linear system.
- quasi-Newton methods
 - Advantage: it requires only n scalar functional evaluations per iteration and $O(n^2)$ arithmetic operations
 - Disadvantage: superlinear convergence

Recall that in one dimensional case, one uses the linear model

$$\ell_k(x) = f(x_k) + a_k(x - x_k)$$

to approximate the function f(x) at x_k . That is, $\ell_k(x_k) = f(x_k)$ for any $a_k \in \mathbb{R}$. If we further require that $\ell'(x_k) = f'(x_k)$, then $a_k = f'(x_k)$

Fixed points

Newton's Methods

- Advantage: quadratic convergence
- Disadvantage: For each iteration, it requires $O(n^3) + O(n^2) + O(n)$ arithmetic operations:
 - n² partial derivatives for Jacobian matrix in most situations, the exact evaluation of the partial derivatives is inconvenient.
 - ullet n scalar functional evaluations of F
 - $O(n^3)$ arithmetic operations to solve linear system.
- quasi-Newton methods
 - Advantage: it requires only n scalar functional evaluations per iteration and $O(n^2)$ arithmetic operations
 - Disadvantage: superlinear convergence

Recall that in one dimensional case, one uses the linear model

$$\ell_k(x) = f(x_k) + a_k(x - x_k)$$

to approximate the function f(x) at x_k . That is, $\ell_k(x_k) = f(x_k)$ for any $a_k \in \mathbb{R}$. If we further require that $\ell'(x_k) = f'(x_k)$, then $a_k = f'(x_k)$

- Newton's Methods
 - Advantage: quadratic convergence
 - Disadvantage: For each iteration, it requires $O(n^3) + O(n^2) + O(n)$ arithmetic operations:
 - n^2 partial derivatives for Jacobian matrix in most situations, the exact evaluation of the partial derivatives is inconvenient.
 - n scalar functional evaluations of F
 - O(n³) arithmetic operations to solve linear system.
- quasi-Newton methods
 - Advantage: it requires only n scalar functional evaluations per iteration and $O(n^2)$ arithmetic operations
 - Disadvantage: superlinear convergence

Recall that in one dimensional case, one uses the linear model

$$\ell_k(x) = f(x_k) + a_k(x - x_k)$$

to approximate the function f(x) at x_k . That is, $\ell_k(x_k) = f(x_k)$ for any $a_k \in \mathbb{R}$. If we further require that $\ell'(x_k) = f'(x_k)$, then

- Newton's Methods
 - Advantage: quadratic convergence
 - Disadvantage: For each iteration, it requires $O(n^3) + O(n^2) + O(n)$ arithmetic operations:
 - n² partial derivatives for Jacobian matrix in most situations, the exact evaluation of the partial derivatives is inconvenient.
 - ullet n scalar functional evaluations of F
 - $O(n^3)$ arithmetic operations to solve linear system.
- quasi-Newton methods
 - Advantage: it requires only n scalar functional evaluations per iteration and $O(n^2)$ arithmetic operations
 - Disadvantage: superlinear convergence

Recall that in one dimensional case, one uses the linear model

$$\ell_k(x) = f(x_k) + a_k(x - x_k)$$

to approximate the function f(x) at x_k . That is, $\ell_k(x_k) = f(x_k)$ for any $a_k \in \mathbb{R}$. If we further require that $\ell'(x_k) = f'(x_k)$, then $a_k = f'(x_k)$.

$$x_{k+1} = x_k - \frac{1}{f'(x_k)} f(x_k)$$

which yields Newton's method.

If $f'(x_k)$ is not available, one instead asks the linear model to satisfy

$$\ell_k(x_k) = f(x_k)$$
 and $\ell_k(x_{k-1}) = f(x_{k-1})$.

In doing this, the identity

$$f(x_{k-1}) = \ell_k(x_{k-1}) = f(x_k) + a_k(x_{k-1} - x_k)$$

gives

$$a_k = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} f(x_k).$$

The zero of $\ell_k(x)$ is used to give a new approximate for the zero of f(x), that is,

$$x_{k+1} = x_k - \frac{1}{f'(x_k)} f(x_k)$$

which yields Newton's method.

If $f'(x_k)$ is not available, one instead asks the linear model to satisfy

$$\ell_k(x_k) = f(x_k)$$
 and $\ell_k(x_{k-1}) = f(x_{k-1})$.

In doing this, the identity

$$f(x_{k-1}) = \ell_k(x_{k-1}) = f(x_k) + a_k(x_{k-1} - x_k)$$

gives

$$a_k = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} f(x_k).$$

$$x_{k+1} = x_k - \frac{1}{f'(x_k)} f(x_k)$$

which yields Newton's method.

If $f'(x_k)$ is not available, one instead asks the linear model to satisfy

$$\ell_k(x_k) = f(x_k)$$
 and $\ell_k(x_{k-1}) = f(x_{k-1})$.

In doing this, the identity

$$f(x_{k-1}) = \ell_k(x_{k-1}) = f(x_k) + a_k(x_{k-1} - x_k)$$

gives

$$a_k = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}.$$

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} f(x_k).$$

f(x), that is,

$$x_{k+1} = x_k - \frac{1}{f'(x_k)} f(x_k)$$

which yields Newton's method.

If $f'(x_k)$ is not available, one instead asks the linear model to satisfy

$$\ell_k(x_k) = f(x_k)$$
 and $\ell_k(x_{k-1}) = f(x_{k-1})$.

In doing this, the identity

$$f(x_{k-1}) = \ell_k(x_{k-1}) = f(x_k) + a_k(x_{k-1} - x_k)$$

gives

$$a_k = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}.$$

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} f(x_k).$$

In multiple dimension, the analogue affine model becomes

$$M_k(\mathbf{x}) = F(\mathbf{x}^{(k)}) + A_k(\mathbf{x} - \mathbf{x}^{(k)}),$$

where $\mathbf{x}, \mathbf{x}^{(k)} \in \mathbb{R}^n$ and $A_k \in \mathbb{R}^{n \times n}$, and satisfies

$$M_k(\mathbf{x}^{(k)}) = F(\mathbf{x}^{(k)}),$$

for any A_k . The zero of $M_k(\mathbf{x})$ is then used to give a new

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - A_k^{-1} F(\mathbf{x}^{(k)}).$$

$$A_k = F'(\mathbf{x}^{(k)}) \equiv J(\mathbf{x}^{(k)}) =$$
the Jacobian matrix

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \left(F'(\mathbf{x}^{(k)})\right)^{-1} F(\mathbf{x}^{(k)}).$$

$$M_k(\mathbf{x}) = F(\mathbf{x}^{(k)}) + A_k(\mathbf{x} - \mathbf{x}^{(k)}),$$

where $\mathbf{x}, \mathbf{x}^{(k)} \in \mathbb{R}^n$ and $A_k \in \mathbb{R}^{n \times n}$, and satisfies

$$M_k(\mathbf{x}^{(k)}) = F(\mathbf{x}^{(k)}),$$

for any A_k . The zero of $M_k(\mathbf{x})$ is then used to give a new approximate for the zero of $F(\mathbf{x})$, that is,

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - A_k^{-1} F(\mathbf{x}^{(k)}).$$

The Newton's method chooses

$$A_k = F'(\mathbf{x}^{(k)}) \equiv J(\mathbf{x}^{(k)}) =$$
the Jacobian matrix

and yields the iteration

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \left(F'(\mathbf{x}^{(k)})\right)^{-1} F(\mathbf{x}^{(k)}).$$

In multiple dimension, the analogue affine model becomes

$$M_k(\mathbf{x}) = F(\mathbf{x}^{(k)}) + A_k(\mathbf{x} - \mathbf{x}^{(k)}),$$

where $\mathbf{x}, \mathbf{x}^{(k)} \in \mathbb{R}^n$ and $A_k \in \mathbb{R}^{n \times n}$, and satisfies

$$M_k(\mathbf{x}^{(k)}) = F(\mathbf{x}^{(k)}),$$

for any A_k . The zero of $M_k(\mathbf{x})$ is then used to give a new approximate for the zero of $F(\mathbf{x})$, that is,

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - A_k^{-1} F(\mathbf{x}^{(k)}).$$

The Newton's method chooses

$$A_k = F'(\mathbf{x}^{(k)}) \equiv J(\mathbf{x}^{(k)}) =$$
the Jacobian matrix

and yields the iteration

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \left(F'(\mathbf{x}^{(k)})\right)^{-1} F(\mathbf{x}^{(k)}).$$

When the Jacobian matrix $J(\mathbf{x}^{(k)}) \equiv F'(\mathbf{x}^{(k)})$ is not available, one can require

$$M_k(\mathbf{x}^{(k-1)}) = F(\mathbf{x}^{(k-1)}).$$

$$F(\mathbf{x}^{(k-1)}) = M_k(\mathbf{x}^{(k-1)}) = F(\mathbf{x}^{(k)}) + A_k(\mathbf{x}^{(k-1)} - \mathbf{x}^{(k)}),$$

$$A_k(\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}) = F(\mathbf{x}^{(k)}) - F(\mathbf{x}^{(k-1)})$$

$$\mathbf{h}^{(k)} = \mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}$$
 and $\mathbf{y}^{(k)} = F(\mathbf{x}^{(k)}) - F(\mathbf{x}^{(k-1)})$

$$A_k \mathbf{h}^{(k)} = \mathbf{y}^{(k)}$$

When the Jacobian matrix $J(\mathbf{x}^{(k)}) \equiv F'(\mathbf{x}^{(k)})$ is not available, one can require

$$M_k(\mathbf{x}^{(k-1)}) = F(\mathbf{x}^{(k-1)}).$$

Then

$$F(\mathbf{x}^{(k-1)}) = M_k(\mathbf{x}^{(k-1)}) = F(\mathbf{x}^{(k)}) + A_k(\mathbf{x}^{(k-1)} - \mathbf{x}^{(k)}),$$

which gives

$$A_k(\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}) = F(\mathbf{x}^{(k)}) - F(\mathbf{x}^{(k-1)})$$

and this is the so-called secant equation. Let

$$\mathbf{h}^{(k)} = \mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}$$
 and $\mathbf{y}^{(k)} = F(\mathbf{x}^{(k)}) - F(\mathbf{x}^{(k-1)})$.

The secant equation becomes

$$A_k \mathbf{h}^{(k)} = \mathbf{y}^{(k)}$$

When the Jacobian matrix $J(\mathbf{x}^{(k)}) \equiv F'(\mathbf{x}^{(k)})$ is not available. one can require

$$M_k(\mathbf{x}^{(k-1)}) = F(\mathbf{x}^{(k-1)}).$$

Then

$$F(\mathbf{x}^{(k-1)}) = M_k(\mathbf{x}^{(k-1)}) = F(\mathbf{x}^{(k)}) + A_k(\mathbf{x}^{(k-1)} - \mathbf{x}^{(k)}),$$

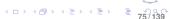
which gives

$$A_k(\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}) = F(\mathbf{x}^{(k)}) - F(\mathbf{x}^{(k-1)})$$

and this is the so-called secant equation. Let

$$\mathbf{h}^{(k)} = \mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}$$
 and $\mathbf{y}^{(k)} = F(\mathbf{x}^{(k)}) - F(\mathbf{x}^{(k-1)})$.

$$A_k \mathbf{h}^{(k)} = \mathbf{y}^{(k)}$$



When the Jacobian matrix $J(\mathbf{x}^{(k)}) \equiv F'(\mathbf{x}^{(k)})$ is not available, one can require

$$M_k(\mathbf{x}^{(k-1)}) = F(\mathbf{x}^{(k-1)}).$$

Then

$$F(\mathbf{x}^{(k-1)}) = M_k(\mathbf{x}^{(k-1)}) = F(\mathbf{x}^{(k)}) + A_k(\mathbf{x}^{(k-1)} - \mathbf{x}^{(k)}),$$

which gives

$$A_k(\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}) = F(\mathbf{x}^{(k)}) - F(\mathbf{x}^{(k-1)})$$

and this is the so-called secant equation. Let

$$\mathbf{h}^{(k)} = \mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}$$
 and $\mathbf{y}^{(k)} = F(\mathbf{x}^{(k)}) - F(\mathbf{x}^{(k-1)})$.

The secant equation becomes

$$A_k \mathbf{h}^{(k)} = \mathbf{y}^{(k)}$$

$$M_k(\mathbf{x}^{(k-1)}) = F(\mathbf{x}^{(k-1)}).$$

Then

$$F(\mathbf{x}^{(k-1)}) = M_k(\mathbf{x}^{(k-1)}) = F(\mathbf{x}^{(k)}) + A_k(\mathbf{x}^{(k-1)} - \mathbf{x}^{(k)}),$$

which gives

$$A_k(\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}) = F(\mathbf{x}^{(k)}) - F(\mathbf{x}^{(k-1)})$$

and this is the so-called secant equation. Let

$$\mathbf{h}^{(k)} = \mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}$$
 and $\mathbf{y}^{(k)} = F(\mathbf{x}^{(k)}) - F(\mathbf{x}^{(k-1)})$.

The secant equation becomes

$$A_k \mathbf{h}^{(k)} = \mathbf{y}^{(k)}.$$

However, this secant equation can not uniquely determine A_k .

$$M_{k}(\mathbf{x}) - M_{k-1}(\mathbf{x})$$

$$= F(\mathbf{x}^{(k)}) + A_{k}(\mathbf{x} - \mathbf{x}^{(k)}) - F(\mathbf{x}^{(k-1)}) - A_{k-1}(\mathbf{x} - \mathbf{x}^{(k-1)})$$

$$= (F(\mathbf{x}^{(k)}) - F(\mathbf{x}^{(k-1)})) + A_{k}(\mathbf{x} - \mathbf{x}^{(k)}) - A_{k-1}(\mathbf{x} - \mathbf{x}^{(k-1)})$$

$$= A_{k}(\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}) + A_{k}(\mathbf{x} - \mathbf{x}^{(k)}) - A_{k-1}(\mathbf{x} - \mathbf{x}^{(k-1)})$$

$$= A_{k}(\mathbf{x} - \mathbf{x}^{(k-1)}) - A_{k-1}(\mathbf{x} - \mathbf{x}^{(k-1)})$$

$$= (A_{k} - A_{k-1})(\mathbf{x} - \mathbf{x}^{(k-1)}).$$

$$\mathbf{x} - \mathbf{x}^{(k-1)} = \alpha \mathbf{h}^{(k)} + \mathbf{t}^{(k)}.$$

$$M_k - M_{k-1} = (A_k - A_{k-1})(\alpha \mathbf{h}^{(k)} + \mathbf{t}^{(k)}) = \alpha (A_k - A_{k-1})\mathbf{h}^{(k)} + (A_k - \mathbf{h}^{(k)})$$

However, this secant equation can not uniquely determine A_k . One way of choosing A_k is to minimize $M_k - M_{k-1}$ subject to the secant equation. Note

$$\begin{aligned} &M_{k}(\mathbf{x}) - M_{k-1}(\mathbf{x}) \\ &= F(\mathbf{x}^{(k)}) + A_{k}(\mathbf{x} - \mathbf{x}^{(k)}) - F(\mathbf{x}^{(k-1)}) - A_{k-1}(\mathbf{x} - \mathbf{x}^{(k-1)}) \\ &= (F(\mathbf{x}^{(k)}) - F(\mathbf{x}^{(k-1)})) + A_{k}(\mathbf{x} - \mathbf{x}^{(k)}) - A_{k-1}(\mathbf{x} - \mathbf{x}^{(k-1)}) \\ &= A_{k}(\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}) + A_{k}(\mathbf{x} - \mathbf{x}^{(k)}) - A_{k-1}(\mathbf{x} - \mathbf{x}^{(k-1)}) \\ &= A_{k}(\mathbf{x} - \mathbf{x}^{(k-1)}) - A_{k-1}(\mathbf{x} - \mathbf{x}^{(k-1)}) \\ &= (A_{k} - A_{k-1})(\mathbf{x} - \mathbf{x}^{(k-1)}). \end{aligned}$$

$$\mathbf{x} - \mathbf{x}^{(k-1)} = \alpha \mathbf{h}^{(k)} + \mathbf{t}^{(k)}$$

$$M_k - M_{k-1} = (A_k - A_{k-1})(\alpha \mathbf{h}^{(k)} + \mathbf{t}^{(k)}) = \alpha (A_k - A_{k-1})\mathbf{h}^{(k)} + (A_k - \mathbf{h}^{(k)})$$

However, this secant equation can not uniquely determine A_k . One way of choosing A_k is to minimize M_k-M_{k-1} subject to the secant equation. Note

$$\begin{aligned} &M_{k}(\mathbf{x}) - M_{k-1}(\mathbf{x}) \\ &= F(\mathbf{x}^{(k)}) + A_{k}(\mathbf{x} - \mathbf{x}^{(k)}) - F(\mathbf{x}^{(k-1)}) - A_{k-1}(\mathbf{x} - \mathbf{x}^{(k-1)}) \\ &= (F(\mathbf{x}^{(k)}) - F(\mathbf{x}^{(k-1)})) + A_{k}(\mathbf{x} - \mathbf{x}^{(k)}) - A_{k-1}(\mathbf{x} - \mathbf{x}^{(k-1)}) \\ &= A_{k}(\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}) + A_{k}(\mathbf{x} - \mathbf{x}^{(k)}) - A_{k-1}(\mathbf{x} - \mathbf{x}^{(k-1)}) \\ &= A_{k}(\mathbf{x} - \mathbf{x}^{(k-1)}) - A_{k-1}(\mathbf{x} - \mathbf{x}^{(k-1)}) \\ &= (A_{k} - A_{k-1})(\mathbf{x} - \mathbf{x}^{(k-1)}). \end{aligned}$$

For any $\mathbf{x} \in \mathbb{R}^n$, we express

$$\mathbf{x} - \mathbf{x}^{(k-1)} = \alpha \mathbf{h}^{(k)} + \mathbf{t}^{(k)},$$

for some $\alpha \in \mathbb{R}$, $\mathbf{t}^{(k)} \in \mathbb{R}^n$, and $(\mathbf{h}^{(k)})^T \mathbf{t}^{(k)} = 0$. Then

$$M_k - M_{k-1} = (A_k - A_{k-1})(\alpha \mathbf{h}^{(k)} + \mathbf{t}^{(k)}) = \alpha (A_k - A_{k-1})\mathbf{h}^{(k)} + (A_k - A_{k-1})\mathbf{h}^{(k)}$$

However, this secant equation can not uniquely determine A_k . One way of choosing A_k is to minimize $M_k - M_{k-1}$ subject to the secant equation. Note

$$\begin{aligned} &M_{k}(\mathbf{x}) - M_{k-1}(\mathbf{x}) \\ &= F(\mathbf{x}^{(k)}) + A_{k}(\mathbf{x} - \mathbf{x}^{(k)}) - F(\mathbf{x}^{(k-1)}) - A_{k-1}(\mathbf{x} - \mathbf{x}^{(k-1)}) \\ &= (F(\mathbf{x}^{(k)}) - F(\mathbf{x}^{(k-1)})) + A_{k}(\mathbf{x} - \mathbf{x}^{(k)}) - A_{k-1}(\mathbf{x} - \mathbf{x}^{(k-1)}) \\ &= A_{k}(\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}) + A_{k}(\mathbf{x} - \mathbf{x}^{(k)}) - A_{k-1}(\mathbf{x} - \mathbf{x}^{(k-1)}) \\ &= A_{k}(\mathbf{x} - \mathbf{x}^{(k-1)}) - A_{k-1}(\mathbf{x} - \mathbf{x}^{(k-1)}) \\ &= (A_{k} - A_{k-1})(\mathbf{x} - \mathbf{x}^{(k-1)}). \end{aligned}$$

For any $\mathbf{x} \in \mathbb{R}^n$, we express

$$\mathbf{x} - \mathbf{x}^{(k-1)} = \alpha \mathbf{h}^{(k)} + \mathbf{t}^{(k)},$$

for some $\alpha \in \mathbb{R}$, $\mathbf{t}^{(k)} \in \mathbb{R}^n$, and $(\mathbf{h}^{(k)})^T \mathbf{t}^{(k)} = 0$. Then

 $M_k - M_{k-1} = (A_k - A_{k-1})(\alpha \mathbf{h}^{(k)} + \mathbf{t}^{(k)}) = \alpha (A_k - A_{k-1})\mathbf{h}^{(k)} + (A_k - \mathbf{h}^{(k)})$

However, this secant equation can not uniquely determine A_k . One way of choosing A_k is to minimize $M_k - M_{k-1}$ subject to the secant equation. Note

$$\begin{split} &M_k(\mathbf{x}) - M_{k-1}(\mathbf{x}) \\ = &F(\mathbf{x}^{(k)}) + A_k(\mathbf{x} - \mathbf{x}^{(k)}) - F(\mathbf{x}^{(k-1)}) - A_{k-1}(\mathbf{x} - \mathbf{x}^{(k-1)}) \\ = &(F(\mathbf{x}^{(k)}) - F(\mathbf{x}^{(k-1)})) + A_k(\mathbf{x} - \mathbf{x}^{(k)}) - A_{k-1}(\mathbf{x} - \mathbf{x}^{(k-1)}) \\ = &A_k(\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}) + A_k(\mathbf{x} - \mathbf{x}^{(k)}) - A_{k-1}(\mathbf{x} - \mathbf{x}^{(k-1)}) \\ = &A_k(\mathbf{x} - \mathbf{x}^{(k-1)}) - A_{k-1}(\mathbf{x} - \mathbf{x}^{(k-1)}) \\ = &(A_k - A_{k-1})(\mathbf{x} - \mathbf{x}^{(k-1)}). \end{split}$$

For any $\mathbf{x} \in \mathbb{R}^n$, we express

$$\mathbf{x} - \mathbf{x}^{(k-1)} = \alpha \mathbf{h}^{(k)} + \mathbf{t}^{(k)},$$

for some $\alpha \in \mathbb{R}$, $\mathbf{t}^{(k)} \in \mathbb{R}^n$, and $(\mathbf{h}^{(k)})^T \mathbf{t}^{(k)} = 0$. Then

$$M_k - M_{k-1} = (A_k - A_{k-1})(\alpha \mathbf{h}^{(k)} + \mathbf{t}^{(k)}) = \alpha (A_k - A_{k-1})\mathbf{h}^{(k)} + (A_k - A_{k-1})\mathbf{h}^{(k)}$$

Since

$$(A_k - A_{k-1})\mathbf{h}^{(k)} = A_k \mathbf{h}^{(k)} - A_{k-1} \mathbf{h}^{(k)} = \mathbf{y}^{(k)} - A_{k-1} \mathbf{h}^{(k)},$$

$$(A_k - A_{k-1})\mathbf{t}^{(k)} = 0$$

$$A_k - A_{k-1} = \mathbf{u}^{(k)} (\mathbf{h}^{(k)})^T$$

$$\mathbf{u}^{(k)}(\mathbf{h}^{(k)})^T \mathbf{h}^{(k)} = (A_k - A_{k-1}) \mathbf{h}^{(k)} = \mathbf{y}^{(k)} - A_{k-1} \mathbf{h}^{(k)}$$

Since

$$(A_k - A_{k-1})\mathbf{h}^{(k)} = A_k \mathbf{h}^{(k)} - A_{k-1} \mathbf{h}^{(k)} = \mathbf{y}^{(k)} - A_{k-1} \mathbf{h}^{(k)},$$

both $\mathbf{v}^{(k)}$ and $A_{k-1}\mathbf{h}^{(k)}$ are old values, we have no control over the first part $(A_k - A_{k-1})\mathbf{h}^{(k)}$. In order to minimize

$$(A_k - A_{k-1})\mathbf{t}^{(k)} = 0$$

$$A_k - A_{k-1} = \mathbf{u}^{(k)} (\mathbf{h}^{(k)})^T$$

$$\mathbf{u}^{(k)}(\mathbf{h}^{(k)})^T\mathbf{h}^{(k)} = (A_k - A_{k-1})\mathbf{h}^{(k)} = \mathbf{y}^{(k)} - A_{k-1}\mathbf{h}^{(k)}$$

$$(A_k - A_{k-1})\mathbf{h}^{(k)} = A_k\mathbf{h}^{(k)} - A_{k-1}\mathbf{h}^{(k)} = \mathbf{y}^{(k)} - A_{k-1}\mathbf{h}^{(k)},$$

both $\mathbf{y}^{(k)}$ and $A_{k-1}\mathbf{h}^{(k)}$ are old values, we have no control over the first part $(A_k-A_{k-1})\mathbf{h}^{(k)}$. In order to minimize $M_k(\mathbf{x})-M_{k-1}(\mathbf{x})$, we try to choose A_k so that

$$(A_k - A_{k-1})\mathbf{t}^{(k)} = 0$$

for all $\mathbf{t}^{(k)} \in \mathbb{R}^n$, $(\mathbf{h}^{(k)})^T \mathbf{t}^{(k)} = 0$. This requires that $A_k - A_{k-1}$ to be a rank-one matrix of the form

$$A_k - A_{k-1} = \mathbf{u}^{(k)} (\mathbf{h}^{(k)})^T$$

for some $\mathbf{u}^{(k)} \in \mathbb{R}^n$. Then

$$\mathbf{u}^{(k)}(\mathbf{h}^{(k)})^T \mathbf{h}^{(k)} = (A_k - A_{k-1})\mathbf{h}^{(k)} = \mathbf{y}^{(k)} - A_{k-1}\mathbf{h}^{(k)}$$

Since

$$(A_k - A_{k-1})\mathbf{h}^{(k)} = A_k \mathbf{h}^{(k)} - A_{k-1} \mathbf{h}^{(k)} = \mathbf{y}^{(k)} - A_{k-1} \mathbf{h}^{(k)},$$

both $\mathbf{v}^{(k)}$ and $A_{k-1}\mathbf{h}^{(k)}$ are old values, we have no control over the first part $(A_k - A_{k-1})\mathbf{h}^{(k)}$. In order to minimize $M_k(\mathbf{x}) - M_{k-1}(\mathbf{x})$, we try to choose A_k so that

$$(A_k - A_{k-1})\mathbf{t}^{(k)} = 0$$

for all $\mathbf{t}^{(k)} \in \mathbb{R}^n$, $(\mathbf{h}^{(k)})^T \mathbf{t}^{(k)} = 0$. This requires that $A_k - A_{k-1}$ to be a rank-one matrix of the form

$$A_k - A_{k-1} = \mathbf{u}^{(k)} (\mathbf{h}^{(k)})^T$$

for some $\mathbf{u}^{(k)} \in \mathbb{R}^n$. Then

$$\mathbf{u}^{(k)}(\mathbf{h}^{(k)})^T\mathbf{h}^{(k)} = (A_k - A_{k-1})\mathbf{h}^{(k)} = \mathbf{y}^{(k)} - A_{k-1}\mathbf{h}^{(k)}$$

$$(A_k - A_{k-1})\mathbf{h}^{(k)} = A_k\mathbf{h}^{(k)} - A_{k-1}\mathbf{h}^{(k)} = \mathbf{y}^{(k)} - A_{k-1}\mathbf{h}^{(k)},$$

both $\mathbf{y}^{(k)}$ and $A_{k-1}\mathbf{h}^{(k)}$ are old values, we have no control over the first part $(A_k-A_{k-1})\mathbf{h}^{(k)}$. In order to minimize $M_k(\mathbf{x})-M_{k-1}(\mathbf{x})$, we try to choose A_k so that

$$(A_k - A_{k-1})\mathbf{t}^{(k)} = 0$$

for all $\mathbf{t}^{(k)} \in \mathbb{R}^n$, $(\mathbf{h}^{(k)})^T \mathbf{t}^{(k)} = 0$. This requires that $A_k - A_{k-1}$ to be a rank-one matrix of the form

$$A_k - A_{k-1} = \mathbf{u}^{(k)} (\mathbf{h}^{(k)})^T$$

for some $\mathbf{u}^{(k)} \in \mathbb{R}^n$. Then

$$\mathbf{u}^{(k)}(\mathbf{h}^{(k)})^T \mathbf{h}^{(k)} = (A_k - A_{k-1})\mathbf{h}^{(k)} = \mathbf{y}^{(k)} - A_{k-1}\mathbf{h}^{(k)}$$

$$\mathbf{u}^{(k)} = \frac{\mathbf{y}^{(k)} - A_{k-1}\mathbf{h}^{(k)}}{(\mathbf{h}^{(k)})^T\mathbf{h}^{(k)}}.$$

Therefore

$$A_k = A_{k-1} + \frac{(\mathbf{y}^{(k)} - A_{k-1}\mathbf{h}^{(k)})(\mathbf{h}^{(k)})^T}{(\mathbf{h}^{(k)})^T\mathbf{h}^{(k)}}.$$
 (1)

After A_k is determined, the new iterate $\mathbf{x}^{(k+1)}$ is derived from solving $M_k(\mathbf{x}) = 0$. It can be done by first noting that

$$\mathbf{h}^{(k+1)} = \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)} \implies \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{h}^{(k+1)}$$

and

$$M_k(\mathbf{x}^{(k+1)}) = 0 \implies A_k \mathbf{h}^{(k+1)} = -F(\mathbf{x}^{(k)})$$

These formulations give the Broyden's method, , , , , , , , , , , ,

$$\mathbf{u}^{(k)} = \frac{\mathbf{y}^{(k)} - A_{k-1}\mathbf{h}^{(k)}}{(\mathbf{h}^{(k)})^T\mathbf{h}^{(k)}}.$$

Therefore,

$$A_k = A_{k-1} + \frac{(\mathbf{y}^{(k)} - A_{k-1}\mathbf{h}^{(k)})(\mathbf{h}^{(k)})^T}{(\mathbf{h}^{(k)})^T\mathbf{h}^{(k)}}.$$
 (1)

$$\mathbf{h}^{(k+1)} = \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)} \implies \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{h}^{(k+1)}$$

$$M_k(\mathbf{x}^{(k+1)}) = 0 \implies A_k \mathbf{h}^{(k+1)} = -F(\mathbf{x}^{(k)})$$

These formulations give the Broyden's method.

$$\mathbf{u}^{(k)} = \frac{\mathbf{y}^{(k)} - A_{k-1}\mathbf{h}^{(k)}}{(\mathbf{h}^{(k)})^T\mathbf{h}^{(k)}}.$$

Therefore,

$$A_k = A_{k-1} + \frac{(\mathbf{y}^{(k)} - A_{k-1}\mathbf{h}^{(k)})(\mathbf{h}^{(k)})^T}{(\mathbf{h}^{(k)})^T\mathbf{h}^{(k)}}.$$
 (1)

After A_k is determined, the new iterate $\mathbf{x}^{(k+1)}$ is derived from solving $M_k(\mathbf{x}) = 0$. It can be done by first noting that

$$\mathbf{h}^{(k+1)} = \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)} \implies \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{h}^{(k+1)}$$

and

$$M_k(\mathbf{x}^{(k+1)}) = 0 \implies A_k \mathbf{h}^{(k+1)} = -F(\mathbf{x}^{(k)})$$

$$\mathbf{u}^{(k)} = \frac{\mathbf{y}^{(k)} - A_{k-1}\mathbf{h}^{(k)}}{(\mathbf{h}^{(k)})^T\mathbf{h}^{(k)}}.$$

Therefore,

$$A_k = A_{k-1} + \frac{(\mathbf{y}^{(k)} - A_{k-1}\mathbf{h}^{(k)})(\mathbf{h}^{(k)})^T}{(\mathbf{h}^{(k)})^T\mathbf{h}^{(k)}}.$$
 (1)

After A_k is determined, the new iterate $\mathbf{x}^{(k+1)}$ is derived from solving $M_k(\mathbf{x}) = 0$. It can be done by first noting that

$$\mathbf{h}^{(k+1)} = \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)} \quad \Longrightarrow \quad \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{h}^{(k+1)}$$

$$M_k(\mathbf{x}^{(k+1)}) = 0 \implies A_k \mathbf{h}^{(k+1)} = -F(\mathbf{x}^{(k)})$$

$$\mathbf{u}^{(k)} = \frac{\mathbf{y}^{(k)} - A_{k-1}\mathbf{h}^{(k)}}{(\mathbf{h}^{(k)})^T\mathbf{h}^{(k)}}.$$

Therefore,

$$A_k = A_{k-1} + \frac{(\mathbf{y}^{(k)} - A_{k-1}\mathbf{h}^{(k)})(\mathbf{h}^{(k)})^T}{(\mathbf{h}^{(k)})^T\mathbf{h}^{(k)}}.$$
 (1)

After A_k is determined, the new iterate $\mathbf{x}^{(k+1)}$ is derived from solving $M_k(\mathbf{x}) = 0$. It can be done by first noting that

$$\mathbf{h}^{(k+1)} = \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)} \implies \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{h}^{(k+1)}$$

and

$$M_k(\mathbf{x}^{(k+1)}) = 0 \implies A_k \mathbf{h}^{(k+1)} = -F(\mathbf{x}^{(k)})$$

$$\mathbf{u}^{(k)} = \frac{\mathbf{y}^{(k)} - A_{k-1}\mathbf{h}^{(k)}}{(\mathbf{h}^{(k)})^T\mathbf{h}^{(k)}}.$$

Therefore,

$$A_k = A_{k-1} + \frac{(\mathbf{y}^{(k)} - A_{k-1}\mathbf{h}^{(k)})(\mathbf{h}^{(k)})^T}{(\mathbf{h}^{(k)})^T\mathbf{h}^{(k)}}.$$
 (1)

After A_k is determined, the new iterate $\mathbf{x}^{(k+1)}$ is derived from solving $M_k(\mathbf{x}) = 0$. It can be done by first noting that

$$\mathbf{h}^{(k+1)} = \mathbf{x}^{(k+1)} - \mathbf{x}^{(k)} \implies \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{h}^{(k+1)}$$

and

$$M_k(\mathbf{x}^{(k+1)}) = 0 \implies A_k \mathbf{h}^{(k+1)} = -F(\mathbf{x}^{(k)})$$

These formulations give the Broyden's method.

Algorithm 2 (Broyden's Method)

Given $F: \mathbb{R}^n \to \mathbb{R}^n$, an initial vector $\mathbf{x}^{(0)}$ and initial Jacobian matrix $A_0 \in \mathbb{R}^{n \times n}$ (e.g., $A_0 = I$), tolerance TOL, maximum number of iteration M.

Set
$$k=1$$
.

While
$$k \le M$$
 and $\|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\|_2 \ge TOL$

Solve
$$A_k \mathbf{h}^{(k+1)} = -F(\mathbf{x}^{(k)})$$
 for $\mathbf{h}^{(k+1)}$

Update
$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{h}^{(k+1)}$$

Compute
$$\mathbf{y}^{(k+1)} = F(\mathbf{x}^{(k+1)}) - F(\mathbf{x}^{(k)})$$

$$A_{k+1} = A_k + \frac{(\mathbf{y}^{(k+1)} + F(\mathbf{x}^{(k)}))(\mathbf{h}^{(k+1)})^T}{(\mathbf{h}^{(k+1)})^T \mathbf{h}^{(k+1)}}$$

Set
$$k = k + 1$$

End While

$$(B + UV^{T})^{-1} = B^{-1} - B^{-1}U (I + V^{T}B^{-1}U)^{-1} V^{T}B^{-1}$$

$$= \left[A_{k-1} + \frac{(\mathbf{y}^{(k)} - A_{k-1}\mathbf{h}^{(k)})(\mathbf{h}^{(k)})^T}{(\mathbf{h}^{(k)})^T\mathbf{h}^{(k)}} \right]^{-1}$$

$$= A_{k-1}^{-1} + \frac{(\mathbf{h}^{(k)})^T \mathbf{h}^{(k)}}{(\mathbf{h}^{(k)})^T \mathbf{h}^{(k)}} \left(\mathbf{h}^{(k)} - A_{k-1}^{-1} \mathbf{y}^{(k)} \right) (\mathbf{h}^{(k)})^T A_{k-1}^{-1}}{(\mathbf{h}^{(k)})^T \mathbf{h}^{(k)}}.$$

- LU-factorization: cost $\frac{2}{3}n^3 + O(n^2)$ floating-point operations.

$$(B + UV^T)^{-1} = B^{-1} - B^{-1}U (I + V^T B^{-1}U)^{-1} V^T B^{-1}$$
to (1) we have

$$= \left[A_{k-1} + \frac{(\mathbf{y}^{(k)} - A_{k-1}\mathbf{h}^{(k)})(\mathbf{h}^{(k)})^{T}}{(\mathbf{h}^{(k)})^{T}\mathbf{h}^{(k)}} \right]^{-1}$$

$$= A_{k-1}^{-1} - A_{k-1}^{-1} \frac{\mathbf{y}^{(k)} - A_{k-1}\mathbf{h}^{(k)}}{(\mathbf{h}^{(k)})^{T}\mathbf{h}^{(k)}} \left(1 + (\mathbf{h}^{(k)})^{T}A_{k-1}^{-1} \frac{\mathbf{y}^{(k)} - A_{k-1}\mathbf{h}^{(k)}}{(\mathbf{h}^{(k)})^{T}\mathbf{h}^{(k)}} \right)^{-1} (\mathbf{h}^{(k)})^{T}A_{k}^{-1}$$

$$(\mathbf{h}^{(k)} - A^{-1}\mathbf{y}^{(k)})(\mathbf{h}^{(k)})^{T}A^{-1}$$

- LU-factorization: cost $\frac{2}{3}n^3 + O(n^2)$ floating-point operations.
- Applying the Shermann-Morrison-Woodbury formula

$$(B + UV^T)^{-1} = B^{-1} - B^{-1}U (I + V^T B^{-1}U)^{-1} V^T B^{-1}$$
 to (1), we have

$$A_{k}^{-1} = \left[A_{k-1} + \frac{(\mathbf{y}^{(k)} - A_{k-1}\mathbf{h}^{(k)})(\mathbf{h}^{(k)})^{T}}{(\mathbf{h}^{(k)})^{T}\mathbf{h}^{(k)}} \right]^{-1}$$

$$= A_{k-1}^{-1} - A_{k-1}^{-1} \frac{\mathbf{y}^{(k)} - A_{k-1}\mathbf{h}^{(k)}}{(\mathbf{h}^{(k)})^{T}\mathbf{h}^{(k)}} \left(1 + (\mathbf{h}^{(k)})^{T}A_{k-1}^{-1} \frac{\mathbf{y}^{(k)} - A_{k-1}\mathbf{h}^{(k)}}{(\mathbf{h}^{(k)})^{T}\mathbf{h}^{(k)}} \right)^{-1} (\mathbf{h}^{(k)})^{T}A_{k-1}^{-1}$$

$$+ \mathbf{h}^{(k)} - A_{k-1}^{-1}\mathbf{y}^{(k)})(\mathbf{h}^{(k)})^{T}A_{k-1}^{-1}$$

- LU-factorization: cost $\frac{2}{3}n^3 + O(n^2)$ floating-point operations.
- Applying the Shermann-Morrison-Woodbury formula

$$(B + UV^T)^{-1} = B^{-1} - B^{-1}U(I + V^TB^{-1}U)^{-1}V^TB^{-1}$$

to (1), we have

$$\begin{split} &A_{k}^{-1} \\ &= \left[A_{k-1} + \frac{(\mathbf{y}^{(k)} - A_{k-1}\mathbf{h}^{(k)})(\mathbf{h}^{(k)})^{T}}{(\mathbf{h}^{(k)})^{T}\mathbf{h}^{(k)}} \right]^{-1} \\ &= A_{k-1}^{-1} - A_{k-1}^{-1} \frac{\mathbf{y}^{(k)} - A_{k-1}\mathbf{h}^{(k)}}{(\mathbf{h}^{(k)})^{T}\mathbf{h}^{(k)}} \left(1 + (\mathbf{h}^{(k)})^{T} A_{k-1}^{-1} \frac{\mathbf{y}^{(k)} - A_{k-1}\mathbf{h}^{(k)}}{(\mathbf{h}^{(k)})^{T}\mathbf{h}^{(k)}} \right)^{-1} (\mathbf{h}^{(k)})^{T} A_{k-1}^{-1} \mathbf{y}^{(k)} + A_{k-1}\mathbf{h}^{(k)} \mathbf{h}^{(k)} \mathbf{h}^{(k)}$$

$$= A_{k-1}^{-1} + \frac{(\mathbf{h}^{(k)} - A_{k-1}^{-1} \mathbf{y}^{(k)})(\mathbf{h}^{(k)})^T A_{k-1}^{-1}}{(\mathbf{h}^{(k)})^T A_{k-1}^{-1} \mathbf{y}^{(k)}}.$$

Newton-based methods

$$g(x_1,...,x_n) = \sum_{i=1}^{n} [f_i(x_1,...,x_n)]^2$$

- Newton-based methods
 - Advantage: high speed of convergence once a sufficiently accurate approximation

$$g(x_1,...,x_n) = \sum_{i=1}^{n} [f_i(x_1,...,x_n)]^2$$

Newton-based methods

Fixed points

- Advantage: high speed of convergence once a sufficiently accurate approximation
- Weakness: an accurate initial approximation to the solution is needed to ensure convergence.
- Steepest Descent method converges only linearly to the sol., but it will usually converge even for poor initial approximations.
- "Find sufficiently accurate starting approximate solution by using Steepest Descent method" + "Compute convergent solution by using Newton-based methods"
- The method of Steepest Descent determines a local minimum for a multivariable function of a : Rⁿ → R.
- A system of the form $f_i(x_1, ..., x_n) = 0, i = 1, 2, ..., n$ has a solution at x iff the function a defined by

$$g(x_1, \dots, x_n) = \sum_{i=1}^{n} [f_i(x_1, \dots, x_n)]^2$$

Newton-based methods

Fixed points

- Advantage: high speed of convergence once a sufficiently accurate approximation
- Weakness: an accurate initial approximation to the solution is needed to ensure convergence.
- Steepest Descent method converges only linearly to the sol., but it will usually converge even for poor initial approximations.
- "Find sufficiently accurate starting approximate solution by using Steepest Descent method" + "Compute convergent solution by using Newton-based methods"
- The method of Steepest Descent determines a local minimum for a multivariable function of $q: \mathbb{R}^n \to \mathbb{R}$.
- A system of the form $f_i(x_1, ..., x_n) = 0$, i = 1, 2, ..., n has a solution at x iff the function a defined by

$$g(x_1, ..., x_n) = \sum_{i=1}^{n} [f_i(x_1, ..., x_n)]^2$$

- Newton-based methods
 - Advantage: high speed of convergence once a sufficiently accurate approximation
 - Weakness: an accurate initial approximation to the solution is needed to ensure convergence.
- Steepest Descent method converges only linearly to the sol., but it will usually converge even for poor initial approximations.
- "Find sufficiently accurate starting approximate solution by using Steepest Descent method" + "Compute convergent solution by using Newton-based methods"

$$g(x_1,...,x_n) = \sum_{i=1}^n [f_i(x_1,...,x_n)]^2$$

- Newton-based methods
 - Advantage: high speed of convergence once a sufficiently accurate approximation
 - Weakness: an accurate initial approximation to the solution is needed to ensure convergence.
- Steepest Descent method converges only linearly to the sol., but it will usually converge even for poor initial approximations.
- "Find sufficiently accurate starting approximate solution by using Steepest Descent method" + "Compute convergent solution by using Newton-based methods"
- The method of Steepest Descent determines a local minimum for a multivariable function of $q: \mathbb{R}^n \to \mathbb{R}$.
- A system of the form $f_i(x_1, ..., x_n) = 0$, i = 1, 2, ..., n has a solution at x iff the function q defined by

$$g(x_1, \dots, x_n) = \sum_{i=1}^n [f_i(x_1, \dots, x_n)]^2$$

- Newton-based methods
 - Advantage: high speed of convergence once a sufficiently accurate approximation
 - Weakness: an accurate initial approximation to the solution is needed to ensure convergence.
- Steepest Descent method converges only linearly to the sol., but it will usually converge even for poor initial approximations.
- "Find sufficiently accurate starting approximate solution by using Steepest Descent method" + "Compute convergent solution by using Newton-based methods"
- The method of Steepest Descent determines a local minimum for a multivariable function of $q: \mathbb{R}^n \to \mathbb{R}$.
- A system of the form $f_i(x_1,\ldots,x_n)=0,\ i=1,2,\ldots,n$ has a solution at x iff the function g defined by

$$g(x_1, \dots, x_n) = \sum_{i=1}^n [f_i(x_1, \dots, x_n)]^2$$

has the minimal value zero.

Basic idea of steepest descent method:

- (i) Evaluate g at an initial approximation $\mathbf{x}^{(0)}$;
- (ii) Determine a direction from $\mathbf{x}^{(0)}$ that results in a decrease in the value of q:
- (iii) Move an appropriate distance in this direction and call the new vector $\mathbf{x}^{(1)}$:
- (iv) Repeat steps (i) through (iii) with $\mathbf{x}^{(0)}$ replaced by $\mathbf{x}^{(1)}$.

Definition 7 (Gradient

If $q: \mathbb{R}^n \to \mathbb{R}$, the gradient, $\nabla q(\mathbf{x})$, at \mathbf{x} is defined by

$$\nabla g(\mathbf{x}) = \left(\frac{\partial g}{\partial x_1}(\mathbf{x}), \cdots, \frac{\partial g}{\partial x_n}(\mathbf{x})\right).$$

Definition & (Directional Derivative)

The directional derivative of g at \mathbf{x} in the direction of \mathbf{v} with $\|\mathbf{v}\|_2 = 1$ is defined by

$$D_{\mathbf{v}}g(\mathbf{x}) = \lim_{\mathbf{v}} \frac{g(\mathbf{x} + h\mathbf{v}) - g(\mathbf{x})}{\mathbf{v}} = \mathbf{v}^T \nabla g(\mathbf{x})$$

Basic idea of steepest descent method:

Newton's method

- (i) Evaluate g at an initial approximation $\mathbf{x}^{(0)}$;
- Determine a direction from $\mathbf{x}^{(0)}$ that results in a decrease in the value of g;

$$\nabla g(\mathbf{x}) = \left(\frac{\partial g}{\partial x_1}(\mathbf{x}), \cdots, \frac{\partial g}{\partial x_n}(\mathbf{x})\right).$$

$$D_{\mathbf{v}}g(\mathbf{x}) = \lim_{h \to 0} \frac{g(\mathbf{x} + h\mathbf{v}) - g(\mathbf{x})}{h} = \mathbf{v}^T \nabla g(\mathbf{x})$$

Basic idea of steepest descent method:

- (i) Evaluate g at an initial approximation $\mathbf{x}^{(0)}$;
- Determine a direction from $\mathbf{x}^{(0)}$ that results in a decrease in the value of q:
- (iii) Move an appropriate distance in this direction and call the new vector $\mathbf{x}^{(1)}$:

$$\nabla g(\mathbf{x}) = \left(\frac{\partial g}{\partial x_1}(\mathbf{x}), \cdots, \frac{\partial g}{\partial x_n}(\mathbf{x})\right).$$

$$D_{\mathbf{v}}g(\mathbf{x}) = \lim_{h \to 0} \frac{g(\mathbf{x} + h\mathbf{v}) - g(\mathbf{x})}{h} = \mathbf{v}^T \nabla g(\mathbf{x})$$

Basic idea of steepest descent method:

- (i) Evaluate g at an initial approximation $\mathbf{x}^{(0)}$;
- (ii) Determine a direction from $\mathbf{x}^{(0)}$ that results in a decrease in the value of g;
- (iii) Move an appropriate distance in this direction and call the new vector $\mathbf{x}^{(1)}$;
- (iv) Repeat steps (i) through (iii) with $\mathbf{x}^{(0)}$ replaced by $\mathbf{x}^{(1)}$.

Definition 7 (Gradient

If $g: \mathbb{R}^n \to \mathbb{R}$, the gradient, $\nabla g(\mathbf{x})$, at \mathbf{x} is defined by

$$\nabla g(\mathbf{x}) = \left(\frac{\partial g}{\partial x_1}(\mathbf{x}), \cdots, \frac{\partial g}{\partial x_n}(\mathbf{x})\right).$$

Definition 8 (Directional Derivative)

The directional derivative of g at ${\bf x}$ in the direction of ${\bf v}$ with $\| {\bf v} \|_2 = 1$ is defined by

$$D_{\mathbf{v}}g(\mathbf{x}) = \lim_{h \to 0} \frac{g(\mathbf{x} + h\mathbf{v}) - g(\mathbf{x})}{h} = \mathbf{v}^T \nabla g(\mathbf{x})$$

Basic idea of steepest descent method:

- (i) Evaluate g at an initial approximation $\mathbf{x}^{(0)}$;
- Determine a direction from $\mathbf{x}^{(0)}$ that results in a decrease in the value of q:
- (iii) Move an appropriate distance in this direction and call the new vector $\mathbf{x}^{(1)}$:
- (iv) Repeat steps (i) through (iii) with $\mathbf{x}^{(0)}$ replaced by $\mathbf{x}^{(1)}$.

Definition 7 (Gradient)

If $g: \mathbb{R}^n \to \mathbb{R}$, the gradient, $\nabla g(\mathbf{x})$, at \mathbf{x} is defined by

$$\nabla g(\mathbf{x}) = \left(\frac{\partial g}{\partial x_1}(\mathbf{x}), \cdots, \frac{\partial g}{\partial x_n}(\mathbf{x})\right).$$

$$D_{\mathbf{v}}g(\mathbf{x}) = \lim_{h \to 0} \frac{g(\mathbf{x} + h\mathbf{v}) - g(\mathbf{x})}{h} = \mathbf{v}^T \nabla g(\mathbf{x})$$

Basic idea of steepest descent method:

- (i) Evaluate g at an initial approximation $\mathbf{x}^{(0)}$;
- Determine a direction from $\mathbf{x}^{(0)}$ that results in a decrease in the value of q:
- (iii) Move an appropriate distance in this direction and call the new vector $\mathbf{x}^{(1)}$:
- (iv) Repeat steps (i) through (iii) with $\mathbf{x}^{(0)}$ replaced by $\mathbf{x}^{(1)}$.

Definition 7 (Gradient)

If $g: \mathbb{R}^n \to \mathbb{R}$, the gradient, $\nabla g(\mathbf{x})$, at \mathbf{x} is defined by

$$\nabla g(\mathbf{x}) = \left(\frac{\partial g}{\partial x_1}(\mathbf{x}), \cdots, \frac{\partial g}{\partial x_n}(\mathbf{x})\right).$$

Definition 8 (Directional Derivative)

The directional derivative of q at x in the direction of v with $\|\mathbf{v}\|_2 = 1$ is defined by

$$D_{\mathbf{v}}g(\mathbf{x}) = \lim_{h \to 0} \frac{g(\mathbf{x} + h\mathbf{v}) - g(\mathbf{x})}{h} = \mathbf{v}^T \nabla g(\mathbf{x}).$$

Fixed points

The direction of the greatest decrease in the value of g at \mathbf{x} is the direction given by $-\nabla g(\mathbf{x})$.

• Object: reduce $g(\mathbf{x})$ to its minimal value zero. \Rightarrow for an initial approximation $\mathbf{x}^{(0)}$, an appropriate choice for new vector $\mathbf{x}^{(1)}$ is

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} - \alpha \nabla g(\mathbf{x}^{(0)}), \quad ext{ for some constant } \ \alpha > 0$$

• Choose $\alpha > 0$ such that $g(\mathbf{x}^{(1)}) < g(\mathbf{x}^{(0)})$: define

$$h(\alpha) = g(\mathbf{x}^{(0)} - \alpha \nabla g(\mathbf{x}^{(0)}))$$

then find $lpha^*$ such that

$$h(\alpha^*) = \min h(\alpha).$$

Fixed points

Object: reduce g(x) to its minimal value zero.
 ⇒ for an initial approximation x⁽⁰⁾, an appropriate choice for new vector x⁽¹⁾ is

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} - \alpha \nabla g(\mathbf{x}^{(0)}), \quad \text{ for some constant } \alpha > 0$$

• Choose $\alpha > 0$ such that $g(\mathbf{x}^{(1)}) < g(\mathbf{x}^{(0)})$: define

$$h(\alpha) = g(\mathbf{x}^{(0)} - \alpha \nabla g(\mathbf{x}^{(0)}))$$

then find α^* such that

$$h(\alpha^*) = \min_{\alpha} h(\alpha).$$

Theorem 9

The direction of the greatest decrease in the value of q at x is the direction given by $-\nabla q(\mathbf{x})$.

• Object: reduce $g(\mathbf{x})$ to its minimal value zero. \Rightarrow for an initial approximation $\mathbf{x}^{(0)}$, an appropriate choice for new vector $\mathbf{x}^{(1)}$ is

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} - \alpha \nabla g(\mathbf{x}^{(0)}), \quad \text{for some constant } \alpha > 0.$$

$$h(\alpha) = g(\mathbf{x}^{(0)} - \alpha \nabla g(\mathbf{x}^{(0)}))$$

$$h(\alpha^*) = \min h(\alpha).$$

Theorem 9

The direction of the greatest decrease in the value of q at x is the direction given by $-\nabla q(\mathbf{x})$.

• Object: reduce $g(\mathbf{x})$ to its minimal value zero. \Rightarrow for an initial approximation $\mathbf{x}^{(0)}$, an appropriate choice for new vector $\mathbf{x}^{(1)}$ is

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} - \alpha \nabla g(\mathbf{x}^{(0)}), \quad \text{for some constant } \alpha > 0.$$

• Choose $\alpha > 0$ such that $g(\mathbf{x}^{(1)}) < g(\mathbf{x}^{(0)})$: define

$$h(\alpha) = g(\mathbf{x}^{(0)} - \alpha \nabla g(\mathbf{x}^{(0)}))$$

$$h(\alpha^*) = \min h(\alpha).$$

Theorem 9

The direction of the greatest decrease in the value of q at x is the direction given by $-\nabla q(\mathbf{x})$.

• Object: reduce $g(\mathbf{x})$ to its minimal value zero. \Rightarrow for an initial approximation $\mathbf{x}^{(0)}$, an appropriate choice for new vector $\mathbf{x}^{(1)}$ is

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} - \alpha \nabla g(\mathbf{x}^{(0)}), \quad \text{for some constant } \alpha > 0.$$

• Choose $\alpha > 0$ such that $g(\mathbf{x}^{(1)}) < g(\mathbf{x}^{(0)})$: define

$$h(\alpha) = g(\mathbf{x}^{(0)} - \alpha \nabla g(\mathbf{x}^{(0)})),$$

then find α^* such that

$$h(\alpha^*) = \min h(\alpha).$$

$$P(\alpha_1) = h(\alpha_1), \ P(\alpha_2) = h(\alpha_2), \ P(\alpha_3) = h(\alpha_3),$$

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} - \hat{\alpha} \nabla g(\mathbf{x}^{(0)}).$$

Fixed points

- Solve a root-finding problem $h'(\alpha) = 0 \Rightarrow$ Too costly, in general.
- Choose three number $\alpha_1 < \alpha_2 < \alpha_3$, construct quadratic polynomial P(x) that interpolates h at α_1, α_2 and α_3 , i.e.,

$$P(\alpha_1) = h(\alpha_1), \ P(\alpha_2) = h(\alpha_2), \ P(\alpha_3) = h(\alpha_3),$$

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} - \hat{\alpha} \nabla g(\mathbf{x}^{(0)}).$$

- Set $\alpha_1 = 0$ to minimize the computation
- α_2 is found with $h(\alpha_2) < h(\alpha_1)$
- Choose $\alpha_2 = \alpha_3/2$.

- How to find α^* ?
 - Solve a root-finding problem $h'(\alpha) = 0 \Rightarrow$ Too costly, in general.
 - Choose three number $\alpha_1 < \alpha_2 < \alpha_3$, construct quadratic polynomial P(x) that interpolates h at α_1, α_2 and α_3 , i.e.,

$$P(\alpha_1) = h(\alpha_1), \ P(\alpha_2) = h(\alpha_2), \ P(\alpha_3) = h(\alpha_3),$$

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} - \hat{\alpha} \nabla g(\mathbf{x}^{(0)}).$$

- Set $\alpha_1 = 0$ to minimize the computation
- α_3 is found with $h(\alpha_3) < h(\alpha_1)$.
- Choose $\alpha_2 = \alpha_3/2$.

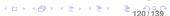
Fixed points

- Solve a root-finding problem $h'(\alpha) = 0 \Rightarrow$ Too costly, in general.
- Choose three number $\alpha_1 < \alpha_2 < \alpha_3$, construct quadratic polynomial P(x) that interpolates h at α_1, α_2 and α_3 , i.e.,

$$P(\alpha_1) = h(\alpha_1), \ P(\alpha_2) = h(\alpha_2), \ P(\alpha_3) = h(\alpha_3),$$

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} - \hat{\alpha} \nabla g(\mathbf{x}^{(0)}).$$

- Set $\alpha_1 = 0$ to minimize the computation
- α_3 is found with $h(\alpha_3) < h(\alpha_1)$.
- Choose $\alpha_2 = \alpha_3/2$.



Fixed points

- Solve a root-finding problem $h'(\alpha) = 0 \Rightarrow$ Too costly, in general.
- Choose three number $\alpha_1 < \alpha_2 < \alpha_3$, construct quadratic polynomial P(x) that interpolates h at α_1, α_2 and α_3 , i.e.,

$$P(\alpha_1) = h(\alpha_1), \ P(\alpha_2) = h(\alpha_2), \ P(\alpha_3) = h(\alpha_3),$$

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} - \hat{\alpha} \nabla g(\mathbf{x}^{(0)}).$$

- Set $\alpha_1 = 0$ to minimize the computation
- α_3 is found with $h(\alpha_3) < h(\alpha_1)$.
- Choose $\alpha_2 = \alpha_3/2$.

Fixed points

- Solve a root-finding problem $h'(\alpha) = 0 \Rightarrow$ Too costly, in general.
- Choose three number $\alpha_1 < \alpha_2 < \alpha_3$, construct quadratic polynomial P(x) that interpolates h at α_1, α_2 and α_3 , i.e.,

$$P(\alpha_1) = h(\alpha_1), \ P(\alpha_2) = h(\alpha_2), \ P(\alpha_3) = h(\alpha_3),$$

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} - \hat{\alpha} \nabla g(\mathbf{x}^{(0)}).$$

- Set $\alpha_1 = 0$ to minimize the computation
- α_3 is found with $h(\alpha_3) < h(\alpha_1)$.
- Choose $\alpha_2 = \alpha_3/2$.

Fixed points

- Solve a root-finding problem $h'(\alpha) = 0 \Rightarrow$ Too costly, in general.
- Choose three number $\alpha_1 < \alpha_2 < \alpha_3$, construct quadratic polynomial P(x) that interpolates h at α_1, α_2 and α_3 , i.e.,

$$P(\alpha_1) = h(\alpha_1), \ P(\alpha_2) = h(\alpha_2), \ P(\alpha_3) = h(\alpha_3),$$

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} - \hat{\alpha} \nabla g(\mathbf{x}^{(0)}).$$

- Set $\alpha_1 = 0$ to minimize the computation
- α_3 is found with $h(\alpha_3) < h(\alpha_1)$.
- Choose $\alpha_2 = \alpha_3/2$.

Fixed points

- Solve a root-finding problem $h'(\alpha) = 0 \Rightarrow$ Too costly, in general.
- Choose three number $\alpha_1 < \alpha_2 < \alpha_3$, construct quadratic polynomial P(x) that interpolates h at α_1, α_2 and α_3 , i.e.,

$$P(\alpha_1) = h(\alpha_1), \ P(\alpha_2) = h(\alpha_2), \ P(\alpha_3) = h(\alpha_3),$$

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} - \hat{\alpha} \nabla g(\mathbf{x}^{(0)}).$$

- Set $\alpha_1 = 0$ to minimize the computation
- α_3 is found with $h(\alpha_3) < h(\alpha_1)$.
- Choose $\alpha_2 = \alpha_3/2$.



Example 10

Use the Steepest Descent method with $\mathbf{x}^{(0)} = (0,0,0)^T$ to find a reasonable starting approximation to the solution of the nonlinear system

$$f_1(x_1, x_2, x_3) = 3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0,$$

$$f_2(x_1, x_2, x_3) = x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0,$$

$$f_3(x_1, x_2, x_3) = e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0.$$

Let
$$g(x_1,x_2,x_3)=[f_1(x_1,x_2,x_3)]^2+[f_2(x_1,x_2,x_3)]^2+[f_3(x_1,x_2,x_3)]^2$$
. Then

$$\nabla g(x_1, x_2, x_3) \equiv \nabla g(x)$$

$$= \left(2f_1(x)\frac{\partial f_1}{\partial x_1}(x) + 2f_2(x)\frac{\partial f_2}{\partial x_1}(x) + 2f_3(x)\frac{\partial f_3}{\partial x_1}(x),\right)$$

$$2f_1(x)\frac{\partial f_1}{\partial x_2}(x) + 2f_2(x)\frac{\partial f_2}{\partial x_2}(x) + 2f_3(x)\frac{\partial f_3}{\partial x_2}(x),$$

$$2f_1(x)\frac{\partial f_1}{\partial x_3}(x) + 2f_2(x)\frac{\partial f_2}{\partial x_3}(x) + 2f_3(x)\frac{\partial f_3}{\partial x_2}(x)$$

Example 10

Use the Steepest Descent method with $\mathbf{x}^{(0)} = (0,0,0)^T$ to find a reasonable starting approximation to the solution of the nonlinear system $f_1(x_1, x_2, x_3) = 3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0,$

$$f_2(x_1, x_2, x_3) = x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0,$$

$$f_3(x_1, x_2, x_3) = e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0.$$

$$\begin{aligned} \text{Let } g(x_1, x_2, x_3) &= [f_1(x_1, x_2, x_3)]^2 + [f_2(x_1, x_2, x_3)]^2 + [f_3(x_1, x_2, x_3)]^2. \\ \text{Then } \\ \nabla g(x_1, x_2, x_3) &\equiv \nabla g(x) \\ &= \left(2f_1(x)\frac{\partial f_1}{\partial x_1}(x) + 2f_2(x)\frac{\partial f_2}{\partial x_1}(x) + 2f_3(x)\frac{\partial f_3}{\partial x_1}(x), \right. \\ &\left. 2f_1(x)\frac{\partial f_1}{\partial x_2}(x) + 2f_2(x)\frac{\partial f_2}{\partial x_2}(x) + 2f_3(x)\frac{\partial f_3}{\partial x_2}(x), \right. \\ &\left. 2f_1(x)\frac{\partial f_1}{\partial x_3}(x) + 2f_2(x)\frac{\partial f_2}{\partial x_3}(x) + 2f_3(x)\frac{\partial f_3}{\partial x_2}(x) \right) \end{aligned}$$

Example 10

Use the Steepest Descent method with $\mathbf{x}^{(0)} = (0, 0, 0)^T$ to find a reasonable starting approximation to the solution of the nonlinear system

$$f_1(x_1, x_2, x_3) = 3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0,$$

$$f_2(x_1, x_2, x_3) = x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0,$$

$$f_3(x_1, x_2, x_3) = e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0.$$

$$g(\mathbf{x}^{(0)}) = 111.975$$
 and $z_0 = \|\nabla g(\mathbf{x}^{(0)})\|_2 = 419.554$.

$$z = \frac{1}{z_0} \nabla g(\mathbf{x}^{(0)}) = [-0.0214514, -0.0193062, 0.999583]^T$$

$$g_1 = g(\mathbf{x}^{(0)} - \alpha_1 z) = g(\mathbf{x}^{(0)}) = 111.975.$$

$$g_3 = g(\mathbf{x}^{(0)} - \alpha_3 z) = 93.5649 < g_1$$

$$q_2 = q(\mathbf{x}^{(0)} - \alpha_2 z) = 2.53557$$

$$g(\mathbf{x}^{(0)}) = 111.975$$
 and $z_0 = \|\nabla g(\mathbf{x}^{(0)})\|_2 = 419.554$.

Let

$$z = \frac{1}{z_0} \nabla g(\mathbf{x}^{(0)}) = [-0.0214514, -0.0193062, 0.999583]^T.$$

$$g_1 = g(\mathbf{x}^{(0)} - \alpha_1 z) = g(\mathbf{x}^{(0)}) = 111.975.$$

$$g_3 = g(\mathbf{x}^{(0)} - \alpha_3 z) = 93.5649 < g_1$$

$$g_2 = g(\mathbf{x}^{(0)} - \alpha_2 z) = 2.53557.$$

$$g(\mathbf{x}^{(0)}) = 111.975 \quad \text{ and } \quad z_0 = \|\nabla g(\mathbf{x}^{(0)})\|_2 = 419.554.$$

Let

$$z = \frac{1}{z_0} \nabla g(\mathbf{x}^{(0)}) = [-0.0214514, -0.0193062, 0.999583]^T.$$

With $\alpha_1 = 0$, we have

$$g_1 = g(\mathbf{x}^{(0)} - \alpha_1 z) = g(\mathbf{x}^{(0)}) = 111.975.$$

Let $\alpha_3 = 1$ so that

$$g_3 = g(\mathbf{x}^{(0)} - \alpha_3 z) = 93.5649 < g_1.$$

Set $\alpha_2 = \alpha_3/2 = 0.5$. Thus

$$g_2 = g(\mathbf{x}^{(0)} - \alpha_2 z) = 2.53557.$$

$$g(\mathbf{x}^{(0)}) = 111.975$$
 and $z_0 = \|\nabla g(\mathbf{x}^{(0)})\|_2 = 419.554$.

Let

$$z = \frac{1}{z_0} \nabla g(\mathbf{x}^{(0)}) = [-0.0214514, -0.0193062, 0.999583]^T.$$

With $\alpha_1 = 0$, we have

$$g_1 = g(\mathbf{x}^{(0)} - \alpha_1 z) = g(\mathbf{x}^{(0)}) = 111.975.$$

Let $\alpha_3 = 1$ so that

$$g_3 = g(\mathbf{x}^{(0)} - \alpha_3 z) = 93.5649 < g_1.$$

$$g_2 = g(\mathbf{x}^{(0)} - \alpha_2 z) = 2.53557.$$

$$g(\mathbf{x}^{(0)}) = 111.975 \quad \text{ and } \quad z_0 = \|\nabla g(\mathbf{x}^{(0)})\|_2 = 419.554.$$

Let

$$z = \frac{1}{z_0} \nabla g(\mathbf{x}^{(0)}) = [-0.0214514, -0.0193062, 0.999583]^T.$$

With $\alpha_1 = 0$, we have

$$g_1 = g(\mathbf{x}^{(0)} - \alpha_1 z) = g(\mathbf{x}^{(0)}) = 111.975.$$

Let $\alpha_3 = 1$ so that

$$g_3 = g(\mathbf{x}^{(0)} - \alpha_3 z) = 93.5649 < g_1.$$

Set $\alpha_2 = \alpha_3/2 = 0.5$. Thus

$$g_2 = g(\mathbf{x}^{(0)} - \alpha_2 z) = 2.53557$$

$$g(\mathbf{x}^{(0)}) = 111.975 \quad \text{ and } \quad z_0 = \|\nabla g(\mathbf{x}^{(0)})\|_2 = 419.554.$$

Let

$$z = \frac{1}{z_0} \nabla g(\mathbf{x}^{(0)}) = [-0.0214514, -0.0193062, 0.999583]^T.$$

With $\alpha_1 = 0$, we have

$$g_1 = g(\mathbf{x}^{(0)} - \alpha_1 z) = g(\mathbf{x}^{(0)}) = 111.975.$$

Let $\alpha_3 = 1$ so that

$$g_3 = g(\mathbf{x}^{(0)} - \alpha_3 z) = 93.5649 < g_1.$$

Set $\alpha_2 = \alpha_3/2 = 0.5$. Thus

$$g_2 = g(\mathbf{x}^{(0)} - \alpha_2 z) = 2.53557.$$

$$P(\alpha) = g_1 + h_1 \alpha + h_3 \alpha (\alpha - \alpha_2)$$

that interpolates $g(\mathbf{x}^{(0)} - \alpha z)$ at $\alpha_1 = 0, \alpha_2 = 0.5$ and $\alpha_3 = 1$ as follows

$$g_2 = P(\alpha_2) = g_1 + h_1 \alpha_2 \implies h_1 = \frac{g_2 - g_1}{\alpha_2} = -218.878,$$

 $g_3 = P(\alpha_3) = g_1 + h_1 \alpha_3 + h_3 \alpha_3 (\alpha_3 - \alpha_2) \implies h_3 = 400.937$

$$P(\alpha) = 111.975 - 218.878\alpha + 400.937\alpha(\alpha - 0.5)$$

$$0 = P'(\alpha_0) = -419.346 + 801.872\alpha_0 \implies \alpha_0 = 0.522959$$

$$g_0 = g(\mathbf{x}^{(0)} - \alpha_0 z) = 2.32762 < \min\{g_1, g_3\},$$

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} - \alpha_0 z = [0.0112182, 0.0100964, -0.522741]^T$$

$$P(\alpha) = g_1 + h_1 \alpha + h_3 \alpha (\alpha - \alpha_2)$$

that interpolates $g(\mathbf{x}^{(0)} - \alpha z)$ at $\alpha_1 = 0, \alpha_2 = 0.5$ and $\alpha_3 = 1$ as follows

$$g_2 = P(\alpha_2) = g_1 + h_1 \alpha_2 \implies h_1 = \frac{g_2 - g_1}{\alpha_2} = -218.878,$$

 $g_3 = P(\alpha_3) = g_1 + h_1 \alpha_3 + h_3 \alpha_3 (\alpha_3 - \alpha_2) \implies h_3 = 400.937.$

$$P(\alpha) = 111.975 - 218.878\alpha + 400.937\alpha(\alpha - 0.5)$$

$$0 = P'(\alpha_0) = -419.346 + 801.872\alpha_0 \implies \alpha_0 = 0.522959$$

$$g_0 = g(\mathbf{x}^{(0)} - \alpha_0 z) = 2.32762 < \min\{g_1, g_3\},\$$

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} - \alpha_0 z = [0.0112182, 0.0100964, -0.522741]^T$$

$$P(\alpha) = g_1 + h_1 \alpha + h_3 \alpha (\alpha - \alpha_2)$$

that interpolates $g(\mathbf{x}^{(0)} - \alpha z)$ at $\alpha_1 = 0, \alpha_2 = 0.5$ and $\alpha_3 = 1$ as follows

$$g_2 = P(\alpha_2) = g_1 + h_1 \alpha_2 \implies h_1 = \frac{g_2 - g_1}{\alpha_2} = -218.878,$$

 $g_3 = P(\alpha_3) = g_1 + h_1 \alpha_3 + h_3 \alpha_3 (\alpha_3 - \alpha_2) \implies h_3 = 400.937.$

Thus

$$P(\alpha) = 111.975 - 218.878\alpha + 400.937\alpha(\alpha - 0.5)$$

$$0 = P'(\alpha_0) = -419.346 + 801.872\alpha_0 \implies \alpha_0 = 0.522959$$

$$g_0 = g(\mathbf{x}^{(0)} - \alpha_0 z) = 2.32762 < \min\{g_1, g_3\},\$$

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} - \alpha_0 z = [0.0112182, 0.0100964, -0.522741]^T$$

$$P(\alpha) = g_1 + h_1 \alpha + h_3 \alpha (\alpha - \alpha_2)$$

that interpolates $g(\mathbf{x}^{(0)} - \alpha z)$ at $\alpha_1 = 0, \alpha_2 = 0.5$ and $\alpha_3 = 1$ as follows

$$g_2 = P(\alpha_2) = g_1 + h_1 \alpha_2 \implies h_1 = \frac{g_2 - g_1}{\alpha_2} = -218.878,$$

 $g_3 = P(\alpha_3) = g_1 + h_1 \alpha_3 + h_3 \alpha_3 (\alpha_3 - \alpha_2) \implies h_3 = 400.937.$

Thus

$$P(\alpha) = 111.975 - 218.878\alpha + 400.937\alpha(\alpha - 0.5)$$

so that

$$0 = P'(\alpha_0) = -419.346 + 801.872\alpha_0 \implies \alpha_0 = 0.522959$$

$$g_0 = g(\mathbf{x}^{(0)} - \alpha_0 z) = 2.32762 < \min\{g_1, g_3\},\$$

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} - \alpha_0 z = [0.0112182, 0.0100964, -0.522741]^T$$

$$P(\alpha) = g_1 + h_1 \alpha + h_3 \alpha (\alpha - \alpha_2)$$

that interpolates $g(\mathbf{x}^{(0)} - \alpha z)$ at $\alpha_1 = 0, \alpha_2 = 0.5$ and $\alpha_3 = 1$ as follows

$$g_2 = P(\alpha_2) = g_1 + h_1 \alpha_2 \implies h_1 = \frac{g_2 - g_1}{\alpha_2} = -218.878,$$

 $g_3 = P(\alpha_3) = g_1 + h_1 \alpha_3 + h_3 \alpha_3 (\alpha_3 - \alpha_2) \implies h_3 = 400.937.$

Thus

$$P(\alpha) = 111.975 - 218.878\alpha + 400.937\alpha(\alpha - 0.5)$$

so that

$$0 = P'(\alpha_0) = -419.346 + 801.872\alpha_0 \implies \alpha_0 = 0.522959$$

Since

$$g_0 = g(\mathbf{x}^{(0)} - \alpha_0 z) = 2.32762 < \min\{g_1, g_3\},\$$

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} - \alpha_0 z = [0.0112182, 0.0100964, -0.522741]^T$$

$$P(\alpha) = g_1 + h_1 \alpha + h_3 \alpha (\alpha - \alpha_2)$$

that interpolates $q(\mathbf{x}^{(0)} - \alpha z)$ at $\alpha_1 = 0, \alpha_2 = 0.5$ and $\alpha_3 = 1$ as follows

$$g_2 = P(\alpha_2) = g_1 + h_1 \alpha_2 \implies h_1 = \frac{g_2 - g_1}{\alpha_2} = -218.878,$$

 $g_3 = P(\alpha_3) = g_1 + h_1 \alpha_3 + h_3 \alpha_3 (\alpha_3 - \alpha_2) \implies h_3 = 400.937.$

Thus

$$P(\alpha) = 111.975 - 218.878\alpha + 400.937\alpha(\alpha - 0.5)$$

so that

$$0 = P'(\alpha_0) = -419.346 + 801.872\alpha_0 \implies \alpha_0 = 0.522959$$

Since

$$g_0 = g(\mathbf{x}^{(0)} - \alpha_0 z) = 2.32762 < \min\{g_1, g_3\},\$$

we set

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} - \alpha_0 z = [0.0112182, 0.0100964, -0.522741]^T.$$

