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Fixed points

Fixed points for functions of several variables

Let f: D c R™ — R be a function and xy € D.
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Fixed points

Fixed points for functions of several variables

Theorem 1

Let f : D C R™ — R be a function and xq € D. If all the partial
derivatives of f existand 3 6 > 0 and o > 0 such that
YV ||lx — zo|| < d and z € D,
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Fixed points

Fixed points for functions of several variables

Theorem 1

Let f : D C R™ — R be a function and xq € D. If all the partial
derivatives of f existand 3 6 > 0 and o > 0 such that
Y ||lx — zo|| < d and z € D, we have

‘af(x) <a, Vji=12,...,n,
8{[)]'
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Fixed points

Fixed points for functions of several variables

Theorem 1

Let f : D C R™ — R be a function and xq € D. If all the partial
derivatives of f existand 3 6 > 0 and o > 0 such that
Y ||lx — zo|| < d and z € D, we have

‘ 0f(x)

<a Vji=12,...,n,
8{[)]' - d

then f is continuous at xy.
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Fixed points

Fixed points for functions of several variables

Theorem 1

Let f : D C R™ — R be a function and xq € D. If all the partial
derivatives of f existand 3 6 > 0 and o > 0 such that

V||lz — x| < 6 and z € D, we have

‘ of(x)

<a Vji=12,...,n,
8{[)]' - J

then f is continuous at xy.

Definition 2 (Fixed Point)

A function G from D C R™ into R™ has a fixed point at p € D if
G(p) = p.
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Fixed points

Theorem 3 (Contraction Mapping Theorem)

LetD = {(x1, - ,2p)T50; <2 < b;,Vi=1,...,n} CR".
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Fixed points

Theorem 3 (Contraction Mapping Theorem)

LetD = {(x1, - ,2p)T50; <2 < b;,Vi=1,...,n} CR".
Suppose G : D — R" is a continuous function with G(x) € D
whenever x € D.

457420



Fixed points

Theorem 3 (Contraction Mapping Theorem)

LetD = {(x1, - ,2p)T50; <2 < b;,Vi=1,...,n} CR".
Suppose G : D — R" is a continuous function with G(x) € D
whenever x € D. Then G has a fixed point in D.
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Fixed points

Theorem 3 (Contraction Mapping Theorem)

LetD = {(x1, - ,2p)T50; <2 < b;,Vi=1,...,n} CR".
Suppose G : D — R" is a continuous function with G(x) € D
whenever x € D. Then G has a fixed point in D.

Suppose, in addition, G has continuous partial derivatives and
a constant o < 1 exists with

‘391'(90)

8:6]'

«
< —, whenever z € D,
n

forj=1,....,nandi=1,...,n.
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Fixed points

Theorem 3 (Contraction Mapping Theorem)

LetD = {(x1, - ,2p)T50; <2 < b;,Vi=1,...,n} CR".
Suppose G : D — R" is a continuous function with G(x) € D
whenever x € D. Then G has a fixed point in D.

Suppose, in addition, G has continuous partial derivatives and
a constant o < 1 exists with

dgi(x)
8:6]'

«
< —, whenever z € D,
n

forj=1,...,nandi=1,...,n. Then, foranyx\©) € D,
x®) = g(x*=1),  foreach k>1

converges to the unique fixed pointp € D

#7120



Fixed points

Theorem 3 (Contraction Mapping Theorem)

LetD = {(x1, - ,2p)T50; <2 < b;,Vi=1,...,n} CR".
Suppose G : D — R" is a continuous function with G(x) € D
whenever x € D. Then G has a fixed point in D.

Suppose, in addition, G has continuous partial derivatives and
a constant o < 1 exists with

dgi(x)
8:6]'

«
< —, whenever z € D,
n

forj=1,...,nandi=1,...,n. Then, foranyx\©) € D,
x® = gx* 1), foreach k> 1

converges to the unique fixed point p € D and

k

«
)2 = p oo 22— | 2D = x|
« 7120



Fixed points

Example 4

Consider the nonlinear system

1
3x1 — cos(zaxs) — 5 = 0,
2?2 — 81(xy +0.1)? +sinzz +1.06 = 0,

107 — 3
e~ 172 4+ 20x3 + 7T3 = 0.
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Fixed points

Example 4

Consider the nonlinear system
3x1 — cos(zaxs) — % = 0,
2?2 — 81(xy +0.1)? +sinzz +1.06 = 0,
e~ 172 4+ 20x3 + 107T3_ 3 = 0.

@ Fixed-point problem:
Change the system into the fixed-point problem:

1 1

T = g COS($2$3) + 6 =01 ($17 xQ’I?’)’
1

To = §\/x%—|—sinx3—|—l.06—0.1592(371,332,333)a
1 10m — 3

T3o= mgpe T g = 9s(@nmaw).

Let G : R? — R3 be defined by G(z) = [g1 (), g2(z), g3(x)]T.
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Fixed points

e G has a unique pointin D = [-1,1] x [-1,1] x [-1,1]:
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Fixed points

e G has a unique pointin D = [-1,1] x [-1,1] x [-1,1]:
@ Existence: Vx € D,

1 1
191(2)| < 5 cos(azan)| + 5 <05,

v1+4+sinl+1.06 -0.1 <0.09,

| (x)|—ie_'"“'"”2 n 10m —3 < ie—i— 10m — 3
PBEN= 750 60  — 20 60

it implies that G(z) € D whenever = € D.

O =

1 .
|gg(x)|:‘9\/x% +sinzz + 1.06 — 0.1‘ <

< 0.61,
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Fixed points

e G has a unique pointin D = [-1,1] x [-1,1] x [-1,1]:
@ Existence: Vx € D,

1 1
191(2)| < 5 cos(azan)| + 5 <05,

m(o)l=|3

VIFsinl+1.06—0.1<0.09,
| (x)|—ie_'”“m2+ 10m — 3 < ie—i— 10m — 3
I3 = 5 60  — 20 60

it implies that G(z) € D whenever = € D.
@ Uniqueness:

\/:cf +sinxs + 1.06 — 0.1‘ <

O =

< 0.61,

dq1 0go dg3
—| = —~| =0 and =0,
01‘1 ’ 6:@ 6$3
as well as
991

1 1
. < §]x3| - | sin(zozs)| < 3 sin1l < 0.281,
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Fixed points

0 1 1
87’;; < glas| - [sin(eazs)| < Zsinl < 0.281,

1
92| _ al < < 0.238,
0z, 9y/x? +sinzz +1.06  9v0.218

1

Oga| _ | cos 2] < <0.119,
Ox3 18y/23 +sinzs +1.06  18/0.218
893 |:L‘2| —z1To 1
B = PRlemmre < o 20,14,
£ 20 ¢ =90
093 1] piey 1
B o Bllemmze < — 0 2014,
YR 20 © =90¢
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Fixed points

0 1 1

87’;; < glas| - [sin(eazs)| < Zsinl < 0.281,

0 1

29— 1] < <0.238,
0z, 9y/x? +sinzz +1.06  9v0.218

0 1

0921 _ | cos 2] < < 0.119,
Ox3 18y/23 +sinzs +1.06  18/0.218

893 |:L‘2| —z1To 1

B = PRlemmre < o 20,14,

£ 20 ¢ =90

093 1] piey 1

B o Bllemmze < — 0 2014,

YR 20 © =90¢

These imply that g1, g2 and g3 are continuous on D andV = € D,

’ 99i

<0.281, Vi,j.
81’] — ) Z’j
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Fixed points

o) 1 1
87’;; < glas| - [sin(eazs)| < Zsinl < 0.281,
1
92| _ Gl < < 0.238,
0z, 9y/x? +sinzz +1.06  9v0.218
1
Oga| _ | cos 2] < <0.119,
Ox3 18y/23 +sinzs +1.06  18/0.218
893 |:L‘2| —z1To 1
22 = TZleTTT < e < ().14,
£ 20 ¢ =90
093 1] piey 1
22 = Il ™®2 < e < (.14
YR 20 ¢ =90¢
These imply that g1, g2 and g3 are continuous on D andV = € D,

dg;

’g < 0.281, Vi, .

a(L'j

Similarly, dg;/0z; are continuous on D for all 7 and j.
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Fixed points

o) 1 1
87’;; < glas| - [sin(eazs)| < Zsinl < 0.281,
1
92| _ Gl < < 0.238,
0z, 9y/x? +sinzz +1.06  9v0.218
1
Oga| _ | cos 2] < <0.119,
Ox3 18y/23 +sinzs +1.06  18/0.218
893 |:L‘2| —z1To 1
22 = TZleTTT < e < ().14,
£ 20 ¢ =90
093 1] piey 1
22 = Il ™®2 < e < (.14
YR 20 ¢ =90¢
These imply that g1, g2 and g3 are continuous on D andV = € D,

dg;

’g < 0.281, Vi, .

a(L'j

Similarly, dg;/0z; are continuous on D for all < and j. Consequently,
G has a unique fixed point in D.
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Fixed points

o Approximated solution:

@ Fixed-point iteration (l):
Choosing x(® =[0.1,0.1, —0.1]7, {x(*)} is generated by

x(lk) = %cos mék_l)xgk_l) + é,

RO N S AR CES  A O (

ry = 9\/(951 ) + sinxy +1.06 — 0.1,
(k) 1 _e-n -1 107 =3

T Tt T T T
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Fixed points

o Approximated solution:

@ Fixed-point iteration (l):
Choosing x(® =[0.1,0.1, —0.1]7, {x(*)} is generated by

1 - _ 1
x(lk) = 3 cos mék Ul'gk b + 5’
L0 e\ )
Ty = g\ + sin x, +1.06 — 0.1,

1 k—1) (k—1 1 —
R Omr —3

ry = ——

20 60
@ Result:
k. al zy) zy) x®) — xD]jo0
0 0.10000000 0.10000000 -0.10000000
1 0.49998333 0.00944115 -0.52310127 0.423
2 0.49999593 0.00002557 -0.52336331 9.4 %1073
3 0.50000000 0.00001234 -0.52359814 2.3x 1074
4 0.50000000 0.00000003 -0.52359847 1.2 x 107°
5 0.50000000 0.00000002 -0.52359877 3.1 x.1077

=t 0



Fixed points

e Approximated solution (cont.):
@ Accelerate convergence of the fixed-point iteration:

1 - _ 1
:z:gk) = 3 cos xék l)xgk 2 + 5
w _ LN D)
Ty =3 Ty + sin z; +1.06 — 0.1,
(k) 1 _ oy 10m—3
xZ- el ——e 1 2 —
3 20 60

as in the Gauss-Seidel method for linear systems.
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Fixed points

e Approximated solution (cont.):

@ Accelerate convergence of the fixed-point iteration:

as in the Gauss-Seidel method for linear systems.

ne
ne

T3 =

1 -
g COS Ty

(k1) (k=1) | L

+ 5

9

20

1 (k) (k)
e T T2

10 — 3
60 '

1 2 -
%@#§4sm@k”+L%0L

@ Result:
k. al zy) g [x® —xt D]
0 0.10000000 0.10000000 -0.10000000
1 0.49998333 0.02222979 -0.52304613 0.423
2 0.49997747 0.00002815 -0.52359807 2.2 x 1072
3 0.50000000 0.00000004 -0.52359877 2.8 x 107°
4 0.50000000 0.00000000 -0.52359877 3.8 x 1078
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Fixed points

Page 636: 5, 7.b, 7.d

207120



Newton’s method

Newton’s method

First consider solving the following system of nonlinear egs.:

fi(z1,2z2) =0,
f2($1,l‘2) =0.
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Newton’s method

Newton’s method

First consider solving the following system of nonlinear egs.:

fi(z1,2z2) =0,
f2($1,l‘2) =0.

Suppose (a;g’“), a;g“)) is an approximation to the solution of the
system above,

297420



Newton’s method

Newton’s method

First consider solving the following system of nonlinear egs.:
Ji(w1,22) =0,
f2($1,l‘2) = 0.

Suppose (a;g’“), a;g“)) is an approximation to the solution of the
system above, and we try to compute hgk) and hé’“) such that
(:cy“) + hgk), xgk) + hg“)) satisfies the system.

227420



Newton’s method

Newton’s method

First consider solving the following system of nonlinear egs.:

fi(z1,2z2) =0,
f2($1,l‘2) =0.

Suppose (xg ), a;g )) is an approximation to the solution of the
system above, and we try to compute hgk) and hé’“) such that
(:cy“) + hgk), gk) + h( )) satisfies the system. By the Taylor’s
theorem for two varlables,

0 = fE® +a® 2P 4 )
A, 2y 4 O @D 00 1 OTL (0 4l

8 8.@2
0 = folal” +n", ”+h< )
(

)0 0
~ £l )+ 1 TRl ) 1 TR 0l )

Q

247120



Newton’s method

Put this in matrix form

k k k k c c
i g 1[0 ] Taeha ] [0,
o8 (oM o) 8L(aP 2Py | | Fo(a?, 2l 0

_%

Oxo

2574120



Newton’s method

Put this in matrix form

k) (k k) (k ;
b g | [ L) o]
aTJZi( 15T ) ﬁ( 1 hz) ) 0

The matrix

) ) (k)
NORNONEN I - C SR IONE CH L)
e](l'l y Lo ): [ ()/ . (k) (k) ()/; , (k) (Zk)) ]
Do L1 5 X - , -

is called the Jacobian matrix.

267120



Newton’s method

Put this in matrix form

k k :
sl oty Sothal) | [0 ] [l | 0]
k k k k k ~
B o) Bl ) | | || a0
The matrix
of1 ¢ (k (k of1 ¢ (k (k
](1:,(“ :L’(k)) _ %(lg ),lé >) (;iz (Jg )’;1,{(2 ))
1 »+2 ()l/i (ng) 'Ifék)) 31/2 (.’I)-(lk), 1 (Zk )

is called the Jacobian matrix. Set hgk) and hé’“) be the solution of the
linear system

k k
J(:Ir(lk),;z;;k')) h’g—k) __| hi <A> (A))
, e (e® )

277120



Newton’s method

Put this in matrix form

k k :
el gl [0 ] ok ] o]
k k ~
o) GRG0 | |1 |7 Belel) |7 Lo
The matrix

, LR ()

L0 )y — | 9z, F1 T2 gy (@1 T3 )
S )= Gh W\ of (B (0
ox ( [ 1 7*1/2 )

is called the Jacobian matrix. Set hgk) and hg“) be the solution of the
linear system

k k
J(:Ir(lk),:z;;k')) h’g—k) — filz <A> (A))
, e (a2 ®)

) ) B(®)
(k+l) ) Bk

is expected to be a better approximation.

then

%,
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Newton’s method

In general, we solve the system of n nonlinear equations
fi(afl,'” ,{En) :O,i: 1,...,n.

207120



Newton’s method

In general, we solve the system of n nonlinear equations
fi(afl,'” ,{En) =0,i=1,...,n. Let

X:[l‘l Tog -+ I

and

Fx)=[ fix) fox) - fax)]".

an7120



Newton’s method

In general, we solve the system of n nonlinear equations
fi(afl,'” ,{En) =0,i=1,...,n. Let
T

and .
Fx)=[ fi(x) fo(x) - falx) ] .

The problem can be formulated as solving

F(x) =0, F:R"—R"

417120



Newton’s method

In general, we solve the system of n nonlinear equations
fi(afl,'” ,{En) =0,i=1,...,n. Let
T

and .
Fx)=[ A(x) folx) - falx) ] .
The problem can be formulated as solving
F(x)=0, F:R"—R"
())‘Z

Let J(x), where the (i, j) entry is -
matrix.

( ), be the n x n Jacobian

427120



Newton’s method

In general, we solve the system of n nonlinear equations
fi(afl,'” ,{En) =0,i=1,...,n. Let
T

and
T

Fx)=[ i(x) fo(x) - falx) ]
The problem can be formulated as solving
F(x)=0, F:R"—R"
Let J(x), where the (i, j) entry is gf/ (x), be the n x n Jacobian
matrix. Then the Newton’s iteration is defined as

KD () 4 (k)

N

where h(¥) € R™ is the solution of the linear system

JxFHh®F = —px®),

427120



Newton’s method

Algorithm 1 (Newton’s Method for Systems)

Given a function F : R* — R”, an initial guess x(©) to the zero
of F', and stop criteria M, 4, and ¢, this algorithm performs the
Newton’s iteration to approximate one root of F.

Setk =0and h(-!) = ¢;.

While (k < M) and (|| h*=Y ||> §) and (|| F(x®)) ||> ¢)
Calculate J(x®)) = [0F;(x*)) /0]
Solve the n x n linear system J(x*))h(*®) = — p(x(*)),
Set x**1) = x*) + h®) and k =k + 1.

End while

Output (“Convergent x(%)”) or
(“Maximum number of iterations exceeded”)
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Newton’s method

Letx* be a solution of G(x) = x.
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Newton’s method

Let x* be a solution of G(x) = x. Suppose 3 § > 0 with

(i) 0g;/0z; is continuous on N5 = {x;||x — x*|| <} for alli and j.
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Newton’s method

Let x* be a solution of G(x) = x. Suppose 3 § > 0 with
(i) 0g;/0z; is continuous on N5 = {x;||x — x*|| <} for alli and j.

(i) 02g;(x)/(0z;0xy) is continuous and

92 g;(x)

8£Ujal'k

for some M whenever x € N; for each i, j and k.
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Newton’s method

Let x* be a solution of G(x) = x. Suppose 3 § > 0 with
(i) 0g;/0z; is continuous on N5 = {x;||x — x*|| <} for alli and j.

(i) 02g;(x)/(0z;0xy) is continuous and

92 g;(x)

8£Ujal'k

for some M whenever x € N; for each i, j and k.
(iii) Og;(x*)/0xy, = 0 for each i and k.
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Newton’s method

Let x* be a solution of G(x) = x. Suppose 3 § > 0 with
(i) 0g;/0z; is continuous on N5 = {x;||x — x*|| <} for alli and j.

(i) 02g;(x)/(0z;0xy) is continuous and

2.
0%g:(x) <M

8£Ujal'k

for some M whenever x € N; for each i, j and k.
(iii) Og;(x*)/0xy, = 0 for each i and k.
Then 3§ < 6 such that the sequence {x*)} generated by
x(F) — G(x(krfl))

converges quadratically to x* for any x(©) satisfying ||x(© — 2*||oc < 6.

A07120



Newton’s method

R

Let x* be a solution of G(x) = x. Suppose 3 § > 0 with
(i) 0g;/0z; is continuous on N5 = {x;||x — x*|| <} for alli and j.

(i) 02g;(x)/(0z;0xy) is continuous and

92 g;(x)

8£Ujal'k

for some M whenever x € N; for each i, j and k.
(iii) Og;(x*)/0xy, = 0 for each i and k.
Then 3§ < 6 such that the sequence {x*)} generated by
x(F) — G(x(krfl))

converges quadratically to x* for any x(©) satisfying ||x(© — 2*||oc < 6.
Moreover, 20
I ® = x*loq < =[x — |2,V k > 1.
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Newton’s method

Example 6

Consider the nonlinear system
3x1 — cos(xaxs3) — % = 0,
22 —81(xy +0.1)2 +sinz3 +1.06 = 0,
e~ | 204 + 107;_ S
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Newton’s method

Example 6

Consider the nonlinear system
3x1 — cos(xaxs3) — % = 0,
22 —81(xy +0.1)2 +sinz3 +1.06 = 0,
e~ | 204 + 107;_ S

@ Nonlinear functions: Let

F(x17x27x3) = [fl(xlvx27x3)7f2($17x27$3)7f3(x17x27$3)]T7

where
fi(xy,x9,23) = 31 — cos(xaxs) — %,
fo(z1, 29, 23) = % —81(29 + 0.1)? + sinz3 + 1.06,
fa(z1, e, 23) = € 12 42023 + 107 = 3.

3 5271120



Newton’s method

@ Nonlinear functions (cont.):
The Jacobian matrix J(x) for this system is

3 T3 sin roxs To SN Xox3
J(x1,29,23) = 2x1 —162(x2 +0.1) COS T3
—x9e F1¥2 —x1e” F1T2 20

B?71120



Newton’s method

@ Nonlinear functions (cont.):
The Jacobian matrix J(x) for this system is

3 T3 sin roxs To SN Xox3
J(x1,29,23) = 2x1 —162(x2 +0.1) COS T3
—x9e F1¥2 —x1e” F1T2 20

@ Newton’s iteration with initial x(*) = [0.1,0.1, —0.1]”"

xgk) xgk:—l) hgk—l)
xgk-) _ :Uék—l) _ hgk—n 7
$§k) x:(gkfl) hz(akfl)
where
(k—1)
hbH) (k=1) (k=1) (k=1)\ "' o (h=1) _(k=1) _(k=1)
h2 =J (.2171 » Lo » L3 ) F(xl » Lo ) L3 )
k—1)

i

547120



Newton’s method

@ Result:
ko af o o) |x® —x(D
0 0.10000000 0.10000000 —0.10000000
1 0.50003702 0.01946686 —0.52152047 0.422
2 0.50004593 0.00158859 —0.52355711 1.79 x 102
3 0.50000034 0.00001244 —0.52359845 1.58 x 1073
4 0.50000000 0.00000000 —0.52359877 1.24 x 10~°
5 0.50000000 0.00000000 —0.52359877 0

BE7120



Newton’s method

Page 644: 2, 8
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Quasi-Newton methods

Quasi-Newton methods

@ Newton’s Methods
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Quasi-Newton methods

Quasi-Newton methods

@ Newton’s Methods
e Advantage: quadratic convergence
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Quasi-Newton methods

Quasi-Newton methods

@ Newton’s Methods
e Advantage: quadratic convergence
o Disadvantage: For each iteration, it requires
O(n?) + O(n?) + O(n) arithmetic operations:
@ n? partial derivatives for Jacobian matrix — in most situations,
the exact evaluation of the partial derivatives is inconvenient.
@ n scalar functional evaluations of F'
@ O(n?) arithmetic operations to solve linear system.

Q7120



Quasi-Newton methods

Quasi-Newton methods

@ Newton’s Methods
e Advantage: quadratic convergence
o Disadvantage: For each iteration, it requires
O(n?) + O(n?) + O(n) arithmetic operations:
@ n? partial derivatives for Jacobian matrix — in most situations,
the exact evaluation of the partial derivatives is inconvenient.
@ n scalar functional evaluations of F'
@ O(n?) arithmetic operations to solve linear system.
@ quasi-Newton methods

6GN7120



Quasi-Newton methods

Quasi-Newton methods

@ Newton’s Methods
e Advantage: quadratic convergence
o Disadvantage: For each iteration, it requires
O(n?) + O(n?) + O(n) arithmetic operations:
@ n? partial derivatives for Jacobian matrix — in most situations,
the exact evaluation of the partial derivatives is inconvenient.
@ n scalar functional evaluations of F
@ O(n?) arithmetic operations to solve linear system.
@ quasi-Newton methods
e Advantage: it requires only n scalar functional evaluations
per iteration and O(n?) arithmetic operations

A17120



Quasi-Newton methods

Quasi-Newton methods

@ Newton’s Methods
e Advantage: quadratic convergence
o Disadvantage: For each iteration, it requires
O(n?) + O(n?) + O(n) arithmetic operations:
@ n? partial derivatives for Jacobian matrix — in most situations,
the exact evaluation of the partial derivatives is inconvenient.
@ n scalar functional evaluations of F
@ O(n?) arithmetic operations to solve linear system.
@ quasi-Newton methods
e Advantage: it requires only n scalar functional evaluations
per iteration and O(n?) arithmetic operations
o Disadvantage: superlinear convergence
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Quasi-Newton methods

Quasi-Newton methods

@ Newton’s Methods
e Advantage: quadratic convergence
o Disadvantage: For each iteration, it requires
O(n?) + O(n?) + O(n) arithmetic operations:
@ n? partial derivatives for Jacobian matrix — in most situations,
the exact evaluation of the partial derivatives is inconvenient.
@ n scalar functional evaluations of F
@ O(n?) arithmetic operations to solve linear system.
@ quasi-Newton methods
e Advantage: it requires only n scalar functional evaluations
per iteration and O(n?) arithmetic operations
o Disadvantage: superlinear convergence

Recall that in one dimensional case, one uses the linear model
Up(z) = flag) + ap(x — xp)
to approximate the function f(x) at x.

A27120



Quasi-Newton methods

Quasi-Newton methods

@ Newton’s Methods
e Advantage: quadratic convergence
o Disadvantage: For each iteration, it requires
O(n?) + O(n?) + O(n) arithmetic operations:
@ n? partial derivatives for Jacobian matrix — in most situations,
the exact evaluation of the partial derivatives is inconvenient.
@ n scalar functional evaluations of F
@ O(n?) arithmetic operations to solve linear system.
@ quasi-Newton methods
e Advantage: it requires only n scalar functional evaluations
per iteration and O(n?) arithmetic operations
o Disadvantage: superlinear convergence

Recall that in one dimensional case, one uses the linear model
Up(z) = flag) + ap(x — xp)

to approximate the function f(x) at . Thatis, ;. (z1) = f(xk)
for any a; € R.

RA7120



Quasi-Newton methods

Quasi-Newton methods

@ Newton’s Methods
e Advantage: quadratic convergence
o Disadvantage: For each iteration, it requires
O(n?) + O(n?) + O(n) arithmetic operations:
@ n? partial derivatives for Jacobian matrix — in most situations,
the exact evaluation of the partial derivatives is inconvenient.
@ n scalar functional evaluations of F
@ O(n?) arithmetic operations to solve linear system.
@ quasi-Newton methods
e Advantage: it requires only n scalar functional evaluations
per iteration and O(n?) arithmetic operations
o Disadvantage: superlinear convergence

Recall that in one dimensional case, one uses the linear model
Up(z) = flag) + ap(x — xp)

to approximate the function f(x) at . Thatis, ;. (z1) = f(xk)
for any a; € R. If we further require that ¢/ () = f'(x1), then
apr = f/(xlc)- RET1120



Quasi-Newton methods

The zero of /i (x) is used to give a new approximate for the zero of

f(x), that is,
Th+1 = Tk — %Jt(mk)

which yields Newton’s method.
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Quasi-Newton methods

The zero of /i (x) is used to give a new approximate for the zero of

f(x), that is,
1
Th+1 = Tk — mf(mk)

which yields Newton’s method.
If /(1) is not available, one instead asks the linear model to satisfy

Ue(xy) = f(z) and  Lyp(zp—1) = flag-1).
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Quasi-Newton methods

The zero of /i (x) is used to give a new approximate for the zero of

f(x), that is,
1
Th+1 = Tk — mf(mk)

which yields Newton’s method.
If /(1) is not available, one instead asks the linear model to satisfy

le(wg) = f(og) and  Lg(vp—1) = f(or_1).
In doing this, the identity
fler—1) = le(zr—1) = f(2r) + ar(zr—1 — 71)
gives

w = Fn) = flar-1)
k — T — Th—1 '

AR7120



Quasi-Newton methods

The zero of /i (x) is used to give a new approximate for the zero of

f(x), that is,
1
Th+1 = Tk — mf(mk)

which yields Newton’s method.
If /(1) is not available, one instead asks the linear model to satisfy

le(wg) = f(og) and  Lg(vp—1) = f(or_1).
In doing this, the identity
fler—1) = le(zr—1) = f(2r) + ar(zr—1 — 71)
gives

~ fla) = f(xe-1)
ap = —————————.
T — T—1
Solving ¢, (z) = 0 yields the secant iteration
T — Tp—
Tht1 = T — #f@k)

f(@r) = fzp-1)
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Quasi-Newton methods

In multiple dimension, the analogue affine model becomes
My(x) = F(x®) + Ay (x —x*)),
where x,x*) € R” and A;, € R*™*", and satisfies
My (xW) = F(x®)),

for any Ay.
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Quasi-Newton methods

In multiple dimension, the analogue affine model becomes
My(x) = F(x®) + Ay (x —x*)),
where x,x*) € R” and A;, € R*™*", and satisfies
My (xW) = F(x®)),

for any Ay. The zero of M (x) is then used to give a new
approximate for the zero of F'(x), that is,

X(k:+1) _ X(k:) - A;]F(X(M)
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Quasi-Newton methods

In multiple dimension, the analogue affine model becomes
Myy(x) = F(x®) + Ap(x —x®),
where x,x*) € R” and A;, € R*™*", and satisfies
My (xW) = F(x®)),

for any Ay. The zero of M (x) is then used to give a new
approximate for the zero of F'(x), that is,

X(k:+1) _ X(k:) - A;]F(X(M)
The Newton’s method chooses
Ay = F'(x*®)) = J(x*)) = the Jacobian matrix

and yields the iteration

—1
B — (k) _ ( F/(X(m)) F(x®),

7974120



Quasi-Newton methods

When the Jacobian matrix J(x(®)) = F'(x(¥)) is not available,
one can require

My(x*1) = F(x*D),
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Quasi-Newton methods

When the Jacobian matrix J(x(®)) = F'(x(¥)) is not available,
one can require

Z\Jk(x(szl)) _ F(X(k’,fl)).
Then
F) = My (e 0) = P) 4 Ao — ),

747120



Quasi-Newton methods

When the Jacobian matrix J(x(®)) = F'(x(¥)) is not available,
one can require

My (x* 1) = p(x*),
Then
FxD) = M (x57D) = F(x®) + Ay (x50 = <),
which gives
Ap(x® — xF=Dy = p(x®)) — p(xF-1)

and this is the so-called secant equation.

7571120



Quasi-Newton methods

When the Jacobian matrix J(x(®)) = F'(x(¥)) is not available,
one can require

My (x* 1) = p(x*),
Then
FxD) = M (x57D) = F(x®) + Ay (x50 = <),
which gives
Ap(x® — xF=Dy = p(x®)) — p(xF-1)
and this is the so-called secant equation. Let

W) = x®) _ <1 and y® = p(x®) — px*-D),
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Quasi-Newton methods

When the Jacobian matrix J(x(®)) = F'(x(¥)) is not available,
one can require

My (x* 1) = p(x*),
Then
Pc®1) = My (x5 D) = F(x®) + A5 - x®),
which gives
Ak(x(k) _ X(k—l)) - F(x(k)) _ F(X(k—l))
and this is the so-called secant equation. Let
h®) = x®) — x*k=1 gnd  y®) = px®) - p(x*-D).
The secant equation becomes

Agh®) — y),

777120



Quasi-Newton methods

However, this secant equation can not uniquely determine Ay.
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Quasi-Newton methods

However, this secant equation can not uniquely determine Ay.
One way of choosing Ay is to minimize M, — Mj,_, subject to
the secant equation.
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Quasi-Newton methods

However, this secant equation can not uniquely determine Ay.
One way of choosing Ay is to minimize M, — Mj,_, subject to
the secant equation. Note

My (x) — My_1(x)
=F(x®) + Ay (x = x) = Fx®70) = A (x = xE)
=(F(x®) = Px®D)) 4 Ap(x — x®) — 4,y (x — x*D)
:Ak(x(k) - X(k_l)) + Ap(x — X(k)) —Ap1(x— X(k_l))
= Ap(x — x®Dy = Ay (x — xED)
=(Ap — Ap_1)(x — xF1),

an7120



Quasi-Newton methods

However, this secant equation can not uniquely determine Ay.
One way of choosing Ay is to minimize M, — Mj,_, subject to
the secant equation. Note

My (x) — My—1(x)
:F(x(k)) + Ap(x — X(k)) _ F(X(k—l)) — Ap_1(x — X(k—l))
=(F(x®) = Px®D)) 4 Ap(x — x®) — 4,y (x — x*D)
:Ak(x(k) — X(k—l)) + Ap(x — X(k)) — Apq(x— X(k—l))
=Ap(x —xF D) = 4, (x — xFD)
=(Ag — Ap_1)(x — xE=D),
For any x € R"™, we express
x — x*=1) = oh®) 4 ¢*k),
for some a € R, t) € R?, and (h®))Tt(*) = 0.
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Quasi-Newton methods

However, this secant equation can not uniquely determine Ay.
One way of choosing Ay is to minimize M, — Mj,_, subject to
the secant equation. Note

My (x) — My—1(x)
:F(x(k)) + Ap(x — X(k)) _ F(X(k—l)) — Ap_1(x — X(k—l))
=(F(x®) = Px®D)) 4 Ap(x — x®) — 4,y (x — x*D)
:Ak(x(k) — X(k—l)) + Ap(x — X(k)) — Apq(x— X(k—l))
—Ap(x — x*D) = 4 (x — x*BD)
=(Ag — Ap1)(x — xE7D).
For any x € R"™, we express
x — x*=1) = oh®) 4 ¢*k),
for some a € R, t*) € R", and (h®)7t*) = 0. Then
My—My—y = (Ap—Ap_1)(ah®+tW)) = a(Ap— A1 )h P4 (A —Ap g
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Quasi-Newton methods

Since

(A, — A—1)h® = 40" — 4, h® = y® 4, n®),
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Quasi-Newton methods

Since
(A, — A—1)h® = 40" — 4, h® = y® 4, n®),

both y*) and A;_;h* are old values, we have no control over
the first part (Ay — Ag_1)h®),

247120



Quasi-Newton methods

Since
(A, — A—1)h® = 40" — 4, h® = y® 4, n®),

both y*) and A;_;h* are old values, we have no control over
the first part (Ax — Ax_1)h®). In order to minimize
My(x) — My_1(x), we try to choose Ay, so that

(Ax — Ap_1)t™ =0

for all t*) € R”, (h(*))Tt*) = 0,
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Quasi-Newton methods

Since
(A, — A—1)h® = 40" — 4, h® = y® 4, n®),
both y*) and A;_;h* are old values, we have no control over
the first part (Ax — Ax_1)h®). In order to minimize
My(x) — My_1(x), we try to choose Ay, so that
(Ax — Ap_1)t™ =0

for all t(*) ¢ R”, (h®*))Tt() = 0. This requires that A4, — A;_; to
be a rank-one matrix of the form

Ak’ — Ak’fl = u(k’) (h(L))T

for some u®) € R,

2R7120



Quasi-Newton methods

Since
(A, — A—1)h® = 40" — 4, h® = y® 4, n®),

both y*) and A;_;h* are old values, we have no control over
the first part (Ax — Ax_1)h®). In order to minimize
My(x) — My_1(x), we try to choose Ay, so that

(Ax — Ap_1)t™ =0

for all t(*) ¢ R”, (h®*))Tt() = 0. This requires that A4, — A;_; to
be a rank-one matrix of the form

Ak’ — Ak’fl — u(k’) (h(L))T
for some u*) € R". Then

a® (WO)YTH®) = (A, — A, )h® = y® _ 4, h®)
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Quasi-Newton methods

which gives

" y(k,) o Ak;flh“;)
(h(k’,))Th(k)

u
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Quasi-Newton methods

which gives
u(k) B y(k,) o Ak;flh“;)
(h(k’,))Th(k)
Therefore,
k) — A, h®E)Y (hENT
Ak:Akfl"F (y k—1 )( ) (1)

(W) Th(*)
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Quasi-Newton methods

which gives
u(k) B y(k,) o Ak;flh“;)
(h(k’,))Th(k)
Therefore,
&) — A, h®Y (T
Ap = Ap_1+ 8 k1h ) (h7) (1)

(W) Th(*)

After A, is determined, the new iterate x(**1) is derived from
solving Mj,(x) = 0.
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Quasi-Newton methods

which gives
u(k) B y(k,) o Ak;flh“;)
(h(k’,))Th(k)
Therefore,
k) — A, h®E)Y (hENT
Ak:Akfl"F (y k—1 )( ) (1)

(W) Th(*)

After A, is determined, the new iterate x(**1) is derived from
solving M (x) = 0. It can be done by first noting that

ROHD 1) _ () Ly O () (k)
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Quasi-Newton methods

which gives
u(k) B y(k,) o Ak;flh“;)
(h(k’,))Th(k)
Therefore,
k) — A, h®E)Y (hENT
Ak:Akfl"F (y k—1 )( ) (1)

(W) Th(*)

After A, is determined, the new iterate x(**1) is derived from
solving M (x) = 0. It can be done by first noting that

WD) — (k1) _ g (B) (k1) — (R) 4 (k+1)
and

Mp(x*) =0 = Ah*HD) = —p(x®)

Q9271120



Quasi-Newton methods

which gives
u(k) B y(k,) o Ak;flh“;)
(h(k’,))Th(k)
Therefore,
&) — A, h®Y (T
Ap = Ap_1+ 8 k1h ) (h7) (1)

(W) Th(*)

After A, is determined, the new iterate x(**1) is derived from
solving M (x) = 0. It can be done by first noting that

R — D) _ By () () (D)
and
Mp(x*) =0 = Ah*HD) = —p(x®)

These formulations give the Broyden’s method.

0271120



Quasi-Newton methods

Algorithm 2 (Broyden’s Method)

Given F : R” — R™, an initial vector x(9) and initial Jacobian
matrix Ag € R™*"™ (e.g., Ag = I), tolerance T'O L, maximum
number of iteration M.
Setk=1.
While k < M and ||x*®) —x* =D, > TOL
Solve A h*+h) = — F(x(®) for h(+1)
Update x(*+1) = x(*¥) 4 p(k+1)
Compute y*+1D) = F(x(*+1)) — p(x(*))
Update
(k+1) +F X(k) h(k+1) T
A = Ap + (h(k+f))Th>(1§1) )
Setk=k+1
End While
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Quasi-Newton methods

Solve the linear system A h(*+D) = —F(x(*) for h(++1):
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Quasi-Newton methods

Solve the linear system A h(*+1) = — F(x(*)) for h(k+1):
@ LU-factorization: cost Zn® + O(n?) floating-point
operations.

O0A7120



Quasi-Newton methods

Solve the linear system A h(*+1) = — F(x(*)) for h(k+1):
@ LU-factorization: cost Zn® + O(n?) floating-point
operations.
@ Applying the Shermann-Morrison-Woodbury formula

(B+UVD) ' =B ' - B W (I +V'B'U) VB!

to (1), we have
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Quasi-Newton methods

Solve the linear system A h(*+1) = — F(x(*)) for h(k+1):
@ LU-factorization: cost Zn® + O(n?) floating-point
operations.
@ Applying the Shermann-Morrison-Woodbury formula

(B+UVD) ' =B ' - B W (I +V'B'U) VB!
to (1), we have
At

= |Ag—1+

) _ A, hEY(NT] !
(y k—1 )( )
(h()Th(®)

®) _ 4, & _ 4, ph\ !
_4-1 g1 Y k—1 (kT 4—1 Y k—1 (KT 4—
- Ak—l Ak—l (h(k))Th(k') <1 =+ (h ) Ak—l (h(k))Th(k) ) (h ) Alc-

(h® — At y®)) ()T AT
(BT A y®
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Steepest Descent Techniques

@ Newton-based methods
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Steepest Descent Techniques

@ Newton-based methods

e Advantage: high speed of convergence once a sufficiently
accurate approximation
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Steepest Descent Techniques

@ Newton-based methods
e Advantage: high speed of convergence once a sufficiently
accurate approximation
o Weakness: an accurate initial approximation to the solution
is needed to ensure convergence.
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Steepest Descent Techniques

@ Newton-based methods

e Advantage: high speed of convergence once a sufficiently
accurate approximation

o Weakness: an accurate initial approximation to the solution
is needed to ensure convergence.

@ Steepest Descent method converges only linearly to the sol., but
it will usually converge even for poor initial approximations.
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Steepest Descent Techniques

@ Newton-based methods
e Advantage: high speed of convergence once a sufficiently
accurate approximation
o Weakness: an accurate initial approximation to the solution
is needed to ensure convergence.

@ Steepest Descent method converges only linearly to the sol., but
it will usually converge even for poor initial approximations.

@ “Find sufficiently accurate starting approximate solution by using
Steepest Descent method” + "Compute convergent solution by
using Newton-based methods”
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Steepest Descent Techniques

@ Newton-based methods
e Advantage: high speed of convergence once a sufficiently
accurate approximation
o Weakness: an accurate initial approximation to the solution
is needed to ensure convergence.

@ Steepest Descent method converges only linearly to the sol., but
it will usually converge even for poor initial approximations.

@ “Find sufficiently accurate starting approximate solution by using
Steepest Descent method” + "Compute convergent solution by
using Newton-based methods”

@ The method of Steepest Descent determines a local minimum
for a multivariable function of g : R — R.

1047120



Steepest Descent Techniques

@ Newton-based methods
e Advantage: high speed of convergence once a sufficiently
accurate approximation
o Weakness: an accurate initial approximation to the solution
is needed to ensure convergence.

@ Steepest Descent method converges only linearly to the sol., but
it will usually converge even for poor initial approximations.

@ “Find sufficiently accurate starting approximate solution by using
Steepest Descent method” + "Compute convergent solution by
using Newton-based methods”

@ The method of Steepest Descent determines a local minimum
for a multivariable function of g : R — R.

@ A system of the form f;(z1,...,2,) =0, i=1,2,...,nhas a
solution at « iff the function g defined by

n

9@, wn) = [filar,. . aa))?

=1
has the minimal value zero. 105758



Steepest Descent Techniques

Basic idea of steepest descent method:
(i) Evaluate g at an initial approximation x(©;

1067120



Steepest Descent Techniques

Basic idea of steepest descent method:
(i) Evaluate g at an initial approximation x(©;

(ii) Determine a direction from x(%) that results in a decrease in the
value of g;
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Steepest Descent Techniques

Basic idea of steepest descent method:
(i) Evaluate g at an initial approximation x(©;
(ii) Determine a direction from x(%) that results in a decrease in the
value of g;

(iii) Move an appropriate distance in this direction and call the new
vector x(1;

1087120



Steepest Descent Techniques

Basic idea of steepest descent method:
(i) Evaluate g at an initial approximation x(©;

(ii) Determine a direction from x(%) that results in a decrease in the
value of g;

(iii) Move an appropriate distance in this direction and call the new
vector x(1;

(iv) Repeat steps (i) through (iii) with x(*) replaced by x(V).

1097120



Steepest Descent Techniques

Basic idea of steepest descent method:
(i) Evaluate g at an initial approximation x(©;

(ii) Determine a direction from x(%) that results in a decrease in the
value of g;

(iii) Move an appropriate distance in this direction and call the new
vector x(1;

(iv) Repeat steps (i) through (iii) with x(*) replaced by x(V).
Definition 7 (Gradient)

If g : R™ — R, the gradient, Vg(x), at x is defined by

Vo0 = (60 )

1107120



Steepest Descent Techniques

Basic idea of steepest descent method:
(i) Evaluate g at an initial approximation x(©;

(ii) Determine a direction from x(%) that results in a decrease in the
value of g;

(iii) Move an appropriate distance in this direction and call the new
vector x(1;

(iv) Repeat steps (i) through (iii) with x(*) replaced by x(!).
Definition 7 (Gradient)
If g : R™ — R, the gradient, Vg(x), at x is defined by

Vo0 = (60 )

Definition 8 (Directional Derivative)

The directional derivative of ¢ at x in the direction of v with || v ||2=1
is defined by
Do g(x) = Tim 20+ —g(x)

N
B0 h =V V).

41484 7120




Steepest Descent Techniques

Theorem 9

The direction of the greatest decrease in the value of g at x is
the direction given by —V g(x).
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Steepest Descent Techniques

Theorem 9

The direction of the greatest decrease in the value of g at x is
the direction given by —V g(x).

@ Object: reduce g(x) to its minimal value zero.
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Steepest Descent Techniques

Theorem 9

The direction of the greatest decrease in the value of g at x is
the direction given by —V g(x).

@ Object: reduce g(x) to its minimal value zero.
= for an initial approximation x(?), an appropriate choice
for new vector x) is

xM =xO — avg(x®), for some constant o > 0.
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Steepest Descent Techniques

Theorem 9

The direction of the greatest decrease in the value of g at x is
the direction given by —V g(x).

@ Object: reduce g(x) to its minimal value zero.
= for an initial approximation x(?), an appropriate choice
for new vector x) is

xM =xO — avg(x®), for some constant o > 0.

@ Choose o > 0 such that g(x(1) < g(x(0):

1157120



Steepest Descent Techniques

Theorem 9

The direction of the greatest decrease in the value of g at x is
the direction given by —V g(x).

@ Object: reduce g(x) to its minimal value zero.
= for an initial approximation x(?), an appropriate choice
for new vector x) is

xM =xO — avg(x®), for some constant o > 0.

@ Choose o > 0 such that g(x(1) < g(x(©): define
h(a) = g(x© — avg(x?)),
then find o* such that
h(o*) = min h(a).
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Steepest Descent Techniques

@ How to find o*?
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Steepest Descent Techniques

@ How to find o*?

@ Solve a root-finding problem h'(«) =0 = Too costly, in
general.
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Steepest Descent Techniques

@ How to find o*?

@ Solve a root-finding problem h'(«) =0 = Too costly, in
general.

@ Choose three number oy < a3 < ag, construct quadratic
polynomial P(x) that interpolates h at a1, as and as, i.e.,

P(Oél) = h(a1)7 P(Otg) = h(OéQ), P(Oég) = h(ag),

to approximate h.
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Steepest Descent Techniques

@ How to find o*?

@ Solve a root-finding problem h'(«) =0 = Too costly, in
general.

@ Choose three number oy < a3 < ag, construct quadratic
polynomial P(x) that interpolates h at a1, as and as, i.e.,

P(Oél) = h(a1)7 P(Otg) = h(OéQ), P(Oég) = h(ag),

to approximate k. Use the minimum value P(&) in [aq, as)
to approximate h(a*).

1207120



Steepest Descent Techniques

@ How to find o*?

@ Solve a root-finding problem h'(«) =0 = Too costly, in
general.

@ Choose three number oy < a3 < ag, construct quadratic
polynomial P(x) that interpolates h at a1, as and as, i.e.,

P(Oél) = h(a1)7 P(Otg) = h(OéQ), P(Oég) = h(ag),

to approximate h. Use the minimum value P(&) in [a1, as)
to approximate h(a*). The new iteration is

xM = xO _ 4v4(x©).
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Steepest Descent Techniques

@ How to find o*?

@ Solve a root-finding problem h'(«) =0 = Too costly, in
general.

@ Choose three number oy < a3 < ag, construct quadratic
polynomial P(x) that interpolates h at a1, as and as, i.e.,

P(Oél) = h(a1)7 P(Otg) = h(OéQ), P(Oég) = h(ag),

to approximate h. Use the minimum value P(&) in [a1, as)
to approximate h(a*). The new iteration is
xW = xO _ 4vg(x©).

@ Set a3 = 0 to minimize the computation
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Steepest Descent Techniques

@ How to find o*?

@ Solve a root-finding problem h'(«) =0 = Too costly, in
general.

@ Choose three number oy < a3 < ag, construct quadratic
polynomial P(x) that interpolates h at a1, as and as, i.e.,

P(Oél) = h(a1)7 P(Otg) = h(OéQ), P(Oég) = h(ag),

to approximate h. Use the minimum value P(&) in [a1, as)
to approximate h(a*). The new iteration is

xM =xO — 4vg(x®).

@ Set a3 = 0 to minimize the computation
@ as is found with h(as) < h(ai).
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Steepest Descent Techniques

@ How to find o*?

@ Solve a root-finding problem h'(«) =0 = Too costly, in
general.

@ Choose three number oy < a3 < ag, construct quadratic
polynomial P(x) that interpolates h at a1, as and as, i.e.,

P(Oél) = h(a1)7 P(Otg) = h(OéQ), P(Oég) = h(ag),

to approximate h. Use the minimum value P(&) in [a1, as)
to approximate h(a*). The new iteration is

xM =xO — 4vg(x®).

@ Set a3 = 0 to minimize the computation
@ as is found with h(as) < h(ai).
@ Choose az = a3/2.
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Steepest Descent Techniques

Example 10

Use the Steepest Descent method with x(%) = (0,0,0)7 to find a
reasonable starting approximation to the solution of the nonlinear

system 1
fi(z1,22,23) = 3xy — cos(xoxs) — i 0,
fo(@1,22,23) = JU%*81(5'52+0.1)2+sin:103+1.06:0,

10 — 3

f3(x1, 2, 23) = €172 2023 + = 0.
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Steepest Descent Techniques

Example 10

Use the Steepest Descent method with x(%) = (0,0,0)7 to find a
reasonable starting approximation to the solution of the nonlinear
system 1
fl(l‘l,l‘g,l'g) = 3ZE1 — COS(IQ?Eg) — 5 = 0,
fo(zr,20,23) = x% 781(302+0.1)2+Sinx3+1.06:0,
10m —3
fg(l'l,l'g,xg) = e 172 +20£E3 aF il =0.

Let g(x1, w2, 23) = [f1(21, 22, 23)]* + [fo(@1, 22, 23)]* + [fa (21, 22, 23)]°.
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Steepest Descent Techniques

Example 10

Use the Steepest Descent method with x(%) = (0,0,0)7 to find a
reasonable starting approximation to the solution of the nonlinear
system 1
fl(l‘l,l‘g,l'g) = 3ZE1 — COS(IQ?Eg) — 5 = 0,
fo(zr,20,23) = x% 781(302+0.1)2+Sinx3+1.06:0,
10m —3
fg(l'l,l'g,xg) = e 172 +20£E3 aF il =0.

Let g(x1, 2z, 23) = [f1(21, w2, 23)] + [fo (21, T2, 3)]* + [ f3(21, T2, 23)]*.
Then

Vg(z1,z2,23) Vy(z)

= (2f1( )5
2f1(z)

8f1 af2 afs

L(2) + 2a(a) 5 1) + 2fa() 5 (2,

8f;< )+ 20 () 2 @) + 2s(0) 5 o),

df1 dfa 0f3

(@) +2h(@) 5 @ o

2/ (2) (2) + 25 () 22 <x>)
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Steepest Descent Techniques

For x(© = [0,0,0]”, we have

g(x@) =111.975 and 2z = ||[Vg(x@)||s = 419.554.
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Steepest Descent Techniques

For x(O = [0,0,0]”, we have
g(x@) =111.975 and 2z = ||[Vg(x@)||s = 419.554.
Let

1
2= —Vg(x) = [-0.0214514, —0.0193062, 0.999583] " .
20
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Steepest Descent Techniques

For x(O = [0,0,0]”, we have
g(x@) =111.975 and 2z = ||[Vg(x@)||s = 419.554.

Let

1
2= —Vg(x) = [-0.0214514, —0.0193062, 0.999583] " .
20

With a; = 0, we have

g1 = g(x — a12) = g(xV) = 111.975.
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Steepest Descent Techniques

For x(O = [0,0,0]”, we have
g(x@) =111.975 and 2z = ||[Vg(x@)||s = 419.554.

Let

1
2= —Vg(x) = [-0.0214514, —0.0193062, 0.999583] " .
20

With a; = 0, we have
g1 = 9(x — a12) = g(x) = 111.975.
Let a3 = 1 so that

g3 = g(x — a32) = 93.5649 < g1.
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Steepest Descent Techniques

For x(O = [0,0,0]”, we have
g(x@) =111.975 and 2z = ||[Vg(x@)||s = 419.554.

Let

1
2= —Vg(x) = [-0.0214514, —0.0193062, 0.999583] " .

20
With «; = 0, we have
g1 = g(x —ay2) = g(x) = 111.975.
Let a3 = 1 so that
g5 = g(x© — a32) = 93.5649 < g.

Set g = 03/2 = 0.5.
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Steepest Descent Techniques

For x(O = [0,0,0]”, we have
g(x©) =111.975 and zp = [|[Vg(x?)| = 419.554.

Let

1
2= —Vg(x) = [-0.0214514, —0.0193062, 0.999583] " .

20
With «; = 0, we have
g1 = g(x —ay2) = g(x) = 111.975.
Let a3 = 1 so that
g5 = g(x© — a32) = 93.5649 < g.
Set as = a3/2 = 0.5. Thus

g2 = g(x9 — ag2) = 2.53557.

12?7120



Steepest Descent Techniques

Form quadratic polynomial P(«) defined as
P(a) = g1 + hia+ hsa(a — as)
that interpolates g(x(?) — az) at a; = 0, a2 = 0.5 and a3 = 1 as follows
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Steepest Descent Techniques

Form quadratic polynomial P(«) defined as
P(a) = g1 + hia+ hsa(a — as)
that interpolates g(x(?) — az) at a; = 0, a2 = 0.5 and a3 = 1 as follows

g2 = P(as) = g1 + hias = hy = gza_ I _ _918.878,
2

g3 = P(ag) = g1 + hiaz + hgas(as — ap) = hg = 400.937.
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Steepest Descent Techniques

Form quadratic polynomial P(«) defined as
P(a) = g1 + hia+ hsa(a — as)
that interpolates g(x(?) — az) at a; = 0, a2 = 0.5 and a3 = 1 as follows

g2 = P(as) = g1 + hias = hy = gza_ I _ _918.878,
2

g3 = P(ag) = g1 + hiaz + hgas(as — ap) = hg = 400.937.

Thus
P(a) =111.975 — 218.878a + 400.937c(ax — 0.5)
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Steepest Descent Techniques

Form quadratic polynomial P(«) defined as
P(a) = g1 + hia+ hsa(a — as)
that interpolates g(x(*) —az) at a; = 0,5 = 0.5 and a3 = 1 as follows

g2 — 91:

(x
(042) 1+h10&2 = h1
) =

—218.878,
Q2
(043 1+ hiag + h30¢3,(043 — 042) = hs = 400.937.
Thus
P(a) =111.975 — 218.878a + 400.937c(ax — 0.5)
so that

0 = P'(ag) = —419.346 + 801.87209 = ap = 0.522959
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Steepest Descent Techniques

Form quadratic polynomial P(«) defined as
P(a) = g1 + hia+ hsa(a — as)
that interpolates g(x(*) —az) at a; = 0,5 = 0.5 and a3 = 1 as follows

g2 — 91:

(x
(042) 1+h10&2 = h1
) =

—218.878,
%)
(043 1+ hiag + h30¢3,(043 — 042) = hs = 400.937.
Thus
P(a) =111.975 — 218.878a + 400.937c(ax — 0.5)
so that
0= P'(ag) = —419.346 + 801.872a9 = g = 0.522959

Since

g0 = g(x© — qp2) = 2.32762 < min{g1, g3},

1771120



Steepest Descent Techniques

Form quadratic polynomial P(«) defined as
P(a) = g1 + hia+ hsa(a — as)
that interpolates g(x(*) —az) at a; = 0,5 = 0.5 and a3 = 1 as follows

g2 — 91:

(x
(042) 1+h10&2 = h1
) =

—218.878,
Q2
P(as 1+ hias + hsaz(as — az) = hs = 400.937.
Thus
P(a) =111.975 — 218.878a + 400.937c(ax — 0.5)
so that
0= P'(ag) = —419.346 + 801.872ap = ap = 0.522959
Since
go = g(x(o) — apz) = 2.32762 < min{g1, 93},

we set

x = xO) — agz = [0.0112182,0.0100964, —0.522741]7 .
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