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Fixed points for functions of several variables

Theorem 1
Let f : D ⊂ Rn → R be a function and x0 ∈ D. If all the partial
derivatives of f exist and ∃ δ > 0 and α > 0 such that
∀ ‖x− x0‖ < δ and x ∈ D, we have∣∣∣∣∂f(x)∂xj

∣∣∣∣ ≤ α, ∀ j = 1, 2, . . . , n,

then f is continuous at x0.

Definition 2 (Fixed Point)
A function G from D ⊂ Rn into Rn has a fixed point at p ∈ D if
G(p) = p.
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Theorem 3 (Contraction Mapping Theorem)

Let D = {(x1, · · · , xn)T ; ai ≤ xi ≤ bi, ∀ i = 1, . . . , n} ⊂ Rn.
Suppose G : D → Rn is a continuous function with G(x) ∈ D
whenever x ∈ D. Then G has a fixed point in D.
Suppose, in addition, G has continuous partial derivatives and
a constant α < 1 exists with∣∣∣∣∂gi(x)∂xj

∣∣∣∣ ≤ α

n
, whenever x ∈ D,

for j = 1, . . . , n and i = 1, . . . , n. Then, for any x(0) ∈ D,

x(k) = G(x(k−1)), for each k ≥ 1

converges to the unique fixed point p ∈ D and

‖ x(k) − p ‖∞≤
αk

1− α
‖ x(1) − x(0) ‖∞ .
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Example 4

Consider the nonlinear system

3x1 − cos(x2x3)−
1

2
= 0,

x21 − 81(x2 + 0.1)2 + sinx3 + 1.06 = 0,

e−x1x2 + 20x3 +
10π − 3

3
= 0.

Fixed-point problem:
Change the system into the fixed-point problem:

x1 =
1

3
cos(x2x3) +

1

6
≡ g1(x1, x2, x3),

x2 =
1

9

√
x21 + sinx3 + 1.06− 0.1 ≡ g2(x1, x2, x3),

x3 = − 1

20
e−x1x2 − 10π − 3

60
≡ g3(x1, x2, x3).

Let G : R3 → R3 be defined by G(x) = [g1(x), g2(x), g3(x)]
T .
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• G has a unique point in D ≡ [−1, 1]× [−1, 1]× [−1, 1]:
Existence: ∀ x ∈ D,

|g1(x)|≤
1

3
| cos(x2x3)|+

1

6
≤ 0.5,

|g2(x)|=
∣∣∣∣19
√
x21 + sinx3 + 1.06− 0.1

∣∣∣∣ ≤ 1

9

√
1 + sin 1 + 1.06− 0.1 < 0.09,

|g3(x)|=
1

20
e−x1x2 +

10π − 3

60
≤ 1

20
e+

10π − 3

60
< 0.61,

it implies that G(x) ∈ D whenever x ∈ D.
Uniqueness:∣∣∣∣∂g1∂x1

∣∣∣∣ = 0,

∣∣∣∣∂g2∂x2

∣∣∣∣ = 0 and
∣∣∣∣∂g3∂x3

∣∣∣∣ = 0,

as well as∣∣∣∣∂g1∂x2

∣∣∣∣ ≤ 1

3
|x3| · | sin(x2x3)| ≤

1

3
sin 1 < 0.281,
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∣∣∣∣ ∂g1∂x3

∣∣∣∣ ≤ 1

3
|x2| · | sin(x2x3)| ≤

1

3
sin 1 < 0.281,∣∣∣∣ ∂g2∂x1

∣∣∣∣ =
|x1|

9
√
x21 + sinx3 + 1.06

<
1

9
√
0.218

< 0.238,∣∣∣∣ ∂g2∂x3

∣∣∣∣ =
| cosx3|

18
√
x21 + sinx3 + 1.06

<
1

18
√
0.218

< 0.119,∣∣∣∣ ∂g3∂x1

∣∣∣∣ =
|x2|
20

e−x1x2 ≤ 1

20
e < 0.14,∣∣∣∣ ∂g3∂x2

∣∣∣∣ =
|x1|
20

e−x1x2 ≤ 1

20
e < 0.14.

These imply that g1, g2 and g3 are continuous on D and ∀ x ∈ D,∣∣∣∣ ∂gi∂xj

∣∣∣∣ ≤ 0.281, ∀ i, j.

Similarly, ∂gi/∂xj are continuous on D for all i and j. Consequently,
G has a unique fixed point in D.
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• Approximated solution:

Fixed-point iteration (I):
Choosing x(0) = [0.1, 0.1,−0.1]T , {x(k)} is generated by

x
(k)
1 =

1

3
cosx

(k−1)
2 x

(k−1)
3 +

1

6
,

x
(k)
2 =

1

9

√(
x
(k−1)
1

)2
+ sinx

(k−1)
3 + 1.06− 0.1,

x
(k)
3 = − 1

20
e−x

(k−1)
1 x

(k−1)
2 − 10π − 3

60
.

Result:

k x
(k)
1 x

(k)
2 x

(k)
3 ‖x(k) − x(k−1)‖∞

0 0.10000000 0.10000000 -0.10000000
1 0.49998333 0.00944115 -0.52310127 0.423
2 0.49999593 0.00002557 -0.52336331 9.4× 10−3

3 0.50000000 0.00001234 -0.52359814 2.3× 10−4

4 0.50000000 0.00000003 -0.52359847 1.2× 10−5

5 0.50000000 0.00000002 -0.52359877 3.1× 10−7
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• Approximated solution (cont.):

Accelerate convergence of the fixed-point iteration:

x
(k)
1 =

1

3
cosx

(k−1)
2 x

(k−1)
3 +

1

6
,

x
(k)
2 =

1

9

√(
x
(k)
1

)2
+ sinx

(k−1)
3 + 1.06− 0.1,

x
(k)
3 = − 1

20
e−x

(k)
1 x

(k)
2 − 10π − 3

60
,

as in the Gauss-Seidel method for linear systems.

Result:

k x
(k)
1 x

(k)
2 x

(k)
3 ‖x(k) − x(k−1)‖∞

0 0.10000000 0.10000000 -0.10000000
1 0.49998333 0.02222979 -0.52304613 0.423
2 0.49997747 0.00002815 -0.52359807 2.2× 10−2

3 0.50000000 0.00000004 -0.52359877 2.8× 10−5

4 0.50000000 0.00000000 -0.52359877 3.8× 10−8
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Exercise
Page 636: 5, 7.b, 7.d
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Newton’s method

First consider solving the following system of nonlinear eqs.:{
f1(x1, x2) = 0,

f2(x1, x2) = 0.

Suppose (x
(k)
1 , x

(k)
2 ) is an approximation to the solution of the

system above, and we try to compute h(k)1 and h(k)2 such that
(x

(k)
1 + h

(k)
1 , x

(k)
2 + h

(k)
2 ) satisfies the system. By the Taylor’s

theorem for two variables,

0 = f1(x
(k)
1 + h

(k)
1 , x

(k)
2 + h

(k)
2 )

≈ f1(x
(k)
1 , x

(k)
2 ) + h

(k)
1

∂f1
∂x1

(x
(k)
1 , x

(k)
2 ) + h

(k)
2

∂f1
∂x2

(x
(k)
1 , x

(k)
2 )

0 = f2(x
(k)
1 + h

(k)
1 , x

(k)
2 + h

(k)
2 )

≈ f2(x
(k)
1 , x

(k)
2 ) + h

(k)
1

∂f2
∂x1

(x
(k)
1 , x

(k)
2 ) + h

(k)
2

∂f2
∂x2

(x
(k)
1 , x

(k)
2 )
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Put this in matrix form[
∂f1
∂x1

(x
(k)
1 , x

(k)
2 ) ∂f1

∂x2
(x

(k)
1 , x

(k)
2 )

∂f2
∂x1

(x
(k)
1 , x

(k)
2 ) ∂f2

∂x2
(x

(k)
1 , x

(k)
2 )

][
h
(k)
1

h
(k)
2

]
+

[
f1(x

(k)
1 , x

(k)
2 )

f2(x
(k)
1 , x

(k)
2 )

]
≈
[

0
0

]
.

The matrix

J(x
(k)
1 , x

(k)
2 ) ≡

[
∂f1
∂x1

(x
(k)
1 , x

(k)
2 ) ∂f1

∂x2
(x

(k)
1 , x

(k)
2 )

∂f2
∂x1

(x
(k)
1 , x

(k)
2 ) ∂f2

∂x2
(x

(k)
1 , x

(k)
2 )

]

is called the Jacobian matrix. Set h(k)1 and h(k)2 be the solution of the
linear system

J(x
(k)
1 , x

(k)
2 )

[
h
(k)
1

h
(k)
2

]
= −

[
f1(x

(k)
1 , x

(k)
2 )

f2(x
(k)
1 , x

(k)
2 )

]
,

then [
x
(k+1)
1

x
(k+1)
2

]
=

[
x
(k)
1

x
(k)
2

]
+

[
h
(k)
1

h
(k)
2

]
is expected to be a better approximation.
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In general, we solve the system of n nonlinear equations
fi(x1, · · · , xn) = 0, i = 1, . . . , n. Let

x =
[
x1 x2 · · · xn

]T
and

F (x) =
[
f1(x) f2(x) · · · fn(x)

]T
.

The problem can be formulated as solving

F (x) = 0, F : Rn → Rn.

Let J(x), where the (i, j) entry is ∂fi
∂xj

(x), be the n× n Jacobian
matrix. Then the Newton’s iteration is defined as

x(k+1) = x(k) + h(k),

where h(k) ∈ Rn is the solution of the linear system

J(x(k))h(k) = −F (x(k)).
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Algorithm 1 (Newton’s Method for Systems)

Given a function F : Rn → Rn, an initial guess x(0) to the zero
of F , and stop criteria M , δ, and ε, this algorithm performs the
Newton’s iteration to approximate one root of F .

Set k = 0 and h(−1) = e1.
While (k < M) and (‖ h(k−1) ‖≥ δ) and (‖ F (x(k)) ‖≥ ε)

Calculate J(x(k)) = [∂Fi(x
(k))/∂xj ].

Solve the n× n linear system J(x(k))h(k) = −F (x(k)).
Set x(k+1) = x(k) + h(k) and k = k + 1.

End while
Output (“Convergent x(k)”) or

(“Maximum number of iterations exceeded”)
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Theorem 5
Let x∗ be a solution of G(x) = x. Suppose ∃ δ > 0 with

(i) ∂gi/∂xj is continuous on Nδ = {x; ‖x− x∗‖ < δ} for all i and j.

(ii) ∂2gi(x)/(∂xj∂xk) is continuous and∣∣∣∣∂2gi(x)∂xj∂xk

∣∣∣∣ ≤M
for some M whenever x ∈ Nδ for each i, j and k.

(iii) ∂gi(x∗)/∂xk = 0 for each i and k.

Then ∃ δ̂ < δ such that the sequence {x(k)} generated by

x(k) = G(x(k−1))

converges quadratically to x∗ for any x(0) satisfying ‖x(0) − x∗‖∞ < δ̂.
Moreover,

‖x(k) − x∗‖∞ ≤
n2M

2
‖x(k−1) − x∗‖2∞,∀ k ≥ 1. 15 / 35
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Example 6
Consider the nonlinear system

3x1 − cos(x2x3)−
1

2
= 0,

x21 − 81(x2 + 0.1)2 + sinx3 + 1.06 = 0,

e−x1x2 + 20x3 +
10π − 3

3
= 0.

Nonlinear functions: Let

F (x1, x2, x3) = [f1(x1, x2, x3), f2(x1, x2, x3), f3(x1, x2, x3)]
T ,

where

f1(x1, x2, x3) = 3x1 − cos(x2x3)−
1

2
,

f2(x1, x2, x3) = x21 − 81(x2 + 0.1)2 + sinx3 + 1.06,

f3(x1, x2, x3) = e−x1x2 + 20x3 +
10π − 3

3
.
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Nonlinear functions (cont.):
The Jacobian matrix J(x) for this system is

J(x1, x2, x3) =

 3 x3 sinx2x3 x2 sinx2x3
2x1 −162(x2 + 0.1) cosx3

−x2e−x1x2 −x1e−x1x2 20

 .
Newton’s iteration with initial x(0) = [0.1, 0.1,−0.1]T : x

(k)
1

x
(k)
2

x
(k)
3

 =

 x
(k−1)
1

x
(k−1)
2

x
(k−1)
3

−
 h

(k−1)
1

h
(k−1)
2

h
(k−1)
3

 ,
where h

(k−1)
1

h
(k−1)
2

h
(k−1)
3

 = J
(
x
(k−1)
1 , x

(k−1)
2 , x

(k−1)
3

)−1
F (x

(k−1)
1 , x

(k−1)
2 , x

(k−1)
3 ).
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Result:

k x
(k)
1 x

(k)
2 x

(k)
3 ‖x(k) − x(k−1)‖∞

0 0.10000000 0.10000000 −0.10000000
1 0.50003702 0.01946686 −0.52152047 0.422
2 0.50004593 0.00158859 −0.52355711 1.79× 10−2

3 0.50000034 0.00001244 −0.52359845 1.58× 10−3

4 0.50000000 0.00000000 −0.52359877 1.24× 10−5

5 0.50000000 0.00000000 −0.52359877 0
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Exercise
Page 644: 2, 8

19 / 35



師
大

Fixed points Newton’s method Quasi-Newton methods Steepest Descent Techniques

Quasi-Newton methods
Newton’s Methods

Advantage: quadratic convergence
Disadvantage: For each iteration, it requires
O(n3) +O(n2) +O(n) arithmetic operations:

n2 partial derivatives for Jacobian matrix – in most situations,
the exact evaluation of the partial derivatives is inconvenient.
n scalar functional evaluations of F
O(n3) arithmetic operations to solve linear system.

quasi-Newton methods
Advantage: it requires only n scalar functional evaluations
per iteration and O(n2) arithmetic operations
Disadvantage: superlinear convergence

Recall that in one dimensional case, one uses the linear model

`k(x) = f(xk) + ak(x− xk)
to approximate the function f(x) at xk. That is, `k(xk) = f(xk)
for any ak ∈ R. If we further require that `′(xk) = f ′(xk), then
ak = f ′(xk).
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The zero of `k(x) is used to give a new approximate for the zero of
f(x), that is,

xk+1 = xk −
1

f ′(xk)
f(xk)

which yields Newton’s method.
If f ′(xk) is not available, one instead asks the linear model to satisfy

`k(xk) = f(xk) and `k(xk−1) = f(xk−1).

In doing this, the identity

f(xk−1) = `k(xk−1) = f(xk) + ak(xk−1 − xk)

gives

ak =
f(xk)− f(xk−1)

xk − xk−1
.

Solving `k(x) = 0 yields the secant iteration

xk+1 = xk −
xk − xk−1

f(xk)− f(xk−1)
f(xk).
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In multiple dimension, the analogue affine model becomes

Mk(x) = F (x(k)) +Ak(x− x(k)),

where x,x(k) ∈ Rn and Ak ∈ Rn×n, and satisfies

Mk(x
(k)) = F (x(k)),

for any Ak. The zero of Mk(x) is then used to give a new
approximate for the zero of F (x), that is,

x(k+1) = x(k) −A−1k F (x(k)).

The Newton’s method chooses

Ak = F ′(x(k)) ≡ J(x(k)) = the Jacobian matrix

and yields the iteration

x(k+1) = x(k) −
(
F ′(x(k))

)−1
F (x(k)).
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When the Jacobian matrix J(x(k)) ≡ F ′(x(k)) is not available,
one can require

Mk(x
(k−1)) = F (x(k−1)).

Then

F (x(k−1)) =Mk(x
(k−1)) = F (x(k)) +Ak(x

(k−1) − x(k)),

which gives

Ak(x
(k) − x(k−1)) = F (x(k))− F (x(k−1))

and this is the so-called secant equation. Let

h(k) = x(k) − x(k−1) and y(k) = F (x(k))− F (x(k−1)).

The secant equation becomes

Akh
(k) = y(k).
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However, this secant equation can not uniquely determine Ak.
One way of choosing Ak is to minimize Mk −Mk−1 subject to
the secant equation. Note

Mk(x)−Mk−1(x)

=F (x(k)) +Ak(x− x(k))− F (x(k−1))−Ak−1(x− x(k−1))

=(F (x(k))− F (x(k−1))) +Ak(x− x(k))−Ak−1(x− x(k−1))

=Ak(x
(k) − x(k−1)) +Ak(x− x(k))−Ak−1(x− x(k−1))

=Ak(x− x(k−1))−Ak−1(x− x(k−1))

=(Ak −Ak−1)(x− x(k−1)).

For any x ∈ Rn, we express

x− x(k−1) = αh(k) + t(k),

for some α ∈ R, t(k) ∈ Rn, and (h(k))T t(k) = 0. Then

Mk−Mk−1 = (Ak−Ak−1)(αh(k)+t(k)) = α(Ak−Ak−1)h(k)+(Ak−Ak−1)t(k).
24 / 35
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Since

(Ak −Ak−1)h(k) = Akh
(k) −Ak−1h(k) = y(k) −Ak−1h(k),

both y(k) and Ak−1h(k) are old values, we have no control over
the first part (Ak −Ak−1)h(k). In order to minimize
Mk(x)−Mk−1(x), we try to choose Ak so that

(Ak −Ak−1)t(k) = 0

for all t(k) ∈ Rn, (h(k))T t(k) = 0. This requires that Ak −Ak−1 to
be a rank-one matrix of the form

Ak −Ak−1 = u(k)(h(k))T

for some u(k) ∈ Rn. Then

u(k)(h(k))Th(k) = (Ak −Ak−1)h(k) = y(k) −Ak−1h(k)
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which gives

u(k) =
y(k) −Ak−1h(k)

(h(k))Th(k)
.

Therefore,

Ak = Ak−1 +
(y(k) −Ak−1h(k))(h(k))T

(h(k))Th(k)
. (1)

After Ak is determined, the new iterate x(k+1) is derived from
solving Mk(x) = 0. It can be done by first noting that

h(k+1) = x(k+1) − x(k) =⇒ x(k+1) = x(k) + h(k+1)

and

Mk(x
(k+1)) = 0 ⇒ Akh

(k+1) = −F (x(k))

These formulations give the Broyden’s method.
26 / 35
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Algorithm 2 (Broyden’s Method)

Given F : Rn → Rn, an initial vector x(0) and initial Jacobian
matrix A0 ∈ Rn×n (e.g., A0 = I), tolerance TOL, maximum
number of iteration M .
Set k = 1.
While k ≤M and ‖x(k) − x(k−1)‖2 ≥ TOL

Solve Akh(k+1) = −F (x(k)) for h(k+1)

Update x(k+1) = x(k) + h(k+1)

Compute y(k+1) = F (x(k+1))− F (x(k))
Update

Ak+1 = Ak +
(y(k+1) + F (x(k)))(h(k+1))T

(h(k+1))Th(k+1)

Set k = k + 1
End While
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Solve the linear system Akh
(k+1) = −F (x(k)) for h(k+1):

LU -factorization: cost 2
3n

3 +O(n2) floating-point
operations.
Applying the Shermann-Morrison-Woodbury formula(
B + UV T

)−1
= B−1 −B−1U

(
I + V TB−1U

)−1
V TB−1

to (1), we have

A−1k

=

[
Ak−1 +

(y(k) −Ak−1h(k))(h(k))T

(h(k))Th(k)

]−1
= A−1k−1 −A

−1
k−1

y(k) −Ak−1h(k)

(h(k))Th(k)

(
1 + (h(k))TA−1k−1

y(k) −Ak−1h(k)

(h(k))Th(k)

)−1
(h(k))TA−1k−1

= A−1k−1 +
(h(k) −A−1k−1y(k))(h(k))TA−1k−1

(h(k))TA−1k−1y
(k)

.
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Newton-based methods

Advantage: high speed of convergence once a sufficiently
accurate approximation
Weakness: an accurate initial approximation to the solution
is needed to ensure convergence.

Steepest Descent method converges only linearly to the sol., but
it will usually converge even for poor initial approximations.

“Find sufficiently accurate starting approximate solution by using
Steepest Descent method” + ”Compute convergent solution by
using Newton-based methods”

The method of Steepest Descent determines a local minimum
for a multivariable function of g : Rn → R.

A system of the form fi(x1, . . . , xn) = 0, i = 1, 2, . . . , n has a
solution at x iff the function g defined by

g(x1, . . . , xn) =

n∑
i=1

[fi(x1, . . . , xn)]
2

has the minimal value zero. 29 / 35
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Basic idea of steepest descent method:

(i) Evaluate g at an initial approximation x(0);

(ii) Determine a direction from x(0) that results in a decrease in the
value of g;

(iii) Move an appropriate distance in this direction and call the new
vector x(1);

(iv) Repeat steps (i) through (iii) with x(0) replaced by x(1).

Definition 7 (Gradient)

If g : Rn → R, the gradient, ∇g(x), at x is defined by

∇g(x) =
(
∂g

∂x1
(x), · · · , ∂g

∂xn
(x)

)
.

Definition 8 (Directional Derivative)

The directional derivative of g at x in the direction of v with ‖ v ‖2= 1
is defined by

Dvg(x) = lim
h→0

g(x+ hv)− g(x)
h

= vT∇g(x).
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Theorem 9
The direction of the greatest decrease in the value of g at x is
the direction given by −∇g(x).

Object: reduce g(x) to its minimal value zero.
⇒ for an initial approximation x(0), an appropriate choice
for new vector x(1) is

x(1) = x(0) − α∇g(x(0)), for some constant α > 0.

Choose α > 0 such that g(x(1)) < g(x(0)): define

h(α) = g(x(0) − α∇g(x(0))),

then find α∗ such that

h(α∗) = min
α
h(α).
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How to find α∗?

Solve a root-finding problem h′(α) = 0 ⇒ Too costly, in
general.
Choose three number α1 < α2 < α3, construct quadratic
polynomial P (x) that interpolates h at α1, α2 and α3, i.e.,

P (α1) = h(α1), P (α2) = h(α2), P (α3) = h(α3),

to approximate h. Use the minimum value P (α̂) in [α1, α3]
to approximate h(α∗). The new iteration is

x(1) = x(0) − α̂∇g(x(0)).

Set α1 = 0 to minimize the computation
α3 is found with h(α3) < h(α1).
Choose α2 = α3/2.
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Example 10

Use the Steepest Descent method with x(0) = (0, 0, 0)T to find a
reasonable starting approximation to the solution of the nonlinear
system

f1(x1, x2, x3) = 3x1 − cos(x2x3)−
1

2
= 0,

f2(x1, x2, x3) = x21 − 81(x2 + 0.1)2 + sinx3 + 1.06 = 0,

f3(x1, x2, x3) = e−x1x2 + 20x3 +
10π − 3

3
= 0.

Let g(x1, x2, x3) = [f1(x1, x2, x3)]
2 + [f2(x1, x2, x3)]

2 + [f3(x1, x2, x3)]
2.

Then
∇g(x1, x2, x3) ≡ ∇g(x)

=

(
2f1(x)

∂f1
∂x1

(x) + 2f2(x)
∂f2
∂x1

(x) + 2f3(x)
∂f3
∂x1

(x),

2f1(x)
∂f1
∂x2

(x) + 2f2(x)
∂f2
∂x2

(x) + 2f3(x)
∂f3
∂x2

(x),

2f1(x)
∂f1
∂x3

(x) + 2f2(x)
∂f2
∂x3

(x) + 2f3(x)
∂f3
∂x3

(x)

)
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For x(0) = [0, 0, 0]T , we have

g(x(0)) = 111.975 and z0 = ‖∇g(x(0))‖2 = 419.554.

Let

z =
1

z0
∇g(x(0)) = [−0.0214514,−0.0193062, 0.999583]T .

With α1 = 0, we have

g1 = g(x(0) − α1z) = g(x(0)) = 111.975.

Let α3 = 1 so that

g3 = g(x(0) − α3z) = 93.5649 < g1.

Set α2 = α3/2 = 0.5. Thus

g2 = g(x(0) − α2z) = 2.53557.
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Form quadratic polynomial P (α) defined as

P (α) = g1 + h1α+ h3α(α− α2)

that interpolates g(x(0)−αz) at α1 = 0, α2 = 0.5 and α3 = 1 as follows

g2 = P (α2) = g1 + h1α2 ⇒ h1 =
g2 − g1
α2

= −218.878,

g3 = P (α3) = g1 + h1α3 + h3α3(α3 − α2) ⇒ h3 = 400.937.

Thus

P (α) = 111.975− 218.878α+ 400.937α(α− 0.5)

so that

0 = P ′(α0) = −419.346 + 801.872α0 ⇒ α0 = 0.522959

Since

g0 = g(x(0) − α0z) = 2.32762 < min{g1, g3},
we set

x(1) = x(0) − α0z = [0.0112182, 0.0100964,−0.522741]T .
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