Solutions of Equations in One Variable

Tsung-Ming Huang
Department of Mathematics
National Taiwan Normal University, Taiwan

August 28, 2011

Outline

(1) Bisection Method
(2) Fixed-Point Iteration
(3) Newton's method

4 Error analysis for iterative methods
(5) Accelerating convergence

6 Zeros of polynomials and Müller's method

Bisection Method

Idea

If $f(x) \in C[a, b]$ and $f(a) f(b)<0$, then $\exists c \in(a, b)$ such that $f(c)=0$.

Bisection method algorithm

Given $f(x)$ defined on (a, b), the maximal number of iterations M, and stop criteria δ and ε, this algorithm tries to locate one root of $f(x)$.

Compute $u=f(a), v=f(b)$, and $e=b-a$
If $\operatorname{sign}(u)=\operatorname{sign}(v)$, then stop
For $k=1,2, \ldots, M$
$e=e / 2, c=a+e, w=f(c)$
If $|e|<\delta$ or $|w|<\varepsilon$, then stop
If $\operatorname{sign}(w) \neq \operatorname{sign}(u)$
$b=c, v=w$
Else

$$
a=c, u=w
$$

End If
End For

Let $\left\{c_{n}\right\}$ be the sequence of numbers produced. The algorithm should stop if one of the following conditions is satisfied.
(1) the iteration number $k>M$,
(2) $\left|c_{k}-c_{k-1}\right|<\delta$, or
(3) $\left|f\left(c_{k}\right)\right|<\varepsilon$.

Let $\left[a_{0}, b_{0}\right],\left[a_{1}, b_{1}\right], \ldots$ denote the successive intervals produced by the bisection algorithm. Then

$$
\begin{aligned}
& a=a_{0} \leq a_{1} \leq a_{2} \leq \cdots \leq b_{0}=b \\
\Rightarrow & \left\{a_{n}\right\} \text { and }\left\{b_{n}\right\} \text { are bounded } \\
\Rightarrow & \lim _{n \rightarrow \infty} a_{n} \text { and } \lim _{n \rightarrow \infty} b_{n} \text { exist }
\end{aligned}
$$

Since

$$
\begin{aligned}
b_{1}-a_{1} & =\frac{1}{2}\left(b_{0}-a_{0}\right) \\
b_{2}-a_{2} & =\frac{1}{2}\left(b_{1}-a_{1}\right)=\frac{1}{4}\left(b_{0}-a_{0}\right) \\
& \vdots \\
b_{n}-a_{n} & =\frac{1}{2^{n}}\left(b_{0}-a_{0}\right)
\end{aligned}
$$

hence

$$
\lim _{n \rightarrow \infty} b_{n}-\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(b_{n}-a_{n}\right)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left(b_{0}-a_{0}\right)=0
$$

Therefore

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n} \equiv z
$$

Since f is a continuous function, we have that
$\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f\left(\lim _{n \rightarrow \infty} a_{n}\right)=f(z)$ and $\lim _{n \rightarrow \infty} f\left(b_{n}\right)=f\left(\lim _{n \rightarrow \infty} b_{n}\right)=f(z$

On the other hand,

$$
\begin{aligned}
& f\left(a_{n}\right) f\left(b_{n}\right) \leq 0 \\
\Rightarrow \quad & \lim _{n \rightarrow \infty} f\left(a_{n}\right) f\left(b_{n}\right)=f^{2}(z) \leq 0 \\
\Rightarrow & f(z)=0
\end{aligned}
$$

Therefore, the limit of the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ is a zero of f in $[a, b]$. Let $c_{n}=\frac{1}{2}\left(a_{n}+b_{n}\right)$. Then

$$
\begin{aligned}
\left|z-c_{n}\right| & =\left|\lim _{n \rightarrow \infty} a_{n}-\frac{1}{2}\left(a_{n}+b_{n}\right)\right| \\
& =\left\lvert\, \frac{1}{2}\left[\lim _{n \rightarrow \infty} a_{n}-b_{n}\right]+\frac{1}{2}\left[\lim _{n \rightarrow \infty} a_{n}-a_{n}\right]\right. \\
& \leq \max \left\{\left|\lim _{n \rightarrow \infty} a_{n}-b_{n}\right|,\left|\lim _{n \rightarrow \infty} a_{n}-a_{n}\right|\right\} \\
& \leq\left|b_{n}-a_{n}\right|=\frac{1}{2^{n}}\left|b_{0}-a_{0}\right| .
\end{aligned}
$$

This proves the following theorem.

Theorem 1

Let $\left\{\left[a_{n}, b_{n}\right]\right\}$ denote the intervals produced by the bisection algorithm. Then $\lim _{n \rightarrow \infty} a_{n}$ and $\lim _{n \rightarrow \infty} b_{n}$ exist, are equal, and represent a zero of $f(x)$. If

$$
z=\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n} \quad \text { and } \quad c_{n}=\frac{1}{2}\left(a_{n}+b_{n}\right)
$$

then

$$
\left|z-c_{n}\right| \leq \frac{1}{2^{n}}\left(b_{0}-a_{0}\right) .
$$

Remark

$\left\{c_{n}\right\}$ converges to z with the rate of $O\left(2^{-n}\right)$.

Example 2

How many steps should be taken to compute a root of $f(x)=x^{3}+4 x^{2}-10=0$ on $[1,2]$ with relative error 10^{-3} ?
solution: Seek an n such that

$$
\frac{\left|z-c_{n}\right|}{|z|} \leq 10^{-3} \Rightarrow\left|z-c_{n}\right| \leq|z| \times 10^{-3}
$$

Since $z \in[1,2]$, it is sufficient to show

$$
\left|z-c_{n}\right| \leq 10^{-3}
$$

That is, we solve

$$
2^{-n}(2-1) \leq 10^{-3} \Rightarrow-n \log _{10} 2 \leq-3
$$

which gives $n \geq 10$.

Fixed-Point lteration

Definition 3

x is called a fixed point of a given function f if $f(x)=x$.

Root-finding problems and fixed-point problems

- Find x^{*} such that $f\left(x^{*}\right)=0$.

Let $g(x)=x-f(x)$. Then $g\left(x^{*}\right)=x^{*}-f\left(x^{*}\right)=x^{*}$.
$\Rightarrow x^{*}$ is a fixed point for $g(x)$.

- Find x^{*} such that $g\left(x^{*}\right)=x^{*}$.

Define $f(x)=x-g(x)$ so that
$f\left(x^{*}\right)=x^{*}-g\left(x^{*}\right)=x^{*}-x^{*}=0$
$\Rightarrow x^{*}$ is a zero of $f(x)$.

Example 4

The function $g(x)=x^{2}-2$, for $-2 \leq x \leq 3$, has fixed points at $x=-1$ and $x=2$ since

$$
g(-1)=(-1)^{2}-2=-1 \text { and } g(2)=2^{2}-2=2 .
$$

Theorem 5 (Existence and uniqueness)

(1) If $g \in C[a, b]$ such that $a \leq g(x) \leq b$ for all $x \in[a, b]$, then g has a fixed point in $[a, b]$.
(2) If, in addition, $g^{\prime}(x)$ exists in (a, b) and there exists a positive constant $M<1$ such that $\left|g^{\prime}(x)\right| \leq M<1$ for all $x \in(a, b)$. Then the fixed point is unique.

Proof

Existence:

- If $g(a)=a$ or $g(b)=b$, then a or b is a fixed point of g and we are done.
- Otherwise, it must be $g(a)>a$ and $g(b)<b$. The function $h(x)=g(x)-x$ is continuous on $[a, b]$, with

$$
h(a)=g(a)-a>0 \text { and } h(b)=g(b)-b<0 .
$$

By the Intermediate Value Theorem, $\exists x^{*} \in[a, b]$ such that $h\left(x^{*}\right)=0$. That is

$$
g\left(x^{*}\right)-x^{*}=0 \Rightarrow g\left(x^{*}\right)=x^{*}
$$

Hence g has a fixed point x^{*} in $[a, b]$.

Proof

Uniqueness:
Suppose that $p \neq q$ are both fixed points of g in $[a, b]$. By the Mean-Value theorem, there exists ξ between p and q such that

$$
g^{\prime}(\xi)=\frac{g(p)-g(q)}{p-q}=\frac{p-q}{p-q}=1
$$

However, this contradicts to the assumption that
$\left|g^{\prime}(x)\right| \leq M<1$ for all x in $[a, b]$. Therefore the fixed point of g is unique.

Example 6

Show that the following function has a unique fixed point.

$$
g(x)=\left(x^{2}-1\right) / 3, \quad x \in[-1,1] .
$$

Solution: The Extreme Value Theorem implies that

$$
\begin{aligned}
\min _{x \in[-1,1]} g(x) & =g(0)=-\frac{1}{3} \\
\max _{x \in[-1,1]} g(x) & =g(\pm 1)=0
\end{aligned}
$$

That is $g(x) \in[-1,1], \forall x \in[-1,1]$.
Moreover, g is continuous and

$$
\left|g^{\prime}(x)\right|=\left|\frac{2 x}{3}\right| \leq \frac{2}{3}, \forall x \in(-1,1)
$$

By above theorem, g has a unique fixed point in $[-1,1]$.

Let p be such unique fixed point of g. Then

$$
\begin{aligned}
p=g(p)=\frac{p^{2}-1}{3} & \Rightarrow p^{2}-3 p-1=0 \\
& \Rightarrow p=\frac{1}{2}(3-\sqrt{13})
\end{aligned}
$$

Fixed-point iteration or functional iteration

Given a continuous function g, choose an initial point x_{0} and generate $\left\{x_{k}\right\}_{k=0}^{\infty}$ by

$$
x_{k+1}=g\left(x_{k}\right), \quad k \geq 0
$$

$\left\{x_{k}\right\}$ may not converge, e.g., $g(x)=3 x$. However, when the sequence converges, say,

$$
\lim _{k \rightarrow \infty} x_{k}=x^{*}
$$

then, since g is continuous,

$$
g\left(x^{*}\right)=g\left(\lim _{k \rightarrow \infty} x_{k}\right)=\lim _{k \rightarrow \infty} g\left(x_{k}\right)=\lim _{k \rightarrow \infty} x_{k+1}=x^{*} .
$$

That is, x^{*} is a fixed point of g.

Fixed-point iteration

Given x_{0}, tolerance $T O L$, maximum number of iteration M.
Set $i=1$ and $x=g\left(x_{0}\right)$.
While $i \leq M$ and $\left|x-x_{0}\right| \geq T O L$
Set $i=i+1, x_{0}=x$ and $x=g\left(x_{0}\right)$.
End While

(a)

(b)

Example 7

The equation

$$
x^{3}+4 x^{2}-10=0
$$

has a unique root in $[1,2]$. Change the equation to the fixed-point form $x=g(x)$.
(a) $x=g_{1}(x) \equiv x-f(x)=x-x^{3}-4 x^{2}+10$
(b) $x=g_{2}(x)=\left(\frac{10}{x}-4 x\right)^{1 / 2}$

$$
x^{3}=10-4 x^{2} \Rightarrow x^{2}=\frac{10}{x}-4 x \Rightarrow x= \pm\left(\frac{10}{x}-4 x\right)^{1 / 2}
$$

(c) $x=g_{3}(x)=\frac{1}{2}\left(10-x^{3}\right)^{1 / 2}$

$$
4 x^{2}=10-x^{3} \quad \Rightarrow \quad x= \pm \frac{1}{2}\left(10-x^{3}\right)^{1 / 2}
$$

(d) $x=g_{4}(x)=\left(\frac{10}{4+x}\right)^{1 / 2}$

$$
x^{2}(x+4)=10 \quad \Rightarrow \quad x= \pm\left(\frac{10}{4+x}\right)^{1 / 2}
$$

(e) $x=g_{5}(x)=x-\frac{x^{3}+4 x^{2}-10}{3 x^{2}+8 x}$

$$
x=g_{5}(x) \equiv x-\frac{f(x)}{f^{\prime}(x)}
$$

Results of the fixed-point iteration with initial point $x_{0}=1.5$

n	(a)	(b)	(c)	(d)	(e)
0	1.5	1.5	1.5	1.5	1.5
1	-0.875	0.8165	1.286953768	1.348399725	1.373333333
2	6.732	2.9969	1.402540804	1.367376372	1.365262015
3	-469.7	$(-8.65)^{1 / 2}$	1.345458374	1.364957015	1.365230014
4	1.03×10^{8}		1.375170253	1.365264748	1.365230013
5			1.360094193	1.365225594	
6			1.367846968	1.365230576	
7			1.363887004	1.365229942	
8			1.365916734	1.365230022	
9			1.365410062	1.365230014	
10			1.365223680	1.365230013	
15			1.365230236		
20			1.365230006		
25					
30					

Theorem 8 (Fixed-point Theorem)

Let $g \in[a, b]$ be such that $g(x) \in[a, b]$ for all $x \in[a, b]$. Suppose that g^{\prime} exists on (a, b) and that $\exists k$ with $0<k<1$ such that

$$
\left|g^{\prime}(x)\right| \leq k, \forall x \in(a, b)
$$

Then, for any number x_{0} in $[a, b]$,

$$
x_{n}=g\left(x_{n-1}\right), n \geq 1,
$$

converges to the unique fixed point x in $[a, b]$.

Proof: By the assumptions, a unique fixed point exists in $[a, b]$. Since $g([a, b]) \subseteq[a, b],\left\{x_{n}\right\}_{n=0}^{\infty}$ is defined and $x_{n} \in[a, b]$ for all $n \geq 0$. Using the Mean Values Theorem and the fact that $\left|g^{\prime}(x)\right| \leq k$, we have
$\left|x-x_{n}\right|=\left|g\left(x_{n-1}\right)-g(x)\right|=\left|g^{\prime}\left(\xi_{n}\right)\right|\left|x-x_{n-1}\right| \leq k\left|x-x_{n-1}\right|$,
where $\xi_{n} \in(a, b)$. It follows that

$$
\begin{equation*}
\left|x_{n}-x\right| \leq k\left|x_{n-1}-x\right| \leq k^{2}\left|x_{n-2}-x\right| \leq \cdots \leq k^{n}\left|x_{0}-x\right| \tag{1}
\end{equation*}
$$

Since $0<k<1$, we have

$$
\lim _{n \rightarrow \infty} k^{n}=0
$$

and

$$
\lim _{n \rightarrow \infty}\left|x_{n}-x\right| \leq \lim _{n \rightarrow \infty} k^{n}\left|x_{0}-x\right|=0
$$

Hence, $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges to x.

Corollary 9

If g satisfies the hypotheses of above theorem, then

$$
\left|x-x_{n}\right| \leq k^{n} \max \left\{x_{0}-a, b-x_{0}\right\}
$$

and

$$
\left|x_{n}-x\right| \leq \frac{k^{n}}{1-k}\left|x_{1}-x_{0}\right|, \forall n \geq 1
$$

Proof: From (1),

$$
\left|x_{n}-x\right| \leq k^{n}\left|x_{0}-x\right| \leq k^{n} \max \left\{x_{0}-a, b-x_{0}\right\}
$$

For $n \geq 1$, using the Mean Values Theorem,
$\left|x_{n+1}-x_{n}\right|=\left|g\left(x_{n}\right)-g\left(x_{n-1}\right)\right| \leq k\left|x_{n}-x_{n-1}\right| \leq \cdots \leq k^{n} \mid x_{1}-x_{0}$

Thus, for $m>n \geq 1$,

$$
\begin{aligned}
\left|x_{m}-x_{n}\right| & =\left|x_{m}-x_{m-1}+x_{m-1}-\cdots+x_{n+1}-x_{n}\right| \\
& \leq\left|x_{m}-x_{m-1}\right|+\left|x_{m-1}-x_{m-2}\right|+\cdots+\left|x_{n+1}-x_{n}\right| \\
& \leq k^{m-1}\left|x_{1}-x_{0}\right|+k^{m-2}\left|x_{1}-x_{0}\right|+\cdots+k^{n}\left|x_{1}-x_{0}\right| \\
& =k^{n}\left|x_{1}-x_{0}\right|\left(1+k+k^{2}+\cdots+k^{m-n-1}\right) .
\end{aligned}
$$

It implies that

$$
\begin{aligned}
\left|x-x_{n}\right| & =\lim _{m \rightarrow \infty}\left|x_{m}-x_{n}\right| \leq \lim _{m \rightarrow \infty} k^{n}\left|x_{1}-x_{0}\right| \sum_{j=0}^{m-n-1} k^{j} \\
& \leq k^{n}\left|x_{1}-x_{0}\right| \sum_{j=0}^{\infty} k^{j}=\frac{k^{n}}{1-k}\left|x_{1}-x_{0}\right|
\end{aligned}
$$

Example 10

For previous example,

$$
f(x)=x^{3}+4 x^{2}-10=0
$$

For $g_{1}(x)=x-x^{3}-4 x^{2}+10$, we have

$$
g_{1}(1)=6 \quad \text { and } \quad g_{1}(2)=-12
$$

so $g_{1}([1,2]) \nsubseteq[1,2]$. Moreover,

$$
g_{1}^{\prime}(x)=1-3 x^{2}-8 x \quad \Rightarrow \quad\left|g_{1}^{\prime}(x)\right| \geq 1 \forall x \in[1,2]
$$

- DOES NOT guarantee to converge or not

For $g_{3}(x)=\frac{1}{2}\left(10-x^{3}\right)^{1 / 2}, \forall x \in[1,1.5]$,

$$
g_{3}^{\prime}(x)=-\frac{3}{4} x^{2}\left(10-x^{3}\right)^{-1 / 2}<0, \forall x \in[1,1.5],
$$

so g_{3} is strictly decreasing on $[1,1.5]$ and

$$
1<1.28 \approx g_{3}(1.5) \leq g_{3}(x) \leq g_{3}(1)=1.5, \forall x \in[1,1.5] .
$$

On the other hand,

$$
\left|g_{3}^{\prime}(x)\right| \leq\left|g_{3}^{\prime}(1.5)\right| \approx 0.66, \forall x \in[1,1.5]
$$

Hence, the sequence is convergent to the fixed point.

For $g_{4}(x)=\sqrt{10 /(4+x)}$, we have

$$
\sqrt{\frac{10}{6}} \leq g_{4}(x) \leq \sqrt{\frac{10}{5}}, \forall x \in[1,2] \quad \Rightarrow \quad g_{4}([1,2]) \subseteq[1,2]
$$

Moreover,

$$
\left|g_{4}^{\prime}(x)\right|=\left|\frac{-5}{\sqrt{10}(4+x)^{3 / 2}}\right| \leq \frac{5}{\sqrt{10}(5)^{3 / 2}}<0.15, \forall x \in[1,2] .
$$

The bound of $\left|g_{4}^{\prime}(x)\right|$ is much smaller than the bound of $\left|g_{3}^{\prime}(x)\right|$, which explains the more rapid convergence using g_{4}.

Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ and $f \in C^{2}[a, b]$, i.e., $f^{\prime \prime}$ exists and is continuous. If $f\left(x^{*}\right)=0$ and $x^{*}=x+h$ where h is small, then by Taylor's theorem

$$
\begin{aligned}
0=f\left(x^{*}\right) & =f(x+h) \\
& =f(x)+f^{\prime}(x) h+\frac{1}{2} f^{\prime \prime}(x) h^{2}+\frac{1}{3!} f^{\prime \prime \prime}(x) h^{3}+\cdots \\
& =f(x)+f^{\prime}(x) h+O\left(h^{2}\right)
\end{aligned}
$$

Since h is small, $O\left(h^{2}\right)$ is negligible. It is reasonable to drop $O\left(h^{2}\right)$ terms. This implies

$$
f(x)+f^{\prime}(x) h \approx 0 \quad \text { and } \quad h \approx-\frac{f(x)}{f^{\prime}(x)}, \quad \text { if } \quad f^{\prime}(x) \neq 0
$$

Hence

$$
x+h=x-\frac{f(x)}{f^{\prime}(x)}
$$

is a better approximation to x^{*}.

This sets the stage for the Newton-Rapbson's method, which starts with an initial approximation x_{0} and generates the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ defined by

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Since the Taylor's expansion of $f(x)$ at x_{k} is given by

$$
f(x)=f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{k}\right)\left(x-x_{k}\right)^{2}+\cdots
$$

At x_{k}, one uses the tangent line

$$
y=\ell(x)=f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)
$$

to approximate the curve of $f(x)$ and uses the zero of the tangent line to approximate the zero of $f(x)$.

Newton's Method

Given x_{0}, tolerance $T O L$, maximum number of iteration M. Set $i=1$ and $x=x_{0}-f\left(x_{0}\right) / f^{\prime}\left(x_{0}\right)$. While $i \leq M$ and $\left|x-x_{0}\right| \geq T O L$

Set $i=i+1, x_{0}=x$ and $x=x_{0}-f\left(x_{0}\right) / f^{\prime}\left(x_{0}\right)$.
End While

Three stopping-technique inequalities

$$
\begin{aligned}
& (a) . \quad\left|x_{n}-x_{n-1}\right|<\varepsilon \\
& (b) . \quad \frac{\left|x_{n}-x_{n-1}\right|}{\left|x_{n}\right|}<\varepsilon, \quad x_{n} \neq 0 \\
& \text { (c). }\left|f\left(x_{n}\right)\right|<\varepsilon
\end{aligned}
$$

Note that Newton's method for solving $f(x)=0$

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \text { for } n \geq 1
$$

is just a special case of functional iteration in which

$$
g(x)=x-\frac{f(x)}{f^{\prime}(x)}
$$

Example 11

The following table shows the convergence behavior of Newton's method applied to solving $f(x)=x^{2}-1=0$. Observe the quadratic convergence rate.

n	x_{n}	$\left\|e_{n}\right\| \equiv\left\|1-x_{n}\right\|$
0	2.0	1
1	1.25	0.25
2	1.025	$2.5 \mathrm{e}-2$
3	1.0003048780488	$3.048780488 \mathrm{e}-4$
4	1.0000000464611	$4.64611 \mathrm{e}-8$
5	1.0	0

Theorem 12

Assume $f\left(x^{*}\right)=0, f^{\prime}\left(x^{*}\right) \neq 0$ and $f(x), f^{\prime}(x)$ and $f^{\prime \prime}(x)$ are continuous on $N_{\varepsilon}\left(x^{*}\right)$. Then if x_{0} is chosen sufficiently close to x^{*}, then

$$
\left\{x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}\right\} \rightarrow x^{*}
$$

Proof: Define

$$
g(x)=x-\frac{f(x)}{f^{\prime}(x)} .
$$

Find an interval $\left[x^{*}-\delta, x^{*}+\delta\right]$ such that

$$
g\left(\left[x^{*}-\delta, x^{*}+\delta\right]\right) \subseteq\left[x^{*}-\delta, x^{*}+\delta\right]
$$

and

$$
\left|g^{\prime}(x)\right| \leq k<1, \forall x \in\left(x^{*}-\delta, x^{*}+\delta\right) .
$$

Since f^{\prime} is continuous and $f^{\prime}\left(x^{*}\right) \neq 0$, it implies that $\exists \delta_{1}>0$ such that $f^{\prime}(x) \neq 0 \forall x \in\left[x^{*}-\delta_{1}, x^{*}+\delta_{1}\right] \subseteq[a, b]$. Thus, g is defined and continuous on $\left[x^{*}-\delta_{1}, x^{*}+\delta_{1}\right]$. Also

$$
g^{\prime}(x)=1-\frac{f^{\prime}(x) f^{\prime}(x)-f(x) f^{\prime \prime}(x)}{\left[f^{\prime}(x)\right]^{2}}=\frac{f(x) f^{\prime \prime}(x)}{\left[f^{\prime}(x)\right]^{2}}
$$

for $x \in\left[x^{*}-\delta_{1}, x^{*}+\delta_{1}\right]$. Since $f^{\prime \prime}$ is continuous on $[a, b]$, we have g^{\prime} is continuous on $\left[x^{*}-\delta_{1}, x^{*}+\delta_{1}\right]$. By assumption $f\left(x^{*}\right)=0$, so

$$
g^{\prime}\left(x^{*}\right)=\frac{f\left(x^{*}\right) f^{\prime \prime}\left(x^{*}\right)}{\left|f^{\prime}\left(x^{*}\right)\right|^{2}}=0 .
$$

Since g^{\prime} is continuous on $\left[x^{*}-\delta_{1}, x^{*}+\delta_{1}\right]$ and $g^{\prime}\left(x^{*}\right)=0, \exists \delta$ with $0<\delta<\delta_{1}$ and $k \in(0,1)$ such that

$$
\left|g^{\prime}(x)\right| \leq k, \forall x \in\left[x^{*}-\delta, x^{*}+\delta\right]
$$

Claim: $g\left(\left[x^{*}-\delta, x^{*}+\delta\right]\right) \subseteq\left[x^{*}-\delta, x^{*}+\delta\right]$.
If $x \in\left[x^{*}-\delta, x^{*}+\delta\right]$, then, by the Mean Value Theorem, $\exists \xi$ between x and x^{*} such that

$$
\left|g(x)-g\left(x^{*}\right)\right|=\left|g^{\prime}(\xi)\right|\left|x-x^{*}\right| .
$$

It implies that

$$
\begin{aligned}
\left|g(x)-x^{*}\right| & =\left|g(x)-g\left(x^{*}\right)\right|=\left|g^{\prime}(\xi)\right|\left|x-x^{*}\right| \\
& \leq k\left|x-x^{*}\right|<\left|x-x^{*}\right|<\delta
\end{aligned}
$$

Hence, $g\left(\left[x^{*}-\delta, x^{*}+\delta\right]\right) \subseteq\left[x^{*}-\delta, x^{*}+\delta\right]$.
By the Fixed-Point Theorem, the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ defined by

$$
x_{n}=g\left(x_{n-1}\right)=x_{n-1}-\frac{f\left(x_{n-1}\right)}{f^{\prime}\left(x_{n-1}\right)}, \text { for } n \geq 1
$$

converges to x^{*} for any $x_{0} \in\left[x^{*}-\delta, x^{*}+\delta\right]$.

Example 13

When Newton's method applied to $f(x)=\cos x$ with starting point $x_{0}=3$, which is close to the root $\frac{\pi}{2}$ of f, it produces $x_{1}=-4.01525, x_{2}=-4.8526, \cdots$, which converges to another root $-\frac{3 \pi}{2}$.

Secant method

Disadvantage of Newton's method

In many applications, the derivative $f^{\prime}(x)$ is very expensive to compute, or the function $f(x)$ is not given in an algebraic formula so that $f^{\prime}(x)$ is not available.

By definition,

$$
f^{\prime}\left(x_{n-1}\right)=\lim _{x \rightarrow x_{n-1}} \frac{f(x)-f\left(x_{n-1}\right)}{x-x_{n-1}}
$$

Letting $x=x_{n-2}$, we have

$$
f^{\prime}\left(x_{n-1}\right) \approx \frac{f\left(x_{n-2}\right)-f\left(x_{n-1}\right)}{x_{n-2}-x_{n-1}}=\frac{f\left(x_{n-1}\right)-f\left(x_{n-2}\right)}{x_{n-1}-x_{n-2}}
$$

Using this approximation for $f^{\prime}\left(x_{n-1}\right)$ in Newton's formula gives

$$
x_{n}=x_{n-1}-\frac{f\left(x_{n-1}\right)\left(x_{n-1}-x_{n-2}\right)}{f\left(x_{n-1}\right)-f\left(x_{n-2}\right)},
$$

From geometric point of view, we use a secant line through x_{n-1} and x_{n-2} instead of the tangent line to approximate the function at the point x_{n-1}.
The slope of the secant line is

$$
s_{n-1}=\frac{f\left(x_{n-1}\right)-f\left(x_{n-2}\right)}{x_{n-1}-x_{n-2}}
$$

and the equation is

$$
M(x)=f\left(x_{n-1}\right)+s_{n-1}\left(x-x_{n-1}\right)
$$

The zero of the secant line

$$
x=x_{n-1}-\frac{f\left(x_{n-1}\right)}{s_{n-1}}=x_{n-1}-f\left(x_{n-1}\right) \frac{x_{n-1}-x_{n-2}}{f\left(x_{n-1}\right)-f\left(x_{n-2}\right)}
$$

is then used as a new approximate x_{n}.

Secant Method

Given x_{0}, x_{1}, tolerance $T O L$, maximum number of iteration M. Set $i=2 ; y_{0}=f\left(x_{0}\right) ; y_{1}=f\left(x_{1}\right)$;

$$
x=x_{1}-y_{1}\left(x_{1}-x_{0}\right) /\left(y_{1}-y_{0}\right) .
$$

While $i \leq M$ and $\left|x-x_{1}\right| \geq T O L$
Set $i=i+1 ; x_{0}=x_{1} ; y_{0}=y_{1} ; x_{1}=x ; y_{1}=f(x) ;$

$$
x=x_{1}-y_{1}\left(x_{1}-x_{0}\right) /\left(y_{1}-y_{0}\right) .
$$

End While

Method of False Position

(1) Choose initial approximations x_{0} and x_{1} with $f\left(x_{0}\right) f\left(x_{1}\right)<0$.
(2) $x_{2}=x_{1}-f\left(x_{1}\right)\left(x_{1}-x_{0}\right) /\left(f\left(x_{1}\right)-f\left(x_{0}\right)\right)$
(3) Decide which secant line to use to compute x_{3} : If $f\left(x_{2}\right) f\left(x_{1}\right)<0$, then x_{1} and x_{2} bracket a root, i.e.,

$$
x_{3}=x_{2}-f\left(x_{2}\right)\left(x_{2}-x_{1}\right) /\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right)
$$

Else, x_{0} and x_{2} bracket a root, i.e.,

$$
x_{3}=x_{2}-f\left(x_{2}\right)\left(x_{2}-x_{0}\right) /\left(f\left(x_{2}\right)-f\left(x_{0}\right)\right)
$$

End if

Method of False Position

Given x_{0}, x_{1}, tolerance $T O L$, maximum number of iteration M. Set $i=2 ; y_{0}=f\left(x_{0}\right) ; y_{1}=f\left(x_{1}\right) ; x=x_{1}-y_{1}\left(x_{1}-x_{0}\right) /\left(y_{1}-y_{0}\right)$. While $i \leq M$ and $\left|x-x_{1}\right| \geq T O L$

Set $i=i+1 ; y=f(x)$.
If $y \cdot y_{1}<0$, then set $x_{0}=x_{1} ; y_{0}=y_{1}$.
Set $x_{1}=x ; y_{1}=y ; x=x_{1}-y_{1}\left(x_{1}-x_{0}\right) /\left(y_{1}-y_{0}\right)$.
End While

Error analysis for iterative methods

Definition 14

Let $\left\{x_{n}\right\} \rightarrow x^{*}$. If there are positive constants c and α such that

$$
\lim _{n \rightarrow \infty} \frac{\left|x_{n+1}-x^{*}\right|}{\left|x_{n}-x^{*}\right|^{\alpha}}=c
$$

then we say the rate of convergence is of order α.

We say that the rate of convergence is
(1) linear if $\alpha=1$ and $0<c<1$.
(2) superlinear if

$$
\lim _{n \rightarrow \infty} \frac{\left|x_{n+1}-x^{*}\right|}{\left|x_{n}-x^{*}\right|}=0
$$

(3) duadratic if $\alpha=2$

Suppose that $\left\{x_{n}\right\}_{n=0}^{\infty}$ and $\left\{\tilde{x}_{n}\right\}_{n=0}^{\infty}$ are linearly and quadratically convergent to x^{*}, respectively, with the same constant $c=0.5$. For simplicity, suppose that

$$
\frac{\left|x_{n+1}-x^{*}\right|}{\left|x_{n}-x^{*}\right|} \approx c \quad \text { and } \quad \frac{\left|\tilde{x}_{n+1}-x^{*}\right|}{\left|\tilde{x}_{n}-x^{*}\right|^{2}} \approx c
$$

These imply that
$\left|x_{n}-x^{*}\right| \approx c\left|x_{n-1}-x^{*}\right| \approx c^{2}\left|x_{n-2}-x^{*}\right| \approx \ldots \approx c^{n}\left|x_{0}-x^{*}\right|$,
and

$$
\begin{aligned}
\left|\tilde{x}_{n}-x^{*}\right| & \approx c\left|\tilde{x}_{n-1}-x^{*}\right|^{2} \approx c\left[c\left|\tilde{x}_{n-2}-x^{*}\right|^{2}\right]^{2}=c^{3}\left|\tilde{x}_{n-2}-x^{*}\right|^{4} \\
& \approx c^{3}\left[c\left|\tilde{x}_{n-3}-x^{*}\right|^{2}\right]^{4}=c^{7}\left|\tilde{x}_{n-3}-x^{*}\right|^{8} \\
& \approx \cdots \approx c^{2^{n}-1}\left|\tilde{x}_{0}-x^{*}\right|^{2^{n}}
\end{aligned}
$$

Remark

Quadratically convergent sequences generally converge much more quickly thank those that converge only linearly.

Theorem 15

Let $g \in C[a, b]$ with $g([a, b]) \subseteq[a, b]$. Suppose that g^{\prime} is continuous on (a, b) and $\exists k \in(0,1)$ such that

$$
\left|g^{\prime}(x)\right| \leq k, \forall x \in(a, b)
$$

If $g^{\prime}\left(x^{*}\right) \neq 0$, then for any $x_{0} \in[a, b]$, the sequence

$$
x_{n}=g\left(x_{n-1}\right), \text { for } n \geq 1
$$

converges only linearly to the unique fixed point x^{*} in $[a, b]$.

Proof:

- By the Fixed-Point Theorem, the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges to x^{*}.
- Since g^{\prime} exists on (a, b), by the Mean Value Theorem, $\exists \xi_{n}$ between x_{n} and x^{*} such that

$$
x_{n+1}-x^{*}=g\left(x_{n}\right)-g\left(x^{*}\right)=g^{\prime}\left(\xi_{n}\right)\left(x_{n}-x^{*}\right)
$$

- $\because\left\{x_{n}\right\}_{n=0}^{\infty} \rightarrow x^{*} \Rightarrow\left\{\xi_{n}\right\}_{n=0}^{\infty} \rightarrow x^{*}$
- Since g^{\prime} is continuous on (a, b), we have

$$
\lim _{n \rightarrow \infty} g^{\prime}\left(\xi_{n}\right)=g^{\prime}\left(x^{*}\right)
$$

- Thus,

$$
\lim _{n \rightarrow \infty} \frac{\left|x_{n+1}-x^{*}\right|}{\left|x_{n}-x^{*}\right|}=\lim _{n \rightarrow \infty}\left|g^{\prime}\left(\xi_{n}\right)\right|=\left|g^{\prime}\left(x^{*}\right)\right|
$$

Hence, if $g^{\prime}\left(x^{*}\right) \neq 0$, fixed-point iteration exhibits linear convergence.

Theorem 16

Let x^{*} be a fixed point of g and I be an open interval with $x^{*} \in I$. Suppose that $g^{\prime}\left(x^{*}\right)=0$ and $g^{\prime \prime}$ is continuous with

$$
\left|g^{\prime \prime}(x)\right|<M, \forall x \in I
$$

Then $\exists \delta>0$ such that

$$
\left\{x_{n}=g\left(x_{n-1}\right)\right\}_{n=1}^{\infty} \rightarrow x^{*} \text { for } x_{0} \in\left[x^{*}-\delta, x^{*}+\delta\right]
$$

at least quadratically. Moreover,

$$
\left|x_{n+1}-x^{*}\right|<\frac{M}{2}\left|x_{n}-x^{*}\right|^{2}, \text { for sufficiently large } n .
$$

Proof:

- Since $g^{\prime}\left(x^{*}\right)=0$ and g^{\prime} is continuous on $I, \exists \delta$ such that $\left[x^{*}-\delta, x^{*}+\delta\right] \subset I$ and

$$
\left|g^{\prime}(x)\right| \leq k<1, \forall x \in\left[x^{*}-\delta, x^{*}+\delta\right] .
$$

- In the proof of the convergence for Newton's method, we have

$$
\left\{x_{n}\right\}_{n=0}^{\infty} \subset\left[x^{*}-\delta, x^{*}+\delta\right]
$$

- Consider the Taylor expansion of $g\left(x_{n}\right)$ at x^{*}

$$
\begin{aligned}
x_{n+1}=g\left(x_{n}\right) & =g\left(x^{*}\right)+g^{\prime}\left(x^{*}\right)\left(x_{n}-x^{*}\right)+\frac{g^{\prime \prime}(\xi)}{2}\left(x_{n}-x^{*}\right)^{2} \\
& =x^{*}+\frac{g^{\prime \prime}(\xi)}{2}\left(x_{n}-x^{*}\right)^{2}
\end{aligned}
$$

where ξ lies between x_{n} and x^{*}.

- Since

$$
\left|g^{\prime}(x)\right| \leq k<1, \forall x \in\left[x^{*}-\delta, x^{*}+\delta\right]
$$

and

$$
g\left(\left[x^{*}-\delta, x^{*}+\delta\right]\right) \subseteq\left[x^{*}-\delta, x^{*}+\delta\right],
$$

it follows that $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges to x^{*}.

- But ξ_{n} is between x_{n} and x^{*} for each n, so $\left\{\xi_{n}\right\}_{n=0}^{\infty}$ also converges to x^{*} and

$$
\lim _{n \rightarrow \infty} \frac{\left|x_{n+1}-x^{*}\right|}{\left|x_{n}-x^{*}\right|^{2}}=\frac{\left|g^{\prime \prime}\left(x^{*}\right)\right|}{2}<\frac{M}{2}
$$

- It implies that $\left\{x_{n}\right\}_{n=0}^{\infty}$ is quadratically convergent to x^{*} if $g^{\prime \prime}\left(x^{*}\right) \neq 0$ and
$\left|x_{n+1}-x^{*}\right|<\frac{M}{2}\left|x_{n}-x^{*}\right|^{2}$, for sufficiently large n.

For Newton's method,
$g(x)=x-\frac{f(x)}{f^{\prime}(x)} \Rightarrow g^{\prime}(x)=1-\frac{f^{\prime}(x)}{f^{\prime}(x)}+\frac{f(x) f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}}=\frac{f(x) f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}}$
It follows that $g^{\prime}\left(x^{*}\right)=0$. Hence Newton's method is locally quadratically convergent.

Error Analysis of Secant Method

Reference: D. Kincaid and W. Cheney, "Numerical analysis" Let x^{*} denote the exact solution of $f(x)=0, e_{k}=x_{k}-x^{*}$ be the error at the k-th step. Then

$$
\begin{align*}
e_{k+1} & =x_{k+1}-x^{*} \\
& =x_{k}-f\left(x_{k}\right) \frac{x_{k}-x_{k-1}}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}-x^{*} \\
& =\frac{1}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}\left[\left(x_{k-1}-x^{*}\right) f\left(x_{k}\right)-\left(x_{k}-x^{*}\right) f\left(x_{k-1}\right)\right] \\
& =\frac{1}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}\left(e_{k-1} f\left(x_{k}\right)-e_{k} f\left(x_{k-1}\right)\right) \\
& =e_{k} e_{k-1}\left(\frac{\frac{1}{e_{k}} f\left(x_{k}\right)-\frac{1}{e_{k-1}} f\left(x_{k-1}\right)}{x_{k}-x_{k-1}} \cdot \frac{x_{k}-x_{k-1}}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}\right) \tag{2}
\end{align*}
$$

To estimate the numerator $\frac{\frac{1}{e_{k}} f\left(x_{k}\right)-\frac{1}{e_{k-1}} f\left(x_{k-1}\right)}{x_{k}-x_{k-1}}$, we apply Taylor's Theorem

$$
f\left(x_{k}\right)=f\left(x^{*}+e_{k}\right)=f\left(x^{*}\right)+f^{\prime}\left(x^{*}\right) e_{k}+\frac{1}{2} f^{\prime \prime}\left(x^{*}\right) e_{k}^{2}+O\left(e_{k}^{3}\right)
$$

to get

$$
\frac{1}{e_{k}} f\left(x_{k}\right)=f^{\prime}\left(x^{*}\right)+\frac{1}{2} f^{\prime \prime}\left(x^{*}\right) e_{k}+O\left(e_{k}^{2}\right)
$$

Similarly,

$$
\frac{1}{e_{k-1}} f\left(x_{k-1}\right)=f^{\prime}\left(x^{*}\right)+\frac{1}{2} f^{\prime \prime}\left(x^{*}\right) e_{k-1}+O\left(e_{k-1}^{2}\right)
$$

Hence

$$
\frac{1}{e_{k}} f\left(x_{k}\right)-\frac{1}{e_{k-1}} f\left(x_{k-1}\right) \approx \frac{1}{2}\left(e_{k}-e_{k-1}\right) f^{\prime \prime}\left(x^{*}\right)
$$

Since $x_{k}-x_{k-1}=e_{k}-e_{k-1}$ and

$$
\frac{x_{k}-x_{k-1}}{f\left(x_{k}\right)-f\left(x_{k-1}\right)} \rightarrow \frac{1}{f^{\prime}\left(x^{*}\right)}
$$

we have

$$
\begin{align*}
e_{k+1} & \approx e_{k} e_{k-1}\left(\frac{\frac{1}{2}\left(e_{k}-e_{k-1}\right) f^{\prime \prime}\left(x^{*}\right)}{e_{k}-e_{k-1}} \cdot \frac{1}{f^{\prime}\left(x^{*}\right)}\right)=\frac{1}{2} \frac{f^{\prime \prime}\left(x^{*}\right)}{f^{\prime}\left(x^{*}\right)} e_{k} e_{k-1} \\
& \equiv C e_{k} e_{k-1} . \tag{2}
\end{align*}
$$

To estimate the convergence rate, we assume

$$
\left|e_{k+1}\right| \approx \eta\left|e_{k}\right|^{\alpha}
$$

where $\eta>0$ and $\alpha>0$ are constants, i.e.,

$$
\frac{\left|e_{k+1}\right|}{\eta\left|e_{k}\right|^{\alpha}} \rightarrow 1 \quad \text { as } \quad k \rightarrow \infty
$$

Then $\left|e_{k}\right| \approx \eta\left|e_{k-1}\right|^{\alpha}$ which implies $\left|e_{k-1}\right| \approx \eta^{-1 / \alpha}\left|e_{k}\right|^{1 / \alpha}$. Hence
(2) gives

$$
\eta\left|e_{k}\right|^{\alpha} \approx C\left|e_{k}\right| \eta^{-1 / \alpha}\left|e_{k}\right|^{1 / \alpha} \quad \Longrightarrow \quad C^{-1} \eta^{1+\frac{1}{\alpha}} \approx\left|e_{k}\right|^{1-\alpha+\frac{1}{\alpha}}
$$

Since $\left|e_{k}\right| \rightarrow 0$ as $k \rightarrow \infty$, and $C^{-1} \eta^{1+\frac{1}{\alpha}}$ is a nonzero constant,

$$
1-\alpha+\frac{1}{\alpha}=0 \quad \Longrightarrow \quad \alpha=\frac{1+\sqrt{5}}{2} \approx 1.62 .
$$

This result implies that $C^{-1} \eta^{1+\frac{1}{\alpha}} \rightarrow 1$ and

$$
\eta \rightarrow C^{\frac{\alpha}{1+\alpha}}=\left(\frac{f^{\prime \prime}\left(x^{*}\right)}{2 f^{\prime}\left(x^{*}\right)}\right)^{0.62} .
$$

In summary, we have shown that

$$
\left|e_{k+1}\right|=\eta\left|e_{k}\right|^{\alpha}, \quad \alpha \approx 1.62,
$$

that is, the rate of convergence is superlinear.

Rate of convergence

- secant method: superlinear
- Newton's method: quadratic
- bisection method: linear

Each iteration of method requires

- secant method: one function evaluation
- Newton's method: two function evaluation, namely, $f\left(x_{k}\right)$ and $f^{\prime}\left(x_{k}\right)$.
\Rightarrow two steps of secant method are comparable to one step of Newton's method. Thus

$$
\left|e_{k+2}\right| \approx \eta\left|e_{k+1}\right|^{\alpha} \approx \eta^{1+\alpha}\left|e_{k}\right|^{\frac{3+\sqrt{5}}{2}} \approx \eta^{1+\alpha}\left|e_{k}\right|^{2.62}
$$

\Rightarrow secant method is more efficient than Newton's method.

Remark

Two steps of secant method would require a little more work than one step of Newton's method.

Aitken＇s Δ^{2} method

－Accelerate the convergence of a sequence that is linearly convergent．
－Suppose $\left\{y_{n}\right\}_{n=0}^{\infty}$ is a linearly convergent sequence with limit y ．Construct a sequence $\left\{\hat{y}_{n}\right\}_{n=0}^{\infty}$ that converges more rapidly to y than $\left\{y_{n}\right\}_{n=0}^{\infty}$ ．

For n sufficiently large，

$$
\frac{y_{n+1}-y}{y_{n}-y} \approx \frac{y_{n+2}-y}{y_{n+1}-y}
$$

Then

$$
\left(y_{n+1}-y\right)^{2} \approx\left(y_{n+2}-y\right)\left(y_{n}-y\right)
$$

SO

$$
y_{n+1}^{2}-2 y_{n+1} y+y^{2} \approx y_{n+2} y_{n}-\left(y_{n+2}+y_{n}\right) y+y^{2}
$$

and

$$
\left(y_{n+2}+y_{n}-2 y_{n+1}\right) y \approx y_{n+2} y_{n}-y_{n+1}^{2} .
$$

Solving for y gives

$$
\begin{aligned}
y & \approx \frac{y_{n+2} y_{n}-y_{n+1}^{2}}{y_{n+2}-2 y_{n+1}+y_{n}} \\
& =\frac{y_{n} y_{n+2}-2 y_{n} y_{n+1}+y_{n}^{2}-y_{n}^{2}+2 y_{n} y_{n+1}-y_{n+1}^{2}}{y_{n+2}-2 y_{n+1}+y_{n}} \\
& =\frac{y_{n}\left(y_{n+2}-2 y_{n+1}+y_{n}\right)-\left(y_{n+1}-y_{n}\right)^{2}}{\left(y_{n+2}-y_{n+1}\right)-\left(y_{n+1}-y_{n}\right)} \\
& =y_{n}-\frac{\left(y_{n+1}-y_{n}\right)^{2}}{\left(y_{n+2}-y_{n+1}\right)-\left(y_{n+1}-y_{n}\right)} .
\end{aligned}
$$

Aitken's Δ^{2} method

$$
\begin{equation*}
\hat{y}_{n}=y_{n}-\frac{\left(y_{n+1}-y_{n}\right)^{2}}{\left(y_{n+2}-y_{n+1}\right)-\left(y_{n+1}-y_{n}\right)} . \tag{3}
\end{equation*}
$$

Example 17

The sequence $\left\{y_{n}=\cos (1 / n)\right\}_{n=1}^{\infty}$ converges linearly to $y=1$.

n	y_{n}	\hat{y}_{n}
1	0.54030	0.96178
2	0.87758	0.98213
3	0.94496	0.98979
4	0.96891	0.99342
5	0.98007	0.99541
6	0.98614	
7	0.98981	

- $\left\{\hat{y}_{n}\right\}_{n=1}^{\infty}$ converges more rapidly to $y=1$ than $\left\{y_{n}\right\}_{n=1}^{\infty}$.

Definition 18

For a given sequence $\left\{y_{n}\right\}_{n=0}^{\infty}$, the forward difference Δy_{n} is defined by

$$
\Delta y_{n}=y_{n+1}-y_{n}, \quad \text { for } n \geq 0 .
$$

Higher powers of Δ are defined recursively by

$$
\Delta^{k} y_{n}=\Delta\left(\Delta^{k-1} y_{n}\right), \quad \text { for } k \geq 2
$$

The definition implies that
$\Delta^{2} y_{n}=\Delta\left(y_{n+1}-y_{n}\right)=\Delta y_{n+1}-\Delta y_{n}=\left(y_{n+2}-y_{n+1}\right)-\left(y_{n+1}-y_{n}\right)$.
So the formula for \hat{y}_{n} in (3) can be written as

$$
\hat{y}_{n}=y_{n}-\frac{\left(\Delta y_{n}\right)^{2}}{\Delta^{2} y_{n}}, \quad \text { for } n \geq 0
$$

Theorem 19

Suppose $\left\{y_{n}\right\}_{n=0}^{\infty} \rightarrow y$ linearly and

$$
\lim _{n \rightarrow \infty} \frac{y_{n+1}-y}{y_{n}-y}<1
$$

Then $\left\{\hat{y}_{n}\right\}_{n=0}^{\infty} \rightarrow y$ faster than $\left\{y_{n}\right\}_{n=0}^{\infty}$ in the sense that

$$
\lim _{n \rightarrow \infty} \frac{\hat{y}_{n}-y}{y_{n}-y}=0 .
$$

- Aitken's Δ^{2} method constructs the terms in order:

$$
\begin{aligned}
& y_{0}, \quad y_{1}=g\left(y_{0}\right), \quad y_{2}=g\left(y_{1}\right), \quad \hat{y}_{0}=\left\{\Delta^{2}\right\}\left(y_{0}\right), \quad y_{3}=g\left(y_{2}\right), \\
& \hat{y}_{1}=\left\{\Delta^{2}\right\}\left(y_{1}\right), \quad \cdots \\
\Rightarrow & \text { Assume }\left|\hat{y}_{0}-y\right|<\left|y_{2}-y\right|
\end{aligned}
$$

- Steffensen's method constructs the terms in order:

$$
\begin{array}{lll}
y_{0}^{(0)} \equiv y_{0}, & y_{1}^{(0)}=g\left(y_{0}^{(0)}\right), & y_{2}^{(0)}=g\left(y_{1}^{(0)}\right), \\
y_{0}^{(1)}=\left\{\Delta^{2}\right\}\left(y_{0}^{(0)}\right), & y_{1}^{(1)}=g\left(y_{0}^{(1)}\right), & y_{2}^{(1)}=g\left(y_{1}^{(1)}\right),
\end{array}
$$

Steffensen's method (To find a solution of $y=g(y)$)

Given y_{0}, tolerance Tol, max. number of iteration M. Set $i=1$. While $i \leq M$

Set $y_{1}=g\left(y_{0}\right) ; y_{2}=g\left(y_{1}\right) ; y=y_{0}-\left(y_{1}-y_{0}\right)^{2} /\left(y_{2}-2 y_{1}+y_{0}\right)$.
If $\left|y-y_{0}\right|<T o l$, then STOP.
Set $i=i+1 ; y_{0}=y$.
End While

Theorem 20

Suppose $x=g(x)$ has solution x^{*} with $g^{\prime}\left(x^{*}\right) \neq 1$. If $\exists \delta>0$ such that $g \in C^{3}\left[x^{*}-\delta, x^{*}+\delta\right]$, then Steffensen's method gives quadratic convergence for any $x_{0} \in\left[x^{*}-\delta, x^{*}+\delta\right]$.

Zeros of polynomials and Müller's method

- Horner's method:

Let

$$
\begin{aligned}
P(x) & =a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}+a_{n} x^{n} \\
& =a_{0}+x\left(a_{1}+x\left(a_{2}+\cdots+x\left(a_{n-1}+a_{n} x\right) \cdots\right)\right)
\end{aligned}
$$

If

$$
\begin{aligned}
b_{n} & =a_{n} \\
b_{k} & =a_{k}+b_{k+1} x_{0}, \text { for } k=n-1, n-2, \ldots, 1,0
\end{aligned}
$$

then

$$
b_{0}=a_{0}+b_{1} x_{0}=a_{0}+\left(a_{1}+b_{2} x_{0}\right) x_{0}=\cdots=P\left(x_{0}\right) .
$$

Consider

$$
Q(x)=b_{1}+b_{2} x+\cdots+b_{n} x^{n-1}
$$

Then

$$
\begin{aligned}
& b_{0}+\left(x-x_{0}\right) Q(x)=b_{0}+\left(x-x_{0}\right)\left(b_{1}+b_{2} x+\cdots+b_{n} x^{n-1}\right) \\
= & \left(b_{0}-b_{1} x_{0}\right)+\left(b_{1}-b_{2} x_{0}\right) x+\cdots+\left(b_{n-1}-b_{n} x_{0}\right) x^{n-1}+b_{n} x^{n} \\
= & a_{0}+a_{1} x+\cdots+a_{n} x^{n}=P(x)
\end{aligned}
$$

Differentiating $P(x)$ with respect to x gives

$$
P^{\prime}(x)=Q(x)+\left(x-x_{0}\right) Q^{\prime}(x) \quad \text { and } \quad P^{\prime}\left(x_{0}\right)=Q\left(x_{0}\right) .
$$

Use Newton-Raphson method to find an approximate zero of $P(x)$:

$$
x_{k+1}=x_{k}-\frac{P\left(x_{k}\right)}{Q\left(x_{k}\right)}, \forall k=0,1,2, \ldots
$$

Similarly, let

$$
\begin{aligned}
c_{n} & =b_{n}=a_{n} \\
c_{k} & =b_{k}+c_{k+1} x_{k}, \text { for } k=n-1, n-2, \ldots, 1
\end{aligned}
$$

then $c_{1}=Q\left(x_{k}\right)$.

Horner's method

$$
\begin{aligned}
& \text { Set } y=a_{n} ; z=a_{n} . \\
& \text { For } j=n-1, n-2, \ldots, 1 \\
& \quad \text { Set } y=a_{j}+y x_{0} ; z=y+z x_{0} . \\
& \text { End for } \\
& \text { Set } y=a_{0}+y x_{0} .
\end{aligned}
$$

If x_{N} is an approximate zero of P, then

$$
\begin{aligned}
P(x) & =\left(x-x_{N}\right) Q(x)+b_{0}=\left(x-x_{N}\right) Q(x)+P\left(x_{N}\right) \\
& \approx\left(x-x_{N}\right) Q(x) \equiv\left(x-\hat{x}_{1}\right) Q_{1}(x) .
\end{aligned}
$$

So $x-\hat{x}_{1}$ is an approximate factor of $P(x)$ and we can find a second approximate zero of P by applying Newton's method to $Q_{1}(x)$. The procedure is called deflation.

- Müller's method for complex root:

Theorem 21

If $z=a+i b$ is a complex zero of multiplicity m of $P(x)$ with real coefficients, then $\bar{z}=a-b i$ is also a zero of multiplicity m of $P(x)$ and $\left(x^{2}-2 a x+a^{2}+b^{2}\right)^{m}$ is a factor of $P(x)$.

Secant method: Given p_{0} and p_{1}, determine p_{2} as the intersection of the x-axis with the line through $\left(p_{0}, f\left(p_{0}\right)\right)$ and $\left(p_{1}, f\left(p_{1}\right)\right)$.

Müller's method: Given p_{0}, p_{1} and p_{2}, determine p_{3} by the intersection of the x-axis with the parabola through $\left(p_{0}, f\left(p_{0}\right)\right)$, $\left(p_{1}, f\left(p_{1}\right)\right)$ and $\left(p_{2}, f\left(p_{2}\right)\right)$.

Let

$$
P(x)=a\left(x-p_{2}\right)^{2}+b\left(x-p_{2}\right)+c
$$

that passes through $\left(p_{0}, f\left(p_{0}\right)\right),\left(p_{1}, f\left(p_{1}\right)\right)$ and $\left(p_{2}, f\left(p_{2}\right)\right)$. Then

$$
\begin{aligned}
f\left(p_{0}\right) & =a\left(p_{0}-p_{2}\right)^{2}+b\left(p_{0}-p_{2}\right)+c, \\
f\left(p_{1}\right) & =a\left(p_{1}-p_{2}\right)^{2}+b\left(p_{1}-p_{2}\right)+c, \\
f\left(p_{2}\right) & =a\left(p_{2}-p_{2}\right)^{2}+b\left(p_{2}-p_{2}\right)+c=c .
\end{aligned}
$$

It implies that

$$
\begin{aligned}
c & =f\left(p_{2}\right), \\
b & =\frac{\left(p_{0}-p_{2}\right)^{2}\left[f\left(p_{1}\right)-f\left(p_{2}\right)\right]-\left(p_{1}-p_{2}\right)^{2}\left[f\left(p_{0}\right)-f\left(p_{2}\right)\right]}{\left(p_{0}-p_{2}\right)\left(p_{1}-p_{2}\right)\left(p_{0}-p_{1}\right)}, \\
a & =\frac{\left(p_{1}-p_{2}\right)\left[f\left(p_{0}\right)-f\left(p_{2}\right)\right]-\left(p_{0}-p_{2}\right)\left[f\left(p_{1}\right)-f\left(p_{2}\right)\right]}{\left(p_{0}-p_{2}\right)\left(p_{1}-p_{2}\right)\left(p_{0}-p_{1}\right)} .
\end{aligned}
$$

To determine p_{3}, a zero of P, we apply the quadratic formula to $P(x)=0$ and get

$$
p_{3}-p_{2}=\frac{2 c}{b \pm \sqrt{b^{2}-4 a c}}
$$

Choose

$$
p_{3}=p_{2}+\frac{2 c}{b+\operatorname{sgn}(b) \sqrt{b^{2}-4 a c}}
$$

such that the denominator will be largest and result in p_{3} selected as the closest zero of P to p_{2}.

Müller's method (Find a solution of $f(x)=0$)

Given p_{0}, p_{1}, p_{2}; tolerance $T O L$; maximum number of iterations M Set $h_{1}=p_{1}-p_{0} ; h_{2}=p_{2}-p_{1}$;
$\delta_{1}=\left(f\left(p_{1}\right)-f\left(p_{0}\right)\right) / h_{1} ; \delta_{2}=\left(f\left(p_{2}\right)-f\left(p_{1}\right)\right) / h_{2}$;
$d=\left(\delta_{2}-\delta_{1}\right) /\left(h_{2}+h_{1}\right) ; i=3$.
While $i \leq M$
Set $b=\delta_{2}+h_{2} d ; D=\sqrt{b^{2}-4 f\left(p_{2}\right) d}$.
If $|b-D|<|b+D|$, then set $E=b+D$ else set $E=b-D$.
Set $h=-2 f\left(p_{2}\right) / E ; p=p_{2}+h$.
If $|h|<T O L$, then STOP.
Set $p_{0}=p_{1} ; p_{1}=p_{2} ; p_{2}=p ; h_{1}=p_{1}-p_{0} ; h_{2}=p_{2}-p_{1}$;

$$
\begin{aligned}
& \delta_{1}=\left(f\left(p_{1}\right)-f\left(p_{0}\right)\right) / h_{1} ; \delta_{2}=\left(f\left(p_{2}\right)-f\left(p_{1}\right)\right) / h_{2} ; \\
& d=\left(\delta_{2}-\delta_{1}\right) /\left(h_{2}+h_{1}\right) ; i=i+1 .
\end{aligned}
$$

End while

