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Bisection

Bisection Method

If f(z) € Cla,b] and f(a)f(b) < 0, then 3 ¢ € (a, b) such that
f(e) =0.
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Bisection

Bisection method algorithm

Given f(z) defined on (a, b), the maximal number of iterations
M, and stop criteria 6 and ¢, this algorithm tries to locate one
root of f(x).

Compute u = f(a), v = f(b),ande=b—a
If sign(u) = sign(v), then stop
Fork=1,2,.... M
e=e/2,c=a+e w= f(c)
If e] <0 or |w| < ¢, then stop
If sign(w) # sign(u)
b=c,v=w
Else
a=cu=w
End If
End For




Let {¢,,} be the sequence of numbers produced. The algorithm
should stop if one of the following conditions is satisfied.

@ the iteration number k& > M,
Q [cp — 1| <4, 0r
Q |f(x)l <e.

Let [ag, bo], [a1, b1], . . . denote the successive intervals produced
by the bisection algorithm. Then

a=ag<a;<ay<---<by=0b
= {an} and {b,} are bounded
= lim a, and lim b, exist

n—oo n—oo



Since
1
b1—a1 = 5(()0—&0)
1 1
by —az = 5(51—01):1(50—610)
1
bn—an = 2n(b0—a0)
hence

1
lim b, — lim a, = lim (b, — a,) = lim 27(130 —ap) = 0.

Therefore

lim a, = lim b, = z.
n—oo n—oo

Since f is a continuous function, we have that
lim f(a,) = f(lim a,) = f(z) and lim f(b,) = f( lim b,) = f(z
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On the other hand,

flan)f(bn) <0
= lim f(a,)f(by) = f2(z) <0

n—oo

= f(2)=0

Therefore, the limit of the sequences {a,} and {b,,} is a zero of
fin[a,b]. Let ¢, = L(an +by,). Then

. 1
|z —cn] = }hm anff(anern)’
n—oo 2

Ly, Lr..
= [y [Jim o= b+ 5 [Jim e = o]

< max{‘nlirgoan — bn},

lim a, — an‘}
n—oo

IN

1
|bn — an| = 27|b0 — CLQ‘.

This proves the following theorem.



Bisection

Theorem 1

Let {|ay,b,]} denote the intervals produced by the bisection
algorithm. Then lim a, and lim b, exist, are equal, and

n—o0 n—oo

represent a zero of f(x). If

n—oo

1
z = lim a, = hm b, and ¢, = i(an + by),
n—

then

1
|z —cn| < o0 (bo — ao) -

{¢, } converges to = with the rate of O(27").




How many steps should be taken to compute a root of
f(z) = 23 + 42% — 10 = 0 on [1, 2] with relative error 1073?

solution: Seek an n such that

|z — ¢
|2|

Since z € [1,2], it is sufficient to show

<1073 = |z —cn| < 2| x 1073,

|2 — ¢ <1073,
That is, we solve
27"(2-1) <1073 = —nlogp2< -3

which gives n > 10. [ |



Fixed-Point Iteration

Fixed-Point Iteration

Definition 3
x is called a fixed point of a given function f if f(x) = =.

Root-finding problems and fixed-point problems

@ Find z* such that f(z*) = 0.
Let g(x) =z — f(x). Then g(z*) = 2™ — f(a*) = x*.
= z* is a fixed point for g(z).

@ Find z* such that g(z*) = z*.
Define f(z) = z — g(z) so that
fl@*)=a*—g(a*)=a*—2*=0
= z* is a zero of f(z).
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Fixed-Point Iteration

Example 4

The function g(z) = 22 — 2, for —2 < z < 3, has fixed points at
x = —1and z = 2 since

g(-1)=(-1)2-2=-1 and g(2)=2>-2=2.

_\::,\l_z

e S R NV S
t—t—t—+——+—
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Fixed-Point Iteration

Theorem 5 (Existence and uniqueness)

Q /fg e Cla,b] suchthata < g(x) < b forall z € [a,b], then g

has a fixed point in [a, b].

Q /f, in addition, ¢'(x) exists in (a,b) and there exists a
positive constant M < 1 such that |¢'(x)| < M < 1 for all
x € (a,b). Then the fixed point is unique.

r=3gp) T
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Fixed-Point Iteration

Proof
Existence:
@ If g(a) = aor g(b) = b, then a or b is a fixed point of g and
we are done.

@ Otherwise, it must be g(a) > a and g(b) < b. The function
h(z) = g(z) — x is continuous on [a, b], with

h(a) =g(a) —a >0 and h(b) = g(b) —b < 0.

By the Intermediate Value Theorem, 3 z* € [a, b] such that
h(z*) = 0. That is

glz*) —a* =0 = g(z¥) =z".
Hence ¢ has a fixed point z* in [a, b].
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Fixed-Point Iteration

Proof

Uniqueness:
Suppose that p # ¢ are both fixed points of g in [a, b]. By the
Mean-Value theorem, there exists ¢ between p and ¢ such that

J(€) = 9w) —9@) _p—a_,
pP—q p—q

However, this contradicts to the assumption that
l¢'(x)] < M < 1forall zin [a,b]. Therefore the fixed point of ¢ is
unique. [ |
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Fixed-Point Iteration

Example 6
Show that the following function has a unique fixed point.

g(z) = (22 -1)/3, ze€[-1,1].

Solution: The Extreme Value Theorem implies that

1
Lnin 9(@) =9(0) = =3,
max g(z) = g(xl) =0.

ze[-1,1]

Thatis g(z) € [-1,1], Vx € [-1,1].
Moreover, g is continuous and

2x

2
S1<5 Yee(-1),

g’ ()| =

By above theorem, g has a unique fixed point in [—1, 1].
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Fixed-Point Iteration

Let p be such unique fixed point of g. Then

2
p°—1
p=9p)="5— = p*=3p—1=0
1
|
34 i 33+ Vvi3).5(3+ VD))
N 12 3 4 g
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Fixed-Point Iteration

Fixed-point iteration or functional iteration

Given a continuous function g, choose an initial point xy and
generate {z;};2, by

Tpr1 = g(xg), k>0.

{z.} may not converge, e.g., g(x) = 3z. However, when the
sequence converges, say,

lim z, = z*
k—o0

then, since g is continuous,

g(z*) = g(lim zy) = hm g(xk) = hm Tppp ="

k—o0

That is, z* is a fixed point of g.
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Fixed-Point Iteration

Fixed-point iteration

Given g, tolerance TOL, maximum number of iteration M.

Seti=1and z = g(zo).

While i < M and |x — zo| > TOL
Seti=1i+1,z90 =z and x = g(zo).

End While
4
y y=x y y=x
(P2 p3) y=8w
(p1, P2) p3 = 8(p2)
P2 = 8(p) (P2 P P2 =8(p) (a2
Py = 8(p) (Por )
P = 8(poy) 20 p) (P, P1) P =8(po) (200
y =28
Py P3 P2 Po X Po P P> ¢
(a) (b)
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Fixed-Point Iteration

Example 7

The equation
23+ 422 —-10=0

has a unique root in [1, 2]. Change the equation to the
fixed-point form = = g(z).

(b) z = galw) = (L2 — 4z)"/* J

22 =10 — 42% = :UQ:—O—4:U = x:i<_4$>
T x
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Fixed-Point Iteration

(©) = = gs(x) = 3 (10— 23" |

10 1/2
2(x+4)=1 = x:j:< >

3 @__
(€) z = gs(x) = v — T80 )

20/ GR



Fixed-Point Iteration

Results of the fixed-point iteration with initial point o = 1.5 J
n @ ® © @) ©)
0 1.5 L.5 1.5 1.5 1.5
1 —0.875 0.8165 1.286953768 1.348399725 1.373333333
2 6.732 2.9969 1.402540804 1.367376372 1.365262015
3 —469.7 (—8.65)12 1.345458374 1.364957015 1.365230014
4 1.03 x 10® 1.375170253 1.365264748 1.365230013
5 1.360094193 1.365225594
6 1.367846968 1.365230576
7 1.363887004 1.365229942
8 1.365916734 1.365230022
9 1.364878217 1.365230012
10 1.365410062 1.365230014
I5 1.365223680 1.365230013
20 1.365230236
25 1.365230006
30 1.365230013
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Fixed-Point Iteration

Theorem 8 (Fixed-point Theorem)

Let g € [a,b] be such that g(x) € [a,b] for all x € [a,b]. Suppose
that ¢’ exists on (a,b) and that 3 k with 0 < k < 1 such that

g’ (x)| <k, V2 € (a,b).
Then, for any number x in [a, b],
Tn = 9g(@n-1), n > 1,

converges to the unique fixed point z in [a, b].
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Fixed-Point Iteration

Proof: By the assumptions, a unique fixed point exists in [a, b].
Since g([a,b]) C [a,b], {zn}22, is defined and z,, € [a, b] for all
n > 0. Using the Mean Values Theorem and the fact that
lg'(z)| < k, we have
|z — 2| = [g(zn-1) — 9(2)] = |g'(&n)l|2 — n-1] < klz — 201l
where &, € (a,b). It follows that

2y — x| <klz, 1 — x| <E}ap o —x| < - <E"zg—2z. (1)
Since 0 < k < 1, we have

lim " =0
n—oo

and

lim |z, —z| < lim k"|zo — x| = 0.
n—oo n—oo

Hence, {z,}72, converges to z. [ |
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Fixed-Point Iteration

Corollary 9
If g satisfies the hypotheses of above theorem, then

|z — zp| < k" max{xg — a,b — xo}

and

n

k
1-k

|zn, — x| < |z1 — xo|, V7 > 1.

Proof: From (1),
|zy — x| < k" |xo — 2| < K" max{zg — a,b— xo}.
For n > 1, using the Mean Values Theorem,
(@1 — Tal = |9(@n) — 9(@n-1)| < Flan — Taoa] < - < k21 ~agl.
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Fixed-Point Iteration

Thus, form >n > 1,

‘wm_xn| = |5L'm_xm71+xm71_"'+$n+1_xn|
< |$m - $m71| + |xm71 - $m72| + et |$n+1 - :En|
< k‘m_1|ZE1—$0|+k‘m_2|$1—l’o’—|—-'-—|—k‘n|l‘1—l’0‘

- kn|l‘1*xo\(1+k+k2+...+km—n—1)'

It implies that
m—n—1 .
lt — 2z, = lim |2, — 2, < lim £"|z; — 20 Z K’
m—00 m—00
j=0
S ]C “Tl *CCQ|ZI€J |SC1 *:E0|
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Fixed-Point Iteration

Example 10
For previous example,

f(z) =23+ 42° — 10 =0.

For g1(x) = z — 23 — 422 + 10, we have
gi1(1)=6 and ¢i(2) = —12,
so ¢1([1,2]) € [1,2]. Moreover,

gix)=1-322 -8z = |¢i(z)|>1Vzell,2]

e DOES NOT guarantee to converge or not

2% / BR



Fixed-Point Iteration

For gs(z) = $(10 — 2%)Y/2, V z € [1, 1.5,
ghy(x) = —S22(10— 2312 <0, V2 € [1,1.5],
so g3 is strictly decreasing on [1, 1.5] and
1 <1.28 ~ g3(1.5) < g3(z) < g3(1) = 1.5, Vz € [1,1.5].
On the other hand,

1g5(2)| < |g4(1.5)] ~ 0.66, ¥ z € [1,1.5].

Hence, the sequence is convergent to the fixed point.
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Fixed-Point Iteration

For ga(x) = 1/10/(4 + x), we have

\/1? < gu(z) < \/1;0, Vee([l,2] = g4([1,2]) C[1,2]

Moreover,

<0.15, Vz € [1,2].

\’<x>r—\ R P
SN =0+ 232 | = VIo(5)3/2

The bound of |g)(z)| is much smaller than the bound of |g5(x),
which explains the more rapid convergence using g4.
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Newton’s method

Suppose that f : R — R and f € C?[a,b], i.e., f" exists and is
continuous. If f(z*) = 0 and z* = x + h where h is small, then
by Taylor’'s theorem

0=f(z") flz+h)
fl@)+ fl(@)h+ 5 f”( IR+ o
flx) + («)h+0(h )-

Since h is small, O(h?) is negligible. It is reasonable to drop
O(h?) terms. This implies

S+

fla)+ F@h~0 and b L i () £ 0
Hence ‘o
r+h=x— )

is a better approximation to z*.
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Newton’s method

This sets the stage for the Newton-Rapbson’s method, which
starts with an initial approximation z( and generates the
sequence {z,} >, defined by

f(an)
f'an)
(z

) at xy, is given by

Tn+l = Tp —
Since the Taylor’'s expansion of f

Fl) = o) + /(@) o = g) + 5 7o) — )+
At z;, one uses the tangent line
y=4L(x) = f(x) + f(x)(x — 21)

to approximate the curve of f(x) and uses the zero of the
tangent line to approximate the zero of f(x).

20/ GR



Newton’s method

Newton’s Method

Given zg, tolerance TOL, maximum number of iteration M.
Seti=1and x = x¢ — f(x0)/f (x0)-
While i < M and |z — 29| > TOL
Seti=i+1,xz0=xand z = xz¢ — f(z0)/f (z0)-
End While

Slope f'(p;) y =f(x)

(P flp)

Slope f'(py)

4 x
o f(0o)

_—-s
=
i
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Newton’s method

Three stopping-technique inequalities

(@). |zn—zpn_1| <e,

(b). W <e, an#£0,

(©). [f(zn)] <e.

Note that Newton’s method for solving f(z) =0

f(zn)

Tptl = Tp — F(wn) for n>1
n

is just a special case of functional iteration in which

@
M= iy

29 AR



Newton’s method

The following table shows the convergence behavior of
Newton’s method applied to solving f(z) = 2 — 1 = 0. Observe
the quadratic convergence rate.

n | xn len| = |1 — 24
0|20 1

111.25 0.25

2 | 1.025 2.5e-2

3 | 1.0003048780488 | 3.048780488e-4
4 | 1.0000000464611 | 4.64611e-8
511.0 0
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Newton’s method

Theorem 12

Assume f(z*) =0, f'(z*) #0and f(z), f'(x) and f"(x) are
continuous on N.(x*). Then if xo is chosen sufficiently close to

z*, then
o f(zn) %
{'”"“ T T P ) T

@
9=y

Find an interval [z* — §, 2* + ¢] such that
g([z* —6,2" +0]) C [z" — 6, 2" + 4]

Proof: Define

and
Il (x)]| <k <1, Vae (a*—58a*+9).
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Newton’s method

Since f’ is continuous and f'(z*) # 0, it implies that 3 §; > 0
such that f/'(z) #0V x € [z* — §1,2* + 61] C [a, b]. Thus, g is
defined and continuous on [z* — §1, 2™ + 01]. Also
/ @) f' (@) — f(@)f"(x) _ fl2)f"(z)
g(z)=1- 12 = N2
[f'(@)] [/ ()]

for x € [#* — 1, 2* + 61]. Since f” is continuous on [a, b], we
have ¢’ is continuous on [z* — 61, z* + d1].
By assumption f(z*) =0, so

f@)f" (=)
[f' ()2

Since ¢’ is continuous on [z* — §1,2* 4+ ¢;] and ¢'(z*) = 0,3 4§
with 0 < 6 < §; and k € (0, 1) such that

J(a") = ~o.

g ()| <k, Vazel[zr—§z*+7]
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Newton’s method

Claim: g([z* — 6,2 + §]) C [z* — 9, 2% + 4].
If 2 € [z* — 0, 2* 4 ¢], then, by the Mean Value Theorem, 3 ¢
between x and z* such that

l9(z) — g(a™)| = |g"(O)llz — 27|.
It implies that

l9(x) — g(")| = |g"()x — 27|
< klz -2t < |z -2 <4

lg(x) — 27|

Hence, g([z* — §,2* + §]) C [x* — 0, 2™ + J].
By the Fixed-Point Theorem, the sequence {z,,}3° , defined by

Ln = g(xn—l) = Tp-1 — m, for n > 1,
n—

converges to z* for any zp € [z* — 6, 2" + 4. [ |
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Newton’s method

When Newton’s method applied to f(x) = cos = with starting
point 2o = 3, which is close to the root 7 of f, it produces
x1 = —4.01525, 20 = —4.8526, - - - , which converges to another

y = cos(x)

27 /AR



Newton’s method

Secant method

Disadvantage of Newton’s method

In many applications, the derivative f’(z) is very expensive to
compute, or the function f(x) is not given in an algebraic
formula so that f/(x) is not available.

By definition,
f(x) = flan-1)

f'(xn-1) = lim .
T—Tn1 T — Ty

Letting = x,,—2, we have

Flwn) ~ f(@n2) = f@n) _ f(wn1) = f(@n2)

Ip—2 — Tp—1 Tp—1 — Tp—2

Using this approximation for f’(x,—1) in Newton’s formula gives

f(mn—l)(xn—l - In—Z)

f(:L'n—1> - f(.’L'n,_Q) ' 24 TRe

Lp = Tp—-1 —



Newton’s method

From geometric point of view, we use a secant line through
r,—1 and x,,_o instead of the tangent line to approximate the
function at the point z,,_;.

The slope of the secant line is

f(@n—1) = f(xn_2)

Tp—1 — Tp—2

Spn—1 =

and the equation is
M(z) = f(zn-1) + Sn—1(x — xp_1).

The zero of the secant line

_ f(l‘nfl) - . Tn—-1 — Tn-2
T = Tp-1— Sh1 = Tn-1 f(xn_l)f(.fnfl) _ f(l'n—Q)

is then used as a new approximate z,,.
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Newton’s method

Secant Method

Given zg, x1, tolerance TOL, maximum number of iteration M.
Seti=2;y0 = f(zo);y1 = f(z1);
r =1 — y1(z1 — 20)/(Y1 — Yo)-
While i < M and |x — z1| > TOL
Seti=1i+ 1,20 =21;90 = y1;21 = ;91 = f();
= x1 —y1(r1 — 20)/(y1 — Yo)-
End While

y=rx
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Newton’s method

Method of False Position J

@ Choose initial approximations xy and x; with
f(xo) f(z1) <0.
Q 2 =21 — fla1) (21 — 20)/(f(21) — f(20))
© Decide which secant line to use to compute z3:
If f(x2)f(z1) <0, then z; and z, bracket a root, i.e.,

3 = 22 — f(22)(22 — 21)/(f(22) — f(21))
Else, x¢ and x5 bracket a root, i.e.,

x3 = x3 — f(x2)(x2 — x0)/(f(x2) — f(20))
End if

a1 / 6R



Newton’s method

Method of False Position

Given zq, z1, tolerance TOL, maximum number of iteration M.
Seti = 2;yo = f(wo);y1 = f(21); = z1 — y1(z1 — 20) /(Y1 — Yo)-
While i < M and |z — 21| > TOL

Seti=i+1;y= f(x).

If y-y1 <0, thenset xg = z1;y0 = y1.

Set 21 = z;y1 = y; © = 21 — y1(z1 — 20)/(y1 — vo)-
End While

YA
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Error analysis

Error analysis for iterative methods

Definition 14

Let {z,,} — «*. If there are positive constants ¢ and « such that

ey __ m*
lim ‘«L'n,-l-l € | .

» % 1
n—oo |x, — *|@

then we say the rate of convergence is of order «.

We say that the rate of convergence is
@ linearifa=1land0<c< 1.
Q superlinear if

I |Tn 1 — x|
im ——————

n—o00 |$n — :p*‘

= 0;

O aiiadraticif 4 — 9 s



Error analysis

Suppose that {z,}2°, and {z,}>2, are linearly and
quadratically convergent to =*, respectively, with the same
constant ¢ = 0.5. For simplicity, suppose that

’T;:l__xfﬁ ~c¢ and ’fg:i;i;' ~ c.
These imply that
|Tn — 2% & c|zp_1 — 2| = Plap_o — 2|~ - & Mz — 2,
and
|Zn — 2% =~ i1 —z*]Pxc c|&n—2 — x*|2}2 = 3| Zp_o —z*|!

Q

~ 4 ~
3 [C|xn,3 - :c*|2] = c7|xn,3 - ZL‘*|8

P C2nfl|§:0 . l,*’2"'
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Error analysis

Quadratically convergent sequences generally converge much
more quickly thank those that converge only linearly.

Theorem 15
Let g € Cla,b] with g([a,b]) C [a,b]. Suppose that ¢’ is
continuous on (a,b) and 3 k € (0,1) such that

lg (x)| <k, ¥z € (a,b).
If g'(x*) # 0, then for any x € [a,b], the sequence

T = g(xpn—1), for n>1

converges only linearly to the unique fixed point z* in [a, b].
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Error analysis

Proof:
@ By the Fixed-Point Theorem, the sequence {x, }>>,
converges to z*.
@ Since ¢’ exists on (a,b), by the Mean Value Theorem, 3 ¢,
between z,, and z* such that

Tpy1 — " = g(an) — 9(z") = ¢' (&) (20 — 27).
@ Az}, — a2t = {10, —
@ Since ¢’ is continuous on (a, b), we have
lim g'(¢n) = ¢'(2").
@ Thus,

. |[Zn+1 — 27| o ! ok
Jim Tow—a] Jim {g"(&)] = g (z7)]-
Hence, if ¢'(2*) # 0, fixed-point iteration exhibits linear
convergence. [ |

46 / BR



Error analysis

Theorem 16

Let z* be a fixed point of g and I be an open interval with
x* € I. Suppose that ¢'(x*) = 0 and ¢" is continuous with

lg"(z)] < M, Vxecl.
Then 3 6 > 0 such that
{zn = g($n—1)}701021 — z* for o € [l’* = (5,(13* + 5]

at least quadratically. Moreover,

M ..
[Tns1 = 2" < Z-lan = x*|?, for sufficiently large n.
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Error analysis

Proof:
@ Since ¢/(z*) = 0 and ¢ is continuous on I, 3 ¢ such that
[z* —6,2" + ] C I and

lJ(z)| <k<1,Vaxez"—3dz"+4].

@ In the proof of the convergence for Newton’s method, we
have

{xn}pzy C [z* — 0,2 + 4]

@ Consider the Taylor expansion of g(x,) at =*

rnir = () = 96+ @ an o) + LD (-
_ ., 99 ]
= x +T(9€n*$ )2,

where ¢ lies between z,, and z*.
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Error analysis

@ Since
lJ(z)] <k<1,Vae[z*—d2"+]
and
g([z* —0,2" +]) C [x* — 0, 2" + ],

it follows that {x,,}5° , converges to z*.

@ But &, is between z,, and z* for each n, so {¢,}72, also
converges to z* and
[T — 2| _ |g"(a")] _ M

li = < —.
R0 |z, — x*|? 2 2

@ It implies that {z,,}°2, is quadratically convergent to z* if
g"(z*) # 0 and

M -
|Tni1 — %] < < len — z*|?, for sufficiently large n. M
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Error analysis

For Newton’s method,

F@) | iy S F@@) @) @)

A= TP @R T (@)

It follows that ¢’(z*) = 0. Hence Newton’s method is locally
quadratically convergent.

BN /AR



Error analysis

Error Analysis of Secant Method

Reference: D. Kincaid and W. Cheney, "Numerical analysis”
Let 2* denote the exact solution of f(z) =0, e, = x, — =* be
the error at the k-th step. Then

€k+1 = Tk+1 —z*
= T — J & Tk = Tk—1 — p*
= x— f( k)f(ﬂfk)—f(:rk_l)
1 . )
= T = e = e @) = @ = 2 )
1

T Jme ) ) @)

(elkf(xk‘) - ekl_lf(xk—l) T — Th—_1 >
= €k€k—1

Tk — Th—1 ' flzg) — fzr-1)
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Error analysis

: o flan) = o= flzn-1)
To estimate the numerator =~ L , we apply

Tp—Tk—1
Taylor's Theorem

Fla) = F@* + ex) = F@) + F@)ex + 57 (0)e +O(ed),
to get

L f(an) = @) + L@ )en + O(e).
(7 2

Similarly,

Flais) = £/ + 37" @ e + O ).
€k—1

Hence
1 1 1 .
— f(xp) — — fop—1) = S (e — ep—1) f" (27).
€k €L—1 2
Since z, — xp_1 = e, — ex_1 and
T — Tl—1 1

flan) = fan)  fi(@)
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Error analysis

we have

€Lk+1 ~

(§<ek—ek1>f"<x*> 1 )_1f”<x*>
€kCk—1 : ==

€L — ep—1 f'(z*) 2 f(x*) k-1

= Cepep_1- (2)
To estimate the convergence rate, we assume
|€k+1| ~ n‘ek’av
where > 0 and « > 0 are constants, i.e.,

’€k+1’

—1 as k— oo.
nlex|®

Then |ex| =~ n|er—1|* which implies |ex_1| =~ n~/%|e,|'/*. Hence
(2) gives

1
ﬂ‘ek\a ~ C|€k‘n71/a’€k|1/a — C n e & ’ek
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Error analysis

. 1.
Since |ex| — 0 as k — oo, and C~'n'* = is a nonzero constant,

1+5

~ 1.62.
2

1
l-a+—-—=0 = a=
o

This result implies that C—1n'* — 1 and

~ 1;% B f”(l'*) )0.62
- = (fg)

In summary, we have shown that

|€k+l‘ - 7]|€/€|G7 Q= 162/

that is, the rate of convergence is superlinear.

Rate of convergence

@ secant method: superlinear
@ Newton’s method: quadratic
@ bisection method: linear
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Error analysis

Each iteration of method requires
@ secant method: one function evaluation
@ Newton’s method: two function evaluation, namely, f(x)
and f'(zg).
= two steps of secant method are comparable to one step of
Newton’s method. Thus

3+vV5
lexto| ~ nlekr1]|® = 0"t ey| 2

~ 771+o<|€k|2.62‘

= secant method is more efficient than Newton’s method.

Two steps of secant method would require a little more work
than one step of Newton’s method.
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Accelerating convergence

Aitken’s A2 method

@ Accelerate the convergence of a sequence that is linearly
convergent.

@ Suppose {y,}°2, is a linearly convergent sequence with

n=0

limit y. Construct a sequence {y,}>2, that converges more
rapidly to y than {y,}>2,.

For n sufficiently large,

Yn+1 —Y _ Ynt2 — Y
Yn — Y Yn+1 — Y

Then

(Ynr1 = 9)* ~ (Ynt2 = ¥)(n — ),

Y21 = 2Unt1y + Y° R YntoYn — Unt2 + yn)y + ¥
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Accelerating convergence

and

(yn+2 + Yn — 2yn+1)y N Yn+2Yn — y721+1'
Solving for y gives

Yn+2Yn — y?ﬁ-l
Yn+2 — 2Yn+1 + Yn
YnYn+2 = 2YnYnt1 + Yn — Yn T 2Yn¥nt1 — Ynia
Yn+2 — 2Yn+1 + Yn
Yn(Yn+2 — 2Unt1 + Yn) — (Yni1 — yn)Q
(Yn+2 = Yn+1) — (Ynt1 — Yn)
(Yn+1 — yn)2
(Yn+2 — Ynt1) — Yns1 — yn)

Q

Y

= Yn—

Aitken’s A2 method
2
~ (yn+1 y'n) (3)

Jn = Yn — :
T (Yng2 — Ynt1) — (Ynt1 — Yn)

B7 /6K



Accelerating convergence

The sequence {y, = cos(1/n)}2, converges linearly to y = 1.

Yn Un
0.54030 0.96178
0.87758 0.98213
0.94496 0.98979
0.96891 0.99342
0.98007 0.99541
0.98614
0.98981

N O U W =3

@ {yn}>2, converges more rapidly to y = 1 than {y,}>2,.
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Accelerating convergence

Definition 18

For a given sequence {y, }°°, the forward difference Ay, is
defined by

Ayn = Yn+1 — Yn, for n > 0.

Higher powers of A are defined recursively by

AFy, = A(A*Yy,), for k> 2.

The definition implies that

A Yn = A(yn—i-l ) Ayn—H Ayn = (yn—i-2 - yn+1) — (yn—i-l — yn)-

So the formula for g, in (3) can be written as

N (Ayn)2

Un = Yn Az, for n > 0.
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Accelerating convergence

Theorem 19

Suppose {y,}°>, — y linearly and

lim Ynt17Y

n—oo Yn — Y

< 1.

Then {y,}5°, — y faster than {y, }>2, in the sense that

li gn -y
1m

n—=o Yp — Y

=0.

@ Aitken’s A% method constructs the terms in order:

yo, y1=9wo), v2=gn), Go=1{A%(w), v3=g(),
o1 = {A% (1),

= Assume |ijo — y| < |y2 — ¥
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Accelerating convergence

@ Steffensen’s method constructs the terms in order:

y\? = g0, 29 = g™, o = g,

(1)—{A2}( N,y =gy, ) =gV,

Steffensen’s method (To find a solution of y = g(y))

Given v, tolerance Tol, max. number of iteration M. Seti = 1.

While : < M
Sety1 = g(yo); v2 = 9(1); ¥ = o — (y1 — v0)*/ (y2 — 2y1 + Vo).
If |y — yo| < Tol, then STOP.
Seti=i+1;y0=1y.

End While

Theorem 20

Suppose x = g(x) has solution x* with ¢'(z*) # 1. If3§ > 0
such that g € C3[z* — §,x* + §], then Steffensen’s method gives
quadratic convergence for any xg € [z* — 0, z* + §].
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Zeros of polynomials

Zeros of polynomials and Muller’s method

e Horner’s method:

Let
P(z) = ag+ a1z +agr’+ -+ ap_12" L+ apa”
= aot+z(ar+z(ag+- - +x(ap_—1+anx)---)).
If
b, = ap,
b = ag+brriwe, for k=n—-1,n-2,...,1,0,
then
bo = ag + bixo = ag + (a1 + baxo) xo = - -+ = P(xo).
Consider

Q(x) =by +box + -+ bzt
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Zeros of polynomials

Then
bo + (x — 20)Q(z) = by + (z — m) (b1 + boz + -+ + bpz™ 1)
= (b — bizo) + (b1 — bozg)x + - - + (by1 — bpxg)z™ L + bpa™
= at+ar+---+az" = P(x).
Differentiating P(x) with respect to z gives
P'(z) =Q(z) + (x —x0)Q'(z) and P'(z0) = Qo).
Use Newton-Raphson method to find an approximate zero of

P(z):
P(x
Th1 = Tp — QE;}:; Vk=0,1,2,....
Similarly, let
Ch = bn:aTu
c, = by +crpr1zk, for k=n—-1,n-2,...,1,

then ¢y = Q(xk)
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Zeros of polynomials

Horner’s method

Sety = ay; 2 = ay.
Forj=n—1n-2,...,1

Sety = a; + yxo; 2 = y + 2xo.
End for
Set y = ap + yxo.

If xx is an approximate zero of P, then
P(z) = (z—2n)Q(z)+by = (z—2n)Q(z) + P(zn)
~ (2 —an)Q) = (z — 21)Q1(2).

So = — 1 is an approximate factor of P(z) and we can find a
second approximate zero of P by applying Newton’s method to
Q1(z). The procedure is called deflation.
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Zeros of polynomials

¢ MUller's method for complex root:

If z = a +ib is a complex zero of multiplicity m of P(x) with real
coefficients, then z = a — bi is also a zero of multiplicity m of
P(z) and (2% — 2az + a® + b*)™ is a factor of P(z).

Secant method: Given py and Miiller's method: Given pg, p;
p1, determine p, as the and po, determine p3 by the
intersection of the z-axis with intersection of the z-axis with
the line through (po, f(po)) and the parabola through (po, f(po)),
(p1, f(p1))- (p1, f(p1)) and (pz, f(p2)).

y

+
2 X t t +—t
Po P ? I’\\ *
f
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Zeros of polynomials

Let
P(x) =a(x — p2)2 +b(x —p2) +c

that passes through (po, f(po)), (p1, f(p1)) and (p2, f(p2)). Then

fpo) = alpo—p2)* +b(po — p2) + ¢,
fm) = alpr—p2)* +b(p1 —p2) +c,
f(p2) = alps—p2)* +bp2 —p2) +c=c.
It implies that
c = f(p2)7

p - (po — p2)? [f(p1) — f(p2)] — (p1 — p2)* [f (P0) — f(pQ)]’

(po — p2)(p1 — P2)(P0 — P1)
o = (pr — p2) [f (Po) — f(P2)] — (po — p2) [ (p1) — [ (p2)]
(po — p2)(p1 — p2)(P0 — P1) '
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Zeros of polynomials

To determine p3, a zero of P, we apply the quadratic formula to
P(z) =0 and get

2c
Ps = P2 = b+ Vb2 — dac
Choose
—po 2c
bs = b+ sgn(b)Vb? — dac

such that the denominator will be largest and result in ps3
selected as the closest zero of P to ps.
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Zeros of polynomials

Miiller’s method (Find a solution of f(x) = 0)

Given pg, p1, po; tolerance TOL; maximum number of iterations (M
Set h1 = p1 — po; ha = p2 — p1;
61 = (f(p1) — f(po))/h1; 02 = (f(p2) — f(p1))/h2;
d= ((52 = (51)/(h2 -+ hl); 1= 3.
While s < M
Set b =y + hod; D = \/b? — 4f(pa)d.
If|ob—D| < |b+ D|, thenset E=b+ Delseset E=b— D.
Seth = —2f(p2)/E; p=p2+ h.
If |h] < TOL, then STOP.
Set pg = p1; p1 = p2; P2 = p; b1 = p1 — po; ha = p2 — p1;
01 = (f(p1) — f(po))/h1; 02 = (f(p2) — f(p1))/he;
d= (52—(51)/(h2+h1);i=i+1.
End while
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