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o Bisection Method

e Fixed-Point Iteration

e Newton’s method

0 Error analysis for iterative methods
e Accelerating convergence

e Zeros of polynomials and Miller’s method
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Bisection

Bisection Method

If f(z) € Cla,b] and f(a)f(b) < 0, then 3 ¢ € (a, b) such that
f(e) =0.

y
f®) +
flp) +
a=a P2 *
fp) +
f@ +
a4 PI1 b
as D2 by

a3 py by
[l
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Bisection

Bisection method algorithm

Given f(z) defined on (a, b), the maximal number of iterations
M, and stop criteria 6 and ¢, this algorithm tries to locate one
root of f(x).

Compute u = f(a), v = f(b),ande=b—a
If sign(u) = sign(v), then stop
Fork=1,2,.... M
e=e/2,c=a+e w= f(c)
If e] < 0 or |w| < ¢, then stop
If sign(w) # sign(u)
b=c,v=w
Else
a=cu=w
End If
End For
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Let {¢,,} be the sequence of numbers produced. The algorithm
should stop if one of the following conditions is satisfied.

@ the iteration number k& > M,
Q [ —cr1| <4, 0r

Q |f(x)l <e.
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Let {¢,,} be the sequence of numbers produced. The algorithm
should stop if one of the following conditions is satisfied.

@ the iteration number k& > M,
Q [ —cr1| <4, 0r
Q |f(x)l <e.

Let [ag, bo], [a1, b1], . . . denote the successive intervals produced
by the bisection algorithm.
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Let {¢,,} be the sequence of numbers produced. The algorithm
should stop if one of the following conditions is satisfied.

@ the iteration number k& > M,
Q [ —cr1| <4, 0r
Q |f(x)l <e.

Let [ag, bo], [a1, b1], . . . denote the successive intervals produced
by the bisection algorithm. Then

a=ag<a;<a<---<bp=0>
= {an} and {b,} are bounded
= lim a, and lim b, exist
n—oo nN—r00
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Since
bi—ar = (b — ap)
1—a = 5(bo—ao
1 1
by —as = §(b1—a1)—1(bo—ao)
1
bn_an = 27(170_010)

1279218
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Since
1
by —ar = §(bo—ao)
1 1
by —as = §(b1—a1)=1(bo—ao)
1
bn_an = 27(170_010)
hence

5D b = i, on = g (B~ an) = i g (b0~ a0) =0,

1479228
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Since
1
by —ar = 5(50 —ap)
1 1
by —ay = §(b1 —ay) = Z(bo —ap)
1
bn —Qan = 27(170 - aO)
hence
5D b = i, on = g (B~ an) = i g (b0~ a0) =0,

Therefore

lim a, = lim b, = z.
n—oo n—r0o0
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Since
1
by —a1 = 5(50 —ap)
1 1
bQ —ay = 5([)1 — al) = Z(bo — a())
1
b, —a, = 27(170 - aO)
hence
30 b = 0, 0 = B, = an) = i (b0~ a0) =0

Therefore

lim a, = lim b, = z.
n—oo n—r0o0

Since f is a continuous function, we have that
nh—>Hc}o f(an) = f(nh—{go an) = f(z) and nh_g.lo f(bn) = f( hngo bn) P f(z

n—
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On the other hand,

flan)f(bn) <0
= lim f(ay,)f(by) = f2(z) <0

n—oo

= f(2) =

1779228
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On the other hand,

flan)f(bn) <0
= nh_{go flan)f(bn) = f*(2) <0

= f(z)=0

Therefore, the limit of the sequences {a,} and {b,,} is a zero of
fin[a,bl.
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On the other hand,

flan)f(bn) <0
= nh_{go flan)f(bn) = f*(2) <0

= f(z)=0

Therefore, the limit of the sequences {a,} and {b,,} is a zero of
finfa,b]. Let ¢, = (ay, + by,).

10792178
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On the other hand,

flan)f(bn) <0
= lim f(ay,)f(by) = f2(z) <0

n—oo

= f(2)=0

Therefore, the limit of the sequences {a,} and {b,,} is a zero of
fin[a,b]. Let ¢, = L(an +by,). Then

. 1
|z —cn| = }Jl_}rgoan—Q(anern)’

1 1
= }f[lim an—bn]—f—f[lim an—anM
2 n—00

n—0o0 2

< max{‘nlL%an — bn},

lim a, — an‘}
n—o0

IN

1
|bn — an| = 27|b0 — CLQ‘.

This proves the following theorem.
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Bisection

Theorem 1

Let {|ay,b,]} denote the intervals produced by the bisection
algorithm. Then lim a, and hm b, exist, are equal, and

n—oo

represent a zero of f(x). |

1
z = lim a, = hm b, and ¢, = i(an + by),

n—00

then

1
|z —cn| < o0 (bo — ao) -
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Bisection

Theorem 1

Let {|ay,b,]} denote the intervals produced by the bisection
algorithm. Then lim a, and hm b, exist, are equal, and

n—oo

represent a zero of f(x). |

n—00

1
z = lim a, = hm b, and ¢, = i(an + by),

then

1
|z —cn| < o0 (bo — ao) -

{¢, } converges to = with the rate of O(27").
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How many steps should be taken to compute a root of
f(z) = 23 + 42% — 10 = 0 on [1, 2] with relative error 1073?

DLYD L1}
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How many steps should be taken to compute a root of
f(z) = 23 + 42% — 10 = 0 on [1, 2] with relative error 1073?

solution: Seek an n such that

|z — e
|2|

Since z € [1,2], it is sufficient to show

<1073 = |z —cn| < 2| x 1073,

|2 — ¢ <1073,
That is, we solve
27"(2-1) <1073 = —nlogp2< -3

which gives n > 10. [ |

247928
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Page 54: 1,13, 14, 16, 17
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Fixed-Point Iteration

Fixed-Point Iteration

Definition 3
x is called a fixed point of a given function g if g(z) = .
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Fixed-Point Iteration

Fixed-Point Iteration

Definition 3
x is called a fixed point of a given function g if g(z) = .

Root-finding problems and fixed-point problems

@ Find z* such that f(z*) = 0.
Let g(x) =z — f(x). Then g(z*) = 2* — f(a*) = x*.
= z* is a fixed point for g(x).

277928



Fixed-Point Iteration

Fixed-Point Iteration

Definition 3
x is called a fixed point of a given function g if g(z) = .

Root-finding problems and fixed-point problems

@ Find z* such that f(z*) = 0.

Let g(z) =z — f(z). Then g(z*) = =* — f(z*) = x™.

= z* is a fixed point for g(x).

@ Find z* such that g(z*) = z*.
Define f(z) = z — g(z) so that
fl@*)=a*—g(a*)=a*—2*=0
= z* is a zero of f(z).

227928



Fixed-Point Iteration

Example 4

The function g(z) = 22 — 2, for —2 < z < 3, has fixed points at
x = —1and z = 2 since

O=gx)—cz=a>—2z—2=(z+1)(z—2).

297928



Fixed-Point Iteration

Theorem 5 (Existence and uniqueness)

Q Ifg e Cla,b] such thata < g(z) < b forall x € [a,b], then g

has a fixed point in [a, b].

A~
I

0g

S
!
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Fixed-Point Iteration

Theorem 5 (Existence and uniqueness)

Q Ifg e Cla,b] such thata < g(z) < b forall x € [a,b], then g

has a fixed point in [a, b].

Q /f, in addition, ¢'(x) exists in (a,b) and there exists a
positive constant M < 1 such that |¢'(z)| < M < 1 for all
x € (a,b). Then the fixed point is unique.

247928



Fixed-Point Iteration

Proof

Existence:

@ If g(a) = aor g(b) = b, then a or b is a fixed point of g and
we are done.

207929



Fixed-Point Iteration

Proof

Existence:
@ If g(a) = aor g(b) = b, then a or b is a fixed point of g and
we are done.

@ Otherwise, it must be g(a) > a and g(b) < b.

227920



Fixed-Point Iteration

Proof

Existence:
@ If g(a) = aor g(b) = b, then a or b is a fixed point of g and
we are done.

@ Otherwise, it must be g(a) > a and g(b) < b. The function
h(z) = g(z) — x is continuous on [a, b], with

h(a) =g(a) —a >0 and h(b) = g(b) — b < 0.

247928



Fixed-Point Iteration

Proof
Existence:
@ If g(a) = aor g(b) = b, then a or b is a fixed point of g and
we are done.

@ Otherwise, it must be g(a) > a and g(b) < b. The function
h(z) = g(z) — x is continuous on [a, b], with

h(a) =g(a) —a >0 and h(b) = g(b) — b < 0.

By the Intermediate Value Theorem, 3 z* € [a, b] such that
h(z*) = 0.

257928



Fixed-Point Iteration

Proof
Existence:
@ If g(a) = aor g(b) = b, then a or b is a fixed point of g and
we are done.

@ Otherwise, it must be g(a) > a and g(b) < b. The function
h(z) = g(z) — x is continuous on [a, b], with

h(a) =g(a) —a >0 and h(b) = g(b) — b < 0.

By the Intermediate Value Theorem, 3 z* € [a, b] such that
h(z*) = 0. That is

glz*) —a* =0 = g(z*) =z"
Hence ¢ has a fixed point z* in [a, b].

2679228



Fixed-Point Iteration

Proof

Uniqueness:
Suppose that p # ¢ are both fixed points of g in [a, b].

277928



Fixed-Point Iteration

Proof

Uniqueness:
Suppose that p # ¢ are both fixed points of g in [a, b]. By the
Mean-Value theorem, there exists ¢ between p and ¢ such that

J(€) = 9w) —9@) _p—a_,
—q p—q

b

207929



Fixed-Point Iteration

Proof

Uniqueness:
Suppose that p # ¢ are both fixed points of g in [a, b]. By the
Mean-Value theorem, there exists ¢ between p and ¢ such that

J(€) = 9w) —9@) _p—a_,
pP—q p—q

However, this contradicts to the assumption that
l¢'(z)] < M < 1forall zin [a,b]. Therefore the fixed point of ¢ is
unique. [ |

2079228



Fixed-Point Iteration

Example 6
Show that the following function has a unique fixed point.

g(z) = (22 -1)/3, ze€[-1,1)].
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Fixed-Point Iteration

Example 6
Show that the following function has a unique fixed point.

g(z) = (22 -1)/3, ze€[-1,1)].

Solution: The Extreme Value Theorem implies that

1

1 et 0 = ——
er[n—l?,l]g(x) 9(0) 3

= g(+1) =0.
x?ﬁ?ﬁ]g(m) g(+1)

4172278



Fixed-Point Iteration

Example 6
Show that the following function has a unique fixed point.

g(z) = (22 -1)/3, ze€[-1,1)].

Solution: The Extreme Value Theorem implies that

. 1
Lonin 9(z) = 9(0) = -,
max g(z) = g(xl) =0.

ze[—1,1]

Thatis g(z) € [-1,1], Vx € [-1,1].

49279278



Fixed-Point Iteration

Example 6
Show that the following function has a unique fixed point.

g(z) = (22 -1)/3, ze€[-1,1)].

Solution: The Extreme Value Theorem implies that

1
Lnin 9(@) =9(0) = =3,
max g(z) = g(xl) =0.

ze[-1,1]

Thatis g(z) € [-1,1], Vx € [-1,1].
Moreover, g is continuous and

2x

2
S1<5 Yee(-1).

g’ ()| =

4279278



Fixed-Point Iteration

Example 6
Show that the following function has a unique fixed point.

g(z) = (22 -1)/3, ze€[-1,1)].

Solution: The Extreme Value Theorem implies that

1
Lnin 9(@) =9(0) = =3,
max g(z) = g(xl) =0.

ze[-1,1]

Thatis g(z) € [-1,1], Vx € [-1,1].
Moreover, g is continuous and

2x

2
S1<5 Yee(-1).

g’ ()| =

By above theorem, g has a unique fixed point in [—1, 1].

4479278



Fixed-Point Iteration

Let p be such unique fixed point of g. Then

P’ -1

p=9p)="5— = p'-3p-1=0
1
[ |
y y
N N /
—1 2 3 4 = 1 2 3 4 =
T - vi)ie-vi) “UT 33+ Vi)g(+ Vi)

45792278



Fixed-Point Iteration

Fixed-point iteration or functional iteration

Given a continuous function g, choose an initial point xy and
generate {z;};2, by

Tpr1 = g(xg), k>0.

4679228



Fixed-Point Iteration

Fixed-point iteration or functional iteration

Given a continuous function g, choose an initial point xy and
generate {z;};2, by

Tpr1 = g(xg), k>0.

{z.} may not converge, e.g., g(x) = 3.

Aa4A77 9228



Fixed-Point Iteration

Fixed-point iteration or functional iteration

Given a continuous function g, choose an initial point xy and
generate {z;};2, by

Tpr1 = g(xg), k>0.

{z.} may not converge, e.g., g(x) = 3z. However, when the
sequence converges, say,

lim z; = 2%,
k—o00

AR7 929278



Fixed-Point Iteration

Fixed-point iteration or functional iteration

Given a continuous function g, choose an initial point xy and
generate {z};2, b

Tpr1 = g(xg), k>0.

{z.} may not converge, e.g., g(x) = 3z. However, when the
sequence converges, say,

lim z, = z*
k—o0

then, since g is continuous,

g(z*) = g(lim zy) = hm g(xk) = hm Ty =a*
k—o0

49792278



Fixed-Point Iteration

Fixed-point iteration or functional iteration

Given a continuous function g, choose an initial point xy and
generate {z;};2, by

Tpr1 = g(xg), k>0.

{z.} may not converge, e.g., g(x) = 3z. However, when the
sequence converges, say,

lim z, = z*
k—o0

then, since g is continuous,

g(z*) = g(lim zy) = hm g(xk) = hm Ty =a*
k—o0

That is, z* is a fixed point of g.

BN79228



Fixed-Point Iteration

Fixed-point iteration

Given zg, tolerance TOL, maximum number of iteration M.

Seti=1and z = g(zo).

While i < M and |z — 29| > TOL
Seti=1i+1,z90 =z and xz = g(zo).

End While
v
y y=x y y=x
) y =g

Pur) s = &P @p
P2 =2gp) "t (9. 1) P2 =8y ((295)
p3=g(p) ( ) 1= 2(00) (Po>P1)
1 =2(po) Li-PL (PorP1) ! 0 (p1:pD)

¥ =g
P1 P3 P2 Do x Po D1 )2 x

(a) (b)

517928



Fixed-Point Iteration

Example 7

The equation

22 +422 —10=0

has a unique root in [1, 2]. Change the equation to the
fixed-point form x = g(z).

527928



Fixed-Point Iteration

Example 7

The equation

22 +422 —10=0

has a unique root in [1, 2]. Change the equation to the
fixed-point form x = g(z).
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Fixed-Point Iteration

Example 7

The equation
23+ 422 -10=0

has a unique root in [1, 2]. Change the equation to the
fixed-point form x = g(z).
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Fixed-Point Iteration

Example 7

The equation
23+ 422 -10=0

has a unique root in [1, 2]. Change the equation to the
fixed-point form x = g(z).
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1/2
P o10-d2 = 2= gy o xzi(lo—4x>
X X
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Fixed-Point Iteration

(€ z=gs(z)=1 (10— x3)1/2 J

1
422 =10—-23 = ;I;:j:§ (10_.%'3)1/2
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Fixed-Point Iteration

(€ z=gs(z)=1 (10— x3)1/2 J

1
422 =10—-23 = ;I;:j:§ (10_.%'3)1/2

(d) z = ga(z) = (45%>1/2 ’

2 10 \'/?
4) = 1() = =4+
T ’ <4+x>

B77928



Fixed-Point Iteration

(€ z=gs(z)=1 (10— x3)1/2 J

1
422 =10—-23 = ;I;:j:§ (10_:1;3)1/2

(d) z = ga(z) = (45%>1/2 ’

2 10 \'/?
4) = 1() = =4+
T ’ <4+x>

3 2_
(e)nggj(aj):x_% J

f(z)
f'(z)

z=g5(zr)=o—

BR7928



Results of the fixed-point iteration with initial point zo = 1.5

Fixed-Point Iteration

n (@ ® © @ (e
0 1.5 1.5 15 1.5 1.5
1 —0.875 0.8165 1.286953768 1.348399725 1.373333333
2 6.732 2.9969 1.402540804 1367376372 1.365262015
3 —469.7 (—8.65)172 1.345458374 1.364957015 1.365230014
4 1.03 x 108 1.375170253 1.365264748 1.365230013
5 1.360094193 1.365225594
6 1.367846968 1.365230576
7 1.363887004 1.365229942
8 1.365916734 1.365230022
9 1.364878217 1.365230012

10 1.365410062 1.365230014

15 1.365223680 1.365230013

20 1.365230236

25 1.365230006

30 1.365230013

BEQ79228



Fixed-Point Iteration

Theorem 8 (Fixed-point Theorem)

Let g € Cla,b] be such that g(x) € |a,b] for all x € [a, b).

GDO79228



Fixed-Point Iteration

Theorem 8 (Fixed-point Theorem)

Letg € Cl[a,b] be such that g(x) € [a.b] for all z € [a,b].
Suppose that ¢’ exists on (a,b) and that 3 k with0 < k < 1 such
that

|9 (z)] <k, ¥V z € (a,b).

6179228



Fixed-Point Iteration

Theorem 8 (Fixed-point Theorem)

Letg € Cl[a,b] be such that g(x) € [a.b] for all z € [a,b].
Suppose that ¢’ exists on (a,b) and that 3 k with0 < k < 1 such
that

|9 (z)] <k, ¥V z € (a,b).
Then, for any number x in [a, b],

Tp = g(l‘nfl), n>1,

converges to the unique fixed point x in [a, b].

A2 7928



Fixed-Point Iteration

Proof: By the assumptions, a unique fixed point exists in [a, b].

RR79228



Fixed-Point Iteration

Proof: By the assumptions, a unique fixed point exists in [a, b].
Since g([a,b]) C [a,b], {zn}22, is defined and z,, € [a, b] for all
n > 0.

RA7928



Fixed-Point Iteration

Proof: By the assumptions, a unique fixed point exists in [a, b].
Since g([a,b]) C [a,b], {zn}22, is defined and z,, € [a, b] for all
n > 0. Using the Mean Values Theorem and the fact that
lg'(z)] < k, we have

|2 = 2n| = lg(zn-1) = g(x)| = |g' (&) ||z = n-1] < kl2 — 2],

where &, € (a,b).

RE7928



Fixed-Point Iteration

Proof: By the assumptions, a unique fixed point exists in [a, b].
Since g([a,b]) C [a,b], {zn}22, is defined and z,, € [a, b] for all
n > 0. Using the Mean Values Theorem and the fact that
lg'(z)] < k, we have

|z — x| = |g(2zn-1) — 9(2)| = |¢'(&n)l|z — 01| < Kl — 201l
where &, € (a,b). It follows that

|zn — x| < k|zp—1 — 2| < k2\xn_2 —z| <o < kMo — x| (1)

GRR 792928



Fixed-Point Iteration

Proof: By the assumptions, a unique fixed point exists in [a, b].
Since g([a,b]) C [a,b], {zn}22, is defined and z,, € [a, b] for all
n > 0. Using the Mean Values Theorem and the fact that
lg'(z)] < k, we have
|z — 2| = [g(zn-1) — 9(2)] = |g'(€n) |2 — 01| < Klz — 201l
where &, € (a,b). It follows that

2y — x| <klz, 1 — x| <Eap o —x| < - <E"xg—z. (1)
Since 0 < k < 1, we have

lim " =0
n—oo

and

lim |z, —z| < lim k"|zo — x| = 0.
n—oo n—oo

Hence, {z,}52, converges to z. [ |

R779228



Fixed-Point Iteration

Corollary 9

If g satisfies the hypotheses of above theorem, then
|z — x| < K" max{zo — a,b— zo}

and

n

— <
™=l S 73

|z1 — x0], V> 1.

ARR79228



Fixed-Point Iteration

Corollary 9

If g satisfies the hypotheses of above theorem, then
|z — x| < K" max{zo — a,b— zo}

and

n

— <
20 — 2l < 73

|z1 — x0], V> 1.

Proof: From (1),

|z, — x| < k"|xg — x| < k" max{zo — a,b— zp}.

RO79228



Fixed-Point Iteration

Corollary 9

If g satisfies the hypotheses of above theorem, then
|z — x| < K" max{zo — a,b— zo}

and

n

1—-k

|zn, — x| < |z1 — x0], V> 1.

Proof: From (1),
|z, — x| < k"|xg — x| < k" max{zo — a,b— zp}.
For n > 1, using the Mean Values Theorem,

|Zn+1 — Zn| = |9(7n) — g(xn-1)| < Eklzn — Tn-1| <+ < K21 — 20},

7079228



Fixed-Point Iteration

Thus, form >n > 1,

‘wm_xn| = |5L'm_xm71+xm71_"'+$n+1_xn|
< |$m - $m71| + |xm71 - $m72| + et |$n+1 - :En|
< k‘m_1|ZE1—$0|+k‘m_2|$1—l’o’—|—-'-—|—k‘n|l‘1—l’0‘

- kn|l‘1*xo\(1+k+k2+...+km—n—1)'
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Fixed-Point Iteration

Thus, form >n > 1,

‘wm_xn| = |5L'm_xm71+xm71_"'+$n+1_xn|
< |$m - $m71| + |xm71 - $m72| + et |$n+1 - :En|
< k‘m_1|ZE1—$0|+k‘m_2|$1—l’o’—|—-'-—|—k‘n|l‘1—l’0‘

- kn|l‘1*xo\(1+k+k2+...+km—n—1)'

It implies that
m—n—1 .
v — x| = W%gﬂoo |Tm — x| < w%l_lgloo k™21 — o Zo k!
J:
< k" ‘$1*£C0|Zk‘] |$1*$0‘

797928



Fixed-Point Iteration

Example 10
For previous example,

f(z) =23+ 422 —10=0.
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Fixed-Point Iteration

Example 10
For previous example,

f(z) =23+ 422 —10=0.

For g1(x) = z — 23 — 422 + 10, we have
g1(1)=6 and ¢1(2) = —12,

SO gl([L 2]) /(Z [17 2]'
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Fixed-Point Iteration

Example 10
For previous example,

f(z) =23+ 422 —10=0.

For g1(x) = z — 23 — 422 + 10, we have
g1(1)=6 and ¢i(2) = —12,
so ¢1([1,2]) ¢ [1,2]. Moreover,

gix)=1-322 -8z = |¢i(z)|>1Vzell,2]

757928



Fixed-Point Iteration

Example 10
For previous example,

f(z) =23+ 422 —10=0.

For g1(x) = z — 23 — 422 + 10, we have
g1(1)=6 and ¢i(2) = —12,
so ¢1([1,2]) ¢ [1,2]. Moreover,

gix)=1-322 -8z = |¢i(z)|>1Vzell,2]

e DOES NOT guarantee to converge or not

76792928



Fixed-Point Iteration

For gs(z) = $(10 — 2%)Y/2, V z € [1, 1.5,

gh(z) = —=2*(10 — 2%)7Y2 <0, Vz € [1,1.5],

777928



Fixed-Point Iteration

For gs(z) = $(10 — 2%)Y/2, V z € [1, 1.5,
gh(z) = —=2*(10 — 2%)7Y2 <0, Vz € [1,1.5],

S0 g3 is strictly decreasing on [1, 1.5]
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Fixed-Point Iteration

For gs(z) = $(10 — 2%)Y/2, V z € [1, 1.5,
gh(z) = —=2*(10 — 2%)7Y2 <0, Vz € [1,1.5],

so g3 is strictly decreasing on [1, 1.5] and

1< 1.28~ g3(1.5) < gs(x) < g3(1) = 1.5, Yz € [1,1.5].

7979228



Fixed-Point Iteration

For gs(z) = $(10 — 2%)Y/2, V z € [1, 1.5,
gh(x) = —S22(10 - 2312 <0, V2 € [1,1.5],
so g3 is strictly decreasing on [1, 1.5] and
1 <1.28 = g3(1.5) < g3(z) < g3(1) = 1.5, Vz € [1,1.5].
On the other hand,

1g5(2)| < |g4(1.5)] ~ 0.66, ¥ z € [1,1.5].

an7218



Fixed-Point Iteration

For gs(z) = $(10 — 2%)Y/2, V z € [1, 1.5,
gh(x) = —S22(10 - 2312 <0, V2 € [1,1.5],
so g3 is strictly decreasing on [1, 1.5] and
1 <1.28 = g3(1.5) < g3(z) < g3(1) = 1.5, Vz € [1,1.5].
On the other hand,

1g5(2)| < |g4(1.5)] ~ 0.66, ¥ z € [1,1.5].

Hence, the sequence is convergent to the fixed point.

24179278



Fixed-Point Iteration

For ga(x) = 1/10/(4 + x), we have

\/1? < gu(z) < \/1;0, Vee([l,2] = g4([1,2]) C[1,2]

97929



Fixed-Point Iteration

For ga(x) = 1/10/(4 + x), we have

\/1? < gu(z) < \/1;0, Vee([l,2] = g4([1,2]) C[1,2]

Moreover,

o -
) = | T

5
< TG < 0.15, V= € [1,2].
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Fixed-Point Iteration

For ga(x) = 1/10/(4 + x), we have

\/1? < gu(z) < \/1;0, Vee([l,2] = g4([1,2]) C[1,2]

Moreover,

<0.15, Vz € [1,2].

\’<x>r—\ R P
SN =0+ 232 | = Vio(5)3/2

The bound of |g)(z)| is much smaller than the bound of |g5(x),
which explains the more rapid convergence using g4.

24179278



Fixed-Point Iteration

Page 64:1,3,7,11,13
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Newton’s method

Suppose that f : R — R and f € C?[a,b], i.e., f" exists and is
continuous.

2AR79278



Newton’s method

Suppose that f : R — R and f € C?[a,b], i.e., f" exists and is
continuous. If f(z*) = 0 and z* = x + h where h is small,
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Newton’s method

Suppose that f : R — R and f € C?[a,b], i.e., f" exists and is
continuous. If f(z*) = 0 and z* = x + h where h is small, then
by Taylor’'s theorem

0=f@a*) = fle+h)
- f(‘/l;) + f/(.L)h + %fﬂ(l‘)hQ + %fﬁ/(:l;)hg -+ ..
= f(z) + f'(x)h + O(h?).

[ 7929



Newton’s method

Suppose that f : R — R and f € C?[a,b], i.e., f" exists and is
continuous. If f(z*) = 0 and z* = x + h where h is small, then
by Taylor’'s theorem

0=f@") = G
= F@) @b @
— J@)+ e 00R).

Since h is small, O(h?) is negligible.

x4+ h)

S+

207278



Newton’s method

Suppose that f : R — R and f € C?[a,b], i.e., f" exists and is
continuous. If f(z*) = 0 and z* = x + h where h is small, then
by Taylor’'s theorem

0=f@a*) = J(
= f(z)+ f(x)h+ = ]‘”( R+ —
@)+ Pan 002

Since h is small, O(h?) is negligible. It is reasonable to drop
O(h?) terms.

x4+ h)

S+

an’ 22K



Newton’s method

Suppose that f : R — R and f € C?[a,b], i.e., f" exists and is
continuous. If f(z*) = 0 and z* = x + h where h is small, then
by Taylor’'s theorem

0=f@a*) = J(
= f(z)+ f(x)h+ = ]‘”( R+ —
@)+ Pan 002

Since h is small, O(h?) is negligible. It is reasonable to drop
O(h?) terms. This implies

x4+ h)

S+

F(x)+ f'(x)h ~0 and hz—(}f/((j)? it £(z) £ 0.

~—

Q179228



Newton’s method

Suppose that f : R — R and f € C?[a,b], i.e., f" exists and is
continuous. If f(z*) = 0 and z* = x + h where h is small, then
by Taylor’'s theorem

0= f(z") flz+h)
fl@)+ fl(@)h+ 5 f”( IR+ o
flx) + («)h+0(h )-

Since h is small, O(h?) is negligible. It is reasonable to drop
O(h?) terms. This implies

S+

Fla)+ F@hx0 and b L2l (o) £0
Hence o
rT+h=x— e

is a better approximation to z*.

Q279228



Newton’s method

This sets the stage for the Newton-Rapbson’s method, which
starts with an initial approximation z( and generates the
sequence {z,} >, defined by

f(an)

Tn41 = Tn — f/(T )
Tn

Q79228



Newton’s method

This sets the stage for the Newton-Rapbson’s method, which
starts with an initial approximation z( and generates the
sequence {z,} >, defined by

f(an)
f'(an)
(z

) at x,, is given by

Tn+l = Tp —
Since the Taylor’s expansion of f

F() = @)+ 7 @a)(w = w0) ) (@ — ) 4

Q479228



Newton’s method

This sets the stage for the Newton-Rapbson’s method, which
starts with an initial approximation z( and generates the
sequence {z,} >, defined by

f(an)
f'(an)
(z

) at x,, is given by

Tn+1 = Tp —
Since the Taylor’s expansion of f
£(@) = Flon) + @)@ = wa) + 3 () (@ — 7’ + -
At z,,, one uses the tangent line

y=4L(z) = f(a n)+f( n)(T — xp)

to approximate the curve of f(x) and uses the zero of the
tangent line to approximate the zero of f(x).

Q579228



Newton’s method

Newton’s Method

Given xg, tolerance T'O L, maximum number of iteration M.

Setn=1and z =zo— f(z0)/f (z0).

While n < M and |z — x| > TOL
Setn=n+1,z0=xand z = xz9 — f(z0)/f (z0).

End While

Slope f"(py) y=fx)

(P /(1)

Slope f"(po)

(Po./(Po))

QR 722K



Newton’s method

Three stopping-technique inequalities
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Newton’s method

Three stopping-technique inequalities

(@). |zn—zpn_1| <e,

(b). W <e, an#£0,

(©). [f(zn)] <e.

Note that Newton’s method for solving f(z) =0

f(zn)

Tptl = Tp — F(wn)’ for n>1
n

is just a special case of functional iteration in which

@
M= iy

QR79228



Newton’s method

The following table shows the convergence behavior of
Newton’s method applied to solving f(z) = 2 — 1 = 0. Observe
the quadratic convergence rate.

n | xn len| = |1 — 24
0|20 1

111.25 0.25

2 | 1.025 2.5e-2

3 | 1.0003048780488 | 3.048780488e-4
4 | 1.0000000464611 | 4.64611e-8
511.0 0

Q979228



Newton’s method

Theorem 12

Assume f(z*) =0

=0, f'(z*) #0and f(x), f'(z) and f"(z) are
continuous on N¢(z*).

1007 22K



Newton’s method

Theorem 12

Assume f(z*) =0, f'(z*) #0and f(z), f'(x) and f"(x) are
continuous on N.(x*). Then if xo is chosen sufficiently close to

z*,

1017228



Newton’s method

Theorem 12

Assume f(z*) =0, f'(z*) #0and f(z), f'(x) and f"(x) are
continuous on N.(x*). Then if xo is chosen sufficiently close to

z*, then
o f(zn) %
{-TnJrl = In f/(xn) — T .

10279228



Newton’s method

Theorem 12

Assume f(z*) =0, f'(z*) #0and f(z), f'(x) and f"(x) are
continuous on N.(x*). Then if xo is chosen sufficiently close to

z*, then
o f(zn) %
{-TnJrl = In f/(xn) — T .

Proof: Define

1027228



Newton’s method

Theorem 12

Assume f(z*) =0, f'(z*) #0and f(z), f'(x) and f"(x) are
continuous on N.(x*). Then if xo is chosen sufficiently close to

z*, then
o f(zn) %
{-TnJrl = In f/(xn) — T .

@
9=y

Find an interval [z* — §, 2* + ¢] such that
g([z* —6,2" +0]) C [z" — 6, 2" + 4]

Proof: Define

and
Il (x)]| <k <1, Vae (a*—58a*+9).

1047228



Newton’s method

Since f’ is continuous and f’(z*) # 0, it implies that 3 §; > 0
such that f/(z) #0V x € [z* — 01, 2% + 61] C [a, b].

10579228



Newton’s method

Since f’ is continuous and f’(z*) # 0, it implies that 3 §; > 0
such that f/'(z) #0V x € [z* — 01, 2" + 61| C [a,b]. Thus, g is
defined and continuous on [z* — d1, z* + d1].

1067 22K



Newton’s method

Since f’ is continuous and f’(z*) # 0, it implies that 3 §; > 0
such that f/'(z) #0V x € [z* — 01, 2" + 61| C [a,b]. Thus, g is
defined and continuous on [z* — §1, 2™ + 01]. Also

f'@) f (@) = f(@)f"(x) _ f(2)f"(2)

"(z)=1-— = ,
9(2) /(@) /()2

forx € [2* — 61, 2% + 41].

1077 22K



Newton’s method

Since f’ is continuous and f’(z*) # 0, it implies that 3 §; > 0
such that f/'(z) #0V x € [z* — §1,2* + 61] C [a, b]. Thus, g is
defined and continuous on [z* — §1, 2™ + 01]. Also
oy S @) f (@) = fla)f(x) _ fl)f"(x)
g(r)=1- 1 N12 - o2 0
[/ ()] [f'(z)]

for x € [#* — 1, 2* + 61]. Since f” is continuous on [a, b], we
have ¢’ is continuous on [z* — 61, z* + d1].

1087228



Newton’s method

Since f’ is continuous and f’(z*) # 0, it implies that 3 §; > 0
such that f/'(z) #0V x € [z* — §1,2* + 61] C [a, b]. Thus, g is
defined and continuous on [z* — §1, 2™ + 01]. Also
oy f @ f (@) = f@)f (@) fla) ()
g(r)=1- 1 N12 - o2 0
[/ ()] [f'(z)]

for x € [#* — 1, 2* + 61]. Since f” is continuous on [a, b], we
have ¢’ is continuous on [z* — 61, z* + d1].
By assumption f(z*) = 0, so

f@) " (=)
! ()2

g'(z") = = 0.

1007228



Newton’s method

Since f’ is continuous and f’(z*) # 0, it implies that 3 §; > 0
such that f/'(z) #0V x € [z* — §1,2* + 61] C [a, b]. Thus, g is
defined and continuous on [z* — §1, 2™ + 01]. Also
oy f @ f (@) = f@)f (@) fla) ()
g(r)=1- 1 N12 - o2 0
[/ ()] [f'(z)]

for x € [#* — 1, 2* + 61]. Since f” is continuous on [a, b], we
have ¢’ is continuous on [z* — 61, z* + d1].
By assumption f(z*) = 0, so

f@) " (=)
! ()2

Since ¢’ is continuous on [z* — é1, 2" + 61] and ¢'(z*) = 0,

g (z*) = =0.

1107 22K



Newton’s method

Since f’ is continuous and f’(z*) # 0, it implies that 3 §; > 0
such that f/'(z) #0V x € [z* — §1,2* + 61] C [a, b]. Thus, g is
defined and continuous on [z* — §1, 2™ + 01]. Also
oy f @ f (@) = f@)f (@) fla) ()
g(r)=1- 1 N12 - o2 0
[/ ()] [f'(z)]

for x € [#* — 1, 2* + 61]. Since f” is continuous on [a, b], we
have ¢’ is continuous on [z* — 61, z* + d1].
By assumption f(z*) = 0, so

f@)f" (=)
| () [?
Since ¢’ is continuous on [z* — §1,z* 4+ d;] and ¢'(z*) = 0,3 §

with 0 < 6 < §; and k € (0, 1) such that

g'(z") = = 0.

g (z)] <k, Vaz e z*—3dz*+4].

11179228



Newton’s method

Claim: g([z* — 6,2 + ¢§]) C [z* — 9, 2% + 4].

119279228



Newton’s method

Claim: g([z* — 6,2 + ¢§]) C [z* — 9, 2% + 4].
If 2 € [z* — 0, 2* 4 ¢], then, by the Mean Value Theorem, 3 ¢
between x and z* such that

l9(x) = g(z)[ = 1g'(Olz — =7

11279228



Newton’s method

Claim: g([z* — 6,2 + ¢§]) C [z* — 9, 2% + 4].
If 2 € [z* — 0, 2* 4 ¢], then, by the Mean Value Theorem, 3 ¢
between x and z* such that

l9(x) = g(z)[ = 1g'(Olz — =7

It implies that

l9(x) — g(™)| = |g"()x — 27|
< klz -2 < |z -2 <4

lg(x) — 27|

114722



Newton’s method

Claim: g([z* — 6,2 + ¢§]) C [z* — 9, 2% + 4].
If 2 € [z* — 0, 2* 4 ¢], then, by the Mean Value Theorem, 3 ¢
between x and z* such that

l9(x) = g(z)[ = 1g'(Olz — =7

It implies that

l9(x) — g(™)| = |g"()x — 27|
< klz -2 < |z -2 <4

lg(x) — 27|

Hence, g([z* — §,2* + §]) C [x* — 0, 2™ + J].

11579228



Newton’s method

Claim: g([z* — 6,2 + ¢§]) C [z* — 9, 2% + 4].
If 2 € [z* — 0, 2* 4 ¢], then, by the Mean Value Theorem, 3 ¢
between x and z* such that

l9(z) — g(a™)| = |g"(O)llz — 27|.
It implies that

l9(x) — g(™)| = |g"()x — 27|
< klz -2 < |z -2 <4

lg(x) — 27|

Hence, g([z* — §,2* + §]) C [x* — 0, 2™ + J].
By the Fixed-Point Theorem, the sequence {z,}3° , defined by

Ln = g(xn—l) = Tpn-1 — m, for n>1,
n—

converges to z* for any zp € [z* — 6, 2" + 4. [ |

116722



Newton’s method

When Newton’s method applied to f(x) = cos = with starting
point 2y = 3, which is close to the root 7 of f, it produces
x1 = —4.01525, 20 = —4.8526, - - - , which converges to another

y = cos(x)

11779228



Newton’s method

Secant method

Disadvantage of Newton’s method

In many applications, the derivative f’(z) is very expensive to
compute, or the function f(x) is not given in an algebraic
formula so that f/(x) is not available.

1187922



Newton’s method

Secant method

Disadvantage of Newton’s method

In many applications, the derivative f’(z) is very expensive to
compute, or the function f(x) is not given in an algebraic
formula so that f/(x) is not available.

By definition,
f(x) = flan-1)

/ .
1)= 1 .
f@n-1) 37—311"271 T — Tp_1

11079228



Newton’s method

Secant method

Disadvantage of Newton’s method

In many applications, the derivative f’(z) is very expensive to
compute, or the function f(x) is not given in an algebraic
formula so that f/(x) is not available.

By definition,
f(l‘) B f(xnfl)

/ .
1)= 1 .
f@n-1) 37—311"271 T — Tp_1

If z,,_o is close to z,,_1, then

) ~ flan—2) = flen-1) _ fl@n1) — f(mn—Q).

Tp—2 — Tp—1 Tp—1 — Tp—2

1290722



Newton’s method

Secant method

Disadvantage of Newton’s method

In many applications, the derivative f’(z) is very expensive to
compute, or the function f(x) is not given in an algebraic
formula so that f/(x) is not available.

By definition,
f(l‘) B f(xnfl)

/ .
1)= 1 .
f@n-1) 37—311"271 T — Tp_1

If z,,_o is close to z,,_1, then

) ~ flan—2) = flen-1) _ fl@n1) — f(mn—Q).

Tp—2 — Tp—1 Tp—1 — Tp—2

Using this approximation for f/(z,—1) in Newton’s formula gives

f(mnfl)(xnfl - -7;n72)

f(mnfl) - f(:1;7l*2> ' 19171988

Ip = Tp—1 —



Newton’s method

From geometric point of view, we use a secant line through
r,—1 and x,,_- instead of the tangent line to approximate the
function at the point z,,_;.

19979228



Newton’s method

From geometric point of view, we use a secant line through
r,—1 and x,,_- instead of the tangent line to approximate the
function at the point z,,_;.

The slope of the secant line is

_ f(@n—1) — flzn—2)

Spn—1 =

Tpn—1 — Tp—2
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Newton’s method

From geometric point of view, we use a secant line through
r,—1 and x,,_- instead of the tangent line to approximate the

function at the point z,,_;.
The slope of the secant line is

_ f@n—1) = flzn—2)

Spn—1 =
Tpn—1 — Tp—2

and the equation is

M(z) = f(zn-1) + Sn—1(x — xp_1).

1247922



Newton’s method

From geometric point of view, we use a secant line through
r,—1 and x,,_- instead of the tangent line to approximate the
function at the point z,,_;.

The slope of the secant line is

_ f(@n—1) = f(xn_2)

Tpn—1 — Tp—2

Sn—1

and the equation is
M(z) = f(zn-1) + Sn—1(x — xp_1).

The zero of the secant line

_ f(l‘nfl) - . Tn—1 — Tn-2
T = Tp-1— Sho1 = Tn-1 f(xn_l)f(.fnfl) — f(l'n—Q)

is then used as a new approximate z,,.

19579228



Newton’s method

Secant Method

Given zq, x1, tolerance TOL, maximum number of iteration M.
Seti=2;yo = f(x0);51 = f(z1);
T =1 — yl(wl - xo)/(yl - yo)-
While i < M and |z — 21| > TOL
Seti=i+1,m0=2z1;9% = y1;21 = 7591 = f(2);
z=x1 —y1(z1 — x0)/(y1 — o)-
End While

y=f&)

19267922



Newton’s method

Method of False Position J

@ Choose initial approximations xy and x; with

f(zo)f(x1) <0.

19779228



Newton’s method

Method of False Position J

@ Choose initial approximations xy and x; with
f(@o) f(z1) <O.
Q 2=y — f(a1)(x1 — 20)/(f(21) — f(20))

19879228



Newton’s method

Method of False Position J

@ Choose initial approximations xy and x; with
f(@o) f(z1) <O.
Q 2=y — f(a1)(x1 — 20)/(f(21) — f(20))

© Decide which secant line to use to compute z3:

192079228



Newton’s method

Method of False Position J

@ Choose initial approximations xy and x; with
f(xo) f(z1) <0.
Q 2 =21 — fla1) (21 — 20)/(f(21) — f(20))
© Decide which secant line to use to compute z3:
If f(x2)f(z1) <0, then z; and z, bracket a root, i.e.,

r3 = w3 — f(x2)(w2 — 1) /(f(22) — f(21))

12N7 22K



Newton’s method

Method of False Position J

@ Choose initial approximations xy and x; with
f(xo) f(z1) <0.
Q 2 =21 — fla1) (21 — 20)/(f(21) — f(20))
© Decide which secant line to use to compute z3:
If f(x2)f(z1) <0, then z; and z, bracket a root, i.e.,

r3 = 22 — f(22)(22 — 21)/(f(22) — f(21))
Else, x¢ and x5 bracket a root, i.e.,

x3 = x2 — f(x)(x2 — x0)/(f(x2) — f(20))
End if

12179228



Newton’s method

Method of False Position

Given zg, x1, tolerance TOL, maximum number of iteration M .
Seti=2;y0= f(xo);y1 = f(x1); 2z = 21 — y1(x1 — z0)/(y1 — Yo)-
While i < M and |z — 21| > TOL

Seti=i+1;y= f(x).

If Y-y <0, then set 2o = Z1;Y0 = Y1-

Setz; =z;y1 = y; v = 21 — y1(@1 — 20)/ (Y1 — Yo)-
End While

Secant Method Method of False Position

y=/ y =/

129279228



Newton’s method

Page 75: 12,17, 18
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Error analysis

Error analysis for iterative methods

Definition 14

Let {z,,} — «™. If there are positive constants ¢ and « such that

li ‘$n+l - $*| -
1m ——7 =

n—00 ’xn — x*|0‘ ©

then {z,,} converges to =* of order o with asymptotic error
constant c.

124722



Error analysis

Error analysis for iterative methods

Definition 14

Let {z,,} — «™. If there are positive constants ¢ and « such that

li ‘anrl - JJ*| -
1m ——7 =

n—00 ‘ln — 1*|a ©

then {z,,} converges to =* of order o with asymptotic error
constant c.

@ linear convergenceif a =1and 0 < c < 1.

12579228



Error analysis

Error analysis for iterative methods

Definition 14

Let {z,,} — «™. If there are positive constants ¢ and « such that

li ‘anrl - JJ*| -
m — =

=00 ‘g«n _ l*|o¢ ¢,

then {z,,} converges to =* of order o with asymptotic error
constant c.

@ linear convergenceif a =1and 0 < c < 1.
© superlinear convergence if

lir ‘anrl - $*| -
m —————F =
n—00 |:1;n — l‘*‘

0;
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Error analysis

Error analysis for iterative methods

Definition 14

Let {z,,} — «™. If there are positive constants ¢ and « such that

_ ’*
i [Ent =]

=00 ‘g«n _ l*|o¢ ¢,

then {z,,} converges to =* of order o with asymptotic error
constant c.

@ linear convergenceif a =1and 0 < c < 1.
© superlinear convergence if

lir ‘anrl - $*| -
m —————F =
n—00 |:1;n — l‘*‘

0;

© quadratic convergence if o = 2.

12779228



Error analysis

Suppose that {z,}2°, and {z,}>2, are linearly and
quadratically convergent to z*, respectively, with the same
constant ¢ = 0.5.

127879228



Error analysis

Suppose that {z,}2°, and {z,}>2, are linearly and
quadratically convergent to z*, respectively, with the same
constant ¢ = 0.5. For simplicity, suppose that

X =~ X
M%C and M%C.

|xy — x| | T, — x*|?

12079228



Error analysis

Suppose that {z,}2°, and {z,}>2, are linearly and
quadratically convergent to z*, respectively, with the same
constant ¢ = 0.5. For simplicity, suppose that

M ~c and M ~
|xy — x| | T, — x*|?

These imply that

|z — 2% & c|zp_1 — 2| = Alap_g — 2|~ - & Mz — 2,

1407 22K



Error analysis

Suppose that {z,}2°, and {z,}>2, are linearly and
quadratically convergent to z*, respectively, with the same
constant ¢ = 0.5. For simplicity, suppose that

e B T o2 B DU
|z, — 2| |z, — x*|?
These imply that
|z — 2% & c|zp_1 — 2| = Alap_g — 2|~ - & Mz — 2,
and
|Tn — 2% =~ a1 —z*]Pxc c|&n—s — x*|2}2 = 3| Zp_o —z*|!

~ 4 ~
3 [C|azn,3 - :L’*|2] = c7|xn,3 — x*|8

Q

P 02"71|§;0 . l,*’2"'

14179228



Error analysis

Quadratically convergent sequences generally converge much
more quickly thank those that converge only linearly.
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Error analysis

Quadratically convergent sequences generally converge much
more quickly thank those that converge only linearly.

Theorem 15
Let g € Cla,b] with g([a,b]) C |[a, b].
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Error analysis

Quadratically convergent sequences generally converge much
more quickly thank those that converge only linearly.

Theorem 15

Let g € Cla,b] with g([a,b]) C [a,b]. Suppose that ¢’ is
continuous on (a,b) and 3 k € (0,1) such that

ld (x)| <k, ¥z € (a,b).

1447922



Error analysis

Quadratically convergent sequences generally converge much
more quickly thank those that converge only linearly.

Theorem 15
Let g € Cla,b] with g([a,b]) C [a,b]. Suppose that ¢’ is
continuous on (a,b) and 3 k € (0,1) such that

ld (x)| <k, ¥z € (a,b).
If g'(x*) # 0, then for any x € [a,b], the sequence

T = g(xpn—1), for n>1

converges only linearly to the unique fixed point z* in [a, b].

14579228



Error analysis

Proof:
@ By the Fixed-Point Theorem, the sequence {z,}22,
converges to z*.

1467922



Error analysis

Proof:
@ By the Fixed-Point Theorem, the sequence {z,}22,
converges to z*.
@ Since ¢’ exists on (a,b), by the Mean Value Theorem, 3 ¢,
between z,, and z* such that

Tny1 — 2" = g(zn) — g(") = g'(&n) (w0 — 7).

14779228



Error analysis

Proof:
@ By the Fixed-Point Theorem, the sequence {z,}22,
converges to z*.
@ Since ¢’ exists on (a,b), by the Mean Value Theorem, 3 ¢,
between z,, and z* such that

Tny1 — 2" = g(zn) — g(") = g'(&n) (w0 — 7).

L C P A R (O o R g
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Error analysis

Proof:
@ By the Fixed-Point Theorem, the sequence {z,}22,
converges to z*.
@ Since ¢’ exists on (a,b), by the Mean Value Theorem, 3 ¢,
between z,, and z* such that

Tny1 — 2" = g(zn) — g(") = g'(&n) (w0 — 7).

@ Az}, =t = {10, —at
@ Since ¢’ is continuous on (a, b) we have

lim ¢'(¢n) = ¢'(2").

14079228



Error analysis

Proof:
@ By the Fixed-Point Theorem, the sequence {z,}22,
converges to z*.
@ Since ¢’ exists on (a,b), by the Mean Value Theorem, 3 ¢,
between z,, and z* such that

Tny1 — 2" = g(zn) — g(") = g'(&n) (w0 — 7).

@ Az}, =t = {10, —at
@ Since ¢’ is continuous on (a, b) we have

. / 1%
lim g'(6n) = g'(2).
@ Thus,

. ’xn—i-l | 1/ %
nhjolom— lim. 19'(€n)] = lg'(z)].
Hence, if ¢'(2*) # 0, fixed-point iteration exhibits linear
convergence. [ |
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Error analysis

Theorem 16

Let z* be a fixed point of g and I be an open interval with
¥ el.
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Error analysis

Theorem 16

Let z* be a fixed point of g and I be an open interval with
x* € I. Suppose that ¢'(x*) = 0 and ¢" is continuous with

lg" ()| < M, Vxel.
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Error analysis

Theorem 16

Let z* be a fixed point of g and I be an open interval with
x* € I. Suppose that ¢'(x*) = 0 and ¢" is continuous with

lg"(z)] < M, Vxecl.
Then 3 6 > 0 such that
{zn =g(zn_1)}pey — " for zp € [z* —§,2" + ]

at least quadratically.

15279228



Error analysis

Theorem 16

Let z* be a fixed point of g and I be an open interval with
x* € I. Suppose that ¢'(x*) = 0 and ¢" is continuous with

lg"(z)] < M, Vxecl.
Then 3 6 > 0 such that
{zn =g(zn_1)}pey — " for zp € [z* —§,2" + ]

at least quadratically. Moreover,

M ..
[wns1 = 2" < Zrlan = z*|?, for sufficiently large n.

15479228



Error analysis

Proof:
@ Since ¢'(z*) = 0 and ¢ is continuous on I, 3 ¢ such that
[z* —d,2" + 6] C I and

g (@) <k<1 Vaelz*—06a"+96).
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Error analysis

Proof:
@ Since ¢'(z*) = 0 and ¢ is continuous on I, 3 ¢ such that
[z* —d,2" + 6] C I and

ld ()| <k<1,Vaez"—dz"+4].
@ In the proof of the convergence for Newton’s method, we

have

{xn}pzy C [2* — 0,2 + 4]

185879228



Error analysis

Proof:
@ Since ¢'(z*) = 0 and ¢ is continuous on I, 3 ¢ such that
[z* —d,2" + 6] C I and

g (@) <k<1 Vaelz*—06a"+96).

@ In the proof of the convergence for Newton’s method, we
have

{xn}pzy C [2* — 0,2 + 4]

@ Consider the Taylor expansion of g(z,,) at «*

9" (&n)

tnir = glan) = g(a") + /@) wn — ")+ L5 ( — 0)?
— gt + gll(;n) (l'n _ l'*)Q,

where &, lies between x,, and z*.

185779228



Error analysis

@ Since
I ()| <k<1,Vaxez*—34z"+ 0
and
g([z* —0,2" +]) C [z* — 0,2 + ],

it follows that {x,,}5° , converges to z*.

185R79228



Error analysis

@ Since
I ()| <k<1,Vaxez*—34z"+ 0
and
g([z* —0,2" +]) C [z* — 0,2 + ],

it follows that {x,,}°° , converges to z*

@ But &, is between z,, and z* for each n, so {¢,}72, also
converges to x* and

li —
0o |n — 2|2 2

pu = 2| _|g"@)| _ M
!

15079228



Error analysis

@ Since
I ()| <k<1,Vaxez*—34z"+ 0
and
g([z* —0,2" +]) C [z* — 0,2 + ],

it follows that {x,,}°° , converges to z*
@ But &, is between z,, and z* for each n, so {¢,}72, also
converges to x* and

[Tt — 2| 9" M
R

lim <

n—soo |r, — 2 2

@ It implies that {z,,}>2, is quadratically convergent to z* if
g"(z*) # 0 and

M -
|Tpt1 — %] < < len — z*|?, for sufficiently large n. M

1607 22K



Error analysis

For Newton’s method,

()

L -1 F@ @) @)
U e B 9

—+ =

(f'(x))? (f'(z))?
It follows that ¢’(z*) = 0. Hence Newton’s method is locally
quadratically convergent.
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Error analysis

Multiple Roots

Definition 17

A solution p of f(z) = 0 is a zero of multiplicity m of f if for
x # p, then

f(z) = (z —p)"q(x),

where lim,_,, q(z) # 0.

16279228



Error analysis

Multiple Roots

A solution p of f(z) = 0 is a zero of multiplicity m of f if for
x # p, then

where lim,_,, q(z) # 0.

Theorem 18

The function f € C™]a,b] has a zero of multiplicity m at p in
(a,b) if and only if

0=f(p)=f(p)=f'(p) == f" p),

but ™ (p) # 0.

16279228



Error analysis

Define
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Error analysis

Define

i@
we) = ey

If pis a zero of f of multiplicity m with

f(z) = (x —p)"q(x),

16579228



Error analysis

Define

i@
we) = ey

If pis a zero of f of multiplicity m with

f(z) = (x —p)"q(x),

then

166722



Error analysis

Define

i@
we) = ey

If pis a zero of f of multiplicity m with

f(z) = (x —p)"q(x),

then

Since ¢(p) # 0 and

q(p) _ 1
D)+ -7 m”

p is a simple root of p(z).

167722



Error analysis

Newton’s method can be applied to u(z) to give

u(w) ( )/ ()
(z) { D) f"(@)} /1 @)

16R79228



Error analysis

Newton’s method can be applied to u(z) to give

pla) _ f(@)/ ()
@) = F@) @)} /1 @)

=
2
Il
S
|
~:\
—
8
~
—

[f'(2)]” = f(a)f"(z)

@ Linear convergence of Newton’s method for f(x).
© Quadratic convergence of Newton’s method for y(z).

© Multiple roots can cause serious round-off problems
because [f'(z)]*> — f(z) " (x) consists of the difference of
two numbers that are both close to 0.

160722



Error analysis

Error Analysis of Secant Method

Reference: D. Kincaid and W. Cheney, "Numerical analysis”
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Error analysis

Error Analysis of Secant Method

Reference: D. Kincaid and W. Cheney, "Numerical analysis”
Let «* denote the exact solution of f(x) =0, e, = z,, — z* be
the error at the n-th step.

17179228



Error analysis

Error Analysis of Secant Method

Reference: D. Kincaid and W. Cheney, "Numerical analysis”
Let «* denote the exact solution of f(x) =0, e, = z,, — z* be
the error at the n-th step. Then

*
€nt+l1 = Tpt+l — T

Tpn — Tp—
= xn_f(xn) N nd :

f@n) = flen)
1

= Fan) = fny @t =@ ) = (n = aT) ()]

1

~ fl@a) — flza1) (En-15 (@) = enf(En-1))

(
- éf(xn) — ﬁf(l'nfl) Ty —Tp
= Enfn-1 Ty — Tp_1 f(zn) = f(Tn-1)

179279228



Error analysis

: e f@n) == f(zn-1)
To estimate the numerator <~ _en—1” """ , We apply

Tn—Tn—1
Taylor’s Theorem

Flan) = F&* + en) = F(@) + £/ @)en + 5 7"(7)l + O(ED),
to get

) = @) + 5@ en + O,

17279228



Error analysis

: e f@n) == f(zn-1)
To estimate the numerator <~ _en—1” """ , We apply

Tn—Tn—1
Taylor’s Theorem

Flan) = F&* + en) = F(@) + £/ @)en + 5 7"(7)l + O(ED),
to get

) = @) + 5@ en + O,
Similarly,

L flon) = S e + O

€n—1

17479228



Error analysis

: e f@n) == f(zn-1)
To estimate the numerator <~ _en—1” """ , We apply

Tn—Tn—1
Taylor’s Theorem

Flan) = F&* + en) = F(@) + £/ @)en + 5 7"(7)l + O(ED),

to get
1 1
—f(an) = f(@") + 3£/ (@)en + O(cE).
Similarly,
L fon) = £1@) + 2 Ven s + O(3_).
€n—1 2
Hence
1

17857922



Error analysis

: e f@n) == f(zn-1)
To estimate the numerator <~ _en—1” """ , We apply

Tn—Tn—1
Taylor’s Theorem

Flan) = F&* + en) = F(@) + £/ @)en + 5 7"(7)l + O(ED),

to get
1 1
—f(an) = f(@") + 3£/ (@)en + O(cE).
Similarly,
L fon) = £1@) + 2 Ven s + O(3_).
€n—1 2
Hence
1

() = —— (o) % e — en ) ().

€n €n—1
Since z,, — ,,—1 = e, — e,—1 and
Ty — Tp—1 1
n n _%

flan) = f(an-1) — f'(@*)]

176722



Error analysis

we have

€nt+1 ~ €n€n—1

o (Meme @) 1 _1p6)
nn-l €n — en_1 f(z*) 2 f!(x¥)
= Cepep_i. (2)

1777922



Error analysis

we have

€p — Ep—1 f’(ﬂj*) 2 f/(l’*) €n€n—1

= Cepen_i. @)

%(en - €n—1)f”({L’*) . 1 ) _ }f”(fk)

nt+l1 ~ enen_1<

To estimate the convergence rate, we assume
len+1] & nlen|,
where > 0 and « > 0 are constants, i.e.,

‘€n+1!

nién

17879228



Error analysis

we have

entl = €n€n—1

(Mm@ 1 160
nn-l €n — en_1 f(z*) 2 f!(x¥)
= Cepep_i. (2)

To estimate the convergence rate, we assume
len+1] & nlen|,
where > 0 and « > 0 are constants, i.e.,

‘en+1’

’ ‘a—>1 as n — oo.
Ul=

Then |e,| ~ nle,_1|* which implies |e,_1| = n~1/*|e,|*/“.
Hence (2) gives

1, 1+1

_ —a+L
nleal® = Clealn™/len|* = C7'p'Ta & ey 7T

417079228



Error analysis

. 1,
Since |e,| — 0 as n — oo, and C~'n'*= is a nonzero constant,

1 1 b}
1— a4+ — = 0 > o = ‘*;2\/k ~ 1.(}2.
«

1807 22K



Error analysis

. 1,
Since |e,| — 0 as n — oo, and C~'n'*= is a nonzero constant,

1+V5

~ 1.62.
2

1
l-a+—-—=0 = a=
!

This result implies that C—1n'*& — 1 and

(% 0.62
77_>Cli¢a:<f(l‘)> ‘

2f"(x*)

18179228



Error analysis

. 1,
Since |e,| — 0 as n — oo, and C~'n'*= is a nonzero constant,

1+45
2

~ 1.62.

1
l-a+—-—=0 = a=
!

This result implies that C—1n'*& — 1 and
o f”(l‘*) 0.62
n— C1+ _<2f’(1:*) .

In summary, we have shown that

lex+1] = nlex|®, «a =~ 1.62,

that is, the convergence of Secant method is superlinear.
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Error analysis

. 1,
Since |e,| — 0 as n — oo, and C~'n'*= is a nonzero constant,

1+V5

~ 1.62.
2

1
l-a+—-—=0 = a=
!

This result implies that C—1n'*& — 1 and

(% 0.62
n_>01$a:<f($)> ‘

2 ()
In summary, we have shown that
lex+1] = nlex|®, «a =~ 1.62,

that is, the convergence of Secant method is superlinear.

Order of convergence
@ secant method: superlinear
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Error analysis

. 1,
Since |e,| — 0 as n — oo, and C~'n'*= is a nonzero constant,

1+45

~ 1.62.
2

1
l-a+—-—=0 = a=
!

This result implies that C—1n'*& — 1 and

(% 0.62
77-)01-%&:<f(x)> .

2 ()
In summary, we have shown that
lex+1] = nlex|®, «a =~ 1.62,

that is, the convergence of Secant method is superlinear.

Order of convergence
@ secant method: superlinear
@ Newton’s method: quadratic
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Error analysis

. 1,
Since |e,| — 0 as n — oo, and C~'n'*= is a nonzero constant,

1+V5

~ 1.62.
2

1
l-a+—-—=0 = a=
!

This result implies that C—1n'*& — 1 and

(% 0.62
n_>01$a:<f($)> ‘

2 ()
In summary, we have shown that
lex+1] = nlex|®, «a =~ 1.62,

that is, the convergence of Secant method is superlinear.

Order of convergence

@ secant method: superlinear
@ Newton’s method: quadratic
@ bisection method: linear

18579228



Error analysis

Each iteration of method requires
@ secant method: one function evaluation
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Error analysis

Each iteration of method requires
@ secant method: one function evaluation

@ Newton’s method: two function evaluation, namely, f(x,,)
and f'(z,,).
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Error analysis

Each iteration of method requires
@ secant method: one function evaluation
@ Newton’s method: two function evaluation, namely, f(x,,)
and f'(z,,).
= two steps of secant method are comparable to one step of
Newton’s method.
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Error analysis

Each iteration of method requires
@ secant method: one function evaluation
@ Newton’s method: two function evaluation, namely, f(x,,)
and f'(z,,).
= two steps of secant method are comparable to one step of
Newton’s method. Thus

3+vV5
Ent2| = N€nt1| =1 €n
lenta| & nlen1|® & 0!t en| 2

~ 7,’1—&—o¢|€n‘2.62.
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Error analysis

Each iteration of method requires
@ secant method: one function evaluation
@ Newton’s method: two function evaluation, namely, f(x,,)
and f'(z,,).
= two steps of secant method are comparable to one step of
Newton’s method. Thus

345
lenta| = nlen1]® ~ 771+a|€n| 2

~ 7,’1—&—o¢|€n‘2.62.

= secant method is more efficient than Newton’s method.
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Error analysis

Each iteration of method requires
@ secant method: one function evaluation
@ Newton’s method: two function evaluation, namely, f(x,,)
and f'(z,,).
= two steps of secant method are comparable to one step of
Newton’s method. Thus

3+vV5
Ent2| = N€nt1| =1 €n
lenta| & nlen1|® & 0!t en| 2

~ n1+o¢|€n‘2.62.

= secant method is more efficient than Newton’s method.

Two steps of secant method would require a little more work
than one step of Newton’s method.
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Error analysis

Page 85: 8,9, 10, 11
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Accelerating convergence

Aitken’s A2 method

@ Accelerate the convergence of a sequence that is linearly
convergent.
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Accelerating convergence

Aitken’s A2 method

@ Accelerate the convergence of a sequence that is linearly
convergent.

@ Suppose {y,}5°, is a linearly convergent sequence with

n=0

limit .
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Accelerating convergence

Aitken’s A2 method

@ Accelerate the convergence of a sequence that is linearly
convergent.

@ Suppose {y,}5°, is a linearly convergent sequence with

n=0

limit y. Construct a sequence {y,}>2, that converges more
rapidly to y than {y,}32,.

410857922



Accelerating convergence

Aitken’s A2 method

@ Accelerate the convergence of a sequence that is linearly
convergent.

@ Suppose {y,}°°, is a linearly convergent sequence with
limit y. Construct a sequence {y,}>2, that converges more
rapidly to y than {y,}32,.

For n sufficiently large,

Yn+1—Y _ Ynt2 — Y
Yn — Y Yn+1 — Y

108722



Accelerating convergence

Aitken’s A2 method

@ Accelerate the convergence of a sequence that is linearly
convergent.

@ Suppose {y,}°°, is a linearly convergent sequence with
limit y. Construct a sequence {y,}>2, that converges more
rapidly to y than {y,}32,.

For n sufficiently large,

Yn+1—Y _ Ynt2 — Y
Yn — Y Yn+1 — Y
Then

(Ynt1 = 9)* = (Ynt2 — ¥) (Yn — V),
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Accelerating convergence

Aitken’s A2 method

@ Accelerate the convergence of a sequence that is linearly
convergent.

@ Suppose {y,}°°, is a linearly convergent sequence with
limit y. Construct a sequence {y,}>2, that converges more
rapidly to y than {y,}32,.

For n sufficiently large,

Yn+1—Y _ Ynt2 — Y
Yn — Y Yn+1 — Y
Then

(Ynt1 = 9)* = (Ynt2 — ¥) (Yn — V),

y721+1 — 2Yn1y + y2 = Yn+2Yn — (yn+2 + yn)y + y2

10879228



Accelerating convergence

and

(yn+2 + Yn — 2yn+1)y N Yn+2Yn — yrzz—i-l'

4100722



Accelerating convergence

and

(yn+2 + Yn — 2yn+1)y N Yn+2Yn — yrzz—i-l'
Solving for y gives

Yn+2Yn — 3/7214-1
Yn+2 — 2Yn+1 + Yn
YnYn+2 = 2YnYnt1 + Yn — Yn T 2Un¥nt1 — Ynia
Yn+2 — 2Yn+1 + Yn
Yn(Yn+2 — 2Unt1 + Yn) — Yni1 — yn)Q
(Yn+2 — Ynt+1) — (Ynt1 — Yn)
(Yn+1 — yn)2
(Yn+2 — Yns1) — Yns1 — yn)

Q

Y

= Yn—

2007 22K



Accelerating convergence

and

(yn+2 + Yn — 2yn+1)y N Yn+2Yn — y721+1'
Solving for y gives

Yn+2Yn — y?ﬁ-l
Yn+2 — 2Yn+1 + Yn
YnYn+2 = 2YnYnt1 + Yn — Yn T 2Un¥nt1 — Ynia
Yn+2 — 2Yn+1 + Yn
Yn(Yn+2 — 2Unt1 + Yn) — Yni1 — yn)Q
(Yn+2 — Ynt+1) — (Ynt1 — Yn)
(Yn+1 — yn)2
(Yn+2 — Yns1) — Yns1 — yn)

Q

Y

= Yn—

Aitken’s A2 method
2
~ (yn+1 y'n) (3)

Jn = Yn — :
T (Yng2 — Ynt1) — (Ynt1 — Yn)
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Accelerating convergence

Example 19
The sequence {y, = cos(1/n)}2, converges linearly to y = 1.

Yn Un
0.54030 0.96178
0.87758 0.98213
0.94496 0.98979
0.96891 0.99342
0.98007 0.99541
0.98614
0.98981

N O U W =3

@ {yn}>2, converges more rapidly to y = 1 than {y,}>2,.
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Accelerating convergence

Definition 20

For a given sequence {y,}:°, the forward difference Ay, is
defined by

AYp = Yns1 — Yn, for n>0.
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Accelerating convergence

Definition 20

For a given sequence {y,}:°, the forward difference Ay, is
defined by

Ayn = Ynt1 — Yn, for n>0.
Higher powers of A are defined recursively by

Aky, = A(AFYy,), for k> 2.
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Accelerating convergence

Definition 20

For a given sequence {y,}:°, the forward difference Ay, is
defined by

Ayn = Ynt1 — Yn, for n>0.
Higher powers of A are defined recursively by

Aky, = A(AFYy,), for k> 2.

The definition implies that

A Yn = A(ynJrl ) Ayn+1 Ayn = (yn+2 - yn+1) - (ynJrl - yn)
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Accelerating convergence

Definition 20

For a given sequence {y,}:°, the forward difference Ay, is
defined by

Ayn = Ynt1 — Yn, for n>0.
Higher powers of A are defined recursively by

Aky, = A(AFYy,), for k> 2.

The definition implies that

A Yn = A(ynJrl ) Ayn+1 Ayn = (yn+2 - yn+1) - (ynJrl - yn)
So the formula for g, in (3) can be written as

(Ayn)Q

YUn = Yn — AQyn , for TLZO

2067 22K



Accelerating convergence

Theorem 21

Suppose {y,}°>, — y linearly and

lim Ynt17Y

< 1.
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Accelerating convergence

Theorem 21

Suppose {y,}°>, — y linearly and

lim Ynt17Y

< 1.

Then {y,}5°, — y faster than {y, }>2, in the sense that

li gn -y
1m

=0.
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Accelerating convergence

Theorem 21

Suppose {y,}°>, — y linearly and

lim Ynt17Y

< 1.

Then {y,}5°, — y faster than {y, }>2, in the sense that

li gn -y
1m

=0.

@ Aitken’s A% method constructs the terms in order:

vo, y1=9wo), v2=gn), Go=1{A%(w), v3=g(),
o1 = {A% (),

= Assume |ijo — y| < |y2 — ¥
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Accelerating convergence

@ Steffensen’s method constructs the terms in order:

y\? = g0, 29 = g™, o = g,

(1)—{A2}( N,y =gy, ) =gV,

2107 22K



Accelerating convergence

@ Steffensen’s method constructs the terms in order:

y\? = g0, 29 = g™, o = g,

(1)—{A2}( N,y =gy, ) =gV,

Steffensen’s method (To find a solution of y = g(y))

Given v, tolerance Tol, max. number of iteration M. Seti = 1.

While ¢ < M
Sety1 = g(yo); v2 = 9(1); ¥ = o — (y1 — v0)*/ (y2 — 2y1 + Wo)-
If |y — yo| < Tol, then STOP.
Seti=i+1;y0=1y.

End While

24479228



Accelerating convergence

@ Steffensen’s method constructs the terms in order:

y\? = g0, 29 = g™, o = g,

(1)—{A2}( N,y =gy, ) =gV,

Steffensen’s method (To find a solution of y = g(y))

Given v, tolerance Tol, max. number of iteration M. Seti = 1.

While s < M
Sety1 = g(yo); v2 = 9(1); ¥ = o — (y1 — v0)*/ (y2 — 2y1 + Wo)-
If |y — yo| < Tol, then STOP.
Seti=i+1;y0=1y.

End While

Theorem 22
Suppose x = g(z) has solution x* with ¢’ (x*) # 1.

2497929



Accelerating convergence

@ Steffensen’s method constructs the terms in order:

y\? = g0, 29 = g™, o = g,

(1)—{A2}( N,y =gy, ) =gV,

Steffensen’s method (To find a solution of y = g(y))

Given v, tolerance Tol, max. number of iteration M. Seti = 1.

While ¢ < M
Sety1 = g(yo); v2 = 9(1); ¥ = o — (y1 — v0)*/ (y2 — 2y1 + Wo)-
If |y — yo| < Tol, then STOP.
Seti=i+1;y0=1y.

End While

Theorem 22

Suppose x = g(x) has solution x* with ¢'(z*) # 1. If36 >0
such that g € C3[z* — §,2* + 6],

2427929



Accelerating convergence

@ Steffensen’s method constructs the terms in order:

y\? = g0, 29 = g™, o = g,

(1)—{A2}( N,y =gy, ) =gV,

Steffensen’s method (To find a solution of y = g(y))

Given v, tolerance Tol, max. number of iteration M. Seti = 1.

While s < M
Sety1 = g(yo); v2 = 9(1); ¥ = o — (y1 — v0)*/ (y2 — 2y1 + Wo)-
If |y — yo| < Tol, then STOP.
Seti=i+1;y0=1y.

End While

Theorem 22

Suppose x = g(x) has solution x* with ¢'(z*) # 1. If36 >0
such that g € C3[z* — §,x* + §], then Steffensen’s method gives
quadratic convergence for any xg € [z* — 0, z* + §].
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Accelerating convergence

Page 90: 4,5, 8,13
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Zeros of polynomials

Zeros of polynomials and Muller’s method

e Horner’s method:
Let

P(l') = aop+aixr+ an‘? et anlxn_l ta,z"

= ap+z(m+z(az+ - +x(an-1+ayx) -)).

21679228



Zeros of polynomials

Zeros of polynomials and Muller’s method

e Horner’s method:
Let

P(l') = aop+aixr+ an‘? et anlxn_l ta,z"

= ap+z(m+z(az+ - +x(an-1+ayx) -)).

b, = an,

b, = ag+ brrixo, for k=n—1,n-2,...,1,0

N477928



Zeros of polynomials

Zeros of polynomials and Muller’s method

e Horner’s method:

Let
P(z) = ap+aiz+az® 4+ + ap_12"t + apz”
= ap+z(a+x(ag+-+ (a1 +apz)---)).
If
by = an,
b, = ag+bgyixo, for k=n—-1,n-2,...,1,0
then

bo = aog + bixo = ap + (a1+ng0)x0 =.-- :P({L'o).

241879228



Zeros of polynomials

Zeros of polynomials and Muller’s method

e Horner’s method:

Let
P(z) = ap+aiz+az® 4+ + ap_12"t + apz”
= ag+z(ag+x(ag+ 4z (an 1 +apz) ---)).
If
by = an,
b = ag+briiwe, for k=n—-1,n-2,...,1,0,
then
bo = ag + bixg = ap + (a1 + baxg) xg = - - - = P(x).
Consider

Q(z) =by +box +--- + b L.

241979228



Zeros of polynomials

Then
bo + (x — 20)Q(z) = by + (z — m) (b1 + boz + -+ + bz 1)
= (b — brzg) + (b1 — bozg)x + - - + (by1 — bpxg)z™ L + bpa™
ap + a1z + - + apz” = P(x).

29079228



Zeros of polynomials

Then
bo + (x — 20)Q(z) = by + (z — m) (b1 + boz + -+ + bz 1)
= (bo — biwo) + (b1 — baxo)z + - -+ + (bp—1 — bpxo)x™* + bya™
= at+az+---+az” = P(x).
Differentiating P(x) with respect to z gives

P'(z) =Q(z) + (x —x0)Q'(z) and P'(z0) = Qo).

7047928



Zeros of polynomials

Then
bo + (x — 20)Q(z) = by + (z — m) (b1 + boz + -+ + bz 1)
= (b — brzg) + (b1 — bozg)x + - - + (by1 — bpxg)z™ L + bpa™
= at+az+---+az” = P(x).
Differentiating P(x) with respect to z gives
P'(z) =Q(z) + (x —x0)Q'(z) and P'(z0) = Qo).

Use Newton-Raphson method to find an approximate zero of
P(z):

P(x)
Q)

Th+1 = Tk — ,Vk:O,1,2,....

NN 1IN



Zeros of polynomials

Then
bo + (x — 20)Q(z) = by + (z — m) (b1 + boz + -+ + bz 1)
= (b — brzg) + (b1 — bozg)x + - - + (by1 — bpxg)z™ L + bpa™
= at+az+---+az” = P(x).
Differentiating P(x) with respect to z gives
P'(z) =Q(z) + (x —x0)Q'(z) and P'(z0) = Qo).
Use Newton-Raphson method to find an approximate zero of
P(z):

P(x
ka:xk—QEx’;;, Vk=0,1,2,....

Similarly, let
Cn = bn = Qn,

c, = by +cpr1zk, for k=n—-1,n-2,...,1,
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Zeros of polynomials

Then
bo + (x — 20)Q(z) = by + (z — m) (b1 + boz + -+ + bz 1)
= (b — brzg) + (b1 — bozg)x + - - + (by1 — bpxg)z™ L + bpa™
= at+az+---+az” = P(x).
Differentiating P(x) with respect to z gives
P'(z) =Q(z) + (x —x0)Q'(z) and P'(z0) = Qo).
Use Newton-Raphson method to find an approximate zero of

P(z):
P(x
Th1 = Tp — QE;}:; Vk=0,1,2,....
Similarly, let
Ch = bn:aTu
c, = by +cpr1zk, for k=n—-1,n-2,...,1,

then ¢y = Q(xk)

29947928



Zeros of polynomials

Horner’s method (Evaluate y = P(z¢) and z = P’(x))

Sety =ay; 2 = ay.
Forj=n—-1n-2,...,1

Sety = a; + yxo; 2 = y + 2xo.
End for
Set y = ap + yxo.

IO 7928



Zeros of polynomials

Horner’s method (Evaluate y = P(z¢) and z = P’(x))

Sety =ay; 2 = ay.
Forj=n—-1n-2,...,1

Sety = a; + yxo; 2 = y + 2xo.
End for
Set y = ap + yxo.

If xx is an approximate zero of P, then

P(z) = (v—zn§)Q(x)+bo = (z —2N)Q(z) + P(zN)
~ (r—an)Qw) = (v — 21)Q1(2).

299671928



Zeros of polynomials

Horner’s method (Evaluate y = P(z¢) and z = P’(x))

Sety =ay; 2 = ay.
Forj=n—-1n-2,...,1

Sety = a; + yxo; 2 = y + 2xo.
End for
Set y = ap + yxo.

If xx is an approximate zero of P, then
P(z) = (z—2n)Q(z)+by = (z—2n)Q(z) + P(zN)
~ (2 —an)Q) = (z — 21)Q1(2).

So x — #; is an approximate factor of P(x) and we can find a
second approximate zero of P by applying Newton’s method to

Ql(x)

NN77928



Zeros of polynomials

Horner’s method (Evaluate y = P(z¢) and z = P’(x))

Sety =ay; 2 = ay.
Forj=n—-1n-2,...,1

Sety = a; + yxo; 2 = y + 2xo.
End for
Set y = ap + yxo.

If xx is an approximate zero of P, then
P(z) = (z—2n)Q(z)+by = (z—2n)Q(z) + P(zN)
~ (2 —an)Q) = (z — 21)Q1(2).

So = — &7 is an approximate factor of P(z) and we can find a
second approximate zero of P by applying Newton’s method to
Q1(z). The procedure is called deflation.
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Zeros of polynomials

e MUller's method for complex root:

If z = a +ib is a complex zero of multiplicity m of P(x) with real
coefficients, then z = a — bi is also a zero of multiplicity m of
P(z) and (2% — 2ax + a® + b*)™ is a factor of P(z).

X

t + t
Po Py Py X

29Q792°8



Zeros of polynomials

e MUller's method for complex root:

If z = a +ib is a complex zero of multiplicity m of P(x) with real
coefficients, then z = a — bi is also a zero of multiplicity m of
P(z) and (2% — 2ax + a® + b*)™ is a factor of P(z).

Secant method: Given py and
p1, determine p, as the
intersection of the x-axis with
the line through (po, f(po)) and

(p1, f(p1))-

y

t + t
Do ¥4 P X \ *

220079228



Zeros of polynomials

e MUller's method for complex root:

If z = a +ib is a complex zero of multiplicity m of P(x) with real
coefficients, then z = a — bi is also a zero of multiplicity m of
P(z) and (2% — 2ax + a® + b*)™ is a factor of P(z).

Secant method: Given py and Muller's method: Given pg, p1
p1, determine p, as the and p,, determine p3 by the
intersection of the x-axis with intersection of the x-axis with
the line through (po, f(po)) and the parabola through (po, f(po)),
(p1, f(p1))- (plaf(Py])) and (pz, f(p2)).

y

X

t + t
Po Py Py X
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Zeros of polynomials

Let
P(z) = a(z — p2)* + b(z — pa) + ¢

that passes through (po, f(po)), (p1, f(p1)) and (pz, f(p2))-

PLDND L]



Zeros of polynomials

Let
P(z) = a(z — p2)* + b(z — pa) + ¢
that passes through (po, f(po)), (p1, f(p1)) and (p2, f(p2)). Then

f(po) = a(po—p2)* +bpo — p2) + ¢,
fp1) = a(p1—p2)* +b(p1 — p2) +c,
f(p2) = alps—p2)* +b(p2 —p2) +c=c.
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Zeros of polynomials

Let
P(z) = a(z — p2)* + b(z — pa) + ¢

that passes through (po, f(po)), (p1, f(p1)) and (p2, f(p2)). Then

f(po) = a(po—p2)* +bpo — p2) + ¢,
fp1) = a(p1—p2)* +b(p1 — p2) +c,
f(p2) = alps—p2)* +b(p2 —p2) +c=c.
It implies that
c = f(p2)7

~(po = p2)? [f(p1) = f(p2)] — (p1 — p2)* [f (o) — f(p2)]
(Po — p2)(p1 — p2)(Po — P1) ’

_ (p1 —p2) [f (po) — f(p2)] — (Po — p2) [f(p1) — [(p2)]

(po — p2)(P1 — p2)(Po — P1) '

2247928



Zeros of polynomials

To determine p3, a zero of P, we apply the quadratic formula to
P(z) =0 and get

2c
Ps = P2 = b+ Vb2 — dac

AR 71928



Zeros of polynomials

To determine p3, a zero of P, we apply the quadratic formula to
P(z) =0 and get

2c
Ps = P2 = b+ Vb2 — dac
Choose
—po 2c
bs = b+ sgn(b)Vb? — dac

such that the denominator will be largest and result in ps3
selected as the closest zero of P to ps.

2267928



Zeros of polynomials

Miiller’s method (Find a solution of f(x) = 0)

Given pg, p1, po; tolerance TOL; maximum number of iterations (M
Set hy = p1 — po; ha = p2 — p1;
61 = (f(p1) — f(po))/h1; 02 = (f(p2) — f(p1))/h2;
d= ((52 = (51)/(h2 -+ hl); 1= 3.
While : < M
Set b =y + hod; D = \/b? — 4f(pa)d.
If|b—D| < |b+ D|, thenset E=b+ Delseset E=b— D.
Seth = —2f(p2)/E; p=p2 + h.
If |h|] < TOL, then STOP.
Set pg = p1; p1 = p2; P2 = p; b1 = p1 — po; ha = p2 — p1;
01 = (f(p1) — f(po))/h1; 02 = (f(p2) — f(p1))/he;
d= (52—(51)/(h2+h1);i=i+1.
End while
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Zeros of polynomials

Page 100: 9
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