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Numerical Differentiation

e = tim TR = a0

Question
How accurate is

f(@o +h) — f(wo),
- .

Suppose a given function f has continuous first derivative and f” exists.
From Taylor's theorem

1
f@+h) = f@) + F/@)h+ SR,
where £ is between = and = + h, one has

fioy— LEt W) = @) b

h - §f”(§) =

f(z+h) - f(=z)
. +O(h).
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Hence it is reasonable to use the approximation

f@+h) - fz)

/ ~
7o)~
which is called forward finite difference, and the error involved is
=21l <t max |70
2 = 2 te(z,a+h)

Similarly one can derive the backward finite difference approximation

f/(a:) A~ f($) — i(l‘ — h) (1)

which has the same order of truncation error as the forward finite
difference scheme.
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The forward difference is an O(h) scheme. An O(h?) scheme can also be
derived from the Taylor's theorem

(@R
S (&)h?,

fla+h) = f@)+ f@h+ 5 @k +

1
6
fle=h) = f@) - F@h+ 3" @h

6

where & is between x and x + h and & is between z and = — h. Hence

flo+h) = f@— ) = 2 @ + Sl (&) + [ @I

and
h) — —h
f’(x) _ f($ I )th(x ) . %[f///(&) + f”/(fg)]hz
Let
M = ze[xn_lzirh] f"(z) and m= zG[zIIllflx—l—h]f (2).
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If /""" is continuous on [z — h,z + h], then by the intermediate value
theorem, there exists £ € [x — h, z + h] such that

£(€) = 31" (6) + £

Py = LEERIC=D) Lpgya SO TG | o)

This is called center difference approximation and the truncation error is

h2
el = =€)

Similarly, we can derive an O(h?) scheme from Taylor's theorem for f”(x)

" _f(x+h>_2f<x)+f(x_h) 1
f (.Z') - h2 - Ef(4)(£)h27

where £ is between z — h and x + h.
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Polynomial Interpolation Method

Suppose that (2o, f(z0)), (z1, f(z1)) - -+, (zn, f(zn) have been given, we
apply the Lagrange polynomial interpolation scheme to derive

P(z) = Zf(ifi)Li(-T),
i=0

where

Lie)= [ =—2.

=0 T Y
Since f(z) can be written as
- 1
o) = 3 £)La) + (D)

where
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fl@) = Z”f(l’z)Li(x)+(n-ll—l)uf(n+1)(§x)w'($)
=0
i (nil)l (”C)%f(nm(@)

Note that

Hence a reasonable approximation for the first derivative of f is
fl(z) =Y fla)Li(x).
i=0

When x = zj, for some 0 < k < n,

n

w(zg) =0 and w'(zg) = H (xg — x;).
i=0,i#k
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Hence

Fla) = Y F@)Eiwn) + ——= &) [T (e —a0),
i=0 (n T 1)’ i=0,i#k

which is called an (n + 1)-point formula to approximate f'(z).
e Three Point Formulas

Since
(- 21) (2 — 22)
Loe) = (zo — 71) (w0 — 72)
we have
p _ 2r — 1 — X9
o) = (zo — x1)(w0 — 22)
Similarly,

2r —xp — 11
(z2 — z0)(22 — 21)

Qr — o —
(@) = S — and Li(z) =

(z1 — z0)(z1 — Z2)
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Fla) = fan) [ 2Ry o) [ ZER =2

(2o — z1)(z0 — 72) (z1 — z0) (21 — T2)
2
} + éf(?’)(ﬁj) I @ —=w),

k=0,k#j

ij — Xy — T1

(z2 — @o) (22 — 71)

+ fe)|

for each j = 0,1,2. Assume that

x1 =x9+ h and x5 = 29 + 2h, for some h # 0.

Then
Fla) = 7 -5 +27() - 1) + 2106
Flay = 7 |30+ 3] - £,
Fla = 7 [5G0 - 21 + $1(e)] + 20,
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That is

, 1[ 3 1 W 3
fi(xo) = 7 —2f($0)+2f(£c()+h)—2f(x0+2h):|+3f (o),
) 171 1 R e
Planth) = 3 |-5fe0 + 5o+ 2m)] - £, ()
- 2
Plant2m) = 3 [570) =210+ 1)+ 3 o+ 20| + /O E)9

Using the variable substitution z( for o + h and z¢ + 2h in (3) and (4),
respectively, we have

2
f(wo) = % [=3f(x0) +4f (wo + h) = f(zo + 2h)] + %f“’ (€0),(5)
2
fla) = 5rl-flzo—h)+ fz+ )] - = /OE),
2
flao) = o [0~ 20) = 4f(z0 — ) + 3 (z0)] + = O (€a). (0)

Note that (6) can be obtained from (5) by replacing h with —h.
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e Five-point Formulas

F(#0) = = [f(zo— 2h) — 8f(zo— )+ 8f (w0 + h) — f(zo + 2)]

)
where € € (xg — 2h, xo + 2h) and

F@o) = o [~25(xo) +48f (mo + h) — 36f(zo + 2h)

+  16f(xo + 3h) — 3f (w0 + 4h)] + %41‘(5’ (&)

where € € (xg, o + 4h).
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Round-off Error

Consider

1

2
fla) = 5rl-flzo—h)+ fzo+ ) - = OE),

where %Qf(?’)(ﬁl) is called truncation error. Let f(xo+ h) and f(zo — h)
be the computed values of f(xg+ h) and f(xo — h), respectively. Then

f(xo + h) = f(zo+ h) + e(xo + h)
and
f(zo — h) = f(zo — h) + e(zo — h).

Therefore, the total error in the approximation

f(z (o — e(x —e(xg — 2
f’(:ro)—f( 0+h)2hf( 0o—h) _ e 0+h)2h (zo — h) —%f(3)(£1)

is due in part to round-off error and in the part to_truncation error.
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Assume that
le(wo £ h)| <e and |f® (&) < M.
Then

Flzo+h) — flzo — h) < £ h?

f'(wo) - 2h =9

Note that e(h) attains its minimum at h = {/3¢/M.
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Richardson’s Extrapolation

Suppose Vh # 0 we have a formula N (h) that approximates an unknown
value M

M — Ny(h) = Kih + Koh? + K3h3 4+ - -+ | (7)

for some unknown constants K1, Ko, K3,.... If K1 £ 0, then the
truncation error is O(h). For example,

z — f(z ae (o (g
PO (R (G il PO OO YO

Goal

Find an easy way to produce formulas with a higher-order truncation error.J

Replacing h in (7) by h/2, we have

h h h? h3
M—N1<§>+K1§+K22+K3§+'“. (8)
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Subtracting (7) with twice (8), we get

3K3

K
M = Ny(h) — 72h2 Y (9)

where

No(h) = 2N, (;‘) — Ni(h) =N, (Z) - {Nl (;L) - Nl(h)} :

which is an O(h?) approximation formula.
Replacing h in (9) by h/2, we get

M=N,(=
2) 8 32

Subtracting (9) from 4 times (10) gives

=3 (10)
3M =N, <Z>—N2(h)+38K3’h3+---,

which implies that
K3

M= [NQ (h> +Nz(h/2)—N2(h)] K3 LEPXS S

o= Na(h
2 3 Tt 3h) + 3
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Using induction, M can be approximated by
M = Np(h) +O(h™),

where

Non(h) = N1 (g) N Nm—l(;li?_)l—_]\lfm_l(h).

Centered difference formula. From the Taylor's theorem

! h? " h? " ht (4) h? (5)
flt+h) = f@)+hf(e)+ 5 @)+ 57 f7(@) + 7 7 (@) + o 72

h? h? h* h®
fle=h) = fl@)=hf'(@)+ 51" @) = 57" (@) + 57 F (@) - 7O
we have
3 5
Flo+B) = (o~ ) = 20f'(2) + 2 (@) + 2L FO@) 4
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and, consequently,

— _ 2 4
f/($0) _ f(x0+h)2hf($0 h) . [%f//,($0)+%f(5)($0)+:| ’
h? ht
= M) - |50 + 5O+ . ()
Replacing h in (11) by h/2 gives
h h? ht
f’(ﬂfo) =N <§> _ ﬂf///(xo) _ Mf(5)(xo) T (]_2)
Subtracting (11) from 4 times (12) gives
4
(o) = Nah) + 355 O o)+,
where
M) = 3 |11 () - | = ma (5 ) + ROA=E)
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In general,
f'(z0) = Nj(h) + O(h*)

with

2

Nj—1(h/2) —

N;j(h) = Nj_, <§> + T j=1h)

—_

Example

Suppose that zp = 2.0, h = 0.2 and f(z) = xze®. Compute an
approximated value of f/(2.0) = 22.16716829679195 to six decimal places.

Solution. By centered difference formula, we have

Ni(0.2) = f02+ h);hf(o'z —h) _ 22.414160,

Ni(0.1) = fOL+R) = FOL=R) _ 59 998786,

2h
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It implies that

N1 (0.1) — N(0.2)
3

which does not have six decimal digits. Adding N;(0.05) = 22.182564, we
get

N5(0.2) = N1(0.1) + = 22.166995

N1(0.05) — N1(0.1)
3

= 22.167157

N3(0.1) = N1(0.05) +

and

No(0.1) — N»(0.2)
15

= 22.167168

N3(0.2) = N5(0.1) +

which contains six decimal digits.
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O(h%)

O(h3)

O(h?)
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Elements of Numerical Integration
The basic method involved in approximating the integration

b
[ t@da. (13)

is called numerical quadrature and uses a sum of the type

b n
[ 1@y dem Y s, (14)
@ =0

The method of quadrature in this section is based on the polynomial
interpolation. We first select a set of distinct nodes {xg, x1,...,2,} from
the interval [a,b]. Then the Lagrange polynomial

n

Po(e) =3 fla)Li(e) = 3 fla) [[ -2
=0

P — B
i=0 ji=0 ~ " J

I="

JF
is used to approximate f(x). With the error term we have
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n (n+1) n
f(&) = Pa(x) + En(z) = > fla) Li(z) + ———~ f o 1 H T — ),

=0 =0

where (; € [a,b] and depends on z, and

/abf(x)dx _ /aan(x)da:—l—/abEn(:c)dx
- foz/ d:!:-i— +1 /f("+1 Zﬁox—mz

The quadrature formula is, therefore,

n

/ab f(z)dz z/ x)dx = Zf (i / z)dx = Zcif(a%), (16)

=0

b o @
. ‘ . T — Ty
Ci —/a Li(z)dz —/a | | P dx. (17)
j=0
J#
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Moreover, the error in the quadrature formula is given by

E= Tt 1 / il Cx) Zl_!)(sc — z;) dz, (18)
for some (, € [a, b].
Let us consider formulas produced by using first and second Lagrange
polynomials with equally spaced nodes. This gives the Trapezoidal rule
and Simpson's rule, respectively.
Trapezoidal rule: Let 2o = a,z; = b,h = b — a and use the linear
Lagrange polynomial:

_(xfxl) . (x — x) .
Pl(l’)—i(xo_xl)f( 0)+7(x1_$0)f( 1)-
Then
e N T — T
/f(x)dx = / [(xo_;l))f(xo)‘f‘((xl_;;))f(xl) dzx

/ " (¢(x))(z — zo)(x — x1)dz. (19)
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Theorem (Weighted Mean Value Theorem for Integrals)
Suppose f € Cla,b], the Riemann integral of g(x)

b n
/ g(x)dr = lim Zg(mi)A:vi,
a 1

max Ax; —0 4
1=

exists and g(x) does not change sign on [a,b]. Then 3 ¢ € (a,b) with

[ 1@z = 5 [ gt

v

Since (z — o) (z — x1) does not change sign on [zg, z1], by the Weighted
Mean Value Theorem, 3 ¢ € (zg, 1) such that

/ " (¢(@)(x — z0)(z — x1)dz = () /$1($—1'0)(33—$1)d$
3 1 3
= f(¢) [g wﬂf +xox1x] - —%f”(()-
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Consequently, Eq. (19) implies that

b x—x1)2 x — x0)2 o 3
[ @ = |2 )+ = pw)| - o)

2($0 — .2171) 2(33'1 — .%‘0)

1 — X

h3 "
= T[f(xo)‘Ff(xl)]_ﬁf (©)
h he Ly
— §[f(a:o)+f($1)]—ﬁf (),

which is called the Trapezoidal rule.
y

y =/

y=P®
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If we choose g = a, z1 = (a+b), 22 =b, h = (b—a)/2, and the
second order Lagrange polynomial

(x —z1)(x — z2)
(zo — z1)(20 — 22)
(x — zo)(z — 1)
() (z2 — z0) (22 — 21)

) (x — zo)(z — z2)
(21 — 20) (21 — 22)

Py(z) = f(x0) + f(z1

to interpolate f(x), then

y

Y=L
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/abf(x)dx _ /:2 |:((x_x1)(;1;—x2) Fzo) + (z — zo)(x — 22) f(x1)

o L(o—z1)(20 — 72) (z1 — 20)(z1 — 22)

(z — mo)(z — 1)
(z2 — z0)(z2 — ﬂfl)f(xQ)] d
+ / 0 SRLIG ~ullz - 22) 49 ()
Since, letting © = x¢ + th,
U leoe)@oe) 40 o] 102
/zo (900—1‘1)(1‘0—$2)d$ B h/o 0—1 O—th

ho[?, h
= — t°—3t+2)dt = —
2/0< r2)di=1,

T2 . . 2, _
/ (x — z0)(x — x2) dr — h/ t—0 t-2 e
xq (1 — o) (z1 — 22) o 1—-0 1-2

2
4
= —h/ (t2—2t)dt:—h,
0 3
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2 . . Doa _
/ (x —z0)(x — 1) de — h/ t—0 t—1 "
x0 (xQ_xO)(xQ_xl) 0o 2—0 2-1

ho(? h
_ 2/0 (1) di= =,

it implies that
b
[ f@a = [gre0) + 1) + )]
v [l mle s e ) 0

which is called the Simpson's rule.
Deriving Simpson's rule in this way, however, provides only an O(h?) error
term involving f®). A higher order error analysis can be derived by
expanding f in the third Taylor's formula about z;. Then for each
x € [a,b], there exists (; € (a,b) such that

[ (1)

flx) = flx)+ flx)(x—z1) + > (v — 1)
: Saniary 1, 200839 /31

2




Then

[ rwa = f@ -+ £ -

_.I_

AT

Note that (b — x1) = h, (a — x1) = —h, and since (x — x1)* does not

f’(l‘1)(l, —z)?+ f”(ﬂﬁl)(:v —z1)3

b b
+31 [ G — o)

change sign in [a,b], by the Weighted Mean-Value Theorem for Integral,

there exists &; € (a,b) such that

2f(4) (‘51) h5

b b
| 19—t = 9) [ o —o)tar = 20

Consequently,

[ 161 = 2ttagn s L0320,

Numerical Diff. & integ. January 1, 2008
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Finally we replace f”(z1) by the central finite difference formulation

Flao) = 2f (@) + fle2)  FD(&)
h? 12

[ (zy) = h?,

for some & € (a,b), to obtain
b
[ @ds = 2bf@) + 3 (Flao) ~ 27(@1) + flaa)
_f0&) s fOE) 5

36 60
— 1[0 + 1) + 5 he)
+ag |06 - 210 1.
It can show that there exists & € (a, b) such that
[ 1@z =2 g+ asen + Sl - Lo

This gives the Slmpson s rule formulation.
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If | f"*+D(x)| < M on [a,d], then

b n M b N
/af(x)dx—;cif(xi) gW/a g(x—wi)dw. (20)

The choice of nodes that makes the right-hand side of this error bound as
small as possible is know to be

a+b+b—a (t+ 17w
2 2 Pl i |

Of course, a polynomial interpolation to f can be obtained in other ways,
for example, polynomial in Newton's form using divided-difference method,

=0,1,...,n. (21)

€Ty =

i—1
P,(z) = f(xo +Zf330,$1,---, ]H(w—x])
7=0
where f[zg,z1,...,x;] are evaluated with the divided difference algorithm.

Then

pi—1
/f f(zo)(b— a—i—wao,ml,... /Hw zj)dz. (22)
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The standard derivation of quadrature error formulas is based on
determining the class of polynomials for which theses formulas produce
exact results. The next definition is used to facilitate the discussion of this
derivation.

Definition
The degree of accuracy, or precision, of a quadrature formula is the largest

positive integer n such that the formula is exact for z*, when
k=0,1,...,n.

The definition implies that the degree of accuracy of a quadrature formula
is n if and only if the error E = 0 for all polynomials P(x) of degree less
than or equal to n, but £ # 0 for some polynomials of degree greater than
n.

A quadrature formula of the form (14) is called a Newton-Cotes formula if
the nodes {zg,z1,...,2z,} are equally spaced. Consider a uniform
partition of the closed interval [a, b] by

r;=a+th, 1=0,1,....,n, h=——
January 1,2008 31 /31



where n is a positive integer and h is called the step length. By
introduction a new variable ¢ such that z = a + ht, the fundamental
Lagrange polynomial becomes

Li(a:):f[x_$j :f[a“?t_“_j:h:f[t._jzsoi(t).

g 7 B a+ih—a—jh ot
JF# JF#i J#i

Therefore, the integration (17) gives

/L( )da:—/o oi(t)hdt = / ::idt (23)

J#z

and the general Newton-Cotes formula has the form

b n B b
[ @@ =n3 s [ TSty [ 7 e
a i—0 I Ja -

J#l

(24)
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The simplest case is to choose n =1, zg = a, 1 = b, h = b — a, and use
the linear Lagrange polynomial

T — Zo z—0b r—a

o) T = fla) i+ ()

To — X1 L1 — Zo

Tr — I

Py(z) = f(x0)

to interpolate f(x). Then

t—1
Co—h/ —dt 2 Cl—h/ —(())dt

and

2 17a) + 10

b
/ Py(z)dx = cof(xo) + crf(z1) =

Since (z — x0)(z — 1) = (x — a)(z — b) does not change sign on [a, b], by

the Weighted Mean-Value Theorem for integrals, there-exists some
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& € (a,b) such that

b
‘/f%@Xw—%Xw—mﬁm = 9 [ (@ —z0)(w— 1) da

(r —a)(x —b)dx
) b
- é(a + b)z?® + abw]

= £ fO)b- ) = —3 /O
Consequently,
h3
/f fla) + 7)) = T 1" (€).

This gives the so-called Trapezoidal rule.
Trapezoidal Rule:

b 1 h3

fla)dz = 5(b—a)[f(a) + f(0)] —

SO, . .29)
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where h =b—a and € € (a,b).
It is evident that the error term of the Trapezoidal rule is O(h?). Since the

rule involves f”, it gives the exact result when applied to any function

whose second derivative is identically zero, e.g., any polynomial of degree
1 or less. Hence the degree of accuracy of Trapezoidal rule is one.
If we choose n =2, 2g = a, z1 = 5(a+b), za =b, h = (b—a)/2, and the
second order Lagrange polynomial

(x —z1)(x — z2)

= f(zo)

to interpolate f(x), then

2 |
o0 — h/
o O— 1

2

t_

a—
o 1—-0

2
t—0
—
o =0

T.M. Huang (Nat. Taiwan Normal Univ.)

(zo — 21)(z0 — 22)

2
-ﬁ:/kﬁ—&+mﬁ:,
0

) (x — zo)(x — z2)

) o) (e =)

t=2 h

0—-2 2

2
- 4h
O-ﬁ_—@/W—%ML_,
1 8 3

2 5 h
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and

1 a+b 1
L@+ 7D+ 21

b
/ Py(z) dx = cof(xo)+c1f(x1)+caf(w2) =h

gives the so-called Simpson'’s rule. Deriving the formulation this way,
however, the error term

b
3 | 1)@ = o) = o1)(o - ) da

provides only an O(h*) formulation involving B A higher order error
analysis can be derived by expanding f in the third Taylor's formula about
x1. Then for each x € [a, ], there exists (, € (a,b) such that

e " (4)
£(2) = fon)+ @) =)+ (o2 L (gt L
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Then
b 1" /
/f(x)dx— [f(a:l)(m—xl)—i—f = (@—z)?+ L (le)(a:—xl)3+f

b
2 | 1)@ - o0t da.

Note that (b — x1) = h, (a — x1) = —h, and since (x — x1)* does not
change sign in [a, b], by the Weighted Mean-Value Theorem for Integral,

there exists &1 € (a, b) such that

[ 196 e = 19 [ —aytan = L@

Consequently,

/ i F'@) s fOE) s

2/ (@)h + 3 60

Finally we replace f”(z1) by the central finite difference formulation

Py = £00) =2 @)+ Jla)_ 1O)
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for some & € (a,b), to obtain

(4) (4
(f(zo) — 2f (z1) + f(22)) — fgé&)hf’ + L(

w| >

b
/f(x)dac = 2hf(z1) +
1

— b 3fan) + g + 31| + g

3 )
2@ _ 2@
[2f (&) - 2F9¢
By letting f(z) = z*, one can show that there exists £ € (a, b) such that

90

/ @) do = h [ f(ao) + 3100 + 3 e +

This gives the Simpson’s rule formulation.
Simpson’s Rule:

/abf(ac)dac—<b;

for some ¢ € (a,b). The Simpson’s rule is an O(h®) scheme and the
degree of accuracy is three.
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The Trapezoidal and Simpson’s rules are examples of a class of methods
known as closed Newton-Cotes formula. The (n + 1)-point closed
Newton-Cotes method uses nodes z; = a + ih, for i = 0,1,...,n, where
h = (b — a)/n. Note that both endpoints, a = xg and b = x,,, of the
closed interval [a, b] are included as nodes. The following theorem details
the Newton-Cotes formulas and the associated error analysis.

T.M. Huang (Nat. Taiwan Normal Univ.) January 1, 2008 31/31



Theorem (Closed Newton-Cotes Formulas)

For a given function f(x) and closed interval [a,b], the (n + 1)-point
closed Newton-Cotes method uses nodes

r;=a+th, 1=0,1,...,n, h=
n

If n is even and f € C"*2[a,b], then

hn+3f(n+2) (g)

b w n
/af($)d$=hlz;a1f(ﬂfz)+(n+2)'/o tZ(t—l)...(t—n)dt,

and if n is odd and f € C""[a,b], then

b B n hn+2f(n+1) (6) n
/a f(l’)dl’hgaz’f(xi)‘f‘w/o tt—1)---(t—n)

where & € (a,b) and

n g
T.M. Huang (Nat. Taiwan Normal Univ.) January 1, 2008
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The weights «; in the Newton-Cotes formula has the property

Z a; = n. (30)
=0

This can be shown by applying the formula to f(z) = 1 with interpolating
polynomial P, (x) = 1. Let s be the common denominator of «;, that is,
g

oy = ; (:> o; = SCMZ')

such that o; are integers, then the formulation for approximating the
definite integral can be expressed as

/f dJJNhZOszJUZ = Zazfxz (31)

Some of the most common closed Newton-Cotes formulas with their error
terms are listed in the following table.
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Name n s | o; Error
Trapezoidal rule | 1 21,1 -+ @) (&)n?
Simpson’s rule | 2 31 1,4,1 — 5 4)(&)RnS
3/8-rule 3| 21,331 — 3 @ (e)R
Milne's rule 4| 17,32,12,32,7 — 5 ©)(&)n7

5| 281 19,75,50,50,75,19 — 215 fO(&)RT
Weddle's rule | 6 | 140 | 41,216,27,272,27,216,41 | —os f®(&)R°

Another class of Newton-Cotes formulas is the open Newton-Cotes
formulas in which the nodes

—a
n+2’

xr;=x9+1th, 1=0,1,...,n, wherexzg=a+handh =

are used. This implies that x,, = b — h, and the endpoints, a and b, are
not used. Hence we label a = x_; and b = z,,41. The following theorem
summarizes the open Newton-Cotes formulas.
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Theorem (Open Newton-Cotes Formulas)

For a given function f(x) and closed interval [a,b], the (n + 1)-point open
Newton-Cotes method uses nodes

—a
n+2

r; =x9+th, +=0,1,...,n, wherexqg=a-+handh =

Ifn is even and f € C"*2[a,b], then

b B ® el h”+3f("+2)(§) n+1 200 1) (t—m
/af(w)dQC—hiz;azf( I+ . =Dt

(32)
and if n is odd and f € C""[a,b], then

b n hn+2f(n+1) f n+1
/af(x)dx—hlz:%aif(xi)—i—ml)!()/_l t(t—1)---(t —n)dt,

(33)
where & € (a,b) and

ntl ™ 4
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The simplest open Newton-Cotes formula is choosing n = 0 and only using
the midpoint zg = "“TH’ Then the coefficient and the error term can be
computed easily as

—1 3 £n 1
ozoz/l dt=2, and h 2!(5)/ t2dt:éf”(§)h3.

—1

These gives the so-called Midpoint rule or Rectangular rule.
Midpoint Rule:

a+b
2

b
[ #@)do=20f(@0) + 31O = 6 - ) (“7) + 37OR, (5)

for some £ € (a,b).
Analogous to the closed Newton-Cotes formulas, we list some of the
commonly used open Newton-Cotes formulas in the following table.
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Name n| s|o; Error
Midpoint rule | 0 | 12 5 FA(E)n?
1] 23,3 SrAE)ns
2| 3/8,-4,8 RrW©m
3|24 |55,5,5,55 | 2 f1(&)h

It is obvious that the Newton-Cotes formulas are generally not suitable for
numerical integration over large interval. Higher degree formulas would be
required, and the coefficients in these formulas are difficult to obtain. Also
the Newton-Cotes formulas which are based on polynomial interpolation
would be inaccurate over a large interval because of the oscillatory nature
of high-degree polynomials. Now we discuss a piecewise approach, called
composite rule, to numerical integration over large interval that uses the
low-order Newton-Cotes formulas.

A composite rule is one obtained by applying an integration formula for a
single interval to each subinterval of a partitioned interval. To illustrate
the procedure, we choose an even integer n and partition the interval [a, b]
into n subintervals by nodes z¢g < 1 < --- < x, = b, and apply Simpson's
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rule on each consecutive pair of subintervals. With

h:—a and zj=a+jh, j=0,1,...,n,
n

we have on each interval [z2;_2, z2;],

5

|7 1@)ds = 5 o) + 4f (azy0) + Sa)) - 5o FOE)

2j—2

w| >

for some &; € (z2_2,22;), provided that f € C*[a, b]. -The composite rule
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is obtained by summing up over the entire interval, that is,

[ rwa = f/
n/2 h] E
- X 5 (Fonioa) + 48 aayo) + o) - g 7906
= 2 1f(00) + 47(@) + @) + fla2) + 41 (as) + o) + S
+- -+ f(@n2) + 4f (T 1) + f(@a)] ——nff“)
= 2 [f(a0) + 47 () + 2f(@2) + 41 (5) + 2f (@) + 41 z5)

5 n/2

+oo 4 2f (Tn2) + 4f (Tno1) + f(zn)] Zf<4>

(n/2)-1 '| }
f(z2j—1) +2 T f(x2)) + f(zs) ==
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To estimate the error associated with approximation, since f € C%[a, b],
we have, by the Extreme Value Theorem,

min £ ()<f4)(53)< max_f ()

z€[a,b] z€[a,b]

for each &; € (z2;—2,225). Hence

n/2
Ly (4) ) < ) < n (4)
3 iny £ < 2 196) < 5 m 7OGe)
and
n/2
min_f Zf(4) ) < max f¥(x).

z€|a, b]

z€la,b]

By the Intermediate Value Theorem, there exists i € (a,b) such that

n/2

FO () Z &
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Thus, by replacing n = (b —a)/h,

n/2

> 59 = 20 ="

J=1

(1)

Consequently, the composite Simpson’s rule is derived.
Composite Simpson's Rule:

b h n/2 (n/2)—1 b—a
[ @ =5 |1 ) +4Y M) +2 3, flow)+ 10| g
a j=1

(36)
where n is an even integer, h = (b —a)/n, x; = a + jh, for
j=0,1,...,n, and some u € (a,b).

The composite Midpoint rule can be derived in a similar way, except the
midpoint rule is applied on each subinterval [x2;_1, x2;] instead. That is,

=2 h3 " .
/ f(x)d93=2hf($2j71)+§f &), Ji=12,...,
January 1, 20
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Note that n must again be even. Consequently,

b n/2 B3 n/2
/ fla)dz =20 flaay) + 5 O £(6),
a J=1 J

—
The error term can be written as

n/2 b—a

Do 16D = 510 = T )

for some u € (a,b). Therefore, the composite Midpoint rule has the
following formulation.
Composite Midpoint Rule:

n/2

b —a
[ @y de =20y flasy0) - L2 Gn
a ]:1

where n is an even integer, h = (b —a)/n, z; = a + jh, for
j=0,1,...,n, and some u € (a,b).
January 1, 2008
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To derive the composite Trapezoidal rule, we partition the interval [a, b] by
n equally spaced nodes a = g < 21 < -+ < &, = b, where n can be
either odd or even. We then apply the trapezoidal rule on each subinterval
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[j—1,2;] and sum them up to obtain

b no o
/a f(@)de = Z /mjlf(a:)dw

h h3
(5 Ui+ ) - o€

[l
M 1

SIS

[f(z0) + f(z1) + fz1) + fz2) + - + f(Tn-1) + f(2n

| >

[f(zo) +2f(z1) +2f(w2) + -+ + 2f(2n-1) + flzn)] — -

| >

j=1

[ n—1 i 3 n
= S i@+ X s@) +£0)| - 5 @)

| >

n—1 i
Fl@)+ Y flag) + 0)| — T i,
j=1
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where each §; € (zj_1,2;) and p € (a,b).
Composite Trapezoidal Rule

b n—1 _a
[ 1@de=3 | 1@+ 3 ) + 50| - AR, (38)
a j=1

where n is an integer, h = (b—a)/n, x; = a+ jh, for j =0,1,...,n, and
some 1 € (a,b).
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