
Project of Numerical Analysis

February 18, 2014

Consider the Dirichlet boundary-value problem:

−∆u ≡ −uxx − uyy = 2π2 sinπx sinπy, for (x, y) ∈ Ω, (1)

u(x, y) = 0 (x, y) ∈ ∂Ω,

for Ω := {x, y|0 < x, y < 1} ⊆ R2 with boundary ∂Ω, which has the exact
solution

u(x, y) = sinπx sinπy,

and is shown in Figure 1.

Figure 1: Exact solution.

1

1 Center difference discretization

To solve (1) by means of a difference methods, one replaces the differential
operator by a difference operator. Let

Ωh := {(xi, yi)|i, j = 1, . . . , n},
∂Ωh := {(xi, 0), (xi, 1), (0, yj), (1, yj)|i, j = 0, 1, . . . , n+ 1},

where xi = ih, yj = jh, i, j = 0, 1, . . . , n + 1, h := 1
n+1 , n ≥ 1, is an integer.

From the Taylor’s theorem, we have

u(xi + h) = u(xi) + u′(xi)h+
h2

2
u′′(xi) +

h3

6
u′′′(xi) +

h4

24
u(4)(ξ1)

u(xi − h) = u(xi)− u′(xi)h+
h2

2
u′′(xi)−

h3

6
u′′′(xi) +

h4

24
u(4)(ξ2),

where ξ1 is between xi and xi + h and ξ2 is between xi and xi − h. Hence

u′′(xi) =
u(xi + h)− 2u(xi) + u(xi − h)

h2
− h2

12
u(4)(ξ)

=
u(xi+1)− 2u(xi) + u(xi−1)

h2
− h2

12
u(4)(ξ),

where ξ is between xi − h and xi + h. Similarly,

∂2u

∂x2
(xi, yj) =

u(xi+1, yj)− 2u(xi, yj) + u(xi−1, yj)

h2
− h2

12

∂4u

∂x4
(ξi, yj),

∂2u

∂y2
(xi, yj) =

u(xi, yj+1)− 2u(xi, yj) + u(xi, yj−1)

h2
− h2

12

∂4u

∂x4
(xi, ηj),

where ξi ∈ (xi−1, xi+1) and ηj ∈ (yj−1, yj+1). It implies that

∂2u

∂x2
(xi, yj) +

∂2u

∂y2
(xi, yj)

=
u(xi, yj−1) + u(xi−1, yj)− 4u(xi, yj) + u(xi+1, yj) + u(xi, yj+1)

h2

− h2

12

[
∂4u

∂x4
(ξi, yj) +

∂4u

∂x4
(xi, ηj)

]
.

Let uij denote an approximated value of function u at the grid point (xi, yj)
for i, j = 1, . . . , n+ 1. Then

− uxx(xi, yj)− uyy(xi, yj) ≈
−ui,j−1 − ui−1,j + 4ui,j − ui+1,j − ui,j+1

h2

with an error O(h2) and the equation

−uxx(xi, yj)− uyy(xi, yj) = 2π2 sinπxi sinπyj ≡ fij

2

can be replaced by the following equation

−ui,j−1 − ui−1,j + 4ui,j − ui+1,j − ui,j+1

h2
= fij (2)

for i, j = 1, . . . , n.
For j = 1, we have

−u1,0 − u0,1 + 4u1,1 − u2,1 − u1,2 =h2f1,1, (3a)

−u2,0 − u1,1 + 4u2,1 − u3,1 − u2,2 =h2f2,1, (3b)

...

−un−1,0 − un−2,1 + 4un−1,1 − un,1 − un−1,2 =h2fn−1,1, (3c)

−un,0 − un−1,1 + 4un,1 − un+1,1 − un,2 =h2fn,1. (3d)

By the boundary condition, it holds that

u1,0 =u2,0 = · · · = un,0 = 0, (4a)

u0,1 =un+1,1 = 0. (4b)

Substituting (4) into (3), we get

4u1,1 − u2,1−u1,2 = h2f1,1, (5a)

−u1,1 + 4u2,1 − u3,1−u2,2 = h2f2,1, (5b)

...

−un−2,1 + 4un−1,1 − un,1−un−1,2 = h2fn−1,1, (5c)

−un−1,1 + 4un,1−un,2 = h2fn,1. (5d)

Let, for j = 1, . . . , n,

u:,j =


u1,j
u2,j

...
un,j

 , f:,j =


f1,j
f2,j

...
fn,j

 , A1 =


4 −1

−1
. . .

. . .

. . .
. . . −1
−1 4

 ∈ Rn×n.

Then (5) can be rewritten as following matrix form:[
A1 −In

] [u:,1
u:,2

]
= h2f:,1.

For j = 2, . . . , n− 1, using u0,j = un+1,j = 0, we have

−u1,j−1 + 4u1,j − u2,j−u1,j+1 = h2f1,j ,

−u2,j−1 − u1,j + 4u2,j − u3,j−u2,j+1 = h2f2,j ,

...

−un−1,j−1 − un−2,j + 4un−1,j − un,j−un−1,j+1 = h2fn−1,j ,

−un,j−1 − un−1,j + 4un,j−un,j+1 = h2fn,j .

3

Above equations can be represented as following matrix form:

[
−In A1 −In

]  u:,j−1
u:,j
u:,j+1

 = h2f:,j .

For j = n, using u1,n+1 = u2,n+1 = un,n+1 = 0, we have

−u1,n−1 + 4u1,n − u2,n = h2f1,n,

−u2,n−1 − u1,n + 4u2,n − u3,n = h2f2,n,

...

−un−1,n−1 − un−2,n + 4un−1,n − un,n = h2fn−1,n,

−un,n−1 − un−1,n + 4un,n = h2fn,n.

Above equations can be represented as following matrix form:

[
−In A1

] [u:,n−1
u:,n

]
= h2f:,n.

Therefore, (2) with boundary conditions is equivalent to a linear system

Au = h2f (6)

with

A =


A1 −In

−In A1
. . .

. . .
. . . −In
−In A1

 ∈ Rn2×n2

, (7)

and

A1 =


4 −1

−1
. . .

. . .

. . .
. . . −1
−1 4

 , u =


u:,1
u:,2

...
u:,n

 , f =


f:,1
f:,2

...
f:,n

 .

2 Project for direct method

(a) Use Algorithms 1, 2 and 3 (Gaussian elimination) to reduce A in (7) to an
upper triangular matrix and modify the entries of b accordingly. Compare
and plot the CPU times for reducing A to upper triangular with various
n by using these three algorithms. (Use “tic” and “toc” functions in
MATLAB to estimate the CPU times.)

4

Require: Nonsingular matrix A and right hand side vector b.
Ensure: This algorithm implements the Gaussian elimination procedure to re-

duce A to upper triangular and modify the entries of b accordingly.
1: for k = 1, . . . , n− 1 do
2: Let p be the smallest integer with k ≤ p ≤ n and apk 6= 0.
3: If @ p, then stop.
4: If p 6= k, then perform (Ep)↔ (Ek).
5: for i = k + 1, . . . , n do
6: Compute t = A(i, k)/A(k, k);
7: Set A(i, k) = 0;
8: Update b(i) = b(i)− t× b(k);
9: for j = k + 1, . . . , n do

10: Update A(i, j) = A(i, j)− t×A(k, j);
11: end for
12: end for
13: end for

Algorithm 1: Gaussian elimination

Require: Nonsingular matrix A and right hand side vector b.
Ensure: This algorithm implements the Gaussian elimination procedure to re-

duce A to upper triangular and modify the entries of b accordingly.
1: for k = 1, . . . , n− 1 do
2: Let p be the smallest integer with k ≤ p ≤ n and apk 6= 0.
3: If @ p, then stop.
4: If p 6= k, then perform (Ep)↔ (Ek).
5: for i = k + 1, . . . , n do
6: Compute t = A(i, k)/A(k, k);
7: Set A(i, k) = 0;
8: Update b(i) = b(i)− t× b(k);
9: Update A(i, k + 1 : n) = A(i, k + 1 : n)− t×A(k, k + 1 : n);

10: end for
11: end for

Algorithm 2: Vector version of Gaussian elimination

5

Require: Nonsingular matrix A and right hand side vector b.
Ensure: This algorithm implements the Gaussian elimination procedure to re-

duce A to upper triangular and modify the entries of b accordingly.
1: for k = 1, . . . , n− 1 do
2: Let p be the smallest integer with k ≤ p ≤ n and apk 6= 0.
3: If @ p, then stop.
4: If p 6= k, then perform (Ep)↔ (Ek).
5: Compute t = A(k + 1 : n, k)/A(k, k);
6: Set A(k + 1 : n, k) = 0;
7: Update A(k+ 1 : n, k+ 1 : n) = A(k+ 1 : n, k+ 1 : n)− t×A(k, k+ 1 : n);
8: Update b(k + 1 : n) = b(k + 1 : n)− b(k)× t.
9: end for

Algorithm 3: Matrix version of Gaussian elimination

(b) Use backward substitution to solve the upper triangular linear system in
(a). Plot the CPU times for solving such linear system with various n.

(c) Compare the CPU times for using left matrix divide “A \ b” in MATLAB
with that in (a) and (b).

(d) Store the matrix A with sparse format. Plot the CPU times for generating
matrix A and solving the associated linear systems by left matrix divide
“A \ b” with various n.

3 Project for iterative method

(e) Use Jacobi method to solve linear system (6).
Given an initial vector x(0), rewrite the linear system as:

a11x
(k)
1 + a12x

(k−1)
2 + a13x

(k−1)
3 + · · ·+ a1nx

(k−1)
n = b1

a21x
(k−1)
1 + a22x

(k)
2 + a23x

(k−1)
3 + · · ·+ a2nx

(k−1)
n = b2

...

an1x
(k−1)
1 + an2x

(k−1)
2 + an3x

(k−1)
3 + · · ·+ annx

(k)
n = bn.

If we decompose the coefficient matrix A as

A = L+D + U,

where D is the diagonal part, L is the strictly lower triangular part, and
U is the strictly upper triangular part, of A, then we derive the iterative
formulation for Jacobi method:

x(k) = −D−1(L+ U)x(k−1) +D−1b.

• Use Algorithm 4 with initial vector x(0) = [1, · · · , 1]> to solve linear
system (6). Plot the CPU times and iteration numbers k for solving such
linear system with various n.

6

Require: Given x(0), tolerance TOL, maximum number of iteration M .
Ensure: The solution x.
1: Set k = 1.
2: Compute x = −D−1(L+ U)x(0) +D−1b.
3: while k ≤M and ‖x− x(0)‖2 ≥ TOL do
4: Set k = k + 1, x(0) = x;
5: Compute x = −D−1(L+ U)x(0) +D−1b;
6: end while

Algorithm 4: Jacobi method

(f) Use Gauss-Seidel method to solve linear system (6).
Given an initial vector x(0), rewrite the linear system as:

a11x
(k)
1 + a12x

(k−1)
2 + a13x

(k−1)
3 + · · ·+ a1nx

(k−1)
n = b1

a21x
(k)
1 + a22x

(k)
2 + a23x

(k−1)
3 + · · ·+ a2nx

(k−1)
n = b2

a31x
(k)
1 + a32x

(k)
2 + a33x

(k)
3 + · · ·+ a3nx

(k−1)
n = b3

...

an1x
(k)
1 + an2x

(k)
2 + an3x

(k)
3 + · · ·+ annx

(k)
n = bn.

This improvement induce the Gauss-Seidel method. The iteration of the
Gauss-Seidel method is defined as follows:

x(k) = −(D + L)−1Ux(k−1) + (D + L)−1b.

Require: Given x(0), tolerance TOL, maximum number of iteration M .
Ensure: The solution x.
1: Set k = 1.
2: Compute x = −(D + L)−1Ux(0) + (D + L)−1b.
3: while k ≤M and ‖x− x(0)‖2 ≥ TOL do
4: Set k = k + 1, x(0) = x;
5: Compute x = −(D + L)−1Ux(0) + (D + L)−1b;
6: end while

Algorithm 5: Gauss-Seidel method

1. Use MATLAB functions “triu(A,1)” and “tril(A,-1)” to extract the
strictly upper and lower triangular parts of A, respectively.

2. Use Algorithm 5 with initial vector x(0) = [1, · · · , 1]> to solve linear
system (6). Plot the CPU times and iteration numbers k for solving
such linear system with various n.

3. Compare the results produced by Jacobi and Gauss-Seidel methods.

7

(g) Use SSOR method to solve linear system (6).
Given an initial vector x(0), rewrite the linear system as:

a11x
(k)
1 + a12x

(k−1)
2 + a13x

(k−1)
3 + · · ·+ a1nx

(k−1)
n = b1

a21x
(k)
1 + a22x

(k)
2 + a23x

(k−1)
3 + · · ·+ a2nx

(k−1)
n = b2

a31x
(k)
1 + a32x

(k)
2 + a33x

(k)
3 + · · ·+ a3nx

(k−1)
n = b3

...

an1x
(k)
1 + an2x

(k)
2 + an3x

(k)
3 + · · ·+ annx

(k)
n = bn.

Let the approximate solution x(k,i) produced by Gauss-Seidel method be
defined by

x(k,i) =
[
x
(k)
1 , . . . , x

(k)
i−1, x

(k−1)
i , . . . , x(k−1)n

]T
and

r
(k)
i =

[
r
(k)
1i , r

(k)
2i , . . . , r

(k)
ni

]T
= b−Ax(k,i)

be the corresponding residual vector. Then the ith component of r
(k)
i is

r
(k)
ii = bi −

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j − aiix(k−1)i ,

so

aiix
(k−1)
i + r

(k)
ii = bi −

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j = aiix

(k)
i .

Consequently, the Gauss-Seidel method can be characterized as choosing

x
(k)
i to satisfy

x
(k)
i = x

(k−1)
i +

r
(k)
ii

aii
.

Relaxation method is modified the Gauss-Seidel procedure to

x
(k)
i = x

(k−1)
i + ω

r
(k)
ii

aii

= x
(k−1)
i +

ω

aii

bi − i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j − aiix(k−1)i


= (1− ω)x

(k−1)
i +

ω

aii

bi − i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j

 (8)

8

for certain choices of positive ω. These methods are called for
ω < 1: under relaxation,
ω = 1: Gauss-Seidel method,
ω > 1: over relaxation.

Over-relaxation methods are called SOR (Successive over-relaxation). To
determine the matrix of the SOR method, we rewrite (8) as

aiix
(k)
i + ω

i−1∑
j=1

aijx
(k)
j = (1− ω)aiix

(k−1)
i − ω

n∑
j=i+1

aijx
(k−1)
j + ωbi,

so that if A = L+D + U , then we have

(D + ωL)x(k) = [(1− ω)D − ωU]x(k−1) + ωb.

Theorem 1 (Ostrowski-Reich) If A is positive definite and the relax-
ation parameter ω satisfying 0 < ω < 2, then the SOR iteration converges
for any initial vector x(0).

Let A be symmetric and A = D + L + LT . The idea is in fact to imple-
ment the SOR formulation twice, one forward and one backward, at each
iteration. That is, SSOR method defines

(D + ωL)x(k−
1
2) =

[
(1− ω)D − ωLT

]
x(k−1) + ωb, (9)

(D + ωLT)x(k) = [(1− ω)D − ωL]x(k−
1
2) + ωb. (10)

Define {
Mω : = D + ωL,
Nω : = (1− ω)D − ωLT .

Then from the iterations (9) and (10), it follows that

x(k) =
(
M−Tω NT

ωM
−1
ω Nω

)
x(k−1) + ω

(
M−Tω NT

ωM
−1
ω +M−Tω

)
b

≡ T (ω)x(k−1) +M(ω)−1b,

where

M(ω) =
1

ω(2− ω)
(D + ωL)D−1

(
D + ωLT

)
.

1. Take x(0) = [1, · · · , 1]> as an initial vector.

2. Use MATLAB functions “triu(A,1)” and “tril(A,-1)” to extract the
strictly upper and lower triangular parts of A, respectively.

3. Fixed n = 100 and uniformly took 40 values for the parameter ω
in the interval (0, 2), show the iteration numbers and CPU times of
SSOR iterative method for each ω. Find the optimal value ω∗ of the
parameter ω.

9

4. Compare the iteration numbers and CPU times for Jacobi, Gauss-
Seidel and SSOR(ω∗) iterative methods with various n.

(h) Use conjugate gradients method to solve linear system (6).

1. Use MATLAB function pcg without any preconditioner:

[x, flag, relres, iter] = pcg(A, b, tol, maxit)

2. Use MATLAB function pcg with a given preconditioner:

[x, flag, relres, iter] = pcg(A, b, tol, maxit, M),

[x, flag, relres, iter] = pcg(A, b, tol, maxit, M1, M2),

[x, flag, relres, iter] = pcg(A, b, tol, maxit, [], M2),

[x, flag, relres, iter] = pcg(A, b, tol, maxit, MFUN).

(i) Jacobi method: A = D + (L+ U), M = D

xk+1 = −D−1(L+ U)xk +D−1b

(ii) Gauss-Seidel: A = (D + L) + U , M = D + L

xk+1 = −(D + L)−1Uxk + (D + L)−1b.

(iii) SSOR: A = D + L+ LT , M = M(ω)

x(k) =
(
M−Tω NT

ωM
−1
ω Nω

)
x(k−1) +M(ω)−1b,

where

M(ω) =
1

ω(2− ω)
(D + ωL)D−1

(
D + ωLT

)
.

(iv) M may be a function handle MFUN returning M−1x

[x, flag, relres, iter] = pcg(A, b, tol, maxit, ...

@(x)precSSOR(x,omega,mtxLower,mtxdiag)

3. Compare the iteration numbers and CPU times for pcg by using
different preconditioner with various n.

10

