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Gauss-Seidel Method

When computing x
(k)
i for i > 1, x

(k)
1 , . . . , x

(k)
i−1 have already been

computed and are likely to be better approximations to the
exact x1, . . . , xi−1 than x

(k−1)
1 , . . . , x

(k−1)
i−1 . It seems reasonable

to compute x
(k)
i using these most recently computed values.

That is
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This improvement induce the Gauss-Seidel method.
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Gauss-Seidel Method

The Gauss-Seidel method sets M = D + L and defines the
iteration as

x(k) = −(D + L)−1Ux(k−1) + (D + L)−1b.

That is, Gauss-Seidel method uses T = −(D + L)−1U as the
iteration matrix. The formulation above can be rewritten as

x(k) = −D−1
(
Lx(k) + Ux(k−1) − b

)
.

Hence each component x
(k)
i can be computed by

x
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bi −
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/aii.
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Gauss-Seidel Method

Algorithm (Gauss-Seidel Method)
For k = 1, 2, . . .

For i = 1, 2, . . . , n

x
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j=1
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n∑
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End for
End for

At each iteration, since x
(k)
i can not be computed until

x
(k)
1 , . . . , x

(k)
i−1 are available, Gauss-Seidel method is not a

parallel algorithm in nature.
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