The single-step method (SSM)

$$
(D+L) x^{(i+1)}=-U x^{(i)}+b
$$

can be written in the form

$$
\begin{equation*}
x^{(i+1)}=x^{(i)}+\left\{-D^{-1} L x^{(i+1)}-D^{-1} U x^{(i)}+D^{-1} b-x^{(i)}\right\}:=x^{(i)}+\nu^{(i)} . \tag{1}
\end{equation*}
$$

Consider a general form of (1)

$$
\begin{equation*}
x^{(i+1)}=x^{(i)}+\omega \nu^{(i)} \tag{2}
\end{equation*}
$$

with constant ω. (2) can be written as

$$
D x^{(i+1)}=D x^{(i)}-\omega L x^{(i+1)}-\omega U x^{(i)}+\omega b-\omega D x^{(i)} .
$$

Then

$$
\begin{equation*}
x^{(i+1)}=(D+\omega L)^{-1}[(1-\omega) D-\omega U] x^{(i)}+\omega(D+\omega L)^{-1} b . \tag{3}
\end{equation*}
$$

Hence the iteration matrix

$$
T_{\omega}=(D+\omega L)^{-1}\left[(1-\omega) D-\omega U_{\square}\right] .
$$

These methods is called for
$\omega<1$: under relaxation,
$\omega=1$: single-step method,
$\omega>1$: over relaxation. (In general: relaxation
methods.)

Let A be symmetric and $A=D+L+L^{T}$. The idea is in fact to implement the SOR formulation twice, one forward and one backward, at each iteration. That is, SSOR method defines

$$
\begin{align*}
(D+\omega L) x^{\left(k-\frac{1}{2}\right)} & =\left[(1-\omega) D-\omega L^{T}\right] x^{(k-1)}+\omega b \tag{4}\\
\left(D+\omega L^{T}\right) x^{(k)} & =[(1-\omega) D-\omega L] x^{\left(k-\frac{1}{2}\right)}+\omega b . \tag{5}
\end{align*}
$$

Define

$$
\left\{\begin{array}{l}
M_{\omega}:=D+\omega L \\
N_{\omega}:=(1-\omega) D-\omega L^{T} .
\end{array}\right.
$$

Then from the iterations (4) and (5), it follows that

$$
\begin{aligned}
x_{i+1} & =\left(M_{\omega}^{-T} N_{\omega}^{T} M_{\omega}^{-1} N_{\omega}\right) x_{i}+\omega\left(M_{\omega}^{-T} N_{\omega}^{T} M_{\omega}^{-1}+M_{\omega}^{-T}\right) b \\
& \equiv T(\omega) x_{i}+M(\omega)^{-1} b
\end{aligned}
$$

But

$$
\begin{aligned}
& ((1-\omega) D-\omega L)(D+\omega L)^{-1}+I \\
& =(-\omega L-D-\omega D+2 D)(D+\omega L)^{-1}+I \\
& =-I+(2-\omega) D(D+\omega L)^{-1}+I \\
& =(2-\omega) D(D+\omega L)^{-1},
\end{aligned}
$$

Thus

$$
M(\omega)^{-1}=\omega\left(D+\omega L^{T}\right)^{-1}(2-\omega) D(D+\omega L)^{-1}
$$

then the splitting matrix is

$$
M(\omega)=\frac{1}{\omega(2-\omega)}(D+\omega L) D^{-1}\left(D+\omega L^{T}\right) .
$$

The iteration matrix is

$$
T(\omega)=\left(D+\omega L^{T}\right)^{-1}[(1-\omega) D-\omega L](D+\omega L)^{-1}\left[(1-\omega) D-\omega{ }^{[1}\right]
$$

