Linear System

May 29, 2013

Let $n \geq 1$ be an integer and $h=\frac{1}{n+1}$. Define

$$
f_{i j} \equiv 2 h^{2} \pi^{2} \sin \pi x_{i} \sin \pi y_{j}
$$

with $x_{i}=i h, y_{j}=j h, i, j=0,1, \ldots, n+1$. Let

$$
f=\left[\begin{array}{c}
f_{:, 1} \\
f_{:, 2} \\
\vdots \\
f_{:, n}
\end{array}\right], \quad A=\left[\begin{array}{cccc}
A_{1} & -I_{n} & & \\
-I_{n} & A_{1} & \ddots & \\
& \ddots & \ddots & -I_{n} \\
& & -I_{n} & A_{1}
\end{array}\right] \in \mathbb{R}^{n^{2} \times n^{2}}
$$

where, for $j=1, \ldots, n$,

$$
f_{:, j}=\left[\begin{array}{c}
f_{1, j} \\
f_{2, j} \\
\vdots \\
f_{n, j}
\end{array}\right], A_{1}=\left[\begin{array}{cccc}
4 & -1 & & \\
-1 & \ddots & \ddots & \\
& \ddots & \ddots & -1 \\
& & -1 & 4
\end{array}\right] \in \mathbb{R}^{n \times n} .
$$

Problem: Solve the linear system $A x=f$.

Requirements:

- Use function command to construct the coefficient matrix A and right hand side vector b.
- Call $l u$, i.e., $[\mathrm{L}, \mathrm{U}, \mathrm{P}]=l u(A)$, which is the MATLAB built in function to compute LU factorization of A :

$$
P A=L U,
$$

where L and U are lower and upper triangular, respectively, and P is a permutation matrix.

- Compute the solution of the linear system by $x=U^{-1} L^{-1} P^{T} f$.
- Forward substitution: When a linear system $L x=b$ is lower triangular of the form

$$
\left[\begin{array}{cccc}
\ell_{11} & 0 & \cdots & 0 \\
\ell_{21} & \ell_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\ell_{n 1} & \ell_{n 2} & \cdots & \ell_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

where all diagonals $\ell_{i i} \neq 0, x_{i}$ can be obtained by the following procedure

$$
\begin{aligned}
x_{1} & =b_{1} / \ell_{11} \\
x_{2} & =\left(b_{2}-\ell_{21} x_{1}\right) / \ell_{22} \\
x_{3} & =\left(b_{3}-\ell_{31} x_{1}-\ell_{32} x_{2}\right) / \ell_{33} \\
& \vdots \\
x_{n} & =\left(b_{n}-\ell_{n 1} x_{1}-\ell_{n 2} x_{2}-\cdots-\ell_{n, n-1} x_{n-1}\right) / \ell_{n n} .
\end{aligned}
$$

The general formulation for computing x_{i} is

$$
x_{i}=\left(b_{i}-\sum_{j=1}^{i-1} \ell_{i j} x_{j}\right) / \ell_{i i}, \quad i=1,2, \ldots, n
$$

Algorithm 1 (Forward Substitution) Suppose that $L \in \mathbb{R}^{n \times n}$ is nonsingular lower triangular and $b \in \mathbb{R}^{n}$. This algorithm computes the solution of $L x=b$.

$$
\begin{aligned}
& \text { For } i=1, \ldots, n \\
& \quad \operatorname{tmp}=0 \\
& \quad \text { For } j=1, \ldots, i-1 \\
& \quad \operatorname{tmp}=t m p+L(i, j) * x(j) \\
& \text { End for } \\
& \quad x(i)=(b(i)-t m p) / L(i, i) \\
& \text { End for }
\end{aligned}
$$

- Backward substitution: Solve the linear system $U x=b$:

$$
\begin{gathered}
u_{11} x_{1}+u_{12} x_{2}+\cdots+u_{1 n} x_{n}=b_{1} \\
u_{22} x_{2}+\cdots+u_{2 n} x_{n}=b_{2} \\
\vdots \\
u_{n n} x_{n}=b_{n}
\end{gathered}
$$

* Solving the nth equation for x_{n} gives

$$
x_{n}=\frac{b_{n}}{u_{n n}}
$$

* Solving the $(n-1)$ th equation for x_{n-1} and using the value for x_{n} yields

$$
x_{n-1}=\frac{b_{n-1}-u_{n-1, n} x_{n}}{u_{n-1, n-1}}
$$

* In general,

$$
x_{i}=\frac{b_{i}-\sum_{j=i+1}^{n} u_{i j} x_{j}}{u_{i i}}, \forall i=n-1, n-2, \ldots, 1
$$

Algorithm 2 (Backward Substitution) Suppose that $U \in \mathbb{R}^{n \times n}$ is nonsingular upper triangular and $b \in \mathbb{R}^{n}$. This algorithm computes the solution of $U x=b$.

$$
\begin{aligned}
& \text { For } i=n, \ldots, 1 \\
& \quad \operatorname{tmp}=0 \\
& \quad \text { For } j=i+1, \ldots, n \\
& \quad \operatorname{tmp}=\operatorname{tmp}+U(i, j) * x(j) \\
& \text { End for } \\
& \quad x(i)=(b(i)-t m p) / U(i, i) \\
& \text { End for }
\end{aligned}
$$

