Newton's method

Tsung-Ming Huang

Department of Mathematics National Taiwan Normal University, Taiwan

June 14, 2009

1 / 5

Suppose that $f: \mathbb{R} \to \mathbb{R}$ and $f \in C^2[a, b]$, i.e., f'' exists and is continuous. If $f(x^*) = 0$ and $x^* = x + h$ where h is small, then by Taylor's theorem

$$0 = f(x^*) = f(x+h)$$

$$= f(x) + f'(x)h + \frac{1}{2}f''(x)h^2 + \frac{1}{3!}f'''(x)h^3 + \cdots$$

$$= f(x) + f'(x)h + O(h^2).$$

Since h is small, $O(h^2)$ is negligible. It is reasonable to drop $O(h^2)$ terms. This implies

$$f(x) + f'(x)h \approx 0$$
 and $h \approx -\frac{f(x)}{f'(x)}$, if $f'(x) \neq 0$.

Hence

$$x + h = x - \frac{f(x)}{f'(x)}$$

is a better approximation to x^* .

2 / 5

This sets the stage for the Newton-Rapbson's method, which starts with an initial approximation x_0 and generates the sequence $\{x_n\}_{n=0}^{\infty}$ defined by

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Since the Taylor's expansion of f(x) at x_k is given by

$$f(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{1}{2}f''(x_k)(x - x_k)^2 + \cdots$$

At x_k , one uses the tangent line

$$y = \ell(x) = f(x_k) + f'(x_k)(x - x_k)$$

to approximate the curve of f(x) and uses the zero of the tangent line to approximate the zero of f(x).

Newton's Method

End While

Given x_0 , tolerance TOL, maximum number of iteration M. Set i=1 and $x=x_0-f(x_0)/f'(x_0)$. While $i\leq M$ and $|x-x_0|\geq TOL$ Set i=i+1, $x_0=x$ and $x=x_0-f(x_0)/f'(x_0)$.

Problem

The equation $f(x) \equiv x^2 - 10\cos x = 0$ has two solutions ± 1.3793646 . Use Newton's method to approximate the solutions with initial values ± 25 .

Requirements

- Write two MATLAB functions, said fun_f and fun_df, to compute the values of f and f', respectively.
- 2 Implement the Newton's algorithm as a MATLAB function:
 - Input arguments: fun_f, fun_df, initial value
 - Output arguments: approximated solution of the equation

