Newton's method

Tsung-Ming Huang

Department of Mathematics
National Taiwan Normal University, Taiwan

June 14, 2009

Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ and $f \in C^{2}[a, b]$, i.e., $f^{\prime \prime}$ exists and is continuous. If $f\left(x^{*}\right)=0$ and $x^{*}=x+h$ where h is small, then by Taylor's theorem

$$
\begin{aligned}
0=f\left(x^{*}\right) & =f(x+h) \\
& =f(x)+f^{\prime}(x) h+\frac{1}{2} f^{\prime \prime}(x) h^{2}+\frac{1}{3!} f^{\prime \prime \prime}(x) h^{3}+\cdots \\
& =f(x)+f^{\prime}(x) h+O\left(h^{2}\right) .
\end{aligned}
$$

Since h is small, $O\left(h^{2}\right)$ is negligible. It is reasonable to drop $O\left(h^{2}\right)$ terms. This implies

$$
f(x)+f^{\prime}(x) h \approx 0 \quad \text { and } \quad h \approx-\frac{f(x)}{f^{\prime}(x)}, \quad \text { if } \quad f^{\prime}(x) \neq 0
$$

Hence

$$
x+h=x-\frac{f(x)}{f^{\prime}(x)}
$$

is a better approximation to x^{*}.

This sets the stage for the Newton-Rapbson's method, which starts with an initial approximation x_{0} and generates the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ defined by

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} .
$$

Since the Taylor's expansion of $f(x)$ at x_{k} is given by

$$
f(x)=f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{k}\right)\left(x-x_{k}\right)^{2}+\cdots .
$$

At x_{k}, one uses the tangent line

$$
y=\ell(x)=f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)
$$

to approximate the curve of $f(x)$ and uses the zero of the tangent line to approximate the zero of $f(x)$.

Newton's Method

Given x_{0}, tolerance $T O L$, maximum number of iteration M.
Set $i=1$ and $x=x_{0}-f\left(x_{0}\right) / f^{\prime}\left(x_{0}\right)$.
While $i \leq M$ and $\left|x-x_{0}\right| \geq T O L$
Set $i=i+1, x_{0}=x$ and $x=x_{0}-f\left(x_{0}\right) / f^{\prime}\left(x_{0}\right)$.
End While

Problem

The equation $f(x) \equiv x^{2}-10 \cos x=0$ has two solutions ± 1.3793646. Use Newton's method to approximate the solutions with initial values ± 25.

Requirements

(1) Write two MATLAB functions, said fun_f and fun_df, to compute the values of f and f^{\prime}, respectively.
(2) Implement the Newton's algorithm as a MATLAB function:

Input arguments: fun_f, fun_df, initial value
Output arguments: approximated solution of the equation

