Chapter 7

Lanczos Methods

In this chapter we develop the Lanczos method, a technique that is applicable to large
sparse, symmetric eigenproblems. The method involves tridiagonalizing the given matrix
A. However, unlike the Householder approach, no intermediate (an full) submatrices
are generated. Equally important, information about A’s extremal eigenvalues tends to
emerge long before the tridiagonalization is complete. This makes the Lanczos algorithm
particularly useful in situations where a few of A’s largest or smallest eigenvalues are
desired.

7.1 The Lanczos Algorithm

Suppose A € R™*" is large, sparse and symmetric. There exists an orthogonal matrix @),
which transforms A to a tridiagonal matrix 7.

QTAQ =T = tridiagonal. (7.1.1)

Remark 7.1.1 (a) Such @ can be generated by Householder transformations or Givens
rotations.

(b) Almost for all A (i.e. all eigenvalues are distinct) and almost for any ¢ € R"
with ||q1||2 = 1, there exists an orthogonal matriz Q with first column q, satisfying
(7.1.1). q determines T uniquely up to the sign of the columns (that is, we can
multiply each column with -1).

Let (z € R™)
Kz, A,m] = [z, Az, A%z, - A" 1g] € R™™, (7.1.2)
K[z, A,m] is called a Krylov-matrix. Let
K(z, A,m) = Range(K |z, A,m]) = Span(z, Az, --- , A" 'z). (7.1.3)

K(z, A,m) is called the Krylov-subspace generated by K[z, A, m].

Remark 7.1.2 For each H € C™™ or R™™ (m < n) with rank(H) = m, there ezists
an @ € C™™ or R™™ and an upper triangular R € C™ ™ or R™™ with Q*Q = I,
such that

H=QR. (7.1.4)
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Q@ s uniquely determined, if we require all ry; > 0.

Theorem 7.1.1 Let A be symmetric (Hermitian), 1 < m <n be given and dimkK(z, A,m) =
m then

(a) If
is an QR factorization, then QF, AQ,, = T,, is an m x m tridiagonal matriz and
satisfies
AQm = Qme + Tmega Q;Knrm =0. (716)

(b) Let ||z||2 = 1. If Q@ € C™™™ with the first column x and QF,Q., = I, and satisfies
AQu = QT + el
where T,, 1s tridiagonal, then
Kz, A,m] = [z, Az,--- , A™ ‘2] = Quler, Ter, -+, T ey (7.1.7)
is an QR factorization of K[z, A,m].

Proof: (a) Since
AR(z, A, j) CK(z, A, j+1), j<m. (7.1.8)

From (7.1.5), we have
Span(qi, -+ ,q;) = K(z, A1), i<m. (7.1.9)
So we have
(7.1.8)
giy1 L K(z,Aji) D AK(z,A,i—1) = A(span(q, -+ ,qi—1)).

This implies
q:—i—lAq]:O? j:1777’_1a 1+1<m.

That is
(QrAQn)i; = (1) = qfAg; =0 for i > j + 1.

So T,, is upper Hessenberg and then tridiagonal (since 7T, is Hermitian).
It remains to show (7.1.6). Since

[z, Az, A" '] = QR

and

AK[z,A,m] = Kz, A,m] + A™zel |
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we have

0 0
AQu B = QuBon | . + Q@ A zel + (I — Q@) A™zel .
0 | 1. 0
Then
- 0 0
AQm = QuiBn | QAL IR+ (I = Q@) A" el By
- : 1.
= QulRa |1 R @A) (] - QuQi) A e,
0 10 | ™
= QumHpy +rmel with Q% r,, =0,
where H,, is an upper Hessenberg matrix. But Q;, AQ,, = H,, is Hermitian, so H,, = T,,

is tridiagonal.
(b) We check (7.1.7):

x = Qmne; coincides the first column. Suppose that i-th columns are equal, i.e.

Aty = QmTfﬁ_lel
i AQmTrfflel
= QT +rmel )T te

i T rpi—1
= Qnl, e +rme, T . “e;.

But el Tii-te; = 0 for i < m. Therefore, A’z = Q,, T, the (i + 1)-th columns are equal.
It is clearly that (e;, Tj,e1,-- -, T/ 'e;) is an upper triangular matrix. |

Theorem 7.1.1 [f x = ¢ with |q1]|2 = 1 satisfies
rank(K[z,A,n]) =n

(that is {x, Az,--- , A" 'z} are linearly independent), then there exists an unitary matriz
Q with first column q; such that Q*AQ =T s tridiagonal.

Proof: From Theorem 7.1.1(a) m = n, we have @, = Q unitary and AQ = QT.
Uniqueness: Let Q*AQ =T, Q*AQ =T and Q1e; = Qe

= Klqp,A,n]=QR=QR
= Q=QD, R=DR.

Substitute @ by QD, where D = diag(ey,--- ,€,) with |¢;| = 1. Then
(Q@D)"A(QD) = D*Q*AQD = D*TD = tridiagonal.
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So @ is unique up to multiplying the columns of @ by a factor € with |¢| = 1. |
In the following paragraph we will investigate the Lanczos algorithm for the real case,
ie., Ae R™™
How to find an orthogonal matrix Q = (qy, - , ¢,) with QTQ = I, such that QT AQ =
T = tridiagonal and () is almost uniquely determined. Let

AQ = QT, (7.1.10)
where
ar b 0
Q:[QL""(]n] and T = /81
i : ﬁn—l
0 67171 Qn
It implies that the j-th column of (7.1.10) forms:
Ag; = Bj-14j-1 + ;¢ + 541, (7.1.11)

for j =1,--- ,n with 8y = 8, = 0. By multiplying (7.1.11) by ¢] we obtain
q; Ag; = o (7.1.12)

Define r; = (A — a;1)q; — Bj—1¢;—1- Then

r; = ﬁj%‘ﬂ
with
and if 3; # 0 then
41 =73/5;. (7.1.14)

So we can determine the unknown «;, 3;, g; in the following order:

Given qi, a1, 1, Bi, g2, a2, 7202, g3, .

The above formula define the Lanczos iterations:

J=0,r0=q,060=1, =0
Do while (; # 0)

aj = qj Ag; (7.1.15)
Ty = (A - aj[)Qj — Bi-14j-1,
Bi = Il

There is no loss of generality in choosing the 3; to be positive. The ¢; are called Lanczos
vectors. With careful overwriting and use of the formula o; = q;fF(qu — Bj-1¢j—1), the
whole process can be implemented with only a pair of n-vectors.
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Algorithm 7.1.1 (Lanczos Algorithm) Given a symmetric A € R™" and w € R"
having unit 2-norm. The following algorithm computes a j x j symmetric tridiagonal
matrix T; with the property that o(7};) C 0(A). The diagonal and subdiagonal elements
of Tj are stored in ay,--- ,a; and By, --- , 3;_1 respectively.

v;:=0 (i=1,---,n)
ﬂg =1
j:=0
Do while (5; # 0)
if (j # 0), then

fori=1,---,n,
ti=w;,w; = v;/B;,v; = —Ft.
end for
end if
v = Aw + v,
J=7J+1
aj = wl,
v I= 0 — qjw,
B = ol

Remark 7.1.3 (a) If the sparity is exploited and only kn flops are involved in each call
(Aw) (k < n), then each Lanczos step requires about (4+k)n flops to execute.

(b) The iteration stops before complete tridiagonalizaton if q; is contained in a proper
invariant subspace. From the iteration (7.1.15) we have

ar B
o /—’L\
A(Ql;"' an):(Qla"' 7Qm) 61 6 ! —|—£O, 7OaﬁQO+ll
. TT:;T
ﬁm—l A "

Bm =0 if and only if r, = 0.
This implies
Alqr, -+ Gm) = (@1, 4m) T
That is
Range(qu,- -+, qm) = Range(K[q1, A, m])

1s the invariant subspace of A and the eigenvalues of T, are the eigenvalues of A.

Theorem 7.1.2 Let A be symmetric and q; be a given vector with ||q1||o = 1. The Lanc-

zo0s iterations (7.1.15) runs until j = m where m = rank|q, Aq,, -+ , A" *q]. Moreover,
forj=1,---,m we have
AQj = Q]T] + rje;r (7.1.16)
with
ar B
. - B

ﬁj—1 %
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has orthonormal columns satisfying Range(Q;) = K(aq, A, j).

Proof: By induction on j. Suppose the iteration has produced Q; = [q1,- - ,¢;] such
that Range(Q;) = K(q1, A, j) and Q]TQj = [;. It is easy to see from (7.1.15) that (7.1.16)
holds. Thus

Q?AQJ = 7} -+ Q?rje?.
Since a; = ¢} Ag; fori =1,--- ,j and
qiTHAqZ' = qiTH(ﬁz'%H + o;q; + @i-1%‘-1) = qz‘TJrl(ﬁiqZ'H) = [3;

fori=1,---,j — 1 we have Q] AQ; = T}. Consequently Q7r; = 0.
If r; # 0 then g;+1 = r;/||r;||2 is orthogonal to ¢i,--- ,¢; and

gj+1 € Span{Aq;,q;,qj-1} C K(q1, A, j+1).

Thus QF,,Qj41 = Ij;1 and Range(Qj1) = K(q1, A, j + 1).
On the other hand, if r; = 0, then AQ; = Q;1;. This says that Range(Q;) =
K(q1, A, j) is invariant. From this we conclude that j = m = dim[K(q1, A, n)]. |
Encountering a zero f3; in the Lanczos iteration is a welcome event in that it signals
the computation of an exact invariant subspace. However an exactly zero or even small
f3j is rarely in practice. Consequently, other explanations for the convergence of Tjs
eigenvalues must be sought.

Theorem 7.1.3 Suppose that j steps of the Lanczos algorithm have been performed and
that
S]T;S; = diag(y,- - ,6;)

is the Schur decomposition of the tridiagonal matriz T, if Y; € R™ is defined by
YVi=1ly, ,yl =Q;S;
then fori=1,--- 7 we have
[ Ays — Oiyill2 = |5;1]s;il
where S; = (Spq)-
Proof: Post-multiplying (7.1.16) by S; gives
AY; = Yjdiag(:,--- ,0;) +rje; S;,

ie.,
Ayz = szz + Tj(6?5j62‘) 5 1= ]_, s ,j.

The proof is complete by taking norms and recalling ||r;||2 = |5;|. [ |
Remark 7.1.4 The theorem provides error bounds for Tjs eigenvalues:

min |0; — pu| < |G;l|siu] i=1,---,7.
in 16, ] <[5l j



7.1 The Lanczos Algorithm 267

Note that in section 10 the (6;,;) are Ritz pairs for the subspace R(Q);).
If we use the Lanczos method to compute AQ); = Q;1; + rje? and set £ = Tww
where 7 = £1 and w = ag; + brj, then it can be shown that

T

(A+ E)Q; = Q;(T; + ta’ejel ) + (1 + Tab)rje; .
If 0 =1+ 7ab, then the eigenvalues of the tridiagonal matrix
Tj =T; + Taere;‘F
are also eigenvalues of A+ F. We may then conclude from theorem 6.1.2 that the interval
[Ai(T}), Ai—1(T;)] where i = 2,--- 4, each contains an eigenvalue of A + E.
Suppose we have an approximate eigenvalue A of A. One possibility is to choose Ta?

so that o ~ - -
det(T; — M;) = (o +7a° — N)pj—1(N) — B2_1pj—2(A) = 0,

where the polynomial p;(z) = det(T; — x1;) can be evaluated at A using (5.3).
The following theorems are known as the Kaniel-Paige theory for the estimation of
eigenvalues which obtained via the Lanczos algorithm.

Theorem 7.1.4 Let A be n x n symmetric matriz with eigenvalues Ay > --- > X\, and
corresponding orthonormal eigenvectors zi,--- ,z,. If 6y > --- > 0; are the eigenvalues
of T; obtained after j steps of the Lanczos iteration, then

(A — A\n) tan (¢1)°
[cim1(142p1)]2

A >0 >\ —

where cos g1 = |qf z1], pr = (M1 — A2)/ (A2 — M) and ¢;_; is the Chebychev polynomial of
degree j — 1.

Proof: From Courant-Fischer theorem we have

0 — o LY _ (@) AQyy) w’ Aw
| = Max ——="— = max - = max ~———.
y#0 Yy y#0 (ij) (Qﬂ/) 0£wek(q1,A,5) W W

Since \; is the maximum of w’ Aw / wTw over all nonzero w, it follows that A; > ;. To
obtain the lower bound for #;, note that

qi p(A)Ap(A)q
pEPj—1 Q1TP(A)2(]1

where P;_; is the set of all 7 — 1 degree polynomials. If

q1 = Z d;z;
i=1

then . - )
G p(A)Ap(A)q _ >, dip(N)" A
i p(A)q > i dip(N)?
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)’
Z)\l_()\l_)\n) ~ 221_2 z]:L( )2 .
dip(A)? + Zizz d;p(\i)

We can make the lower bound tight by selecting a polynomial p(x) that is large at = = A\
in comparison to its value at the remaining eigenvalues. Set

:c—)\n}
Ao — N\

p(x) = ¢ja[=1+42

where ¢;_;(z) is the (j — 1)-th Chebychev polynomial generated by
ci(z) = 2z¢j-1(2) —cj_a(2), co=1,c1 =2

These polynomials are bounded by unity on [-1,1]. It follows that |p()\;)| is bounded by
unity for i = 2,--- ,n while p(A1) = ¢j_1(1 + 2p;). Thus,

1—&2) 1
B I+ o)

2 h— (= A
The desired lower bound is obtained by noting that tan (¢;)? = (1 — d?)/d3. ]

Corollary 7.1.5 Using the same notation as Theorem 7.1.4

(A1 —An) tan2(¢n)
C?—l(l + 2pn)

)

where pn = (An-1 = An) /(A1 = A1) and cos (én) = [q] 2nl-
Proof: Apply Theorem 7.1.4 with A replaced by —A. |

Example 7.1.1

1 1
L,y = >
T 0L )R T G+ 2P
A )
R,y = ()\_j)%—l) power method
A1/ o Jj=5 j=25

1.5 [ 11x107%/3.9x 1072 [ 1.4 x107%/35x 107° | L;_1/Rj_,
1.01 [ 5.6 x1071/9.2 x 1071 | 28 x 107%/6.2 x 107! | L;1/R; 4

Rounding errors greatly affect the behavior of algorithm 7.1.1, the Lanczos iteration.
The basic difficulty is caused by loss of orthogonality among the Lanczos vectors. To
avoid these difficulties we can reorthogonalize the Lanczos vectors.
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7.1.1 Reorthogonalization

Since
AQ; = Q;T; + rjef,
let
AQ; — Q;T; = rjel + F; (7.1.17)
[-QIQ; = CI+A;+Cj, (7.1.18)

where C} is strictly upper triangular and A; is diagonal. (For simplicity, suppose (C}); i+1 =
0and A; =0.)

Definition 7.1.1 6, and y; = Q;s; are called Ritz value and Ritz vector, respectively, if
T‘jsi = 9181

Let ©; = diag(6,,--- ,0;) = SijSj where S; = [ S v 8 }

Theorem 7.1.6 (Paige Theorem) Assume that (a) S; and ©; are exact ! (Since j <
n). (b) local orthogonality is maintained. (i.e. ¢/\,q; =0,i=1,...,7—1,77q; =0, and
(Cj)@ﬂ.l =0 ) Let

FlQ;-QjF; = K;— K],
AT - T;A; = Nj— N,
Gj = SJT(KJ + Nj)Sj = (T2k>

Then
(a) yiTQjJrl = m/ﬁji; where y; = Qj3i7 5;’1’ = @'Sﬁ-
(b) Fori#k,

o s
(0; — 0y v = i (Z2E) — re(Z2) = (ra — 7). (7.1.19)

Sji Sik
Proof: Multiplied (7.1.17) from left by Q7 , we get
QTAQ; — QTQ,;T; = Qlrjel + QT Fy, (7.1.20)
which implies that
QIATQ; — T;Q7Q; = er] Q; + F Q. (7.1.21)
Subtracted (7.1.20) from (7.1.21), we have

(Qfvi)e] —ei(QF )"
= (O] T; = T;C7) + (C)T; = T;C5) + (A Ty = TyAj) + F Q; — Qi Ff
= (C]T; = T;Cf) + (CyT; = T;Cy) + (N; = Nj') + (K; — K7).
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This implies that

(Qjrj)e; = CiT; = T;C5 + N; + K.
Thus,

i gi1Bii = s, (Qr)e;si = 5] (CyT; = T;Cy)si + 57 (Nj + K;)s;
(s{ Cjs:)0; — 0:(s] Cys;) + 1,

which implies that

T..
T Ty
Yi dj+1 = -
Bji

Similarly, (7.1.19) can be obtained by multiplying (7.1.20) from left and right by s and
s;, respectively. |

Remark 7.1.5 Since

v _ Ti _ | Olesp), if |Bu| =0O(1), (not converge!)
Yi di+1 = Bji 1 0(1), if |Bji| = O(esp), (converge for (6;,y;))

we have that q]THyi = O(1) when the algorithm converges, i.e., gj4+1 is not orthogonal to
< @Q; > where Qjs; = y;.

(i) Full Reorthogonalization by MGS:
Orthogonalize g;41 to all ¢1,--- ,¢; by

J
G = G — (41166
=1

If we incorporate the Householder computations into the Lanczos process, we can
produce Lanczos vectors that are orthogonal to working accuracy:

ro := ¢1 (given unit vector)
Determine Py = I — 2uvvg /vg vo so that Pyrg = ey;
ay = qi Agi;
Doj=1,---,n—1,
rj = (A—a;)g; — Bi-1¢;-1 (Bogo = 0),
w = (Pjy--- FPy)ry,
Determine P; = [ — QUjU]-T/UjTUj such that Pjw = (wy, -+ ,w;,3;,0,---,0)T,
Gt = (Fo- - Pj)ejra,

T
W1 = G A

This is the complete reorthogonalization Lanczos scheme.
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(ii) Selective Reorthogonalization by MGS
I£ | 5] = O(y/eps). (6;,y5) “good” Ritz pair
Do Qj—i-l—LQIa ceey q]'
Else not to do Reorthogonalization

(iii) Restart after m-steps
(Do full Reorthogonalization)

(iv) Partial Reorthogonalization
Do reorthogonalization with previous (e.g. k = 5) Lanczos vectors {q1, ..., qr}

For details see the books:
Parlett: “Symmetric Eigenvalue problem” (1980) pp.257—
Golub & Van Loan: “Matrix computation” (1981) pp.332—

To (7.1.19): The duplicate pairs can occur!
i 7 k. (0i = 0) y; yx, = O(esp)
~—

O(), if yi = yp = Qi = Qy,
How to avoid the duplicate pairs ? The answer is using the implicit Restart
Lanczos algorithm:

Let
AQJ' = Q]Tj] -+ TjejT
be a Lanczos decomposition.

e In principle, we can keep expanding the Lanczos decomposition until the Ritz pairs
have converged.

Unfortunately, it is limited by the amount of memory to storage of @);.

Restarted the Lanczos process once j becomes so large that we cannot store @);.

— Implicitly restarting method

Choose a new starting vector for the underlying Krylov sequence

A natural choice would be a linear combination of Ritz vectors that we are interested
n.

7.1.2 Filter polynomials

Assume A has a complete system of eigenpairs (\;, z;) and we are interested in the first
k of these eigenpairs. Expand u; in the form

k n
Uy = Z%xi + Z Yii-
i=1

i=k+1

If p is any polynomial, we have

p(A)ur = Z%I?(Az')% + ) vip(N)i.

i=k+1



272 Chapter 7. Lanczos Methods

e Choose p so that the values p(\;) (i = k+1,...,n) are small compared to the values

e Then p(A)u, is rich in the components of the x; that we want and deficient in the
ones that we do not want.

e p is called a filter polynomial.

e Suppose we have Ritz values pq, ..., iy, and gy, - .., fby are not interesting. Then

take
p(t) = (t = pga) -~ (E = pim)-
7.1.3 Implicitly restarted algorithm
Let
AQm = QT + Brmmirep, (7.1.22)

be a Lanczos decomposition with order m. Choose a filter polynomial p of degree m — k
and use the implicit restarting process to reduce the decomposition to a decomposition

AQk = QTy + Brdrireh
of order k with starting vector p(A)u;.

Let vq,..., v, be eigenvalues of T,, and suppose that v4,..., v, correspond to the
part of the spectrum we are not interested in. Then take

p(t) = (@ —vi)(t —v2) - (t — V).
The starting vector p(A)u; is equal to
p(Au; = (A—vppl) - (A—wl)(A—ul)uy
= (A=vpsD) [ (A=) [(A = il u]]].

In the first, we construct a Lanczos decomposition with starting vector (A —uvq1)u;. From
(7.1.22), we have

(A=—uvD)Q, = Qu(T, —wnl)+ ﬁmqmﬂeg (7.1.23)
QUi Ry + ﬁmqmﬂefw

where
Tm — V1[ = UlRl

is the QR factorization of T}, — k1/. Postmultiplying by U;, we get

(A — D) (QnU1) = (QnU)(RiUL) + Bt (e1UL).
It implies that

AQ%) = QSL)T;,II) + 5QO+1b£)2&-717

where

QW = Q,Uy, TY = RiUi+wl, b4 =elu,
(QS) : one step of single shifted QR algorithm)
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Remark 7.1.6

° Q%) 18 orthonormal.

By the definition of T7(,L1), we get

[ ]
UTVUT = Ui(RyUy + D)UY = UrRy + i1 =T, (7.1.24)
Therefore, vy,vs, ..., Vy are also eigenvalues of V.

e Since T, is tridiagonal and Uy is the Q-factor of the QR factorization of T,, — 111,
it implies that Uy and Tr(nl) are upper Hessenberq. From (7.1.24), Tfnl) 15 symmetric.
Therefore, T is also tridiagonal.

e The vector bﬁi)fl = el Uy has the form
T _ 1 1 .
=10 0 v, U]
i.e., only the last two components of bﬁ)ﬂ are monzero.
e For on postmultiplying (7.1.23) by ey, we get

(A - VII)QI = (A - Vll)(Qmel) = QS)RIBI = 7"91)(1?)-
1)

Since T, is unreduced, r%l
multiple of (A — k11)q.

1s nonzero. Therefore, the first column of Q,%) 1S a

Repeating this process with vy, ..., vy, the result will be a Krylov decomposition
m— m— m— m—Fk
AQU = QUM 4 Bg by
with the following properties
i. Q%n_k) is orthonormal.
ii. T#mek) is tridiagonal.

T
are zero.

iii. The first £ — 1 components of b,(;” +_1k
iv. The first column of Q'%" ™ is a multiple of (A — v41) - (A — vm_i])q1.

Corollary 7.1.1 Let vy, ..., v, be eigenvalues of T,,. If the implicitly restarted QR step
1s performed with shifts vy, ..., Vm_, then the matrix T ™ has the form

T(m=Fk) _

m

(m—k) (m—k)
Tkk Tk,m—k ]

m—k
0 TliJrl,kJ)rl

where Tk(fl_,]:ll 15 an upper triangular matriz with Ritz value vy, ... Vpy_ on its diagonal.
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Therefore, the first k£ columns of the decomposition can be written in the form

m—k m—k
AQ; ) = Ql(c )Tk(k Dt kQI(c—H )e;{ + Brttmk 1€k

m—k) : T]{Ezm—k)

where Q,(Cm_ consists of the ﬁrst k columns of Qm is the leading principal

submatrix of order k£ of Tm , and Uy, is from the matrix U = U; - - - U,,,_;. Hence if
we set

A m—k

Q= Q"

- m—k

Iy = Tlik )v

P m—k

Br = ||tk+1 k,‘q](f+1 ) + ﬁkukam-HHQa

Qry1 = ﬂk (g1, qu+1 +ﬁkukaJm+1)>

then

AQy = QiTy. + Brrsret

is a Lanczos decomposition whose starting vector is proportional to (A — 1 I)--- (A —
Vm—kl)(h .

e Avoid any matrix-vector multiplications in forming the new starting vector.
e Get its Lanczos decomposition of order k for free.

e For large n the major cost will be in computing QU.

7.2 Approximation from a subspace

Assume that A is symmetric and {(«y, z;) }; be eigenpairs of A with a1 < ag < -+ < ay,.
Define
T Ax
pu— A pu— .
pla) = ple, 4) = T2

Algorithm 7.2.1 (Rayleigh-Ritz-Quotient procedure)

Give a subspace S™ = span{Q} with QTQ = I,,,;

Set H = p(Q) = QT AQ;

Compute the p (< m) eigenpairs of H, which are of interest,
say Hg; = 6;9; fori=1,...,p;

Compute Ritz vectors y; = Qg;, fori=1,...,p;

Check || Ay; — Osyi|lo < Tol, fori=1,...,p.

By the minimax characterization of eigenvalues, we have

a; = A\j(A) = min maxp(f, A).

FiCRn feFi
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Define

;= min maxp(g, A), for j < m.
g GICS™ geGi P19, 4) )=

Since G C S™ and S™ = span{Q}, it implies that G = QG for some GI C R™.
Therefore,

f; = min maxp(s, H) = \;(H) = 0;,
G]CR"" seGI

fory=1,....m
For any m by m matrix B, there is associated a residual matrix R(B) = AQ — @B.

Theorem 7.2.1 For given orthonormal n by m matrixz Q,
|R()| < |R(B)|

for all m by m matriz B.

Proof: Since

R(B'R(B) = Q°A’Q - B*(Q° AQ) - (Q'4Q)B+ 5’
— Q'A’Q-H’+ (H - B)'(H - B)
—R(HYR(H) + (1 - By (H — B)

and (H — B)*(H — B) is positive semidefinite, it implies that [|[R(B)[|* > ||R(H)||>. =
Since

Hg;, =0,9;, fori=1,...,m,
we have that
Q" AQg; = bigi,
which implies that
QQTA(Qg:) = 0:(Qg:)-

Let y; = Qg;- Then QQ%y; = Q(QTQ)g; = yi. Take P = QQT which is a projection on
span{@}. Then

(QQM) Ay; = 0;(QQ)y;,
which implies that
Po(Ay; — 0;y;) =0,

e, r, = Ay, — 0;y; L S™ = span{Q}.
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Theorem 7.2.1 Let 0; for j = 1,...,m be eigenvalues of H = QT AQ. Then there is
aj € o(A) such that

0, — | < IRl = [AQ — QH|lo, forj=1,....,m.
Furthermore,
> (0, — ) < 2| R

Jj=1

Proof: See the detail in Chapter 11 of “The symmetric eigenvalue problem , Par-
lett(1981)”. |

Theorem 7.2.2 Let y be a unit vector 0 = p(y), o be an eigenvalue of A closest to 6
and z be its normalized eigenvector. Let r = miny,zq |Ni(A) — 0| and v = Z(y,z). Then

0 —al < lIr)IP/r. [sing] < [Ir(y)ll/r.
where r(y) = Ay — 0y.
Proof: Decompose y = zcos) + wsint with 27w = 0 and |Jw||, = 1. Hence
r(y) = z(a — 60) cos) + (A — §)wsin .
Since Az = az and 2Tw = 0, we have 27 (A — 6)w = 0 and so

Ir@)lI2 = (o = 0) cos® ¥ + (A — O)w|[3sin* ¢ > ||[(A — O)w|3sin’ v, (7.2.25)

Let w = Zaﬁéa 5221 Then
1A = 0wl = [w (A= O) (A= Ol =) (0 =0 2ma(Y_ &) =17
o Fa aiFa
Therefore,
. 17 ()2
< .
|siny| < .

Since r(y) Ly, we have
0=y"r(y) = (a—0)cos’> ¢ +w’ (A — 0)wsin? 1),

which implies that

J = cos’  wl(A—0Ow
T osin?y 0 f—a

From above equation, we get

1 a—0 ) k wl (A - 0w

Sy = k+1  w'(A—a)w’ o8 k+1  wl'(A—a)w

(7.2.26)
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Substituting (7.2.26) into (7.2.25), ||r(y)||? can be rewritten as

Ir()]I3 = (0 — a)w' (A — a)(A - O)w/w" (A — a)w. (7.2.27)

By assumption there are no eigenvalues of A separating o and 6. Thus (A —al)(A—61)
is positive definite and so

w'(A=a)A=uw = Y o —alla; — 0|

a;FQ
> 1) lai—alg]
a;FQ
> 7Y (4 — )& =rlw(A-a)ul. (7.2.28)
ajFa
Substituting (7.2.28) into (7.2.27), the theorem’s first inequality appears. u

100 years old and still alive : Eigenvalue problems

Hank / G. Gloub / Van der Vorst / 2000

7.2.1 A priori bounds for interior Ritz approximations
Given subspace S™ = span{Q}, let {(0;,v;)}™, be Ritz pairs of H = QT AQ and Az; =

a;zi,t=1,...,n.

Lemma 7.2.3 For each j < m for any unit s € S™ satisfying s’ z; =0,i=1,...,5— 1.
Then

j—1

a; <0; < p(s)+ Z(a_l — ;) sin? 1) (7.2.29)
i=1
j—1
< p(s)+ Z(a,l — o) sin® ¢,
i=1
where ; = 4(%, Zz)

Proof: Take

7j—1
s=1t+ Z TilYi,
i=1

where ¢t Ly; fori =1,...,5 — 1 and |[|s|]|l = 1. Assumption s”z; =0fori=1,...,5—1
and

lyi — zicos il = (yi — zicosypy)" (y; — zi cos ;)
= 1 — cos?1); — cos® 1 + cos?

= 1—cos?e); = sin? e,
lead to

ri| = |57yl = |s" (i — zi cos )| < ||s|2] sin¥)].
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Let (6;,9;) for i = 1,...,m be eigenpairs of symmetric H with g7 g, = 0 for i # k and

= (g;. Then
0 =g (QTAQ)gr = y] Ay for i # k.
Combining (7.2.30) with tT Ay, = 0, we get

= T At + Z T Ay)r

Thus
7—1
p(s) —a_; = tH(A—a_)t+ (0; —a_1)r
i=1
T J-1
> t(AtT—ta_l)t + 2 (92 _ Oé—l)rz'z
j—1
> p(t) —o1+ Z(Qz —a_y)sin® ;.
i=1

(7.2.30)

Note that p(t) > 6; = min{p(u);u € S uly;, i < j}. Therefore, the second inequality

n (7.2.29) appears.

Let p;; = Z(2;,y;) fori=1,...,nand j=1,...,m. Then ¢; = ¢; and

n

Yy = Z Zi COS Qi

i=1
[cospyy| < [sin]
n j—1
Z cos? Yij = sin? Y — Z cos? ©Dij
i=j+1 i=1

Proof: Since yy; = 0 for i # j and
|(y; cos o — 2i)" (y; cos ; — z;)| = sin® ¢,
we have

|cospij| = |Z/jTZvL| = ’ij(yi cos p; — %;)|
[y;ll2]lys cos i — zilla < | sin .

IN

From (7.2.31),

1— y]7yj ZCOS Pij

which implies that

sin? p;j=1-— cos? Yj; = Zcos wij + Z cos? Dij-

i=j+1

(7.2.31)

(7.2.32)

(7.2.33)

(7.2.34)
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Lemma 7.2.4 For each j =1,...,m,

sing; < [(0; — a;)+ Y (ajn —a;)sin® o] /(a0 — ay) (7.2.35)

Proof: By (7.2.31),

n

plyj, A—ajl) =0, —a; = Y (a; — ;) cos” i

i=1

It implies that

7j—1
§ 2
9]‘ — Oéj + (Oéj — Oéz'> COS QOZ‘]'
i=1
n

= Z (Oéi — Oéj) COS2 Pij

i=j+1
> (g —ay) Y cos’ @y
i=j+1
i1
= (ajp1 — ay)(sin® p; — Z cos® ;). (from (7.2.35))
i=1
Solve sin? ¢; and use (9.3.10) to obtain inequality (7.2.35) u

Explanation: By Lemmas 7.2.3 and 7.2.4, we have

j=1: 6, <p(s), sT21=0. (Lemma 7.2.3)

0 — oy P(S) — Q1 7

j=1: sin’g < < . sz =0. (Lemma 7.2.4)
Qy — (g Qo — O
. . -«
§=2: 0y <p(s)+ (a1 —aq)sin®p; < p(s) + (o — 061)%,
2 —
sT21=5T2=0, "2, =0. (Lemma 7.2.3)
(Lemma7.2.4) o )
j=2: sin®p, < (6 — ) + (a3 — ap) sin” ¢y
a3 — (g
== t) —«a a3 — t) — «
22 ) + (o —a)(P Ty @smanpl) —an
Qo — a3 — Qg Qg —

7.3 Krylov subspace

Definition 7.3.1 Given a nonzero vector f, K™(f) = [f, Af,..., A" f] is called Krylov
matriz and S,, = K™(f) = (f, Af,..., A" f) is called Krylov subspace which are created
by Lanczos if A is symmetric or Arnoldi if A is unsymmetric.
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Lemma 7.3.1 Let {(0;,y;)}™, be Ritz pairs of K™ (f). If w is a polynomial with degree
m—1 (i.e., we€ P™ 1) then w(A)f Lyy if and only if w(0x) =0, k=1,...,m.

Proof: 7 <7 Let

w(§) = (€ = Ok)7 (),
where 7(£) € P™2. Thus

m(A)f € K™(f)
and
yew(A)f = yi(A—b)m(A)f
= ra(A)f
= 0. (o l{@) =K"(f))
7 =7 exercise! [ |
Define
T _ o)
w©O =€ =0) and ml€) = =55
Corollary 7.3.2
o = m(A)f
[ (A) f]]
Proof: Since 7 (0;) = 0 for 0; # 6y, from Lemma 7.3.1,
m(A)f Lyi, Vi # k.
Thus, 7x(A)f // yx and then y;, = e (A)] [ |

e (A1
Lemma 7.3.3 Let h be the normalized projection of f orthogonal to Z7, Z? = span(z1, . .., zj).
For each m € P™~! and each j < m,
sin Z(f, Z7) | (A)h]]*
cos Z(f, Z7) |m(ay]) |

Proof: Let ¢ = Z(f,Z7) = cos™' ||f*Z7]] and let g be the normalized projection of f
onto Z7 so that

p(m(A)f, A —a;l) < (v, — )

(7.3.36)

f =gcosy+ hsin.
Since Z’is invariant under A,
s=n(A)f =m(A)gcosy) + m(A)hsin,
where 7(A)g € Z7 and w(A)h € (Zj)L. A little calculation yields
g (A — ;)7 (A)g cos* 1 + h*(A — a; 1) (A)hsin®

p(s,A—a;l) = EOLE . (7.3.37)

The eigenvalues of A are labeled so that a; < as < --- < «,, and
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(a) v*(A — a;I)v <0 for all v € Z7, in particular, v = (A)g;

(b) w*(A — ;1w < (a, — ) |Jw||?* for all w € (Z9)*, in particular, w = w(A)h.

Used (a) and (b) to simplify (7.3.37), it becomes

|7 (A)R|| siny >
p(s, A—al) < (o — o) {W}

The proof is completed by using

Is)|? = || (A) f]|* = Zw a;) cos® Z(f, z) > m°(ay) cos® Z(f, z).

7.3.1 The Error Bound of Kaniel and Saad
The error bounds come from choosing 7 € P™~! in Lemma 7.3.3 such that
(i) |m(cy)| is large, while ||7(A)h|| is small as possible, and
(ii) p(s,A —a;I) > 0 where s = 7(A)f.
To (i): Note that

2z ™ (i) cos® £(f, 75)

7(A)h|?* = — < max7m(a;) < max  7w(7).
I(A)x] Zi:j-i-l cos* Z(f, z;) e ( )_Te[aj+1’an] (7)
Chebychev polynomial solves min epn-; MaXrefa, ,,a,] 7 (7)-

To (ii): The following facts are known:
(a) 0 <6, —;, (Cauchy interlace Theorem)
(b) 0; —a; < p(s,A—oyl), if sly;, for all i < j, (By minimax Theorem)

(c) 0, —aj < p(s, A—a;I)+ 31" (o, — ) sin® £ (y;, 1), if s Lz, foralli < j.  (Lemma
7.2.3)

Theorem 7.3.4 (Saad) Let 0, < --- < 6, be the Ritz values from K™(f) (by Lanczos
or Arnoldi) and let (o, z;) be the eigenpairs of A. For j =1,... ,m,

sin Z(f, Zj)nj—l(gf;—;:n)
) | o8 Z(F, 29Ty (1 + 27)

2

0§9j—aj§(an—

and

sin £(f, 29) [T} (2=
T cos Z(f, Z0) (1 +2r)’

tan Z(z;, K™) <

where r = (o — aji1) /(11 — ).
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Proof: Apply Lemmas 7.3.3 and 7.3.1. To ensure (b), it requires s Ly; fori =1,..., j—1.
By Lemma 7.3.1, we construct

)= (€~ )~ F(E), 7P
By Lemma 7.3.3 for this 7 (&) :

(Al (A =61)--- (A =6 )[[[[7F(A)h]]

()] | (aj = 01) - (e — 0;-1)]|7())]

<
I

U — |7 (7)]
max —
oy, — O | r€lajri.a5] |7T(04j)

IN
—

ST
Il
— =

oy — Ol 7(7)]

< min max —
H aj —ay |7epm-i j |T(ay)]
la o 1
n — Gk
= ) (7.3.38)
ol — o | Tnj(1 4 2r)

since h L Z7. On combining (b), Lemma 7.3.3 and (7.3.38), the first of the results is
obtained.

To prove the second inequality:

7 is chosen to satisfy m(a;) =0 fori =1,...,7 — 1 so that

s=m(A)f = zjm(ay) cos L(f, z;) + m(A)hsin .
Therefore,

sin Z(f, Z9)||m(A)h||
cos Z(f, zj)|m(aj)|

where 7(£) = (£ — 1) -+ (€ — aj_1)7(§) with 7(§) € P™ 4. The proof is completed by
choosing 7 by Chebychev polynomial as above. [ |

tan Z(s, z;) =

Theorem 7.3.5 Let 0_,, < ... < 0_4 be Royleigh-Ritz values of K™(f) and Az_; =
a_jz_j forj=mn,.... 1 withoa_, <--- < a_y, then

. _ — a_pn—0_ 2
sin Z(f, Z77) Hk:l—ﬁl(a_k—o,?)
cos Z(f,z—j)Tin—j(1 + 2r) ’

0<a-;—0;<(a;—a.) [

and

| -
tan(z_;, ™) < sin £(f, 277)

~ cosZ(f, z—;)

—1 A_p—Q—p 2
Hk:—j-‘rl(a_i—a_j )
Tm_j(l + 27”) ’

where r = (a_j—1 — a_;)/(a_, —a_j_1).
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Theorem 7.3.6 (Kaniel) The Rayleigh-Ritz (8;,y;) from K™(f) to (o, z;) satisfy

2

sin £(f, 29) T2 (2=)

0<0;—0a; < (an—aq
I e (Oz O@) COSé(f, Zj)Tm—j(1+2r)
7—1
+ (axn — O_/k) sin2 l(yka Zk)
k=1

and

- .
gin? 4(%, Zj) < (9j - O‘j) + chﬂ(%‘ﬂ - Oék) sin® 4(%, Zk)j
Qj1 — @

where 7 = (oj — aji1)/(Qjp1 — o).

7.4 Applications to linear Systems and Least Squares

7.4.1 Symmetric Positive Definite System

Recall: Let A be symmetric positive definite and Ax* = b. Then x* minimizes the
functional

o(x) = %ZETAZB — b, (7.4.1)

An approximate minimizer of ¢ can be regarded as an approximate solution to Ax = b.

One way to produce a sequence {x;} that converges to z* is to generate a sequence
of orthonormal vectors {¢;} and to let z; minimize ¢ over span{q,--- ,q;}, where j =
1,---,n. Let Q; = [q1, - -, ¢gj]. Since

v spanfar, 0} = o) = 2y (QTAQ)y — v (@)

for some y € R7, it follows that
r; = QY (7.4.2)
where
(QF AQy)y; = Qjb. (7.4.3)

Note that Az, = b.
We now consider how this approach to solving Ax = b can be made effective when A
is large and sparse. There are two hurdles to overcome:

(i) the linear system (7.4.3) must be easily solved;

(ii) we must be able to compute z; without having to refer to ¢i,--- ,q; explicitly as
(7.4.2) suggests.

To (i): we use Lanczos algorithm algorithm 7.1.1 to generate the ¢;. After j steps we
obtain

AQ; = Q,T; + rjef, (7.4.4)
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where

o S 0
T,=QraQ, = | ™ @ ; and Tjy; = Q7. (7.4.5)
0 ﬁj—l Oéj

With this approach, (7.4.3) becomes a symmetric positive definite tridiagonal system
which may be solved by LDL" Cholesky decomposition, i.e.,

T; = L;D;L], (7.4.6)
where
1 0
) ) dy 0
I. = 2 . : o
= ' ' and D; = 0
R 0 d;
0 ,uj 1
Compared the entries of (7.4.6), we get
dy = oy,
for 1=2---,3
A 7.4.7
i = 52'71/051717 ( )
di = ;i — Bic1fii
Note that we need only calculate
Ky = ﬁj—l/dj—l 7.4.8
dj = ;= Bj1py (7:48)
in order to obtain L; and D; from L,_; and D;_;.
To (ii): Trick: we define C; = [c1,- -+, ¢;] € R and p; € R? by the equations
) A— )
Gl = (7.4.9)

LiDjp; = Qb
and observe that
z; = QT Qi b = Q;(L;D;L7) ' Q7 b = Cjp;.
It follows from (7.4.9) that
[c1, pacy +cay - oo s e + ¢l = [qu, -+ gl

and therefore
C; = [Oj—lacj]7 Cj = 45 — HiCj—1-

If we set p; = [p1,---,p;]" in L;D;p; = Q7 b, then that equation becomes
o] Q?? ]
LiaDjy |0 " _ qZ: :
0--0p;dj_1 | d; pj.—l qu;1b

Pj | qfb
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Since L;_1D;_1p;—1 = Q]_,b, it follows that

pj = { p;)_,l } . P = (45— pydi—api)/d;
J

and thus
rj = Cipj = Cjapj1 + pi¢ = Tjo1 + piCj.
This is precisely the kind of recursive formula for z; that we need. Together with (7.4.8)

and (7.4.9) it enables us to make the transition from (g;_1,¢j_1,z;-1) to (g;, ¢, z;) with
a minimal amount of work and storage.

A further simplification results if we set ¢; = b/ where By = ||b||2. For this choice
of a Lanczos starting vector we see that ¢/b = 0 for i = 2,3, . It follows from (7.4.4)
that

Ay = AQyy; = QjThy; + rjejy; = Q;Q; b +rjefy; = b+ rjejy;.

Thus, if §; = ||r;|l2 = 0 in the Lanczos iteration, then Ax; = b. Moreover, since ||Az; —
blla = B;]e] y;1, the iteration provides estimates of the current residual.

Algorithm 7.4.1 Given b € R" and a symmetric positive definite A € R"*". The
following algorithm computes x € R" such that Az = b.

Bo = [|bll2s 1 = b/Bo, 1 = qf Aqr,di = on, 1 = g1, w1 = b/ay.
Forj=1,--- ,n—1,
rj = (A—0a;)q — Bi-1¢i-1  (Bogo = 0),
Bi = lIrjllz,
If 8; = 0 then
Set 2 = z; and stop;
else
dj+1 = Tj/ﬁj,
Qjy1 = qu+1qu+1,
pi+1 = B;/d;,
djt1 = ajy1 — i,
Pi+1 = —j+1d;p;/djsa,
Cj+1 = dj+1 — Hj41Cy,
Tjr1 = Tj + Pj+1Cj4+1,
end if
end for

=z,

This algorithm requires one matrix-vector multiplication and 5n flops per iteration.
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7.4.2 Symmetric Indefinite Systems

A key feature in the above development is the idea of computing LDLT Cholesky de-
composition of tridiagonal 7. Unfortunately, this is potentially unstable if A, and con-
sequently T;, is not positive definite. Paige and Saunders (1975) had developed the
recursion for x; by an L@ decomposition of T;. At the j-th step of the iteration we will
Given rotations Ji, - - -, J;_1 such that

dy 0
€9 dQ
j}Jl"'ijl :Lj = f3 63 d3

0 fi e dj ]

Note that with this factorization, x; is given by
;= Qy; = QT 'Qjb=Wjs,,
where W; € R/ and s; € R/ are defined by
Wj = Qle s Jj,1 and Lij = Q?b

Scrutiny of these equations enables one to develop a formula for computing z; from
xj—1 and an easily computed multiple of w;, the last column of Wj.

7.4.3 Connection of Algorithm 7.4.1 and CG method

Let

x]L . Iterative vector generated by Algorithm 7.4.1

x¢Y . Tterative vector generated by CG method with , 2% = 0.

Since r§'¢ = b — Azy = b = p§¢, then
bTb L
bTAbb =y

£ = iy =
Claim: 2¢¢ =2l fori=1,2,--,
(a) CG method (A variant version):

Ty = 07 To = b,
For k=1,---,n,
if r,_1 = 0 then set x = x;,_; and quit.
else By =1 _yri1/ri ore2 (b1 =0),
Pk = Th—1 + Bebr—1 (D1 = 10),
o =18 Te—1/Pt Ap, (7.4.10)
T = T—1 T Dk,
Tk = Th—1 — R Apy,
end if
end for
T = Zn.



7.4 Applications to linear Systems and Least Squares 287
Define Ry = [ro, -+ ,7%_1] € R™* and

— [k
1

From p; = 1 + Bipj—1 ( = 2,--- , k) and p; = ry, it follows Ry = P, By. Since the
columns of P, = [py,- -, px| are A-conjugate, we see that

RfARk = B,Z’diag(pferpl, o ,pprk)Bk

is tridiagonal. Since span{py,--- ,pr}=span{rg,--- ,rx_1 }=span{b, Ab,--- , A*"1b} and
ro,- - ,TL_1 are mutually orthogonal, it follows that if

AVEES dmg(ﬁo, s ,5k—1), Bi = ||7’z‘||2;

then the columns of Ry, form an orthonormal basis for span{b, Ab, - - - , A¥~1b}. Con-

sequently the columns of this matrix are essentially the Lanczos vectors of algorithm
7.4.1,ie., ¢ = +rSS /B,y (i =1,--- k). Moreover,

Ty = AN ' Bl diag(p] Api) B, 1N

The diagonal and subdiagonal of this matrix involve quantities that are readily avail-
able during the conjugate gradient iteration. Thus, we can obtain good estimate of A’s
extremal eigenvalues (and condition number) as we generate the zj in (7.4.11).

pZCG = cf - constant.

Show that ¢ are A-orthogonal. Since
C]L? = Qj = Cj = Qij_T7
it implies that

CTAC; = Ly'QTAQ,L;" = L;'T;L;"
L7'L;D,LTL;" = D;.

So {¢;})_, are A-orthogonal.

(b) It is well known that #¢“ minimizes the functional ¢(x) = 327 Az — b'2 in the
subspace span{ro, Aro, - - - , A7"'ro} and &} minimize ¢(x) = 27 Az—b" x in the subspace
span{qi,--- ,q;}. We also know that K¢, A, j| = Q;R; which implies (g1, 4, j) =span
{1, ,q;}. But ¢1 = b/||bl|2, 70 = b, so span {rg, Arg, -+, A" 'rg} = K(q1, A, j) =span

{q1,--- . q;} therefore we have 2 = zF.
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7.4.4 Bidiagonalization and the SVD

Suppose UT AV = B the bidiagonalization of A € R™*" and that

U = [u17"' 7um]7 UTUZ]m»
V = ['Ulv"' 7Un]7 VTV:[m
and
[ B 0 ]
b= Bn—l
0 Qay,
0 - 0 |

(7.4.11)

(7.4.12)

Recall that this decomposition serves as a front end for the SV D algorithm. Unfortu-
nately, if A is large and sparse, then we can expect large, dense submatrices to arise
during the Householder transformation for the bidiagonalization. It would be nice to
develop a method for computing B directly without any orthogonal update of the matrix

A.
We compare columns in the equations AV = UB and AU = VBT

Avj = aju; + B quja,  Pouo = 0, ATuy = ajv; + Bivisr,  Batnir =0,
for y =1,--- ,n. Define
r; = Av; — B_1u;—1 and p; = ATuj — a;v;.
We may conclude that

aj = E|rill2,  uy = ri/a;,

Vjt1 :pj/5j> 53' = i||pj||2-

These equations define the Lanczos method for bidiagonaling a rectangular matrix (by

Paige (1974)):

Given v; € R™ with unit 2-norm.
r = Avy, ar = ||
For j=1,--- n,

If o;j = 0 then stop;

else
If 3; =0 then stop;
else
Vi1 = pi/ By i1 = Avjpa — Biug, ajpr = [[rjpalf2.
end if
end if

end for

(7.4.13)
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It is essentially equivalent to applying the Lanczos tridiagonalization scheme to the sym-

metric matrix C' = /?T 181 ] . We know that
Ai(C) = 0i(A) = = Anim-i+1(C)
for i = 1,---,n. Because of this, the large singular values of the bidiagonal matrix
ar B 0
Bj = h tend to be very good approximations to the large singular
Bi-1
0 Oéj

values of A.

7.4.5 Least square problems

As detailed in chapter IIT the full-rank LS problem min||Az — b||s can be solved by the
bidiagonalization (7.4.11)-(7.4.12). In particular,

n
Trs = VyLs = E a;V;,
i=1

where y = (a1, ,a,)" solves the bidiagonal system By = (ufb,---  ulb)T.

Disadvantage: Note that because B is upper bidiagonal, we cannot solve for y until the
bidiagonalization is complete. We are required to save the vectors vy, - - - , v, an unhappy
circumstance if n is very large.

Modification: It can be accomplished more favorably if A is reduced to lower bidiagonal
form:

- o 07
f1 @
UTAV = B = o . o om>n+l,
o
0 Bn
L 0 0 ]
where V' = [vy,- -+ ,v,] and U = [uq, -+ ,up,]. It is straightforward to develop a Lanczos
procedure which is very similar to (7.4.13). Let V; = [v1,--- ,v;], Uj = [uq, -+ -, u;] and
o 0
f1 az
B, — c RGDx
L
L 0 B

and consider minimizing || Az — b||2 over all vectors of the form x = Vjy, y € R’. Since

1AVy = bll2 = [|UTAVyy = UTbllo = || By = Ufyiblla + Y (uf )7,

i=j+2
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it follows that z; = Vjy; is the minimizer of the LS problem over span{V;} , where y;
minimizes the (j + 1) x j LS problem min||B;y — U}, ,b||5. Since Bj is lower bidiagonal,
it is easy to compute Jacobi rotations Ji,-- -, J; such that

J;--- 1B, = {}SJ ]

is upper bidiagonal. Let .J; --- U], b = { ij } , then

R d;
By~ Ukt = 15+ = - 0l = | 0 o= | 2 |l

SO yj = Rj_ldj, lL‘j = V}yj = ‘/JRj_ld] = Wjdj. Let
Wi = (W1, wy), w; = (vj — wjarj-15) /7

where r;_; ; and r;; are elements of R;. R; can be computed from R; ;. Similarly,

d; = { dg? , ¥; can be obtained from z;_1:

d]’,1

= Wid; = (Wi, w;) { 5,

] = Wj1dj—1 + w;9;.

Thus
Tj = Tj1 + w;o;.

For details see Paige-Saunders (1978).
7.4.6 FError Estimation of least square problems
Continuity of A" of the function: R™*" — R™*" defined by A —— A™.

Lemma 7.4.2 If {A;} converges to A and rank(A;) = rank(A) = n, then {Af} also
converges to AT,

Proof: Since lim A7 A; = AT A nonsingular, so

1—00

AF = (ATA) AT =X (AT A) AT = AT

, then A, — Ay as

o O =
o OO

10
Example 7.4.1 Let A, = | 0 ¢ | withe > 0 and Ay =
0 0
1
0

0 0
+ + _
€—>O,7’ank:(A0)<2.ButA5_[ /e O}PA {O 0 0](135—>0.
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Theorem 7.4.3 Let A, B € R™*", then holds

|A* = B¥|lr < V2IA - Bllr max{[| A" 31| B*3}.
Without proof.

Remark 7.4.1 It does not follow that A — B implies AY — BYT. Because A" can
diverges to co, see example.

Theorem 7.4.4 If rank(A) = rank(B) then
|AT = BT |lp < pllAT[|2[| B2 A = Bllp,
where
[ V2, ifrank(A) < min(m,n)
o= 1, ifrank(A) = min(m,n).

Pseudo-Inverse of A: A% is the unique solution of equations

ATAAY = AT, (AAT)* = AAY,
AAYA = A, (ATA) = ATA.

Py = AAT is Hermitian. P, is idempotent, and R(P4) = R(A). Py is the orthogonal
projection onto R(A). Similarly, R(A) = A' A is the projection onto R(A*). Furthermore,

pLs = lIb— AATB|l5 = [|(I — AAT)B|[5.
Lemma 7.4.1 (Banach Lemma) [|[B~' — A7|| <||A— B|||A7 YIB!

Proof: From ((A+dA)™' — AN (A+06A) =1—1—A"19A, follows lemma immediately.
u

Theorem 7.4.5 (i) The product PgP1 can be written in the form
PpPy = (B*)*RpE*Py,
where Py = I — Py, B= A+ E. Thus |PgPx| < [|BY|2||E||.
(ii) If rank(A) = rank(B), then ||PgPz| < min{||B* |2, ||AT|2}|E]|.
Proof:
PPt = PyPt=(B*YB'Pi=(BY)(A+E) P = (B*)EP
= (BY)'BY(BY)'E*Py = (BY)'RpE'Py  (|Rsl <1,||Py] < 1).

Part (ii) follows from the fact that rank(A) < rank(B) = ||PgP1|| < ||Pg Pal|. Exercise!
(Using C-S decomposition). [ |
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Theorem 7.4.6 It holds

Bt — At = - BTPRER,AT + B*PyPt — RER,AT.
Bt — AT = —-BTPgER AT + (B*B)"RpE*P{ — RgE*Py(AA*)T.

Proof:
_B*BB*(B — A)ATAAY + BYBB*(I — AAT) — (I — B*B)(A*A)A*
= —BY(B—-A)A" +B"(I-AA") - (I - B"B)A*
B" — A" (Substitute Pg = BBT, E=B — A, Ry = AA",--- ).

Theorem 7.4.7 If B= A+ E, then
1BY = A%||r < V2Bl p max{||A*[|3, | B¥[I3}.

Proof: Suppose rank(B) < rank(A). Then the column spaces of F; and F» are orthog-
onal to the column space of F3. Hence

1B = A*|[p = | By + Bllp + | BlE (I-B"B)B" =0).
Since Fy + Fy, = BT (PgEAYT Py + PgPi), we have
IFy + Fol < IBY3(|1PsEAY Pallz + || Ps Py || 7).
By Theorems 7.4.5 and 7.4.6 follows that
|Ps EATPAll7 + |1Ps Py |7 < |1PEEAT |5 + | Pg Pall%
= | PsEAY|: + | PR EAT|
IEA*|E < | E(FIAT]E.
Thus
1Py + Bollp < [A*[l| BY 2l Ellr - (PgPa= PFERsAAT = Py EAY).
By Theorem 7.4.6 we have
1Bl < ATl R Rallr = |AT |2l RaRE || = | AT |2l AT ER5|
< 1ATIIEF.
The final bound is symmetric in A and B, it also holds when rank(B) > rank(A). R
Theorem 7.4.8 If rank(A) = rank(B), then
1B* = A%[|lr < V2IAT ||| BF ||| Ellp.  (see Wedin (1973))

From above we have

1B* — A* s TR
T <2k (A .
B S V2R

This bound implies that as E approaches zero, the relative error in Bt approaches zero,
which further implies that BT approach A™.

Corollary 7.4.9 limg_4 Bt = A" <= rank(A) = rank(B) as B approaches A.
(See Stewart 1977) L
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7.4.7 Perturbation of solutions of the least square problems

We first state two corollaries of Theorem (SVD).

Theorem 7.4.10 (SVD) If A € R"™*" then there exists orthogonal matrices U = [uy, - - -
R™™ qnd V = [vy,-++ ,v,] € R™™ such that UTAV = diag(oy,---, 0,) where p =
min(m,n) and o1 > gy > --- > 0, > 0.

Corollary 7.4.11 If the SVD 1is given by Theorem 7.4.10 and o1 > -+ > 0, > 0,441
=---=0,=0, then

(a) rank(A) =r.
(b) N(A) =span{vei1,--- ,vn}.
(c) Range(A) =span{uy, - ,u,}.

(d) A =3_ ol = UX VT where U, = [u1,-+ ,u,], V; = [v1,-++ 0] and &, =
diag(oq,-- - ,0.).

(e) 1Az =of+ - +07.
(f) [|A[l2 = o1
Proof: exercise !

Corollary 7.4.12 Let SVD of A € R"™ " is given by Theorem 7.4.10. If k < r =
rank(A) and A, = X5 ocul, then

min |A = X]Js = ||[A — Aplls = o5, (7.4.14)

rank(X)=k,XeRmxn

Proof: Let X € R™*" with rank(X) =k. Let 7y,--- , 7, with 74 > --- > 7, > 0 be the
singular values of X. Since A = X + (A — X) and 7,11 = 0, then o441 = |Tp1 — o] <
|A — X||5. For the matrix A, = UXVT (X = diag(oy, -+ ,0%,0,--+,0)) we have

14 = Allz = IU(S = D)V |l = |~ Zllz = ops1.

LS-problem: ||Az — b|ja=min! = x5 = ATb.

Perturbated LS-problem: ||(A+ E)y — (b+ f)|2 =min! = y=(A+ E)"(b+ f).

Lemma 7.4.13 Let A, E € R™" and rank(A) = r.

(a) If rank(A+ E) > r then holds [|(A+ E)*||2 >

(b) Ifrank(A+ E) <r and ||[AT|]2||E|l2 < 1 then rank(A + E) =r and

At
=] 47T,

1A+ E)*[l2 <

, U] €
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Proof: Let 74 > --- > 7, be the singular values of A + F.

To (a): If 74 is the smallest nonzero singular value, then k > r + 1 because of rank(A +
E) > r. By Corollary 7.4.6, we have ||E||s = |[(A+ E) — Alls > 7,41 > 7 and therefore
1A+ E)T 2 = 1/ > 1/[| El2.

To (b): Let 01 > -+ > 0, be the singular values of A, then o, # 0 because of rank(A) = r
and ||A*||2 = 1/0,. Since ||[At|[2]|E|l2 < 1 so |E||2 < oy, and then by Corollary 7.4.6 it
must be rank(A + E) > r, so we have rank(A + E) = r. By Weyl’s theorem (Theorem
6.1.5) we have 7, > 0, — || E'||2 and furthermore here o, — || E|s > 0, so one obtains
I(A+ E) 2 = 1/m < 1/(0r = | Ell2) = AT ]l2/(1 = |AT[|2[| E]l2)-
|
Lemma 7.4.14 Let A,E € R™", b, f € R™ and x = ATb, y = (A+ E)T(b+ f) and
r =0b— Ax, then holds
y—x = [-(A+E)TEAT +(A+ E)"(I — AA™)
+(I - (A+ E)Y(A+ E) AT )b+ (A+ E)*f
—(A+ EY'Ex +(A+ E)Y"(A+ E)*TETy
+(I = (A+E)"(A+ E)ETAT 2 + (A+ E)"f.
Proof: y—z =[(A+ E)" — AT]b+ (A+ E)*f and for (A + E)" — A" one has the
decomposition
(A+ E)f — A" = —(A+E)"EAT+(A+E)" — A"
+(A+E)Y"(A+ E— A)A*
= —(A+E)"EA"+ (A+ E)"(I — AA™)
—(I—(A+E)*(A+ E))A*.
Let C := A+ E and apply the generalized inverse to C' we obtain C* = CTCCT =
CTC+' C* and
AT(I — AAT) = AT — ATAAT = AT — ATAT AT = AT — ATAT AT =,
also AT = ATA" A+ and (I — C*C)CT = 0. Hence it holds
CHI — AAT) = CHCT ET(I — AAY)
and
(I —CHCO)A* = (I — CTC)ETAT A+,
If we substitute this into the second and third terms in the decomposition of (A+FE)"—A*
then we have the result (r = (I — AAT)b, x = ATD):
y—1z = [—(A+E)TEA* +(A+E)*(A+ E)* ET(I — AA")
+(I—(A+E)H(A+ E)ETAY AT b+ (A+ E)*f
= —(A+E)"Ez+ (A+E)"(A+ E)t E™r
+(I—(A+E)H(A+E)ETAY 2+ (A+ E)*f.
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7.5 Unsymmetric Lanczos Method
Theorem 7.4.15 Let AJE € R™" b, f € R™, andx = AT0#0,y=(A+ E)"(b+ f)
and r =b— Az. If rank(A) =r, rank(A+ E) <r and ||AT|]2||E|l2 < 1, then holds

< NALNA": Bl (AT Bl il (e ]

T = ATRIEN LAl T = AT LI El [[All ]2 [All2]lz]l

|y — x|z

2|2
Proof: From Lemma 7.4.14 follows

ly —zll2 < [[(A+ E) 2| Ell2llz]l2 + [[(A 4+ E) 2l Ell2llr(l2 + [1£]l2]

I = (A+ E) (A+ E)A Ell2l AT [12]1z]]2-
Since I — (A+ E)" (A + FE) is symmetric and it holds
(I—(A+E)Y"(A+E)?=1—-(A+E)Y"(A+E).
From this follows || — (A+ E)"(A+ E)|s =1, if (A+ E)"(A+ E) # I. Together with
the estimation of Lemma 7.4.13(b), we obtain
Iy = ol < Tl 2B Naliole + 1l + T Il

1A [IE]: Hfllzl _

and
— All2||AT E
ly =zl  _| ||2ﬂ 2 [QH 2 (Al a
[l L= [JA*[lEl L [[Allz  [Allllzllz 1= AT [0 E]2 [|All2 |22
|
7.5 Unsymmetric Lanczos Method
Suppose A € R™" and that a nonsingular matrix X exists such that
ar N 0
X—IAX —T = ﬂl (&%)
Tn—1
0 ﬂn—l Qnp
Let
X =[xy, ,vJand X T =Y = [y, -+, yn].
Compared columns in AX = XT and ATY = YT7?, we find that
Azj = vjaxj1 + oz + Bixjpr,  Yoro =0
and
ATy = B 1yi + oy + v, Boyo =0
for j =1,---,n — 1. These equations together with Y*X = I, imply a; =y Az; and
(A= aj)z; — 71251, (7.5.1)

BiTj1 =7 =

Vivir =pj = (A — )"y — Bi1ya
These is some flexibility in choosing the scale factors 3; and 7;. A “canonical” choice is
to set 3; = ||v;ll2 and ~; = xT, p; giving:
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Algorithm 7.5.1 (Biorthogonalization method of Lanczos)

Given x1,y; € R* with aTz, = yTy, = 1.
Forj=1,--- , n—1,
o; =y Az,
7’]' = (A — Oéj)l’j — ’ijll‘jfl ("}/01'0 = O),
B = lIrll2-
If B; > 0 then
IL‘j+1 = T‘j/ﬁj, (752)
pj = (A—a)"y; — Bicyi—1 (Boyo = 0),
Vi = $]T+1pja
else stop;,
If v; # 0 then y;+1 = p;/7; else stop;
end for

a, =zl Ay,.

Define X; = [z1, -, 2], Y; = [y1,--- ,y;] and T} to be the leading j x j principal
submatrix of T, it is easy to verify that

Ai(j = XT, + %’%T%
AYY; = YT +pje; -

Remark 7.5.1 (i) p]v; = B;72],1Yj+1 = B;y; from (7.5.1).
(ii) Break of the algorithm (7.5.2) occurs if pj~; = 0:

(7.5.3)

(a) v =0=3; =0. Then Xj is an invariant subspace of A (by (7.5.3)).
(b) pj =0=; =0. ThenY; is an invariant subspace of AT (by (7.5.3)).
(€) pjv; =0 but |[psll;ll # 0, then (7.5.2) breaks down. We begin the algorithm

(7.5.2) with a new starting vector.

(iii) If p}r'yj is very small, then ~; or B; small. Hence yji1 or xji; are large, so the
algorithm (7.5.2) is unstable.

Definition 7.5.1 An upper Hessenberg matrizc H = (h;;) is called unreducible, if hiy1,; #
0, fori =1,--+ ,n—1 (that is subdiagonal entries are nonzero). A tridiagonal matriz T =
(tij) is called unreducible, if t;;—1 #0 fori =2,--- ,nandt;;y1 #0 fori=1,--- ,n—1.

Theorem 7.5.2 Let A € R"*™. Then

(i) If x # 0 so that K[zy, A,n] = [z1, Azy,- - , A" '] nonsingular and if X is a non-
singular matriz such that Klxi, A,n] = X R, where R is an upper triangular matriz,
then H = X 1AX is an upper unreducible Hessenberg matrix.

(ii) Let X be a nonsingular matriz with first column x; and if H = X ' AX is an upper
Hessenberg matrix, then holds

K[z1,A,n| = XKle1, H,n] = XR,

where R is an upper triangular matrix. Furthermore, if H is unreducible, then R
s nonsingular.
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(iii) If H = X 'AX and H = Y YAY where H and H are both upper Hessenberg
matrices, H is unreducible and the first columns x1 and y, of X andY’, respectively,
are linearly dependent, then J = X~1Y is an upper triangular matriz and H =

JYHJ.
Proof: ad(i): Since z, Az, -+, A" 'z are linearly independent, so A"z is the linear
combination of {xy, Axy, -+, A" 'z}, i.e., there exists cg, - , ¢, such that

n—1
Axy = E cA'ry.
i=0

Let
0 0 Co
O — 1 C1
0 .
0 1 Cn—1

Then we have Kz, A,n|C = [Azy, A%z, , A" oy, A"ry] = AKlxy, A,n]. Thus
XRC = AXR. We then have

X 'AX =RCR'=H

is an unreducible Hessenberg matrix.
ad(ii): From A = XHX ! follows that A'z; = XH'X 'x; = X H'e;. Then

Kz, An| = [z, Az, - ,A”_lxl] = [Xe;, XHey,--- ,XH"_lel]
= X[el,H617--~ ,H"_lel].

If H is upper Hessenberg, then R = [e;, Hey,--- , H" le;] is upper triangular. If
H is unreducible upper Hessenberg, then R is nonsingular, since r1; = 1, 199 = hay,
r33 = haihsga, -+ -, and so on.

ad(iii): Let y; = Ax;. We apply (ii) to the matrix H. It follows K|x1, A,n] = XR;.
Applying (i) to H, we also have K[y, A,n] = Y Ry. Here Ry and Ry are upper triangular.
Since y; = Axq, SO
AK[z1,A,n] = AXR) = YR,.
Since R, is nonsingular, by (ii) we have R, is nonsingular and X 'Y = AR, R; ' = J
is upper triangular. So

H=YAY = (Y ' X)X AX(X'Y)=J'HJ.
|

Theorem 7.5.3 Let A € RV, 2,y € R™ with K[z, A,n] and K[y, AT, n] nonsingular.
Then

(i) If B = K[y, A", n]"K[z,A,n] = (yTA™22); 21..n» has a decomposition B =
LDLT where L is a lower triangular with l;; = 1 and D is diagonal (that is all prin-
cipal determinants of B are nonzero) and if X = K|z, A,n|L™', then T = X 1AX
1s an unreducible tridiagonal matrix.
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(i) Let X,Y be nonsingular with

(a) T=XTAX, T = Y YAY unreducible tridiagonal,
(b) the first column of X and Y are linearly dependent,

(c) the first row of X and Y are linearly dependent.
Then XY = D diagonal and T = D*TD.
(iii) If T = X 'AX is unreducible tridiagonal, x is the first column of X and Y 1is the

first row of X1, then
B = K[y, A", n)]" K[z, A,n]

has a LDLT decomposition.
Proof: ad(i):
X =Kz, An|L™" = XL" = K[z, A,n]. (7.5.4)
So the first column of X is z. From B = LDL” follows
Ky, A" n]' = LDL" K[z, A,n]™"
and then
K[y, AT, n] = K[z, A,n|""LDL" = X" TDL". (7.5.5)

Applying Theorem 7.5.2(i) to (7.5.4), we get that X' AX is unreducible upper Hessen-
berg. Applying Theorem 7.5.2(i) to (7.5.5), we get that

XTATX T = (XtAX)T
is unreducible upper Hessenberg. So X 'AX is an unreducible tridiagonal matrix.

ad(ii): 7" and T are unreducible upper Hessenberg, by Theorem 7.5.2(3) we have XY
upper triangular on the other hand. Since T7 = XTATX T and 77 = YTATY T
are unreducible upper Hessenberg, then by Theorem 7.5.2(iii) we also have Y7 X~ T =
(X71Y)T is upper triangular. Thus X 'Y is upper triangular, also lower triangular so
the matrix XY is diagonal.

ad(iii): exercise! ]



