## Introduction

Tsung-Ming Huang<br>Department of Mathematics National Taiwan Normal University

September 8, 2011

## Outline

(1) Vectors and matrices
(2) Rank and orthogonality
(3) Eigenvalues and Eigenvectors

4 Norms and eigenvalues
(5) Backward and Forward errors

## Vectors and matrices

$A \in \mathbb{F}$ with

$$
A=\left[a_{i j}\right]=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right], \quad \mathbb{F}=\mathbb{R} \text { or } \mathbb{C} .
$$

- Product of matrices: $C=A B$, where $c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$, $i=1, \ldots, m, j=1, \ldots, p$.
- Transpose: $C=A^{T}$, where $c_{i j}=a_{j i} \in \mathbb{R}$.
- Conjugate transpose: $C=A^{*}$ or $C=A^{H}$, where $c_{i j}=\bar{a}_{j i} \in \mathbb{C}$.
- Differentiation: Let $C=\left(c_{i j}(t)\right)$. Then $\dot{C}=\frac{d}{d t} C=\left[\dot{c}_{i j}(t)\right]$.
- Outer product of $x \in \mathbb{F}^{m}$ and $y \in \mathbb{F}^{n}$ :

$$
x y^{*}=\left[\begin{array}{ccc}
x_{1} \bar{y}_{1} & \cdots & x_{1} \bar{y}_{n} \\
\vdots & \ddots & \vdots \\
x_{m} \bar{y}_{1} & \cdots & x_{m} \bar{y}_{n}
\end{array}\right] \in \mathbb{F}^{m \times n}
$$

- Inner product of $x \in \mathbb{F}^{n}$ and $y \in \mathbb{F}^{n}$ :

$$
\begin{array}{r}
\langle y, x\rangle:=x^{T} y=\sum_{i=1}^{n} x_{i} y_{i}=y^{T} x \in \mathbb{R} \\
\langle y, x\rangle:=x^{*} y=\sum_{i=1}^{n} \bar{x}_{i} y_{i}=\overline{y^{*} x} \in \mathbb{C}
\end{array}
$$

- Sherman-Morrison Formula:

Let $A \in \mathbb{R}^{n \times n}$ be nonsingular, $u, v \in \mathbb{R}^{n}$. If $v^{T} A^{-1} u \neq-1$, then

$$
\begin{equation*}
\left(A+u v^{T}\right)^{-1}=A^{-1}-A^{-1} u v^{T} A^{-1} /\left(1+v^{T} A^{-1} u\right) . \tag{1}
\end{equation*}
$$

- Sherman-Morrison-Woodbury Formula:

Let $A \in \mathbb{R}^{n \times n}$, be nonsingular $U, V \in \mathbb{R}^{n \times k}$. If $\left(I+V^{T} A^{-1} U\right)$ is invertible, then

$$
\left(A+U V^{T}\right)^{-1}=A^{-1}-A^{-1} U\left(I+V^{T} A^{-1} U\right)^{-1} V^{T} A^{-1} .
$$

Proof of (1):

$$
\begin{aligned}
& \left(A+u v^{T}\right)\left[A^{-1}-A^{-1} u v^{T} A^{-1} /\left(1+v^{T} A^{-1} u\right)\right] \\
= & I+\frac{1}{1+v^{T} A^{-1} u}\left[u v^{T} A^{-1}\left(1+v^{T} A^{-1} u\right)-u v^{T} A^{-1}-u v^{T} A^{-1} u v^{T} A^{-1}\right] \\
= & I+\frac{1}{1+v^{T} A^{-1} u}\left[u\left(v^{T} A^{-1} u\right) v^{T} A^{-1}-u\left(v^{T} A^{-1} u\right) v^{T} A^{-1}\right] \\
= & I .
\end{aligned}
$$

## Example 1

$$
\tilde{A}=\left[\begin{array}{ccccc}
3 & -1 & 1 & 1 & 1 \\
0 & 1 & 2 & 2 & 2 \\
0 & 0 & 4 & 1 & 1 \\
0 & 0 & 0 & 3 & 0 \\
0 & -1 & 0 & 0 & 3
\end{array}\right]=A+\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
-1
\end{array}\right]\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

where

$$
A=\left[\begin{array}{ccccc}
3 & -1 & 1 & 1 & 1 \\
0 & 1 & 2 & 2 & 2 \\
0 & 0 & 4 & 1 & 1 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 3
\end{array}\right]
$$

## Rank and orthogonality

Let $A \in \mathbb{R}^{m \times n}$. Then

- $\mathcal{R}(A)=\left\{y \in \mathbb{R}^{m} \mid y=A x\right.$ for some $\left.x \in \mathbb{R}^{n}\right\} \subseteq \mathbb{R}^{m}$ is the range space of $A$.
- $\mathcal{N}(A)=\left\{x \in \mathbb{R}^{n} \mid A x=0\right\} \subseteq \mathbb{R}^{n}$ is the null space of $A$.
- $\operatorname{rank}(A)=\operatorname{dim}[\mathcal{R}(A)]=$ the number of maximal linearly independent columns of $A$.
- $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$.
- $\operatorname{dim}(\mathcal{N}(A))+\operatorname{rank}(A)=n$.
- If $m=n$, then $A$ is nonsingular $\Leftrightarrow \mathcal{N}(A)=\{0\} \Leftrightarrow \operatorname{rank}(A)=n$.
- Let $\left\{x_{1}, \cdots, x_{p}\right\}$ in $\mathbb{R}^{n}$. Then $\left\{x_{1}, \cdots, x_{p}\right\}$ is said to be orthogonal if

$$
x_{i}^{T} x_{j}=0, \quad \text { for } i \neq j
$$

and orthonormal if

$$
x_{i}^{T} x_{j}=\delta_{i j},
$$

where $\delta_{i j}=0$ if $i \neq j$ and $\delta_{i j}=1$ if $i=j$.

- $S^{\perp}=\left\{y \in \mathbb{R}^{m} \mid y^{T} x=0\right.$, for $\left.x \in S\right\}=$ orthogonal complement of $S$.
- $\mathbb{R}^{m}=\mathcal{R}(A) \oplus \mathcal{N}\left(A^{T}\right)$.
- $\mathbb{R}^{n}=\mathcal{R}\left(A^{T}\right) \oplus \mathcal{N}(A)$.
- $\mathcal{R}(A)^{\perp}=\mathcal{N}\left(A^{T}\right)$.
- $\mathcal{R}\left(A^{T}\right)^{\perp}=\mathcal{N}(A)$.


## Special matrices

```
\(A \in \mathbb{R}^{n \times n}\)
Symmetric: \(A^{T}=A\)
skew-symmetric: \(A^{T}=-A\)
positive definite: \(x^{T} A x>0, x \neq 0\)
non-negative definite: \(x^{T} A x \geq 0\)
indefinite: \(\left(x^{T} A x\right)\left(y^{T} A y\right)<0\), for some \(x, y\)
orthogonal: \(A^{T} A=I_{n}\)
normal: \(A^{T} A=A A^{T}\)
positive: \(a_{i j}>0\)
non-negative: \(a_{i j} \geq 0\).
```

| $A \in \mathbb{C}^{n \times n}$ |
| :--- |
| Hermitian: $A^{*}=A\left(A^{H}=A\right)$ |
| skew-Hermitian: $A^{*}=-A$ |
| positive definite: $x^{*} A x>0, x \neq 0$ |
| non-negative definite: $x^{*} A x \geq 0$ |
| indefinite: $\left(x^{*} A x\right)\left(y^{*} A y\right)<0$, for some $x, y$ |
| unitary: $A^{*} A=I_{n}$ |
| normal: $A^{*} A=A A^{*}$ |

Let $A \in \mathbb{F}^{n \times n}$. Then the matrix $A$ is

- diagonal if $a_{i j}=0$, for $i \neq j$. Denote $D=\operatorname{diag}\left(d_{1}, \cdots, d_{n}\right) \in \mathbf{D}_{n}$;
- tridiagonal if $a_{i j}=0,|i-j|>1$;
- upper bi-diagonal if $a_{i j}=0, i>j$ or $j>i+1$;
- (strictly) upper triangular if $a_{i j}=0, i>j \quad(i \geq j)$;
- upper Hessenberg if $a_{i j}=0, i>j+1$. (Note: the lower case is the same as above.)

Sparse matrix: $n^{1+r}$, where $r<1$ (usually between $0.2 \sim 0.5$ ). If $n=1000, r=0.9$, then $n^{1+r}=501187$.

## Eigenvalues and Eigenvectors

## Definition 2

Let $A \in \mathbb{C}^{n \times n}$. Then $\lambda \in \mathbb{C}$ is called an eigenvalue of $A$, if there exists $x \neq 0, x \in \mathbb{C}^{n}$ with $A x=\lambda x$ and $x$ is called an eigenvector corresponding to $\lambda$.

## Notations:

$\sigma(A):=$ spectrum of $A=$ the set of eigenvalues of $A$.
$\rho(A):=$ radius of $A=\max \{|\lambda|: \lambda \in \sigma(A)\}$.

- $\lambda \in \sigma(A) \Leftrightarrow \operatorname{det}(A-\lambda I)=0$.
- $p(\lambda)=\operatorname{det}(\lambda I-A)=$ characteristic polynomial of $A$.
- $p(\lambda)=\prod_{i=1}^{s}\left(\lambda-\lambda_{i}\right)^{m\left(\lambda_{i}\right)}, \lambda_{i} \neq \lambda_{j}($ for $i \neq j)$ and $\sum_{i=1}^{s} m\left(\lambda_{i}\right)=n$.
- $m\left(\lambda_{i}\right)=$ algebraic multiplicity of $\lambda_{i}$.
- $n\left(\lambda_{i}\right)=n-\operatorname{rank}\left(A-\lambda_{i} I\right)=$ geometric multiplicity of $\lambda_{i}$.
- $1 \leq n\left(\lambda_{i}\right) \leq m\left(\lambda_{i}\right)$.

If there is some $i$ such that $n\left(\lambda_{i}\right)<m\left(\lambda_{i}\right)$, then $A$ is called degenerated.
The following statements are equivalent:
(1) There are $n$ linearly independent eigenvectors;
(2) $A$ is diagonalizable, i.e., there is a nonsingular matrix $T$ such that $T^{-1} A T \in \mathbf{D}_{n}$;
(3) For each $\lambda \in \sigma(A)$, it holds $m(\lambda)=n(\lambda)$.

If $A$ is degenerated, then eigenvectors plus principal vectors derive Jordan form.

## Theorem 3 (Schur decomposition)

(1) Let $A \in \mathbb{C}^{n \times n}$. There is a unitary matrix $U$ such that $U^{*} A U$ is upper triangular.
(2) Let $A \in \mathbb{R}^{n \times n}$. There is an orthogonal matrix $Q$ such that $Q^{T} A Q$ is quasi-upper triangular, i.e., an upper triangular matrix possibly with nonzero subdiagonal elements in non-consecutive positions.
(3) $A$ is normal if and only if there is a unitary $U$ such that $U^{*} A U=D$ is diagonal.
(4) $A$ is Hermitian if and only if $A$ is normal and $\sigma(A) \subseteq \mathbb{R}$.
(5) $A$ is symmetric if and only if there is an orthogonal $U$ such that $U^{T} A U=D$ is diagonal and $\sigma(A) \subseteq \mathbb{R}$.

## Norms and eigenvalues

Let $X$ be a vectorspace over $\mathbb{F}=\mathbb{R}$ or $\mathbb{C}$.

## Definition 4 (Vector norms)

Let $N$ be a real-valued function defined on $X\left(N: X \longrightarrow \mathbb{R}_{+}\right)$. Then $N$ is a (vector) norm, if

N1: $N(\alpha x)=|\alpha| N(x), \alpha \in \mathbb{F}$, for $x \in X$;
N2: $N(x+y) \leq N(x)+N(y)$, for $x, y \in X$;
N3: $N(x)=0$ if and only if $x=0$.
The usual notation is $\|x\|=N(x)$.

## Example 5

Let $X=\mathbb{C}^{n}, p \geq 1$. Then $\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$ is an $l_{p}$-norm.
Especially,

$$
\begin{aligned}
& \|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right| \quad\left(l_{1} \text {-norm }\right) \\
& \|x\|_{2}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{1 / 2} \quad(\text { Euclidean-norm }) \\
& \|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right| \quad(\text { maximum-norm }) .
\end{aligned}
$$

## Lemma 6

$N(x)$ is a continuous function in the components $x_{1}, \cdots, x_{n}$ of $x$.

## Proof:

$|N(x)-N(y)| \leq N(x-y) \leq \sum_{j=1}^{n}\left|x_{j}-y_{j}\right| N\left(e_{j}\right) \leq\|x-y\|_{\infty} \sum_{j=1}^{n} N\left(e_{j}\right)$.

## Theorem 7 (Equivalence of norms)

Let $N$ and $M$ be two norms on $\mathbb{C}^{n}$. Then there exist constants $c_{1}, c_{2}>0$ such that

$$
c_{1} M(x) \leq N(x) \leq c_{2} M(x), \text { for all } x \in \mathbb{C}^{n} .
$$

## - Proof of Theorem 7

Remark: Theorem 7 does not hold in infinite dimensional space.

## Norms and eigenvalues

## Definition 8 (Matrix-norms)

Let $A \in \mathbb{C}^{m \times n}$. A real value function $\|\cdot\|: \mathbb{C}^{m \times n} \rightarrow \mathbb{R}_{+}$satisfying N1: $\|\alpha A\|=|\alpha| \mid A \|$;

N2: $\|A+B\| \leq\|A\|+\|B\|$;
N3: $\|A\|=0$ if and only if $A=0$;
N4: $\|A B\| \leq\|A\|\|B\|$;
N5: $\|A x\|_{v} \leq\|A\|\|x\|_{v}$.
If $\|\cdot\|$ satisfies N1 to N4, then it is called a matrix norm. In addition, matrix and vector norms are compatible for some $\|\cdot\|_{v}$ in N5.

## Example 9 (Frobenius norm)

$$
\begin{aligned}
& \text { Let } \begin{aligned}
\|A\|_{F}=\left\{\sum_{i, j=1}^{n}\left|a_{i, j}\right|^{2}\right\}^{1 / 2} \\
\qquad \begin{aligned}
\|A B\|_{F} & =\left(\sum_{i, j}\left|\sum_{k} a_{i k} b_{k j}\right|^{2}\right)^{1 / 2} \\
& \leq\left(\sum_{i, j}\left\{\sum_{k}\left|a_{i k}\right|^{2}\right\}\left\{\sum_{k}\left|b_{k j}\right|^{2}\right\}\right)^{1 / 2} \quad \text { (Cauchy-Schwartz Ineq.) } \\
& =\left(\sum_{i} \sum_{k}\left|a_{i k}\right|^{2}\right)^{1 / 2}\left(\sum_{j} \sum_{k}\left|b_{k j}\right|^{2}\right)^{1 / 2}=\|A\|_{F}\|B\|_{F} .
\end{aligned}
\end{aligned} . l \begin{array}{l}
\text {. }
\end{array}
\end{aligned}
$$

This implies that N4 holds.

$$
\begin{equation*}
\|A x\|_{2}=\left(\sum_{i}\left|\sum_{j} a_{i j} x_{j}\right|^{2}\right)^{1 / 2} \leq\left\{\sum_{i}\left(\sum_{j}\left|a_{i j}\right|^{2}\right)\left(\sum_{j}\left|x_{j}\right|^{2}\right)\right\}^{1 / 2}=\|A\|_{F}\|x\|_{2} \tag{2}
\end{equation*}
$$

This implies N5 holds. Also, N1, N2 and N3 hold obviously. $\left(\|I\|_{F}=\sqrt{n}\right)$

## Example 10 (Operator norm)

Given a vector norm $\|\cdot\|$. An associated matrix norm is defined by

$$
\|A\|=\sup _{x \neq 0} \frac{\|A x\|}{\|x\|}=\max _{x \neq 0} \frac{\|A x\|}{\|x\|}=\max _{\|x\|=1}\{\|A x\|\} .
$$

N5 holds immediately. On the other hand,

$$
\begin{aligned}
\|(A B) x\| & =\|A(B x)\| \leq\|A\|\|B x\| \\
& \leq\|A\|\|B\|\|x\|
\end{aligned}
$$

for all $x \neq 0$. This implies that

$$
\|A B\| \leq\|A\|\|B\| .
$$

Thus, $N 4$ holds. $(\|I\|=1)$.

Three useful matrix norms:

$$
\begin{align*}
\|A\|_{1} & =\sup _{x \neq 0} \frac{\|A x\|_{1}}{\|x\|_{1}}=\max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|a_{i j}\right|  \tag{3}\\
\|A\|_{\infty} & =\sup _{x \neq 0} \frac{\|A x\|_{\infty}}{\|x\|_{\infty}}=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right|  \tag{4}\\
\|A\|_{2} & =\sup _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}=\sqrt{\rho\left(A^{*} A\right)} \tag{5}
\end{align*}
$$

## Example 11 (Dual norm)

Let $\frac{1}{p}+\frac{1}{q}=1$. Then $\|\cdot\|_{p}^{*}=\|\cdot\|_{q},(p=\infty, q=1)$. (It concluds from the application of the Hölder inequality, i.e. $\left|y^{*} x\right| \leq\|x\|_{p}\|y\|_{q}$.)

## Theorem 12

Let $A \in \mathbb{C}^{n \times n}$. Then for any operator norm $\|\cdot\|$, it holds

$$
\rho(A) \leq\|A\| .
$$

Moreover, for any $\epsilon>0$, there exists an operator norm $\|\cdot\|_{\epsilon}$ such that

$$
\|\cdot\|_{\epsilon} \leq \rho(A)+\epsilon .
$$

- Proof of Theorem 12


## Lemma 13

Let $U$ and $V$ are unitary. Then

$$
\|U A V\|_{F}=\|A\|_{F}, \quad\|U A V\|_{2}=\|A\|_{2}
$$

From

$$
\begin{aligned}
\|U A\|_{F} & =\sqrt{\left\|U a_{1}\right\|_{2}^{2}+\cdots+\left\|U a_{n}\right\|_{2}^{2}} \\
\rho\left(A^{*} A\right) & =\rho\left(A A^{*}\right)
\end{aligned}
$$

## Theorem 14 (Singular Value Decomposition (SVD))

Let $A \in \mathbb{C}^{m \times n}$. Then there exist unitary matrices
$U=\left[u_{1}, \cdots, u_{m}\right] \in \mathbb{C}^{m \times m}$ and $V=\left[v_{1}, \cdots, v_{n}\right] \in \mathbb{C}^{n \times n}$ such that

$$
\begin{equation*}
U^{*} A V=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{p}\right)=\Sigma, \tag{6}
\end{equation*}
$$

where $p=\min \{m, n\}$ and $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{p} \geq 0$. (Here, $\sigma_{i}$ denotes the $i$-th largest singular value of $A$ ).

- Proof of Theorem 14

Remark: From (6), we have $\|A\|_{2}=\sqrt{\rho\left(A^{*} A\right)}=\sigma_{1}$, which is the maximal singular value of $A$, and

$$
\|A B C\|_{F}=\left\|U \Sigma V^{*} B C\right\|_{F}=\left\|\Sigma V^{*} B C\right\|_{F} \leq \sigma_{1}\|B C\|_{F}=\|A\|_{2}\|B C\|_{F} .
$$

This implies

$$
\begin{equation*}
\|A B C\|_{F} \leq\|A\|_{2}\|B\|_{F}\|C\|_{2} . \tag{7}
\end{equation*}
$$

In addition, by (2) and (7), we get

$$
\|A\|_{2} \leq\|A\|_{F} \leq \sqrt{n}\|A\|_{2}
$$

## Theorem 15

Let $A \in \mathbb{C}^{n \times n}$. The statements are equivalent:
(1) $\lim _{m \rightarrow \infty} A^{m}=0$;
(2) $\lim _{m \rightarrow \infty} A^{m} x=0$ for all $x$;
(3) $\rho(A)<1$.

## Proof:

(1) $\Rightarrow$ (2): Trivial.
(2) $\Rightarrow$ (3): Let $\lambda \in \sigma(A)$, i.e., $A x=\lambda x, x \neq 0$. This implies $A^{m} x=\lambda^{m} x \rightarrow 0$, as $\lambda^{m} \rightarrow 0$. Thus $|\lambda|<1$, i.e., $\rho(A)<1$.
(3) $\Rightarrow$ (1): There is a norm $\|\cdot\|$ with $\|A\|<1$ (by Theorem 12).

Therefore, $\left\|A^{m}\right\| \leq\|A\|^{m} \rightarrow 0$, i.e., $A^{m} \rightarrow 0$.

## Theorem 16

$\rho(A)=\lim _{k \rightarrow \infty}\left\|A^{k}\right\|^{1 / k}$.
Proof: Since

$$
\rho(A)^{k}=\rho\left(A^{k}\right) \leq\left\|A^{k}\right\| \Rightarrow \rho(A) \leq\left\|A^{k}\right\|^{1 / k},
$$

for $k=1,2, \ldots$. If $\epsilon>0$, then $\tilde{A}=[\rho(A)+\epsilon]^{-1} A$ has spectral radius $<1$ and $\left\|\tilde{A}^{k}\right\| \rightarrow 0$ as $k \rightarrow \infty$. There is an $N=N(\epsilon, A)$ such that $\left\|\tilde{A}^{k}\right\|<1$ for all $k \geq N$. Thus,

$$
\left\|A^{k}\right\| \leq[\rho(A)+\epsilon]^{k}, \text { for all } k \geq N
$$

or

$$
\left\|A^{k}\right\|^{1 / k} \leq \rho(A)+\epsilon, \text { for all } k \geq N .
$$

Since $\rho(A) \leq\left\|A^{k}\right\|^{1 / k}$, and $k, \epsilon$ are arbitrary, $\lim _{k \rightarrow \infty}\left\|A^{k}\right\|^{1 / k}$ exists and equals $\rho(A)$.

## Theorem 17

Let $A \in \mathbb{C}^{n \times n}$, and $\rho(A)<1$. Then $(I-A)^{-1}$ exists and

$$
(I-A)^{-1}=I+A+A^{2}+\cdots
$$

Proof: Since $\rho(A)<1$, the eigenvalues of $(I-A)$ are nonzero. Therefore, by Theorem 15, $(I-A)^{-1}$ exists and

$$
(I-A)\left(I+A+A^{2}+\cdots+A^{m}\right)=I-A^{m} \rightarrow I
$$

## Corollary 18

If $\|A\|<1$, then $(I-A)^{-1}$ exists and

$$
\left\|(I-A)^{-1}\right\| \leq \frac{1}{1-\|A\|}
$$

Proof: Since $\rho(A) \leq\|A\|<1$ (by Theorem 12),

$$
\left\|(I-A)^{-1}\right\|=\left\|\sum_{i=0}^{\infty} A^{i}\right\| \leq \sum_{i=0}^{\infty}\|A\|^{i}=(1-\|A\|)^{-1} .
$$

## Theorem 19 (without proof)

For $A \in \mathbb{F}^{n \times n}$ the following statements are equivalent:
(1) There is a multiplicative norm $p$ with $p\left(A^{k}\right) \leq 1, k=1,2, \ldots$.
(2) For each multiplicative norm $p$ the power $p\left(A^{k}\right)$ are uniformly bounded, i.e., there exists a $M(p)<\infty$ such that $p\left(A^{k}\right) \leq M(p)$, $k=0,1,2, \ldots$.
(3) $\rho(A) \leq 1$ and all eigenvalue $\lambda$ with $|\lambda|=1$ are not degenerated. (i.e., $m(\lambda)=n(\lambda)$.)
(See Householder: The theory of matrix, pp.45-47.)

In the following, we prove some important inequalities of vector norms and matrix norms.

$$
\begin{equation*}
1 \leq \frac{\|x\|_{p}}{\|x\|_{q}} \leq n^{(q-p) / p q}, \quad(p \leq q) . \tag{8}
\end{equation*}
$$

## $>$ Proof of (8)

$$
\begin{equation*}
1 \leq \frac{\|x\|_{p}}{\|x\|_{\infty}} \leq n^{\frac{1}{p}} \tag{9}
\end{equation*}
$$

- Proof of (9)

$$
\begin{equation*}
\max _{1 \leq j \leq n}\left\|a_{j}\right\|_{p} \leq\|A\|_{p} \leq n^{(p-1) / p} \max _{1 \leq j \leq n}\left\|a_{j}\right\|_{p} \tag{10}
\end{equation*}
$$

where $A=\left[a_{1}, \cdots, a_{n}\right] \in \mathbb{R}^{m \times n}$.

```
Proof of (10)
```

$$
\begin{equation*}
\max _{i, j}\left|a_{i j}\right| \leq\|A\|_{p} \leq n^{(p-1) / p} m^{1 / p} \max _{i, j}\left|a_{i j}\right| \tag{11}
\end{equation*}
$$

where $A \in \mathbb{R}^{m \times n}$.
Proof of (11): By (9) and (10) immediately.

$$
\begin{equation*}
m^{(1-p) / p}\|A\|_{1} \leq\|A\|_{p} \leq n^{(p-1) / p}\|A\|_{1} . \tag{12}
\end{equation*}
$$

Proof of (12): By (10) and (8) immediately.

Hölder inequality:

$$
\begin{equation*}
\left|x^{T} y\right| \leq\|x\|_{p}\|y\|_{q}, \text { where } \frac{1}{p}+\frac{1}{q}=1 \tag{13}
\end{equation*}
$$

Proof of (13): Let $\alpha_{i}=\frac{x_{i}}{\|x\|_{p}}, \beta_{i}=\frac{y_{i}}{\|y\|_{q}}$. Then

$$
\left(\alpha_{i}^{p}\right)^{1 / p}\left(\beta_{i}^{q}\right)^{1 / q} \leq \frac{1}{p} \alpha_{i}^{p}+\frac{1}{q} \beta_{i}^{q} . \quad(\text { Jensen Inequality })
$$

Since $\|\alpha\|_{p}=1,\|\beta\|_{q}=1$, it follows that

$$
\sum_{i=1}^{n} \alpha_{i} \beta_{i} \leq \frac{1}{p}+\frac{1}{q}=1
$$

Then we have $\left|x^{T} y\right| \leq\|x\|_{p}\|y\|_{q}$.

$$
\begin{equation*}
\max \left\{\left|x^{T} y\right|:\|x\|_{p}=1\right\}=\|y\|_{q} \tag{14}
\end{equation*}
$$

Proof of (14): Take $x_{i}=y_{i}^{q-1} /\|y\|_{q}^{q / p}$. Then we have

$$
\|x\|_{p}^{p}=\frac{\sum\left|y_{i}\right|^{q}}{\|y\|_{q}^{q / p}}=\frac{\|y\|_{q}^{q}}{\|y\|_{q}^{q / p}}=1 . \quad(\because(q-1) p=1)
$$

It follows

$$
\left|\sum_{i=1}^{n} x_{i}^{T} y_{i}\right|=\frac{\sum\left|y_{i}\right|^{q}}{\|y\|_{q}^{q / p}}=\frac{\|y\|_{q}^{q}}{\|y\|_{q}^{q / p}}=\|y\|_{q}
$$

Remark: $\exists \hat{z}$ with $\|\hat{z}\|_{p}=1$ s.t. $\|y\|_{q}=\hat{z}^{T} y$. Let $z=\hat{z} /\|y\|_{q}$. Then we have $\exists z$ s.t. $z^{T} y=1$ with $\|z\|_{p}=\frac{1}{\|y\|_{q}}$.

$$
\begin{equation*}
\|A\|_{p}=\left\|A^{T}\right\|_{q} \tag{15}
\end{equation*}
$$

## Proof of (15)

$$
\begin{equation*}
n^{-\frac{1}{p}}\|A\|_{\infty} \leq\|A\|_{p} \leq m^{\frac{1}{p}}\|A\|_{\infty} \tag{16}
\end{equation*}
$$

- Proof of (16)

$$
\begin{equation*}
\|A\|_{2} \leq \sqrt{\|A\|_{p}\|A\|_{q}}, \quad\left(\frac{1}{p}+\frac{1}{q}=1\right) \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
n^{(p-q) / p q}\|A\|_{q} \leq\|A\|_{p} \leq m^{(q-p) / p q}\|A\|_{q} \tag{18}
\end{equation*}
$$

where $A \in \mathbb{R}^{m \times n}$ and $q \geq p \geq 1$.

```
Proof of (18)
```


## Backward error and Forward error

Let $x=F(a)$. We define backward and forward errors in Figure 1. In Figure $1, \hat{x}+\Delta x=F(a+\Delta a)$ is called a mixed forward-backward error, where $|\Delta x| \leq \varepsilon|x|,|\Delta a| \leq \eta|a|$.

## Definition 20

(i) An algorithm is backward stable, if for all $a$, it produces a computed $\hat{x}$ with a small backward error, i.e., $\hat{x}=F(a+\Delta a)$ with $\Delta a$ small.
(ii) An algorithm is numerical stable, if it is stable in the mixed forward-backward error sense, i.e., $\hat{x}+\Delta x=F(a+\Delta a)$ with both $\Delta a$ and $\Delta x$ small.
(iii) If a method which produces answers with forward errors of similar magnitude to those produced by a backward stable method, is called a forward stable.


Figure: Relationship between backward and forward errors.

## Remark:

(i) Backward stable $\Rightarrow$ forward stable, no vice versa!
(ii) Forward error $\leq$ condition number $\times$ backward error

Consider

$$
\hat{x}-x=F(a+\Delta a)-F(a)=F^{\prime}(a) \Delta a+\frac{F^{\prime \prime}(a+\theta \Delta a)}{2}(\Delta a)^{2}, \quad \theta \in(0,1) .
$$

Then we have

$$
\frac{\hat{x}-x}{x}=\left(\frac{a F^{\prime}(a)}{F(a)}\right) \frac{\Delta a}{a}+O\left((\Delta a)^{2}\right)
$$

The quantity $C(a)=\left|\frac{a F^{\prime}(a)}{F(a)}\right|$ is called the condition number of F . If $x$ or $F$ is a vector, then the condition number is defined in a similar way using norms and it measures the maximum relative change, which is attained for some, but not all $\Delta a$.

Backward error: $\left\{\begin{array}{l}\text { Àpriori error estimate! } \\ \text { Àposteriori error estimate ! }\end{array}\right.$

## Lemma 21

$$
\left\{\begin{array}{l}
A x=b \\
(A+\Delta A) \hat{x}=b+\Delta b
\end{array}\right.
$$

with $\|\Delta A\| \leq \delta\|A\|$ and $\|\Delta b\| \leq \delta\|b\|$. If $\delta \kappa(A)=r<1$ then $A+\Delta A$ is nonsingular and $\frac{\|\hat{x}\|}{\|x\|} \leq \frac{1+r}{1-r}$.

Proof: Since $\left\|A^{-1} \Delta A\right\|<\delta\left\|A^{-1}\right\|\|A\|=r<1$, it follows that $A+\Delta A$ is nonsingular. From $\left(I+A^{-1} \Delta A\right) \hat{x}=x+A^{-1} \Delta b$, we have

$$
\begin{aligned}
&\|\hat{x}\| \leq\left\|\left(I+A^{-1} \Delta A\right)^{-1}\right\|\left(\|x\|+\delta\left\|A^{-1}\right\|\|b\|\right) \\
& \leq \frac{1}{1-r}\left(\|x\|+\delta\left\|A^{-1}\right\|\|b\|\right) \\
&=\frac{1}{1-r}\left(\|x\|+r \frac{\|b\|}{\|A\|}\right) \\
& \Rightarrow\|\hat{x}\| \leq \frac{1}{1-r}(\|x\|+r\|x\|) . \quad(\because\|b\|=\|A x\| \leq\|A\|\|x\|)
\end{aligned}
$$

## Normwise Forward Error Bound

## Theorem 22

If the condition of Lemma 21 hold, then

$$
\frac{\|x-\hat{x}\|}{\|x\|} \leq \frac{2 \delta}{1-r} \kappa(A)
$$

Proof: Since $\hat{x}-x=A^{-1} \Delta b-A^{-1} \Delta A \hat{x}$, we have

$$
\|\hat{x}-x\| \leq \delta\left\|A^{-1}\right\|\|b\|+\delta\left\|A^{-1}\right\|\|A\|\|\hat{x}\| .
$$

So, by Lemma 21, we have

$$
\begin{aligned}
\frac{\|\hat{x}-x\|}{\|x\|} & \leq \delta \kappa(A) \frac{\|b\|}{\|A\|\|x\|}+\delta \kappa(A) \frac{\|\hat{x}\|}{\|x\|} \\
& \leq \delta \kappa(A)\left(1+\frac{1+r}{1-r}\right)=\frac{2 \delta}{1-r} \kappa(A) .
\end{aligned}
$$

## Componentwise Forward Error Bounds

## Theorem 23

Let $A x=b$ and $(A+\Delta A) \hat{x}=b+\Delta b$. Let $|\Delta A| \leq \delta|A|$ and $|\Delta b| \leq \delta|b|$. If $\delta \kappa_{\infty}(A)=r<1$ then $(A+\Delta A)$ is nonsingular and

$$
\frac{\|\hat{x}-x\|_{\infty}}{\|x\|_{\infty}} \leq \frac{2 \delta}{1-r}\left\|\left|A^{-1}\right||A|\right\|_{\infty}
$$

Proof: Since $\|\Delta A\|_{\infty} \leq \delta\|A\|_{\infty}$ and $\|\Delta b\|_{\infty} \leq \delta\|b\|_{\infty}$, the conditions of Lemma 21 are satisfied in $\infty$-norm. Then $A+\Delta A$ is nonsingular and $\frac{\|\hat{x}\|_{\infty}}{\|x\|_{\infty}} \leq \frac{1+r}{1-r}$.
Since $\hat{x}-x=A^{-1} \Delta b-A^{-1} \Delta A \hat{x}$, we have

$$
\begin{aligned}
|\hat{x}-x| & \leq\left|A^{-1}\right||\Delta b|+\left|A^{-1}\right||\Delta A||\hat{x}| \\
& \leq \delta\left|A^{-1}\right||b|+\delta\left|A^{-1}\right||A||\hat{x}| \leq \delta\left|A^{-1}\right||A|(|x|+|\hat{x}|)
\end{aligned}
$$

Taking $\infty$-norm, we get

$$
\begin{aligned}
\|\hat{x}-x\|_{\infty} & \leq \delta\left\|\left|A^{-1}\right||A|\right\|_{\infty}\left(\|x\|_{\infty}+\frac{1+r}{1-r}\|x\|_{\infty}\right) \\
& =\frac{2 \delta}{1-r}\|\underbrace{\left|A^{-1}\right||A|}_{\text {Skeel condition number }}\|_{\infty} .
\end{aligned}
$$

## Condition Number by First Order Approximation

$$
\begin{gathered}
(A+\epsilon F) x(\epsilon)=b+\epsilon f, \quad x(0)=x \\
\dot{x}(0)=A^{-1}(f-F x) \\
x(\epsilon)=x+\epsilon \dot{x}(0)+o\left(\epsilon^{2}\right) \\
\frac{\|x(\epsilon)-x\|}{\|x\|} \leq \epsilon\left\|A^{-1}\right\|\left\{\frac{\|f\|}{\|x\|}+\|F\|\right\}+o\left(\epsilon^{2}\right)
\end{gathered}
$$

Condition number $\kappa(A):=\|A\|\left\|A^{-1}\right\|$

$$
\begin{gathered}
\|b\| \leq\|A\|\|x\| \\
\frac{\|x(\epsilon)-x\|}{\|x\|} \leq \kappa(A)\left(\rho_{A}+\rho_{b}\right)+o\left(\epsilon^{2}\right) \\
\rho_{A}=\epsilon \frac{\|F\|}{\|A\|}, \quad \rho_{b}=\epsilon \frac{\|f\|}{\|b\|}, \quad \kappa_{2}(A)=\frac{\sigma_{1}(A)}{\sigma_{n}(A)} .
\end{gathered}
$$

## Normwise Backward Error Bound

## Theorem 24

Let $\hat{x}$ be the computed solution of $A x=b$. Then the normwise backward error bound
$\eta(\hat{x}):=\min \{\epsilon \mid(A+\Delta A) \hat{x}=b+\Delta b, \quad\|\Delta A\| \leq \epsilon\|A\|, \quad\|\Delta b\| \leq \epsilon\|b\|\}$ is given by

$$
\begin{equation*}
\eta(\hat{x})=\frac{\|r\|}{\|A\|\|\hat{x}\|+\|b\|}, \tag{19}
\end{equation*}
$$

where $r=b-A \hat{x}$ is the residual.

Proof: The right hand side of (19) is a upper bound of $\eta(\hat{x})$. This upper bound is attained for the perturbation (by construction)

$$
\Delta A_{\min }=\frac{\|A\|\|\hat{x}\| r z^{T}}{\|A\|\|\hat{x}\|+\|b\|}, \quad \Delta b_{\min }=-\frac{\|b\|}{\|A\|\|\hat{x}\|+\|b\|} r
$$

where $z$ is the dual vector of $\hat{x}$, i.e. $z^{T} \hat{x}=1$ and $\|z\|_{*}=\frac{1}{\|\hat{x}\|}$. Check:

$$
\left\|\Delta A_{\min }\right\|=\eta(\hat{x})\|A\|
$$

or

$$
\left\|\Delta A_{\min }\right\|=\frac{\|A\|\|\hat{x}\|\left\|r z^{T}\right\|}{\|A\|\|\hat{x}\|+\|b\|}=\left(\frac{\|r\|}{\|A\|\|\hat{x}\|+\|b\|}\right)\|A\|,
$$

i.e. claim

$$
\left\|r z^{T}\right\|=\frac{\|r\|}{\|\hat{x}\|}
$$

Since

$$
\left\|r z^{T}\right\|=\max _{\|u\|=1}\left\|\left(r z^{T}\right) u\right\|=\|r\| \max _{\|u\|=1}\left|z^{T} u\right|=\|r\|\|z\|_{*}=\|r\| \frac{1}{\|\hat{x}\|}
$$

we have done. Similarly, $\left\|\Delta b_{\text {min }}\right\|=\eta(\hat{x})\|b\|$.

## Componentwise Backward Error Bound

## Theorem 25

The componentwise backward error bound

$$
\omega(\hat{x}):=\min \{\epsilon|(A+\Delta A) \hat{x}=b+\Delta b, \quad| \Delta A|\leq \epsilon| A|, \quad| \Delta b|\leq \epsilon| b \mid\}
$$

is given by

$$
\begin{equation*}
\omega(\hat{x})=\max _{i} \frac{|r|_{i}}{(A|\hat{x}|+b)_{i}}, \tag{20}
\end{equation*}
$$

where $r=b-A \hat{x}$. (note: $\xi / 0=0$ if $\xi=0 ; \xi / 0=\infty$ if $\xi \neq 0$.)
Proof: The right hand side of (20) is a upper bound for $\omega(\hat{x})$. This bound is attained for the perturbation

$$
\Delta A=D_{1} A D_{2}, \quad \Delta b=-D_{1} b,
$$

where

$$
D_{1}=\operatorname{diag}\left(r_{i} /(A|\hat{x}|+b)_{i}\right) \text { and } D_{2}=\operatorname{diag}\left(\operatorname{sign}\left(\hat{x}_{i}\right)\right) .
$$

## Determinents and Nearness to Singularity

$$
B_{n}=\left[\begin{array}{cccc}
1 & -1 & \cdots & -1 \\
& 1 & \ddots & \vdots \\
& & 1 & -1 \\
0 & & & 1
\end{array}\right], \quad B_{n}^{-1}=\left[\begin{array}{cccc}
1 & 1 & \cdots & 2^{n-2} \\
& \ddots & \ddots & \vdots \\
& & \ddots & 1 \\
0 & & & 1
\end{array}\right]
$$

$$
\operatorname{det}\left(B_{n}\right)=1, \kappa_{\infty}\left(B_{n}\right)=n 2^{n-1}, \sigma_{n}\left(B_{n}\right) \approx 10^{-8}(n=30)
$$

$$
D_{n}=\left[\begin{array}{ccc}
10^{-1} & & 0 \\
& \ddots & \\
0 & & 10^{-1}
\end{array}\right]
$$

$$
\operatorname{det}\left(D_{n}\right)=10^{-n}, \quad \kappa_{p}\left(D_{n}\right)=1, \quad \sigma_{n}\left(D_{n}\right)=10^{-1}
$$

## Appendix

Proof of Theorem 7: Without loss of generality (W.L.O.G.) we can assume that $M(x)=\|x\|_{\infty}$ and $N$ is arbitrary. We claim

$$
c_{1}\|x\|_{\infty} \leq N(x) \leq c_{2}\|x\|_{\infty}
$$

or

$$
c_{1} \leq N(z) \leq c_{2}, \text { for } z \in S=\left\{z \in \mathbf{C}^{n} \mid\|z\|_{\infty}=1\right\}
$$

From Lemma $6, N$ is continuous on $S$ (closed and bounded). By maximum and minimum principle, there are $c_{1}, c_{2} \geq 0$ and $z_{1}, z_{2} \in S$ such that

$$
c_{1}=N\left(z_{1}\right) \leq N(z) \leq N\left(z_{2}\right)=c_{2} .
$$

If $c_{1}=0$, then $N\left(z_{1}\right)=0$. Thus, $z_{1}=0$. This contradicts that $z_{1} \in S$.

## Proof of (3):

$$
\|A x\|_{1}=\sum_{i}\left|\sum_{j} a_{i j} x_{j}\right| \leq \sum_{i} \sum_{j}\left|a_{i j}\right|\left|x_{j}\right|=\sum_{j}\left|x_{j}\right| \sum_{i}\left|a_{i j}\right|
$$

Let

$$
\mathcal{C}:=\sum_{i}\left|a_{i k}\right|=\max _{j} \sum_{i}\left|a_{i j}\right| .
$$

Then $\|A x\|_{1} \leq \mathcal{C}\|x\|_{1}$, thus $\|A\|_{1} \leq \mathcal{C}$. On the other hand, $\left\|e_{k}\right\|_{1}=1$ and $\left\|A e_{k}\right\|_{1}=\sum_{i=1}^{n}\left|a_{i k}\right|=\mathcal{C}$.

## Proof of (4):

$$
\begin{aligned}
\|A x\|_{\infty} & =\max _{i}\left|\sum_{j} a_{i j} x_{j}\right| \leq \max _{i} \sum_{j}\left|a_{i j} x_{j}\right| \\
& \leq \max _{i} \sum_{j}\left|a_{i j}\right|\|x\|_{\infty} \equiv \sum_{j}\left|a_{k j}\right|\|x\|_{\infty} \equiv \hat{\mathcal{C}}\|x\|_{\infty}
\end{aligned}
$$

This implies, $\|A\|_{\infty} \leq \hat{\mathcal{C}}$. If $A=0$, then there is nothing to prove. Assume $A \neq 0$. Thus, the $k$-th row of $A$ is nonzero. Define $z=\left[z_{i}\right] \in \mathbb{C}^{n}$ by

$$
\left\{\begin{array}{lll}
z_{i}=\frac{\bar{a}_{k i}}{\left|a_{k i}\right|} & \text { if } & a_{k i} \neq 0, \\
z_{i}=1 & \text { if } & a_{k i}=0 .
\end{array}\right.
$$

Then $\|z\|_{\infty}=1$ and $a_{k j} z_{j}=\left|a_{k j}\right|$, for $j=1, \ldots, n$. It follows

$$
\|A\|_{\infty} \geq\|A z\|_{\infty}=\max _{i}\left|\sum_{j} a_{i j} z_{j}\right| \geq\left|\sum_{j} a_{k j} z_{j}\right|=\sum_{j=1}^{n}\left|a_{k j}\right| \equiv \hat{\mathcal{C}} .
$$

Then, $\|A\|_{\infty} \geq \max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right| \equiv \hat{\mathcal{C}}$.

Proof of (5): Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0$ be the eigenvalues of $A^{*} A$. There are muturally orthonormal vectors $v_{j}, j=1, \ldots, n$ such that $\left(A^{*} A\right) v_{j}=\lambda_{j} v_{j}$. Let $x=\sum_{j} \alpha_{j} v_{j}$. Since

$$
\|A x\|_{2}^{2}=(A x, A x)=\left(x, A^{*} A x\right)
$$

$$
\|A x\|_{2}^{2}=\left(\sum_{j} \alpha_{j} v_{j}, \sum_{j} \alpha_{j} \lambda_{j} v_{j}\right)=\sum_{j} \lambda_{j}\left|\alpha_{j}\right|^{2} \leq \lambda_{1}\|x\|_{2}^{2}
$$

Therefore, $\|A\|_{2}^{2} \leq \lambda_{1}$. Equality follows by choosing $x=v_{1}$ and $\left\|A v_{1}\right\|_{2}^{2}=\left(v_{1}, \lambda_{1} v_{1}\right)=\lambda_{1}$. So, we have $\|A\|_{2}=\sqrt{\rho\left(A^{*} A\right)}$.

Proof of Theorem 12: Let $|\lambda|=\rho(A) \equiv \rho$ and $x$ be the associated eigenvector with $\|x\|=1$. Then,

$$
\rho(A)=|\lambda|=\|\lambda x\|=\|A x\| \leq\|A\|\|x\|=\|A\| .
$$

Claim: $\|\cdot\|_{\epsilon} \leq \rho(A)+\epsilon$. There is a unitary $U$ such that $A=U^{*} R U$, where $R$ is upper triangular.
Let $D_{t}=\operatorname{diag}\left(t, t^{2}, \cdots, t^{n}\right)$. For $t>0$ large enough, the sum of all absolute values of the off-diagonal elements of $D_{t} R D_{t}^{-1}$ is less than $\epsilon$. So, it holds $\left\|D_{t} R D_{t}^{-1}\right\|_{1} \leq \rho(A)+\epsilon$ for large $t(\epsilon)>0$. Define $\|\cdot\|_{\epsilon}$ for any $B$ by

$$
\begin{aligned}
\|B\|_{\epsilon} & =\left\|D_{t} U B U^{*} D_{t}^{-1}\right\|_{1} \\
& =\left\|\left(U D_{t}^{-1}\right)^{-1} B\left(U D_{t}^{-1}\right)\right\|_{1} .
\end{aligned}
$$

This implies,

$$
\|A\|_{\epsilon}=\left\|D_{t} R D_{t}^{-1}\right\| \leq \rho(A)+\epsilon
$$

Proof of Theorem 14: There are $x \in \mathbb{C}^{n}, y \in \mathbb{C}^{m}$ with $\|x\|_{2}=\|y\|_{2}=1$ such that $A x=\sigma y$, where $\sigma=\|A\|_{2}\left(\|A\|_{2}=\sup _{\|x\|_{2}=1}\|A x\|_{2}\right)$. Let $V=\left[x, V_{1}\right] \in \mathbb{C}^{n \times n}$, and $U=\left[y, U_{1}\right] \in \mathbb{C}^{m \times m}$ be unitary. Then

$$
A_{1} \equiv U^{*} A V=\left[\begin{array}{cc}
\sigma & w^{*} \\
0 & B
\end{array}\right] .
$$

Since $\left\|A_{1}\binom{\sigma}{w}\right\|_{2}^{2} \geq\left(\sigma^{2}+w^{*} w\right)^{2}$, it follows

$$
\left\|A_{1}\right\|_{2}^{2} \geq \sigma^{2}+w^{*} w \quad \text { from } \frac{\left\|A_{1}\binom{\sigma}{w}\right\|_{2}^{2}}{\left\|\binom{\sigma}{w}\right\|_{2}^{2}} \geq \sigma^{2}+w^{*} w
$$

But $\sigma^{2}=\|A\|_{2}^{2}=\left\|A_{1}\right\|_{2}^{2}$, it implies $w=0$. Hence, the theorem holds by induction.

Proof of (8): Claim $\|x\|_{q} \leq\|x\|_{p}$, $(p \leq q)$ : It holds

$$
\|x\|_{q}=\| \| x\left\|_{p} \frac{x}{\|x\|_{p}}\right\|_{q}=\|x\|_{p}\left\|\frac{x}{\|x\|_{p}}\right\|_{q} \leq \mathcal{C}_{p, q}\|x\|_{p},
$$

where

$$
\mathcal{C}_{p, q}=\max _{\|e\|_{p}=1}\|e\|_{q}, \quad e=\left(e_{1}, \cdots, e_{n}\right)^{T} .
$$

We now show that $\mathcal{C}_{p, q} \leq 1$. From $p \leq q$, we have

$$
\|e\|_{q}^{q}=\sum_{i=1}^{n}\left|e_{i}\right|^{q} \leq \sum_{i=1}^{n}\left|e_{i}\right|^{p}=1 \quad\left(\text { by }\left|e_{i}\right| \leq 1\right) .
$$

Hence, $\mathcal{C}_{p, q} \leq 1$, thus $\|x\|_{q} \leq\|x\|_{p}$.

To prove the second inequality: Let $\alpha=q / p>1$. Then the Jensen ineqality holds for the convex function $\varphi(x) \equiv x^{\alpha}$ :

$$
\int_{\Omega}|f|^{q} d x=\int_{\Omega}\left(|f|^{p}\right)^{q / p} d x \geq\left(\int_{\Omega}|f|^{p} d x\right)^{q / p}
$$

with $|\Omega|=1$. Consider the discrete measure $\sum_{i=1}^{n} \frac{1}{n}=1$ and $f(i)=\left|x_{i}\right|$. It follows that

$$
\sum_{i=1}^{n}\left|x_{i}\right|^{q} \frac{1}{n} \geq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p} \frac{1}{n}\right)^{q / p} .
$$

Hence, we have

$$
n^{-\frac{1}{q}}\|x\|_{q} \geq n^{-\frac{1}{p}}\|x\|_{p} .
$$

Thus,

$$
n^{(q-p) / p q}\|x\|_{q} \geq\|x\|_{p}
$$

Proof of (9): Let $q \rightarrow \infty$ and $\lim _{q \rightarrow \infty}\|x\|_{q}=\|x\|_{\infty}$ :

$$
\|x\|_{\infty}=\left|x_{k}\right|=\left(\left|x_{k}\right|^{q}\right)^{\frac{1}{q}} \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{q}\right)^{\frac{1}{q}}=\|x\|_{q} .
$$

On the other hand,

$$
\|x\|_{q}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{q}\right)^{\frac{1}{q}} \leq\left(n\|x\|_{\infty}^{q}\right)^{\frac{1}{q}} \leq n^{\frac{1}{q}}\|x\|_{\infty}
$$

It follows that $\lim _{q \rightarrow \infty}\|x\|_{q}=\|x\|_{\infty}$.

To prove the second inequality: Let $\alpha=q / p>1$. Then the Jensen ineqality holds for the convex function $\varphi(x) \equiv x^{\alpha}$ :

$$
\int_{\Omega}|f|^{q} d x=\int_{\Omega}\left(|f|^{p}\right)^{q / p} d x \geq\left(\int_{\Omega}|f|^{p} d x\right)^{q / p}
$$

with $|\Omega|=1$.
Consider the discrete measure $\sum_{i=1}^{n} \frac{1}{n}=1$ and $f(i)=\left|x_{i}\right|$. It follows that

$$
\sum_{i=1}^{n}\left|x_{i}\right|^{q} \frac{1}{n} \geq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p} \frac{1}{n}\right)^{q / p} .
$$

Hence, we have

$$
n^{-\frac{1}{q}}\|x\|_{q} \geq n^{-\frac{1}{p}}\|x\|_{p}
$$

Thus,

$$
n^{(q-p) / p q}\|x\|_{q} \geq\|x\|_{p}
$$

Proof of (10): The first inequality holds obviously. Now, for the second inequality, we have

$$
\begin{aligned}
\|A y\|_{p} & \leq \sum_{j=1}^{n}\left|y_{j}\right|\left\|a_{j}\right\|_{p} \\
& \leq \sum_{j=1}^{n}\left|y_{j}\right| \max _{j}\left\|a_{j}\right\|_{p} \\
& =\|y\|_{1} \max _{j}\left\|a_{j}\right\|_{p} \\
& \leq n^{(p-1) / p} \max _{j}\left\|a_{j}\right\|_{p} \quad \quad(\text { by }(8))
\end{aligned}
$$

Proof of (15): It holds

$$
\begin{aligned}
\max _{\|x\|_{p}=1}\|A x\|_{p} & =\max _{\|x\|_{p}=1} \max _{\|y\|_{q}=1}\left|(A x)^{T} y\right| \\
& =\max _{\|y\|_{q}=1} \max _{\|x\|_{p}=1}\left|x^{T}\left(A^{T} y\right)\right| \\
& =\max _{\|y\|_{q}=1}\left\|A^{T} y\right\|_{q} \\
& =\left\|A^{T}\right\|_{q}
\end{aligned}
$$

Proof of (16): By (12) and (15), we get

$$
\begin{aligned}
m^{\frac{1}{p}}\|A\|_{\infty} & =m^{\frac{1}{p}}\left\|A^{T}\right\|_{1}=m^{1-\frac{1}{q}}\left\|A^{T}\right\|_{1} \\
& =m^{(q-1) / q}\left\|A^{T}\right\|_{1} \geq\left\|A^{T}\right\|_{q}=\|A\|_{p}
\end{aligned}
$$

Proof of (17): It holds

$$
\|A\|_{p}\|A\|_{q}=\left\|A^{T}\right\|_{q}\|A\|_{q} \geq\left\|A^{T} A\right\|_{q} \geq\left\|A^{T} A\right\|_{2} .
$$

The last inequality holds by the following statement: Let $S$ be a symmetric matrix. Then $\|S\|_{2} \leq\|S\|$, for any matrix operator norm $\|\cdot\|$. Since $|\lambda| \leq\|S\|$,

$$
\|S\|_{2}=\sqrt{\rho\left(S^{*} S\right)}=\sqrt{\rho\left(S^{2}\right)}=\max _{\lambda \in \sigma(S)}|\lambda|=\left|\lambda_{\max }\right| .
$$

This implies, $\|S\|_{2} \leq\|S\|$.

Proof of (18): By (8), we get

$$
\|A\|_{p}=\max _{\|x\|_{p}=1}\|A x\|_{p} \leq \max _{\|x\|_{q} \leq 1} m^{(q-p) / p q}\|A x\|_{q}=m^{(q-p) / p q}\|A\|_{q} .
$$

