Introduction

Tsung-Ming Huang

Department of Mathematics National Taiwan Normal University

September 8, 2011

- 1 Vectors and matrices
- 2 Rank and orthogonality
- 3 Eigenvalues and Eigenvectors
- 4 Norms and eigenvalues
- 5 Backward and Forward errors

・ロト ・ 理 ト ・ 国 ト ・ 国 ト

Vectors and matrices

 $A \in \mathbb{F}$ with

$$A = [a_{ij}] = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}, \quad \mathbb{F} = \mathbb{R} \text{ or } \mathbb{C}.$$

- Product of matrices: C = AB, where $c_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj}$, $i = 1, \dots, m, j = 1, \dots, p$.
- Transpose: $C = A^T$, where $c_{ij} = a_{ji} \in \mathbb{R}$.
- Conjugate transpose: $C = A^*$ or $C = A^H$, where $c_{ij} = \bar{a}_{ji} \in \mathbb{C}$.
- Differentiation: Let $C = (c_{ij}(t))$. Then $\dot{C} = \frac{d}{dt} C = [\dot{c}_{ij}(t)]$.

.

• Outer product of $x \in \mathbb{F}^m$ and $y \in \mathbb{F}^n$:

$$xy^* = \begin{bmatrix} x_1\bar{y}_1 & \cdots & x_1\bar{y}_n \\ \vdots & \ddots & \vdots \\ x_m\bar{y}_1 & \cdots & x_m\bar{y}_n \end{bmatrix} \in \mathbb{F}^{m \times n}.$$

• Inner product of $x \in \mathbb{F}^n$ and $y \in \mathbb{F}^n$:

$$\langle y, x \rangle := x^T y = \sum_{i=1}^n x_i y_i = y^T x \in \mathbb{R},$$

$$\langle y, x \rangle := x^* y = \sum_{i=1}^n \bar{x}_i y_i = \overline{y^* x} \in \mathbb{C}.$$

• Sherman-Morrison Formula:

Let $A \in \mathbb{R}^{n \times n}$ be nonsingular, $u, v \in \mathbb{R}^n$. If $v^T A^{-1} u \neq -1$, then

$$(A + uv^{T})^{-1} = A^{-1} - A^{-1}uv^{T}A^{-1}/(1 + v^{T}A^{-1}u).$$
 (1)

• Sherman-Morrison-Woodbury Formula:

Let $A\in\mathbb{R}^{n\times n},$ be nonsingular U, $V\in\mathbb{R}^{n\times k}.$ If $(I+V^TA^{-1}U)$ is invertible, then

$$(A + UV^{T})^{-1} = A^{-1} - A^{-1}U(I + V^{T}A^{-1}U)^{-1}V^{T}A^{-1}.$$

Proof of (1):

$$\begin{aligned} & (A+uv^{T})[A^{-1}-A^{-1}uv^{T}A^{-1}/(1+v^{T}A^{-1}u)] \\ &= I + \frac{1}{1+v^{T}A^{-1}u}[uv^{T}A^{-1}(1+v^{T}A^{-1}u) - uv^{T}A^{-1} - uv^{T}A^{-1}uv^{T}A^{-1}] \\ &= I + \frac{1}{1+v^{T}A^{-1}u}[u(v^{T}A^{-1}u)v^{T}A^{-1} - u(v^{T}A^{-1}u)v^{T}A^{-1}] \\ &= I. \end{aligned}$$

5 / 56

▲□▶ ▲圖▶ ▲≧▶ ▲≧▶

Example 1

$$\tilde{A} = \begin{bmatrix} 3 & -1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 2 & 2 \\ 0 & 0 & 4 & 1 & 1 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & -1 & 0 & 0 & 3 \end{bmatrix} = A + \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \end{bmatrix},$$

where
$$A = \begin{bmatrix} 3 & -1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 2 & 2 \\ 0 & 0 & 4 & 1 & 1 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix}.$$

æ

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Rank and orthogonality

Let $A \in \mathbb{R}^{m \times n}$. Then

- $\mathcal{R}(A) = \{y \in \mathbb{R}^m \mid y = Ax \text{ for some } x \in \mathbb{R}^n\} \subseteq \mathbb{R}^m \text{ is the range space of } A.$
- $\mathcal{N}(A) = \{x \in \mathbb{R}^n \mid Ax = 0\} \subseteq \mathbb{R}^n$ is the null space of A.
- rank(A) = dim[$\mathcal{R}(A)$] = the number of maximal linearly independent columns of A.
- $\operatorname{rank}(A) = \operatorname{rank}(A^T).$
- $\dim(\mathcal{N}(A)) + \operatorname{rank}(A) = n.$
- If m = n, then A is nonsingular $\Leftrightarrow \mathcal{N}(A) = \{0\} \Leftrightarrow \operatorname{rank}(A) = n$.

• Let $\{x_1, \cdots, x_p\}$ in \mathbb{R}^n . Then $\{x_1, \cdots, x_p\}$ is said to be orthogonal if

$$x_i^T x_j = 0, \quad \text{for } i \neq j$$

and orthonormal if

$$x_i^T x_j = \delta_{ij},$$

where $\delta_{ij} = 0$ if $i \neq j$ and $\delta_{ij} = 1$ if i = j.

- $S^{\perp} = \{y \in \mathbb{R}^m \mid y^T x = 0, \text{ for } x \in S\} = \text{orthogonal complement of } S.$
- $\mathbb{R}^m = \mathcal{R}(A) \oplus \mathcal{N}(A^T).$
- $\mathbb{R}^n = \mathcal{R}(A^T) \oplus \mathcal{N}(A).$
- $\mathcal{R}(A)^{\perp} = \mathcal{N}(A^T).$
- $\mathcal{R}(A^T)^{\perp} = \mathcal{N}(A).$

イロト イヨト イヨト イヨト

Special matrices

 $\begin{array}{l} A \in \mathbb{R}^{n \times n} \\ \hline \\ \text{Symmetric: } A^T = A \\ \text{skew-symmetric: } A^T = -A \\ \text{positive definite: } x^T Ax > 0, x \neq 0 \\ \text{non-negative definite: } x^T Ax \geq 0 \\ \text{indefinite: } (x^T Ax)(y^T Ay) < 0, \text{ for some } x, y \\ \text{orthogonal: } A^T A = I_n \\ \text{normal: } A^T A = AA^T \\ \text{positive: } a_{ij} > 0 \\ \text{non-negative: } a_{ij} \geq 0. \end{array}$

$A \in \mathbb{C}^{n \times n}$
Hermitian: $A^* = A \ (A^H = A)$
skew-Hermitian: $A^* = -A$
positive definite: $x^*Ax > 0, x \neq 0$
non-negative definite: $x^*Ax \ge 0$
indefinite: $(x^*Ax)(y^*Ay) < 0$, for some x, y
unitary: $A^*A = I_n$
normal: $A^*A = AA^*$

Let $A \in \mathbb{F}^{n \times n}$. Then the matrix A is

- diagonal if $a_{ij} = 0$, for $i \neq j$. Denote $D = diag(d_1, \cdots, d_n) \in \mathbf{D}_n$;
- tridiagonal if $a_{ij} = 0, |i j| > 1;$
- upper bi-diagonal if $a_{ij} = 0, i > j$ or j > i + 1;
- (strictly) upper triangular if $a_{ij} = 0, i > j$ $(i \ge j)$;
- upper Hessenberg if $a_{ij} = 0, i > j + 1$. (Note: the lower case is the same as above.)

Sparse matrix: n^{1+r} , where r < 1 (usually between $0.2 \sim 0.5$). If n = 1000, r = 0.9, then $n^{1+r} = 501187$.

(日) (同) (日) (日)

Eigenvalues and Eigenvectors

Definition 2

Let $A \in \mathbb{C}^{n \times n}$. Then $\lambda \in \mathbb{C}$ is called an **eigenvalue** of A, if there exists $x \neq 0$, $x \in \mathbb{C}^n$ with $Ax = \lambda x$ and x is called an **eigenvector** corresponding to λ .

Notations:

$$\sigma(A) :=$$
 spectrum of $A =$ the set of eigenvalues of A .
 $\rho(A) :=$ radius of $A = \max\{|\lambda| : \lambda \in \sigma(A)\}.$

•
$$\lambda \in \sigma(A) \Leftrightarrow det(A - \lambda I) = 0.$$

•
$$p(\lambda) = det(\lambda I - A) =$$
 characteristic polynomial of A.

•
$$p(\lambda) = \prod_{i=1}^{s} (\lambda - \lambda_i)^{m(\lambda_i)}, \lambda_i \neq \lambda_j \text{ (for } i \neq j \text{) and } \sum_{i=1}^{s} m(\lambda_i) = n$$

•
$$m(\lambda_i) = \text{algebraic multiplicity of } \lambda_i$$
.

•
$$n(\lambda_i) = n - \operatorname{rank}(A - \lambda_i I) = \operatorname{geometric}$$
 multiplicity of λ_i .

•
$$1 \le n(\lambda_i) \le m(\lambda_i)$$
.

イロト 不良 ト イヨト イヨト

If there is some i such that $n(\lambda_i) < m(\lambda_i)$, then A is called degenerated.

The following statements are equivalent:

- (1) There are n linearly independent eigenvectors;
- (2) A is diagonalizable, i.e., there is a nonsingular matrix T such that $T^{-1}AT \in \mathbf{D}_n$;
- (3) For each $\lambda \in \sigma(A)$, it holds $m(\lambda) = n(\lambda)$.

If \boldsymbol{A} is degenerated, then eigenvectors plus principal vectors derive Jordan form.

(日) (同) (日) (日)

Theorem 3 (Schur decomposition)

- (1) Let $A \in \mathbb{C}^{n \times n}$. There is a unitary matrix U such that U^*AU is upper triangular.
- (2) Let $A \in \mathbb{R}^{n \times n}$. There is an orthogonal matrix Q such that $Q^T A Q$ is quasi-upper triangular, i.e., an upper triangular matrix possibly with nonzero subdiagonal elements in non-consecutive positions.
- (3) A is normal if and only if there is a unitary U such that $U^*AU = D$ is diagonal.
- (4) A is Hermitian if and only if A is normal and $\sigma(A) \subseteq \mathbb{R}$.
- (5) A is symmetric if and only if there is an orthogonal U such that $U^T A U = D$ is diagonal and $\sigma(A) \subseteq \mathbb{R}$.

Norms and eigenvalues

Let X be a vectorspace over $\mathbb{F} = \mathbb{R}$ or \mathbb{C} .

Definition 4 (Vector norms)

Let N be a real-valued function defined on X $(N:X\longrightarrow \mathbb{R}_+).$ Then N is a (vector) norm, if

N1:
$$N(\alpha x) = |\alpha|N(x), \ \alpha \in \mathbb{F}$$
, for $x \in X$;

N2:
$$N(x+y) \leq N(x) + N(y)$$
, for $x, y \in X$;

N3: N(x) = 0 if and only if x = 0.

The usual notation is ||x|| = N(x).

Example 5

Let $X = \mathbb{C}^n$, $p \ge 1$. Then $\|x\|_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ is an l_p -norm. Especially,

 $\begin{aligned} \|x\|_1 &= \sum_{i=1}^n |x_i| \qquad (l_1\text{-norm}), \\ \|x\|_2 &= \left(\sum_{i=1}^n |x_i|^2\right)^{1/2} \quad (\text{Euclidean-norm}), \\ \|x\|_\infty &= \max_{1 \le i \le n} |x_i| \qquad (\text{maximum-norm}). \end{aligned}$

Lemma 6

N(x) is a continuous function in the components x_1, \cdots, x_n of x.

Proof:

$$|N(x) - N(y)| \le N(x-y) \le \sum_{j=1}^{n} |x_j - y_j| N(e_j) \le ||x - y||_{\infty} \sum_{j=1}^{n} N(e_j).$$

Theorem 7 (Equivalence of norms)

Let N and M be two norms on \mathbb{C}^n . Then there exist constants $c_1, c_2 > 0$ such that

 $c_1M(x) \le N(x) \le c_2M(x)$, for all $x \in \mathbb{C}^n$.

▶ Proof of Theorem 7

Remark: Theorem 7 does not hold in infinite dimensional space.

Norms and eigenvalues

Definition 8 (Matrix-norms)

```
Let A \in \mathbb{C}^{m \times n}. A real value function \|\cdot\| : \mathbb{C}^{m \times n} \to \mathbb{R}_+ satisfying
```

- N1: $\|\alpha A\| = |\alpha| \|A\|;$
- N2: $||A + B|| \le ||A|| + ||B||;$
- N3: ||A|| = 0 if and only if A = 0;
- N4: $||AB|| \le ||A|| ||B||;$
- N5: $||Ax||_v \le ||A|| ||x||_v$.

If $\|\cdot\|$ satisfies N1 to N4, then it is called a matrix norm. In addition, matrix and vector norms are compatible for some $\|\cdot\|_v$ in N5.

・ロト ・四ト ・ヨト ・ヨト

Example 9 (Frobenius norm)

Let
$$||A||_F = \left\{ \sum_{i,j=1}^{n} |a_{i,j}|^2 \right\}^{1/2}$$
.
 $||AB||_F = \left(\sum_{i,j} \left| \sum_k a_{ik} b_{kj} \right|^2 \right)^{1/2}$
 $\leq \left(\sum_{i,j} \left\{ \sum_k |a_{ik}|^2 \right\} \left\{ \sum_k |b_{kj}|^2 \right\} \right)^{1/2}$ (Cauchy-Schwartz Ineq.)
 $= \left(\sum_i \sum_k |a_{ik}|^2 \right)^{1/2} \left(\sum_j \sum_k |b_{kj}|^2 \right)^{1/2} = ||A||_F ||B||_F.$

This implies that N4 holds.

$$\|Ax\|_{2} = \left(\sum_{i} \left|\sum_{j} a_{ij} x_{j}\right|^{2}\right)^{1/2} \leq \left\{\sum_{i} \left(\sum_{j} |a_{ij}|^{2}\right) \left(\sum_{j} |x_{j}|^{2}\right)\right\}^{1/2} = \|A\|_{F} \|x\|_{2}.$$
(2)
This implies N5 holds. Also, N1, N2 and N3 hold obviously. $\left(\|I\|_{F} = \sqrt{n}\right)$

æ

Example 10 (Operator norm)

Given a vector norm $\lVert \cdot \rVert.$ An associated matrix norm is defined by

$$\|A\| = \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|} = \max_{x \neq 0} \frac{\|Ax\|}{\|x\|} = \max_{\|x\|=1} \left\{ \|Ax\| \right\}.$$

N5 holds immediately. On the other hand,

$$\begin{aligned} \|(AB)x\| &= \|A(Bx)\| \le \|A\| \, \|Bx\| \\ &\le \|A\| \, \|B\| \, \|x\| \end{aligned}$$

for all $x \neq 0$. This implies that

$$||AB|| \le ||A|| \, ||B||$$
.

Thus, N4 holds. (||I|| = 1).

19 / 56

・ロト ・得ト ・モト ・モト

Three useful matrix norms:

$$\|A\|_{1} = \sup_{x \neq 0} \frac{\|Ax\|_{1}}{\|x\|_{1}} = \max_{1 \le j \le n} \sum_{i=1}^{n} |a_{ij}|$$
(3)

$$\|A\|_{\infty} = \sup_{x \neq 0} \frac{\|Ax\|_{\infty}}{\|x\|_{\infty}} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$
(4)

$$\|A\|_{2} = \sup_{x \neq 0} \frac{\|Ax\|_{2}}{\|x\|_{2}} = \sqrt{\rho(A^{*}A)}$$
(5)

Proof of (3)-(5)

Example 11 (Dual norm)

Let $\frac{1}{p} + \frac{1}{q} = 1$. Then $\|\cdot\|_p^* = \|\cdot\|_q$, $(p = \infty, q = 1)$. (It concluds from the application of the Hölder inequality, i.e. $|y^*x| \le \|x\|_p \|y\|_q$.)

20 / 56

Norm

Backward and Forward errors

Theorem 14 (Singular Value Decomposition (SVD))

Let $A \in \mathbb{C}^{m \times n}$. Then there exist unitary matrices $U = [u_1, \cdots, u_m] \in \mathbb{C}^{m \times m}$ and $V = [v_1, \cdots, v_n] \in \mathbb{C}^{n \times n}$ such that

$$U^*AV = diag(\sigma_1, \cdots, \sigma_p) = \Sigma,$$
(6)

where $p = \min\{m, n\}$ and $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_p \ge 0$. (Here, σ_i denotes the *i*-th largest singular value of A).

Proof of Theorem 14

Remark: From (6), we have $||A||_2 = \sqrt{\rho(A^*A)} = \sigma_1$, which is the maximal singular value of A, and

 $\|ABC\|_F = \|U\Sigma V^*BC\|_F = \|\Sigma V^*BC\|_F \le \sigma_1 \|BC\|_F = \|A\|_2 \|BC\|_F.$ This implies

$$||ABC||_F \le ||A||_2 ||B||_F ||C||_2.$$

In addition, by (2) and (7), we get

 $\|A\|_2 \le \|A\|_F \le \sqrt{n} \|A\|_{2*} \Rightarrow \texttt{APA} = \texttt{APA}$

Vectors and matrices	Rank and orthogonality	Eigenvalues and Eigenvectors	Norm	Backward and Forward errors
Theorem	15			
Let $A \in \mathbb{C}$	$\mathbb{C}^{n \times n}$. The stateme	ents are equivalent:		
(1) 1.	1 <i>m</i> 0			

(1)
$$\lim_{m \to \infty} A^m = 0;$$

(2)
$$\lim_{m \to \infty} A^m x = 0 \text{ for all } x;$$

(3) $\rho(A) < 1.$

Proof:

(1) \Rightarrow (2): Trivial. (2) \Rightarrow (3): Let $\lambda \in \sigma(A)$, i.e., $Ax = \lambda x$, $x \neq 0$. This implies $A^m x = \lambda^m x \to 0$, as $\lambda^m \to 0$. Thus $|\lambda| < 1$, i.e., $\rho(A) < 1$. (3) \Rightarrow (1): There is a norm $\|\cdot\|$ with $\|A\| < 1$ (by Theorem 12). Therefore, $\|A^m\| \le \|A\|^m \to 0$, i.e., $A^m \to 0$.

Theorem 16

$$\rho(A) = \lim_{k \to \infty} \left\| A^k \right\|^{1/k}$$

Proof: Since

$$\rho(A)^{k} = \rho(A^{k}) \le \left\|A^{k}\right\| \Rightarrow \rho(A) \le \left\|A^{k}\right\|^{1/k},$$

for $k = 1, 2, \ldots$ If $\epsilon > 0$, then $\tilde{A} = [\rho(A) + \epsilon]^{-1}A$ has spectral radius < 1 and $\left\| \tilde{A}^k \right\| \to 0$ as $k \to \infty$. There is an $N = N(\epsilon, A)$ such that $\left\| \tilde{A}^k \right\| < 1$ for all $k \ge N$. Thus,

$$\left\|A^k\right\| \le [\rho(A) + \epsilon]^k$$
, for all $k \ge N$

or

$$\left\|A^k\right\|^{1/k} \le \rho(A) + \epsilon, \ \text{ for all } k \ge N.$$

Since $\rho(A) \leq ||A^k||^{1/k}$, and k, ϵ are arbitrary, $\lim_{k \to \infty} ||A^k||^{1/k}$ exists and equals $\rho(A)$.

Theorem 17

Let
$$A \in \mathbb{C}^{n \times n}$$
, and $\rho(A) < 1$. Then $(I - A)^{-1}$ exists and

$$(I - A)^{-1} = I + A + A^2 + \cdots$$

Proof: Since $\rho(A) < 1$, the eigenvalues of (I - A) are nonzero. Therefore, by Theorem 15, $(I - A)^{-1}$ exists and

$$(I-A)(I+A+A^2+\cdots+A^m)=I-A^m\to I.$$

Corollary 18

If
$$||A|| < 1$$
, then $(I - A)^{-1}$ exists and

$$\left\| (I-A)^{-1} \right\| \le \frac{1}{1-\|A\|}.$$

Proof: Since $\rho(A) \leq ||A|| < 1$ (by Theorem 12),

$$\left\| (I-A)^{-1} \right\| = \left\| \sum_{i=0}^{\infty} A^i \right\| \le \sum_{i=0}^{\infty} \|A\|^i = (1 - \|A\|)^{-1}.$$

< ∃→

Theorem 19 (without proof)

For $A \in \mathbb{F}^{n \times n}$ the following statements are equivalent:

- (1) There is a multiplicative norm p with $p(A^k) \leq 1, k = 1, 2, \ldots$
- (2) For each multiplicative norm p the power $p(A^k)$ are uniformly bounded, i.e., there exists a $M(p) < \infty$ such that $p(A^k) \le M(p)$, $k = 0, 1, 2, \ldots$
- (3) $\rho(A) \leq 1$ and all eigenvalue λ with $|\lambda| = 1$ are not degenerated. (*i.e.*, $m(\lambda) = n(\lambda)$.)

(See Householder: The theory of matrix, pp.45-47.)

In the following, we prove some important inequalities of vector norms and matrix norms.

$$1 \le \frac{\|x\|_p}{\|x\|_q} \le n^{(q-p)/pq}, \quad (p \le q).$$
(8)

$$1 \le \frac{\|x\|_p}{\|x\|_{\infty}} \le n^{\frac{1}{p}}.$$
(9)

Proof of (9)

$$\max_{1 \le j \le n} \|a_j\|_p \le \|A\|_p \le n^{(p-1)/p} \max_{1 \le j \le n} \|a_j\|_p, \quad (10)$$
where $A = [a_1, \cdots, a_n] \in \mathbb{R}^{m \times n}.$
Proof of (10)

$$\max_{i,j} |a_{ij}| \le \|A\|_p \le n^{(p-1)/p} m^{1/p} \max_{i,j} |a_{ij}|, \tag{11}$$

where $A \in \mathbb{R}^{m \times n}$.

Proof of (11): By (9) and (10) immediately.

$$m^{(1-p)/p} \|A\|_{1} \le \|A\|_{p} \le n^{(p-1)/p} \|A\|_{1}.$$
(12)

Proof of (12): By (10) and (8) immediately.

Hölder inequality:

$$|x^T y| \le ||x||_p ||y||_q$$
 , where $\frac{1}{p} + \frac{1}{q} = 1.$ (13)

Proof of (13): Let $\alpha_i = \frac{x_i}{\|x\|_p}$, $\beta_i = \frac{y_i}{\|y\|_q}$. Then

$$(\alpha_i^p)^{1/p}(\beta_i^q)^{1/q} \le \frac{1}{p}\alpha_i^p + \frac{1}{q}\beta_i^q. \quad \text{(Jensen Inequality)}$$

Since $\|\alpha\|_p = 1$, $\|\beta\|_q = 1$, it follows that

$$\sum_{i=1}^{n} \alpha_i \beta_i \le \frac{1}{p} + \frac{1}{q} = 1.$$

Then we have $\left|x^{T}y\right| \leq \left\|x\right\|_{p} \left\|y\right\|_{q}$.

29 / 56

$$\max\{|x^{T}y|: ||x||_{p} = 1\} = ||y||_{q}.$$
(14)

Proof of (14): Take $x_i = y_i^{q-1} / \|y\|_q^{q/p}$. Then we have

$$\|x\|_{p}^{p} = \frac{\sum |y_{i}|^{q}}{\|y\|_{q}^{q/p}} = \frac{\|y\|_{q}^{q}}{\|y\|_{q}^{q/p}} = 1. \quad (\because (q-1)p = 1)$$

It follows

$$\left|\sum_{i=1}^{n} x_{i}^{T} y_{i}\right| = \frac{\sum |y_{i}|^{q}}{\|y\|_{q}^{q/p}} = \frac{\|y\|_{q}^{q}}{\|y\|_{q}^{q/p}} = \|y\|_{q}.$$

Remark: $\exists \hat{z} \text{ with } \|\hat{z}\|_p = 1 \text{ s.t. } \|y\|_q = \hat{z}^T y.$ Let $z = \hat{z}/\|y\|_q$. Then we have $\exists z \text{ s.t. } z^T y = 1 \text{ with } \|z\|_p = \frac{1}{\|y\|_q}.$

30 / 56

$$\|A\|_p = \left\|A^T\right\|_q \tag{15}$$

Proof of (15)

$$n^{-\frac{1}{p}} \|A\|_{\infty} \le \|A\|_{p} \le m^{\frac{1}{p}} \|A\|_{\infty}.$$
 (16)

Proof of (16)

$$\|A\|_{2} \leq \sqrt{\|A\|_{p} \|A\|_{q}}, \quad (\frac{1}{p} + \frac{1}{q} = 1).$$
 (17)

Proof of (17)

$$n^{(p-q)/pq} \|A\|_{q} \le \|A\|_{p} \le m^{(q-p)/pq} \|A\|_{q},$$
(18)

where $A \in \mathbb{R}^{m \times n}$ and $q \ge p \ge 1$.

Proof of (18)

ク Q (~ 31 / 56

э

・ロト ・四ト ・ヨト ・ヨト

Backward error and Forward error

Let x = F(a). We define backward and forward errors in Figure 1. In Figure 1, $\hat{x} + \Delta x = F(a + \Delta a)$ is called a mixed forward-backward error, where $|\Delta x| \leq \varepsilon |x|$, $|\Delta a| \leq \eta |a|$.

Definition 20

- (i) An algorithm is **backward stable**, if for all a, it produces a computed \hat{x} with a small backward error, i.e., $\hat{x} = F(a + \Delta a)$ with Δa small.
- (ii) An algorithm is **numerical stable**, if it is stable in the mixed forward-backward error sense, i.e., $\hat{x} + \Delta x = F(a + \Delta a)$ with both Δa and Δx small.
- (iii) If a method which produces answers with forward errors of similar magnitude to those produced by a backward stable method, is called a forward stable.

Figure: Relationship between backward and forward errors.

 Δx

Remark:

(i) Backward stable \Rightarrow forward stable, no vice versa!

 $a + \Delta a$

(ii) Forward error \leq condition number \times backward error

Consider

$$\hat{x} - x = F(a + \Delta a) - F(a) = F'(a)\Delta a + \frac{F''(a + \theta \Delta a)}{2} (\Delta a)^2, \ \theta \in (0, 1).$$

Then we have

$$\frac{\hat{x} - x}{x} = \left(\frac{aF'(a)}{F(a)}\right)\frac{\Delta a}{a} + O\left((\Delta a)^2\right).$$

The quantity $C(a) = \left| \frac{aF'(a)}{F(a)} \right|$ is called the condition number of F. If x or F is a vector, then the condition number is defined in a similar way using norms and it measures the maximum relative change, which is attained for some, but not all Δa .

(日) (四) (日) (日) (日)

Vectors and matrices	Rank and orthogonality	Eigenvalues and Eigenvectors	Norm	Backward and Forward errors

Lemma 21

$$\begin{cases} Ax = b\\ (A + \Delta A)\hat{x} = b + \Delta b \end{cases}$$

with $\|\Delta A\| \leq \delta \|A\|$ and $\|\Delta b\| \leq \delta \|b\|$. If $\delta \kappa(A) = r < 1$ then $A + \Delta A$ is nonsingular and $\frac{\|\hat{x}\|}{\|x\|} \leq \frac{1+r}{1-r}$.

Proof: Since $||A^{-1}\Delta A|| < \delta ||A^{-1}|| ||A|| = r < 1$, it follows that $A + \Delta A$ is nonsingular. From $(I + A^{-1}\Delta A)\hat{x} = x + A^{-1}\Delta b$, we have

$$\begin{aligned} |\hat{x}\| &\leq \|(I + A^{-1}\Delta A)^{-1}\| \left(\|x\| + \delta \|A^{-1}\| \|b\| \right) \\ &\leq \frac{1}{1 - r} \left(\|x\| + \delta \|A^{-1}\| \|b\| \right) \\ &= \frac{1}{1 - r} \left(\|x\| + r \frac{\|b\|}{\|A\|} \right) \end{aligned}$$

 $\Rightarrow \|\hat{x}\| \le \frac{1}{1-r} \left(\|x\| + r \|x\| \right). \quad (\because \|b\| = \|Ax\| \le \|A\| \|x\|)$

Norm

Normwise Forward Error Bound

Theorem 22

If the condition of Lemma 21 hold, then

$$\frac{\|x - \hat{x}\|}{\|x\|} \le \frac{2\delta}{1 - r}\kappa(A).$$

Proof: Since $\hat{x} - x = A^{-1}\Delta b - A^{-1}\Delta A \hat{x}$, we have

$$\left\| \hat{x} - x \right\| \leq \delta \left\| A^{-1} \right\| \left\| b \right\| + \delta \left\| A^{-1} \right\| \left\| A \right\| \left\| \hat{x} \right\|.$$

So, by Lemma 21, we have

$$\begin{aligned} \frac{\|\hat{x} - x\|}{\|x\|} &\leq \delta\kappa(A) \frac{\|b\|}{\|A\| \|x\|} + \delta\kappa(A) \frac{\|\hat{x}\|}{\|x\|} \\ &\leq \delta\kappa(A) \left(1 + \frac{1+r}{1-r}\right) = \frac{2\delta}{1-r}\kappa(A). \end{aligned}$$

(日) (同) (日) (日)

Componentwise Forward Error Bounds

Theorem 23

Let Ax = b and $(A + \Delta A)\hat{x} = b + \Delta b$. Let $|\Delta A| \le \delta |A|$ and $|\Delta b| \le \delta |b|$. If $\delta \kappa_{\infty}(A) = r < 1$ then $(A + \Delta A)$ is nonsingular and

$$\frac{\|\hat{x} - x\|_{\infty}}{\|x\|_{\infty}} \le \frac{2\delta}{1 - r} \left\| \left| A^{-1} \right| \left| A \right| \right\|_{\infty}$$

Proof: Since $\|\Delta A\|_{\infty} \leq \delta \|A\|_{\infty}$ and $\|\Delta b\|_{\infty} \leq \delta \|b\|_{\infty}$, the conditions of Lemma 21 are satisfied in ∞ -norm. Then $A + \Delta A$ is nonsingular and $\frac{\|\hat{x}\|_{\infty}}{\|x\|_{\infty}} \leq \frac{1+r}{1-r}$.

Since $\hat{x} - x = A^{-1} \Delta b - A^{-1} \Delta A \hat{x}$, we have

$$\begin{aligned} |\hat{x} - x| &\leq |A^{-1}| |\Delta b| + |A^{-1}| |\Delta A| |\hat{x}| \\ &\leq \delta |A^{-1}| |b| + \delta |A^{-1}| |A| |\hat{x}| \leq \delta |A^{-1}| |A| (|x| + |\hat{x}|). \end{aligned}$$

Taking $\infty\text{-norm,}$ we get

$$\begin{split} \|\hat{x} - x\|_{\infty} &\leq \delta \left\| \left| A^{-1} \right| |A| \right\|_{\infty} \left(\|x\|_{\infty} + \frac{1+r}{1-r} \|x\|_{\infty} \right) \\ &= \frac{2\delta}{1-r} \| \underbrace{|A^{-1}| |A|}_{\text{Skeel condition number}} \|_{\infty} \,. \end{split}$$

Condition Number by First Order Approximation

$$(A + \epsilon F)x(\epsilon) = b + \epsilon f, \qquad x(0) = x$$
$$\dot{x}(0) = A^{-1}(f - Fx)$$
$$x(\epsilon) = x + \epsilon \dot{x}(0) + o(\epsilon^{2})$$
$$\frac{\|x(\epsilon) - x\|}{\|x\|} \le \epsilon \|A^{-1}\| \left\{ \frac{\|f\|}{\|x\|} + \|F\| \right\} + o(\epsilon^{2})$$
Condition number $\kappa(A) := \|A\| \|A^{-1}\|$
$$\|b\| \le \|A\| \|x\|,$$
$$\frac{\|x(\epsilon) - x\|}{\|x\|} \le \kappa(A)(\rho_{A} + \rho_{b}) + o(\epsilon^{2}).$$
$$\rho_{A} = \epsilon \frac{\|F\|}{\|A\|}, \quad \rho_{b} = \epsilon \frac{\|f\|}{\|b\|}, \quad \kappa_{2}(A) = \frac{\sigma_{1}(A)}{\sigma_{n}(A)}.$$

▶ ★ 臣 ▶

Normwise Backward Error Bound

Theorem 24

Let \hat{x} be the computed solution of Ax=b. Then the normwise backward error bound

$$\eta(\hat{x}) := \min \left\{ \epsilon | (A + \Delta A) \hat{x} = b + \Delta b, \quad \|\Delta A\| \le \epsilon \, \|A\| \,, \quad \|\Delta b\| \le \epsilon \, \|b\| \right\}$$

is given by

$$\eta(\hat{x}) = \frac{\|r\|}{\|A\| \|\hat{x}\| + \|b\|},\tag{19}$$

where $r = b - A\hat{x}$ is the residual.

Proof: The right hand side of (19) is a upper bound of $\eta(\hat{x})$. This upper bound is attained for the perturbation (by construction)

$$\Delta A_{\min} = \frac{\|A\| \|\hat{x}\| rz^T}{\|A\| \|\hat{x}\| + \|b\|}, \quad \Delta b_{\min} = -\frac{\|b\|}{\|A\| \|\hat{x}\| + \|b\|}r,$$

where z is the dual vector of $\hat{x},$ i.e. $z^T \hat{x} = 1$ and $\|z\|_* = \frac{1}{\|\hat{x}\|}.$ Check:

$$\left\|\Delta A_{\min}\right\| = \eta(\hat{x}) \left\|A\right\|,\,$$

or

$$\begin{split} \|\Delta A_{\min}\| &= \frac{\|A\| \|\hat{x}\| \|rz^{T}\|}{\|A\| \|\hat{x}\| + \|b\|} = \left(\frac{\|r\|}{\|A\| \|\hat{x}\| + \|b\|}\right) \|A\|,\\ \text{i.e. claim} \\ & \left\|rz^{T}\right\| = \frac{\|r\|}{\|\hat{x}\|}. \end{split}$$

Since

$$\left\| rz^{T} \right\| = \max_{\|u\|=1} \left\| (rz^{T})u \right\| = \|r\| \max_{\|u\|=1} \left| z^{T}u \right| = \|r\| \|z\|_{*} = \|r\| \frac{1}{\|\hat{x}\|},$$

we have done. Similarly, $\|\Delta b_{\min}\| = \eta(\hat{x}) \|b\|.$

Componentwise Backward Error Bound

Theorem 25

The componentwise backward error bound

$$\omega(\hat{x}) := \min \left\{ \epsilon | (A + \Delta A) \hat{x} = b + \Delta b, \quad |\Delta A| \le \epsilon |A|, \quad |\Delta b| \le \epsilon |b| \right\}$$

is given by

$$\omega(\hat{x}) = \max_{i} \frac{|r|_{i}}{(A \, |\hat{x}| + b)_{i}},\tag{20}$$

where $r = b - A\hat{x}$. (note: $\xi/0 = 0$ if $\xi = 0$; $\xi/0 = \infty$ if $\xi \neq 0$.)

Proof: The right hand side of (20) is a upper bound for $\omega(\hat{x})$. This bound is attained for the perturbation

$$\Delta A = D_1 A D_2, \quad \Delta b = -D_1 b,$$

where

$$D_1 = \operatorname{diag}(r_i/(A |\hat{x}| + b)_i) \text{ and } D_2 = \operatorname{diag}(\operatorname{sign}(\hat{x}_i)).$$

・ロト ・個ト ・モト ・モト

Determinents and Nearness to Singularity

$$B_n = \begin{bmatrix} 1 & -1 & \cdots & -1 \\ 1 & \ddots & \vdots \\ & 1 & -1 \\ 0 & & 1 \end{bmatrix}, \quad B_n^{-1} = \begin{bmatrix} 1 & 1 & \cdots & 2^{n-2} \\ & \ddots & \ddots & \vdots \\ & & \ddots & 1 \\ 0 & & & 1 \end{bmatrix},$$
$$\det(B_n) = 1, \ \kappa_{\infty}(B_n) = n2^{n-1}, \ \sigma_n(B_n) \approx 10^{-8} (n = 30).$$
$$D_n = \begin{bmatrix} 10^{-1} & 0 \\ & \ddots \\ & 0 & 10^{-1} \end{bmatrix},$$
$$\det(D_n) = 10^{-n}, \ \kappa_p(D_n) = 1, \ \sigma_n(D_n) = 10^{-1}.$$

43 / 56

Proof of Theorem 7: Without loss of generality (W.L.O.G.) we can assume that $M(x) = ||x||_{\infty}$ and N is arbitrary. We claim

 $c_1 \|x\|_{\infty} \le N(x) \le c_2 \|x\|_{\infty}$

or

$$c_1 \le N(z) \le c_2$$
, for $z \in S = \{z \in \mathbf{C}^n | \|z\|_{\infty} = 1\}$.

From Lemma 6, N is continuous on S (closed and bounded). By maximum and minimum principle, there are $c_1,c_2\geq 0$ and $z_1,z_2\in S$ such that

$$c_1 = N(z_1) \le N(z) \le N(z_2) = c_2.$$

イロト 不良 ト イヨト イヨト

44 / 56

If $c_1 = 0$, then $N(z_1) = 0$. Thus, $z_1 = 0$. This contradicts that $z_1 \in S$.

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

45 / 56

Proof of (3):

$$||Ax||_1 = \sum_i \left| \sum_j a_{ij} x_j \right| \le \sum_i \sum_j |a_{ij}| |x_j| = \sum_j |x_j| \sum_i |a_{ij}|.$$

Let

$$\mathcal{C} := \sum_{i} |a_{ik}| = \max_{j} \sum_{i} |a_{ij}|.$$

Then $||Ax||_1 \leq \mathcal{C} ||x||_1$, thus $||A||_1 \leq \mathcal{C}$. On the other hand, $||e_k||_1 = 1$ and $||Ae_k||_1 = \sum_{i=1}^n |a_{ik}| = \mathcal{C}$.

(日) (同) (目) (日) (日)

Proof of (4):

$$\|Ax\|_{\infty} = \max_{i} \left| \sum_{j} a_{ij} x_{j} \right| \le \max_{i} \sum_{j} |a_{ij} x_{j}|$$
$$\le \max_{i} \sum_{j} |a_{ij}| \|x\|_{\infty} \equiv \sum_{j} |a_{kj}| \|x\|_{\infty} \equiv \hat{\mathcal{C}} \|x\|_{\infty}.$$

This implies, $||A||_{\infty} \leq \hat{C}$. If A = 0, then there is nothing to prove. Assume $A \neq 0$. Thus, the k-th row of A is nonzero. Define $z = [z_i] \in \mathbb{C}^n$ by

$$\left\{ \begin{array}{ll} z_i = \frac{\bar{a}_{ki}}{|a_{ki}|} & \mbox{ if } a_{ki} \neq 0, \\ z_i = 1 & \mbox{ if } a_{ki} = 0. \end{array} \right.$$

Then $||z||_{\infty} = 1$ and $a_{kj}z_j = |a_{kj}|$, for $j = 1, \ldots, n$. It follows

$$\left\|A\right\|_{\infty} \ge \left\|Az\right\|_{\infty} = \max_{i} \left|\sum_{j} a_{ij} z_{j}\right| \ge \left|\sum_{j} a_{kj} z_{j}\right| = \sum_{j=1}^{n} |a_{kj}| \equiv \hat{\mathcal{C}}.$$

Then, $\|A\|_{\infty} \ge \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}| \equiv \hat{\mathcal{C}}.$

Proof of (5): Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ be the eigenvalues of A^*A . There are muturally orthonormal vectors v_j , $j = 1, \ldots, n$ such that $(A^*A)v_j = \lambda_j v_j$. Let $x = \sum_j \alpha_j v_j$. Since $\|Ax\|_2^2 = (Ax, Ax) = (x, A^*Ax)$,

$$\|Ax\|_2^2 = \left(\sum_j \alpha_j v_j, \sum_j \alpha_j \lambda_j v_j\right) = \sum_j \lambda_j |\alpha_j|^2 \le \lambda_1 \|x\|_2^2.$$

Therefore, $||A||_2^2 \leq \lambda_1$. Equality follows by choosing $x = v_1$ and $||Av_1||_2^2 = (v_1, \lambda_1 v_1) = \lambda_1$. So, we have $||A||_2 = \sqrt{\rho(A^*A)}$.

47/56

(日) (同) (日) (日)

Proof of Theorem 12: Let $|\lambda| = \rho(A) \equiv \rho$ and x be the associated eigenvector with ||x|| = 1. Then,

$$\rho(A) = |\lambda| = \|\lambda x\| = \|Ax\| \le \|A\| \, \|x\| = \|A\| \, .$$

<u>Claim</u>: $\|\cdot\|_{\epsilon} \leq \rho(A) + \epsilon$. There is a unitary U such that $A = U^* R U$, where R is upper triangular.

Let $D_t = diag(t, t^2, \cdots, t^n)$. For t > 0 large enough, the sum of all absolute values of the off-diagonal elements of $D_t R D_t^{-1}$ is less than ϵ . So, it holds $\|D_t R D_t^{-1}\|_1 \le \rho(A) + \epsilon$ for large $t(\epsilon) > 0$. Define $\|\cdot\|_{\epsilon}$ for any B by

$$\begin{split} \|B\|_{\epsilon} &= \|D_{t}UBU^{*}D_{t}^{-1}\|_{1} \\ &= \|(UD_{t}^{-1})^{-1}B(UD_{t}^{-1})\|_{1} \,. \end{split}$$

This implies,

$$\|A\|_{\epsilon} = \left\|D_t R D_t^{-1}\right\| \le \rho(A) + \epsilon.$$

48 / 56

Proof of Theorem 14: There are $x \in \mathbb{C}^n$, $y \in \mathbb{C}^m$ with $||x||_2 = ||y||_2 = 1$ such that $Ax = \sigma y$, where $\sigma = \|A\|_2 \ (\|A\|_2 = \ \sup \ \|Ax\|_2). \text{ Let } V = [x,V_1] \in \mathbb{C}^{n \times n} \text{, and}$ $||x||_{2}=1$ $U = [y, U_1] \in \mathbb{C}^{m \times m}$ be unitary. Then $A_1 \equiv U^* A V = \left[\begin{array}{cc} \sigma & w^* \\ 0 & B \end{array} \right].$ Since $\left\|A_1\begin{pmatrix}\sigma\\w\end{pmatrix}\right\|^2 \ge (\sigma^2 + w^*w)^2$, it follows $\|A_1\|_2^2 \ge \sigma^2 + w^* w \quad \text{from} \quad \frac{\left\|A_1 \left(\begin{array}{c} \sigma \\ w \end{array}\right)\right\|_2^2}{\left\|\left(\begin{array}{c} \sigma \\ w \end{array}\right)\right\|_2^2} \ge \sigma^2 + w^* w.$

But $\sigma^2 = ||A||_2^2 = ||A_1||_2^2$, it implies w = 0. Hence, the theorem holds by induction.

A D F A B F A B F A B F

Proof of (8): Claim $||x||_q \le ||x||_p$, $(p \le q)$: It holds

$$\|x\|_{q} = \left\| \|x\|_{p} \frac{x}{\|x\|_{p}} \right\|_{q} = \|x\|_{p} \left\| \frac{x}{\|x\|_{p}} \right\|_{q} \le C_{p,q} \|x\|_{p},$$

where

$$C_{p,q} = \max_{\|e\|_p = 1} \|e\|_q, \quad e = (e_1, \cdots, e_n)^T.$$

We now show that $\mathcal{C}_{p,q} \leq 1$. From $p \leq q$, we have

$$||e||_q^q = \sum_{i=1}^n |e_i|^q \le \sum_{i=1}^n |e_i|^p = 1 \quad (by \ |e_i| \le 1).$$

Hence, $\mathcal{C}_{p,q} \leq 1$, thus $\|x\|_q \leq \|x\|_p$.

(日) (同) (三) (三)

To prove the second inequality: Let $\alpha = q/p > 1$. Then the Jensen ineqality holds for the convex function $\varphi(x) \equiv x^{\alpha}$:

$$\int_{\Omega} |f|^{q} dx = \int_{\Omega} (|f|^{p})^{q/p} dx \ge \left(\int_{\Omega} |f|^{p} dx\right)^{q/p}$$

with $|\Omega|=1.$ Consider the discrete measure $\sum_{i=1}^n \frac{1}{n}=1$ and $f(i)=|x_i|.$ It follows that

$$\sum_{i=1}^{n} |x_i|^q \frac{1}{n} \ge \left(\sum_{i=1}^{n} |x_i|^p \frac{1}{n}\right)^{q/p}$$

Hence, we have

٠

$$n^{-\frac{1}{q}} \|x\|_{q} \ge n^{-\frac{1}{p}} \|x\|_{p}.$$

Thus,

$$n^{(q-p)/pq} \|x\|_q \ge \|x\|_p.$$

51/56

Proof of (9): Let
$$q \to \infty$$
 and $\lim_{q \to \infty} \|x\|_q = \|x\|_{\infty}$:

$$||x||_{\infty} = |x_k| = (|x_k|^q)^{\frac{1}{q}} \le \left(\sum_{i=1}^n |x_i|^q\right)^{\frac{1}{q}} = ||x||_q.$$

On the other hand,

$$||x||_{q} = \left(\sum_{i=1}^{n} |x_{i}|^{q}\right)^{\frac{1}{q}} \le \left(n ||x||_{\infty}^{q}\right)^{\frac{1}{q}} \le n^{\frac{1}{q}} ||x||_{\infty}.$$

It follows that $\lim_{q\to\infty}\|x\|_q=\|x\|_\infty.$

・ロト ・四ト ・モト ・モト

・ロト ・ 御 ト ・ ヨト ・ ヨ

To prove the second inequality: Let $\alpha = q/p > 1$. Then the Jensen ineqality holds for the convex function $\varphi(x) \equiv x^{\alpha}$:

$$\int_{\Omega} |f|^q \, dx = \int_{\Omega} \left(|f|^p \right)^{q/p} dx \ge \left(\int_{\Omega} |f|^p \, dx \right)^{q/p}$$

with $|\Omega| = 1$.

Consider the discrete measure $\sum_{i=1}^n \frac{1}{n} = 1$ and $f(i) = |x_i|.$ It follows that

$$\sum_{i=1}^{n} |x_i|^q \frac{1}{n} \ge \left(\sum_{i=1}^{n} |x_i|^p \frac{1}{n}\right)^{q/p}$$

Hence, we have

$$n^{-\frac{1}{q}} \|x\|_{q} \ge n^{-\frac{1}{p}} \|x\|_{p}.$$

Thus,

$$n^{(q-p)/pq} \|x\|_q \ge \|x\|_p.$$

53 / 56

Proof of (10): The first inequality holds obviously. Now, for the second inequality, we have

$$\begin{split} \|Ay\|_{p} &\leq \sum_{j=1}^{n} |y_{j}| \, \|a_{j}\|_{p} \\ &\leq \sum_{j=1}^{n} |y_{j}| \max_{j} \|a_{j}\|_{p} \\ &= \|y\|_{1} \max_{j} \|a_{j}\|_{p} \\ &\leq n^{(p-1)/p} \max_{j} \|a_{j}\|_{p} \,. \quad (by \, (8)) \end{split}$$

Proof of (15): It holds

$$\max_{\|x\|_{p}=1} \|Ax\|_{p} = \max_{\|x\|_{p}=1} \max_{\|y\|_{q}=1} \max_{\|y\|_{q}=1} |(Ax)^{T}y|$$

$$= \max_{\|y\|_{q}=1} \max_{\|x\|_{p}=1} |x^{T}(A^{T}y)|$$

$$= \max_{\|y\|_{q}=1} ||A^{T}y||_{q}$$

$$= ||A^{T}||_{q}.$$

Proof of (16): By (12) and (15), we get

$$\begin{split} m^{\frac{1}{p}} \|A\|_{\infty} &= m^{\frac{1}{p}} \left\|A^{T}\right\|_{1} = m^{1-\frac{1}{q}} \left\|A^{T}\right\|_{1} \\ &= m^{(q-1)/q} \left\|A^{T}\right\|_{1} \ge \left\|A^{T}\right\|_{q} = \|A\|_{p} \,. \end{split}$$

Proof of (17): It holds

$$\|A\|_{p} \|A\|_{q} = \|A^{T}\|_{q} \|A\|_{q} \ge \|A^{T}A\|_{q} \ge \|A^{T}A\|_{2}.$$

The last inequality holds by the following statement: Let S be a symmetric matrix. Then $\|S\|_2 \leq \|S\|$, for any matrix operator norm $\|\cdot\|$. Since $|\lambda| \leq \|S\|$,

$$\left\|S\right\|_2 = \sqrt{\rho(S^*S)} = \sqrt{\rho(S^2)} = \max_{\lambda \in \sigma(S)} \left|\lambda\right| = \left|\lambda_{\max}\right|.$$

This implies, $\|S\|_2 \le \|S\|$.

Proof of (18): By (8), we get

$$\|A\|_{p} = \max_{\|x\|_{p}=1} \|Ax\|_{p} \le \max_{\|x\|_{q} \le 1} m^{(q-p)/pq} \|Ax\|_{q} = m^{(q-p)/pq} \|A\|_{q}.$$

