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Vectors and matrices

Vectors and matrices

A € F with

aixz - Qin

A =lay] = : : , F=RorC.

Am1  *+  OGmn

o Product of matrices: C = AB, where ¢;; = > }'_; aiby;,
t=1,....m,5=1,...,p.

e Transpose: C = A", where ¢;; = aj; € R.
o Conjugate transpose: C'= A* or C = A¥, where ¢;; = a;; € C.

o Differentiation: Let C' = (c;;(t)). Then C' = 4 C = [¢45(1)).
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Vectors and matrices

@ Outer product of x € F" and y € F™:

ZiYr o ZiYn
@ Inner product of x € F” and y € F™:

n
(y, ) =2y = leyb =y"z R,
=1

n
(y, ) =a"y = Zﬂfzyz =yzeC

i=1
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Vectors and matrices

@ Sherman-Morrison Formula:
Let A € R™"™ be nonsingular, u, v € R™. If vT A=1u # —1, then

(A+uw?) ™t =A"1 — AT A7 /(1 40T A1), (1)

e Sherman-Morrison-Woodbury Formula:
Let A € R™*", be nonsingular U, V € R"**_ |f (I+VTA-U)is
invertible, then

(A+uvhHt ="' AU +vTa~lu)y~'vTal.
Proof of (1):

(A+uwD)[A =A™ A7 /(1 4+ 0T A7 )

1 T -1 T -1 T 41 T -1 T 4—1
= I+—— A (1 A — AT — A A
+ 1+UTA71U[UU (14w u) — uv uv uv ]
_ 1 T 4—1 N T g—1 ¢ T y—1 \ T -1
= I+71+1}TA_1U[u(v A 7w A u(v' AT u)vT AT
= I
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Rank and orthogonality

Rank and orthogonality

Let A € R™*™ Then

@ R(A)={y € R™ | y = Ax for some x € R"} C R™ is the range
space of A.

o N(A) ={z e R"| Az =0} C R" is the null space of A.

@ rank(A) = dim[R(A)] = the number of maximal linearly
independent columns of A.

e rank(A) = rank(AT).
e dim(N'(A))+ rank(4) = n.

e If m = n, then A is nonsingular & N'(A) = {0} < rank(4) = n.
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Rank and orthogonality

Let {z1,---,xp} in R™. Then {z1,---,x,} is said to be
orthogonal if
J‘zTJ‘] =0, fori#j

and orthonormal if
{E;-T(Ej = 5ij7
where §;; = 0if i # jand §;; =1 if i = 5.

St ={yeR™|yTz =0, for z € S} = orthogonal complement of
S.

R™ = R(A) & N(AT).
R" = R(AT) & N(A).
R(A)L = N(AT).
R(AT)L = N(A).
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Rank and orthogonality

Special matrices

A e Rnx’ﬂ
Symmetric: AT = A
skew-symmetric: AT = —A

positive definite: 7 Az > 0,2 # 0
non-negative definite: 7 Az > 0

indefinite: (27 Az)(yT Ay) < 0, for some z,y
orthogonal: ATA =1,

normal: ATA = AAT

positive: a;; > 0

non-negative: a;; > 0.

A e CnXn
Hermitian: A* = A (AT = A)
skew-Hermitian: A* = —A

positive definite: z* Az > 0,2 # 0
non-negative definite: z*Ax > 0

indefinite: (z*Az)(y* Ay) < 0, for some z,y
unitary: A*A =1,

normal: A*A = AA*
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Rank and orthogonality

Let A € F"*" Then the matrix A is
e diagonal if a;; =0, for i # j. Denote D = diag(di,--- ,d,) € Dy;

e tridiagonal if a;; = 0,]i — j| > 1;
@ upper bi-diagonal if a;; = 0,7 > jor j>i+1;
o (strictly) upper triangular if a;; = 0,i > j (i > j);

o upper Hessenberg if a;; = 0,7 > j + 1.
(Note: the lower case is the same as above.)

Sparse matrix: n'*", where r < 1 (usually between 0.2 ~ 0.5). If
n = 1000, r = 0.9, then n'*" = 501187.
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Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors

Definition 2

Let A € C"*™. Then X € C is called an eigenvalue of A, if there exists
x # 0, x € C™ with Az = Az and z is called an eigenvector
corresponding to A.

Notations:
o(A) := spectrum of A = the set of eigenvalues of A.
p(A) := radius of A = max{|A| : A € c(A)}.
@ Neo(A) e det(A- M) =0.
@ p(\) = det(A — A) = characteristic polynomial of A.
o p(\) = [T (A= X)) N, £ N (fori # 7)and Y5 m(\) = n.
e m(A;) = algebraic multiplicity of \;.
@ n(\;) =n — rank(A — \;I) = geometric multiplicity of A;.
o 1 <n(N) <m(\).
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Eigenvalues and Eigenvectors

If there is some 4 such that n();) < m(\;), then A is called degenerated.

The following statements are equivalent:
(1) There are n linearly independent eigenvectors;

(2) A is diagonalizable, i.e., there is a nonsingular matrix T such that
T~ YAT € D,;

(3) For each A € o(A), it holds m(X\) = n(N).

If A is degenerated, then eigenvectors plus principal vectors derive Jordan
form.
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Eigenvalues and Eigenvectors

Theorem 3 (Schur decomposition)

(1) Let A € C™*™. There is a unitary matrix U such that U*AU is
upper triangular.

(2) Let A € R™*™, There is an orthogonal matrix Q such that QT AQ is
quasi-upper triangular, i.e., an upper triangular matrix possibly with
nonzero subdiagonal elements in non-consecutive positions.

(3) A is normal if and only if there is a unitary U such that U*AU = D
is diagonal.

(4) A is Hermitian if and only if A is normal and o(A) C R.

(5) A is symmetric if and only if there is an orthogonal U such that
UT AU = D is diagonal and o(A) C R.
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Norm

Norms and eigenvalues

Let X be a vectorspace over F =R or C.

Definition 4 (Vector norms)

Let N be a real-valued function defined on X (N : X — R, ). Then N
is a (vector) norm, if

N1: N(az) = |a|N(z), a €F, for z € X
N2: N(z+y) < N(z)+ N(y), for z, y € X;
N3: N(z) =0 if and only if z = 0.

The usual notation is ||z|| = N(z).
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Norm

Example 5

Let X =C", p>1. Then [|lz]|, = (3_1, |2:P)"/" is an l,-norm.
Especially,

n
[zllx = 32 |zl ( l3-norm),
i=1

n 1/2
]2 = (Z £U¢2> ( Euclidean-norm),
i=1

2]l = lféliaéxnm\ ( maximum-norm).
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N(x) is a continuous function in the components 1, - , T, of .

Proof:

IN(@) = Nw)l < N—y) < 3 s ~ 5| N(ey) < o = vl X N,

O

Theorem 7 (Equivalence of norms)

Let N and M be two norms on C™. Then there exist constants
c1,co > 0 such that

caiM(x) < N(z) < coM(z), for all z € C".

Remark: Theorem 7 does not hold in infinite dimensional space.
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Norm

Norms and eigenvalues

Definition 8 (Matrix-norms)

Let A € C™*™. A real value function || - || : C™*"™ — R satisfying
NL: [lad]l = |of|Al|

N

N

A+ Bl < [lAll+ 1B

N3: ||A]| = 0 if and only if A = 0;

N4 [|AB|| < [lA[|[|BII

NS: (| Az, < [lA[]lz{l,-

If || - || satisfies N1 to N4, then it is called a matrix norm. In addition,
matrix and vector norms are compatible for some || - ||, in N5.
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Norm

Example 9 (Frobenius norm)

n 2 1/2
Let Al = {57, laisl?}
2>1/2

Zaikbk]‘
k
1/2
(Z {Z |a,ik|2} {Z bkj|2}> (Cauchy-Schwartz Ineq.)
k k

1ABlF = (Z

3

IA

(2%

1/2 1/2
<Z Xk) \mﬁ) (Z ij bk_ﬂ) = | AllFIBlF-

This implies that N4 holds.

2\ 1/2 1/2
) < {Z (Zlaﬁ) (Z z) } = Al rllell2-
o J b))

This implies N5 holds. Also, N1, N2 and N3 hold obviously. (||I||r =+/n) O

lAz]> = (Z

i

E AijTj
J




Norm

Example 10 (Operator norm)

Given a vector norm ||-||. An associated matrix norm is defined by
| Az]| | Az]|
| All = sup = max = max {[|Az[|}.
a0 |l w0 [z jeli=1

N5 holds immediately. On the other hand,

I(AB)z|| = [A(Bx)|| < [|A]l [|Bz|
< [AIlIBI =

for all z # 0. This implies that

IAB| < [lA[I]|B] -

Thus, N4 holds. (||I|| =1). O
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Three useful matrix norms:

HACCH -
HA”l ” H L= lrgjagnzmlﬂ (3)
T =1
Az
14l |||| |||| :1<z<nz|a”| (4)
||A2EH
”f1”2 |‘ ” 2 = p(fi*fi) (5)
2

Example 11 (Dual norm)

Let % A % =1. Then [-[|; = [l , (p = 00,¢ = 1). (It concluds from the

application of the Holder inequality, i.e. [y*z| < [[z|, [yl,-)
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Norm

Theorem 12

, it holds

Let A € C"*™. Then for any operator norm ||-

p(A) < |[Al.-

Moreover, for any € > 0, there exists an operator norm ||-||_ such that

[-lle < p(A) +e.

Let U and V' are unitary. Then

[UAV||r = [[Allp, [[UAV]2 = [A]2

From

WwAlr = \JIUal+-+ Va3
pATA) = p(AA").
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Norm

Theorem 14 (Singular Value Decomposition (SVD))

Let A € C™*™. Then there exist unitary matrices
U=luy, - ,up) €C™*™ and V = vy, -+ ,v,] € C"*™ such that

U*AV = diag(o1,- -+ ,0p) = %, (6)

where p = min{m,n} and o1 > g9 > --- > g, > 0. (Here, o; denotes
the i-th largest singular value of A).

Remark: From (6), we have ||Alj2 = /p(A*A) = o1, which is the
maximal singular value of A, and
[ABC||r = UV BC||r = |2V BC||r < 01[|BC|[r = [|All2[| BC|| -
This implies
[ABC|r < [[All2lI Bl FICll2- (7)
In addition, by (2) and (7), we get
IAll2 < [ Allp < Vnl|All2.
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Norm

Theorem 15

Let A € C™**™. The statements are equivalent:
(1) lim A™=0;

m—» 00
(2) lim A™z =0 for all x;

m— 00

(3) p(4) <1.

Proof:
(1) = (2): Trivial.

(2) = (3): Let A€ g(A), ie,, Az = Az, x # 0. This implies
Amx = A"x — 0, as "™ — 0. Thus |A| < 1, i.e, p(A) < 1.

(3) = (1): Thereis a norm || - || with ||A]| < 1 (by Theorem 12).

Therefore, || A™| < ||A||™ — 0, i.e., A™ — 0.
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Theorem 16

p(A) = lim [l4%[*".

Proof: Since

pA) = p(a") < |45 = p(4) < [la5]"",
for k=1,2,.... If ¢ > 0, then A = [p(A) 4 €] "' A has spectral radius
<1and ‘AkH 5 0as k — co. There is an N = N(e, A) such that
HA’fH <1forall k> N. Thus,

|A*|] < [p(A) + €], forall k > N

or
|A%]* < p(A) +¢, forall k> N.
Since p(A) < HA’“Hl/k, and k, e are arbitrary, klim HA’“Hl/k exists and
—00
equals p(A). O
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Let A € C™*", and p(A) < 1. Then (I — A)™" exists and

(I-A)'=I+A+A%+

Proof: Since p(A) < 1, the eigenvalues of (I — A) are nonzero. Therefore, by
Theorem 15, (I — A)™" exists and

(I—A)I+A+ A+ A =T A" > L.

Corollary 18

If||A|| < 1, then (I — A)™" exists and

1

Proof: Since p(A) < ||A]| < 1 (by Theorem 12),

I =4~ =

oo

d oA

=0

<DollAlF=a—jap.
=0
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Norm

Theorem 19 (without proof)

For A € F™"*"™ the following statements are equivalent:
(1) There is a multiplicative norm p with p(A¥) < 1,k =1,2,....

(2) For each multiplicative norm p the power p(A¥) are uniformly

bounded, i.e., there exists a M (p) < oo such that p(A*) < M(p),
k=0,1,2,....

(3) p(A) <1 and all eigenvalue \ with |\| = 1 are not degenerated.
(i.e., m(A) =n(N).)

(See Householder: The theory of matrix, pp.45-47.)
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In the following, we prove some important inequalities of vector norms
and matrix norms.

(E] _
1< ﬁ < nte p)/pq7 (p < q). (8)
q
[zl !
1< —2 <npiv 9)
e
I < < n®P=1/p )
max flayl, < 4], < n®" max fa,]],. (10)

where A = [aq,- -+ ,a,] € R™*™,
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H}E}X|aij| < 4], < n@=D/pp1/p n}:?xmij‘ ’ (11)

,

where A € R™*",

Proof of (11): By (9) and (10) immediately. O
mIP Al < A, < 2@V A, (12)
Proof of (12): By (10) and (8) immediately. O
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Holder inequality:

1 1
|;1:Ty| < H:c||p ly] 0 Where]; + 6 =1. (13)

Proof of (13): Let o; =

’Cﬁ , B = 7. Then

= llyll,

1 1
() /P(ph)/e < ;;af + 663' (Jensen Inequality)

Since [af|, =1, [|8][, = 1, it follows that

n

1 1
E aifi < —+-=1
i=1 pq

Then we have [2Ty| < |||, [lyll,- -
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max{|aTy| « ||z, = 1} = |y, - (14)

Proof of (14): Take z; = y?™ "/ ||y||g/p Then we have

q
Sl _ vl

[|||P = = = w(g—=1p=1)
S 1 A P25
It follows .
n
ZxTy-| _ Xl ol
v Jr| T - - q’
~ 17yl

O

Remark: 32 with [|Z]|, = 1 s.t. [[y[[, = 2Ty, Let 2 =2/ lyll,- Then we
1

have 3z s.t. 2Ty = 1 with HZHp = Tl
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Al = |47, (15)

_1 1
n= | Al < [[All, <me [[All - (16)

11
[Ally < 4 /1IAllL, 1Al (5 T 1). (17)

=0/ | 4]|, < ||A], < m@P/P 4] (18)

where A € R™*™ and ¢ > p > 1.
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Backward and Forward errors

Backward error and Forward error

Let = F'(a). We define backward and forward errors in Figure 1. In
Figure 1, & + Az = F(a + Aa) is called a mixed forward-backward error,
where |Az| < el|z|, |Aa| < n)al.

Definition 20

(i) An algorithm is backward stable, if for all a, it produces a
computed & with a small backward error, i.e., = F(a + Aa) with
Aa small.

(ii) An algorithm is numerical stable, if it is stable in the mixed
forward-backward error sense, i.e., & + Ax = F(a + Aa) with both
Aa and Az small.

(iii) If a method which produces answers with forward errors of similar
magnitude to those produced by a backward stable method, is called
a forward stable.

v
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Backward and Forward errors

Input Output
a x=F(a)
 J
backward error forward error
a+Aa. . a+Aa)
\ Ax
F(a+Aa)

Figure: Relationship between backward and forward errors.

Remark:

(i) Backward stable = forward stable, no vice versal!
(ii) Forward error < condition number x backward error
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Backward and Forward errors

Consider

F"(a + 0Aa)

& —x=F(a+ Aa)— F(a) = F'(a)Aa + 5

(Aa)?, 0 € (0,1).

Then we have

() o).

x F(a)
The quantity C(a) = af:g((l?) is called the condition number of F. If z or

F'is a vector, then the condition number is defined in a similar way using
norms and it measures the maximum relative change, which is attained
for some, but not all Aa.

Apriori error estimate !
Backward error: .
Aposteriori error estimate !
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Backward and Forward errors

Lemma 21

Az =b
(A+AA)Z=b+ Ab
with ||AA| < 6 ||A]| and ||Ab|| < 6 |b]|. If dk(A) =7 <1 then A+ AA

is nonsingular and h H < 4

Proof: Since |[A~'AAl| < §||A7||[|All =7 < 1, it follows that
A+ AA is nonsingular. From (I + A71AA): =z + A~1Ab, we have
Izl < (T +ATT AT (el + 6 A7 18l)

< 1 (lal+ 647 1)

= (11 i)

ol < w25 (el +rllzl) . Collol = [1Az] < lAll=]) B
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Backward and Forward errors

Normwise Forward Error Bound

If the condition of Lemma 21 hold, then

lo -2 _ 20
] = 1—7

Proof: Since & —z = A~'Ab— A"1AAZ, we have
&=z <& || A7 1ol + o [[A | 1Al 1] -

So, by Lemma 21, we have

& — 2 1 2l
< Ir(A +0k(A)——
Bl DOTarEr T W)
1+7r 20

< = .

< Jk(4) (1+ 1_T> 1_r/@(A)
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Backward and Forward errors

Componentwise Forward Error Bounds

Let Ax =b and (A+ AA): =b+ Ab. Let |[AA| < J|A| and
|Ab] < §|b|. If dkoo(A) =7 < 1 then (A+ AA) is nonsingular and

& — ||

] o

oo 20 =1
< 7 147l

Proof: Since |AA| < Il A| . and [|Ab]| < 6]b],. the conditions
of Lemma 21 are satisfied in co-norm. Then A 4+ AA is nonsingular and

lole o Lir
lell = 1=

Since & —x = A1Ab — A=A A%, we have

|A7H||Ab] + |AT||AA] 2]
S| AT [o] + 8| AT |Al 2] < 8 |ATY A] (|z] + |2]).

& —

IN A
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Backward and Forward errors

Taking oo-norm, we get

R _ 1+
lo=olle < Sa7 1Al (Nelo + 155 lel
20
= 2 A A
—_———

Skeel condition number
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Backward and Forward errors

Condition Number by First Order Approximation

=z +€i(0) + o(e?)

@ =l oy [ :
Ll < e {38 i + o

Condition number r(A) := || A] [[A7}||

o]l < 1Al ||,
Ix(T)xH Tl < () (o + 1) + o).
IE) il a1(4)

Pa=CEr P W= S @y
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Backward and Forward errors

Normwise Backward Error Bound

Theorem 24

Let & be the computed solution of Ax = b. Then the normwise backward
error bound

() := min {e|(A+ AA)E = b+ Ab,  [|AA[ < e[l All, [[Ab]] < ellb]}

is given by
[

@) = VATl + ol (19)

where r = b — AZ is the residual.
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Backward and Forward errors

Proof: The right hand side of (19) is a upper bound of n(Z). This upper
bound is attained for the perturbation (by construction)

Al ll] r=" [l
A14min TR Y TR TS TR Abmin = —_——
Al 21+ [[6ll ENEEEN
where 2 is the dual vector of #, i.e. 272 =1 and ||z|, = ﬁ
Check:
[AAmin|l = n(2) Al
) ="
Al 12| f|r= I~
A Amin| = - = P lAll,
A2+ ([l Al 21+ foll
i.e. claim
-
[l
Since
T
rz" || = max =|r =|r =
= = s ="y = el ms, 7] = el = el
we have done. Similarly, ||Abmin|| = n(&) ||b]]. O
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Backward and Forward errors

Componentwise Backward Error Bound

Theorem 25

The componentwise backward error bound

w(z) :=min{e|(A+ AA)E =b+ Ab, |AA| <el|A|, |Abl <ce€|b|}

is given by

w(Z) = max Il

i (A|j3|—|—b)z’
where r = b — Az. (note: /0 =0if§{=0,£&/0=00 if§#0.)

(20)

Proof: The right hand side of (20) is a upper bound for w(Z). This
bound is attained for the perturbation

AA=D{ADy, Ab= —D1b,
where

Dy = diag(r;/(A|Z] +b);) and Dy = diag(sign(&;)).
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Backward and Forward errors

Determinents and Nearness to Singularity

(1 -1 —1 7 11 2"
_ 1 : -1 _
B = R R =k
L 0 1] 0 1
det(B,) = 1, keo(Bn)=n2""1 0,(B,) ~10"%(n = 30)
[ 107! 0 ]
D, = ’
|0 1071 |
det(D,) = 107", ky(D,) =1, o,(D,)=10""
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Backward and Forward errors

Appendix

Proof of Theorem 7: Without loss of generality (W.L.O.G.) we can
assume that M (z) = ||z|| and N is arbitrary. We claim

cllzfloo < N(2) < cofl2loo
or
c1 < N(z) <, for z€ 5 ={z€ C"|2]lc =1}

From Lemma 6, N is continuous on S (closed and bounded). By
maximum and minimum principle, there are ¢1,¢c > 0 and 21,29 € S
such that

c¢1 = N(z1) < N(2) < N(22) = ca.

If c4 =0, then N(21) =0. Thus, z; = 0. This contradicts that
z1 € 8. ]
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Backward and Forward errors

Proof of (3):
[Az(l, =Y 1 agai| <0 ail sl =Yl ) i) -
i | i j i

Let

C:= Z laik] = mjaxzmiﬂ.

Then ||Az||; < C ||z, thus |[A]|; < C. On the other hand, |lex||; =1
and [[Aell; = 325 fair| = C. O
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Backward and Forward errors

Proof of (4):
|Az| ., = max Zawx] <maxZ\a”xJ|

maXZI%IIIJﬁII Zlakjlllx\\oo =Cllzll
j

This implies, || Al < C. If A=0, then there is nothing to prove.
Assume A # 0. Thus, the k-th row of A is nonzero. Define
z=|z] € C" by

IN

Z; = g:z‘ if Qi 75 0,
Z; = 1 if Qi = 0.

Then ||z]| . =1 and ay;z; = |ag,|, for j =1,. . It follows
Z%‘Zj > = la| =€
- e

Then, Al > 1r£1a<x Z] p laij| = O

”AHOO > ||AZHOO = mzax iz
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Backward and Forward errors

Proof of (5): Let Ay > Ay > --- > A, > 0 be the eigenvalues of A*A.
There are muturally orthonormal vectors v;, j = 1,...,n such that
(A*A)Uj = )\j?)j. Let x = le Q;V;j. Since

|Az|3 = (Az, Az) = (v, A* Ax),

2 2 2
||A]‘||2 = Zajvj, Zaj/\jvj = Z)\] |O¢j| S )\1 ||33H2
J J J

Therefore, AH% < 1. Equality follows by choosing x = v and
|Avy||2 = (v1, \iv1) = A1. So, we have || A, = /p(A*A). O
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Backward and Forward errors

Proof of Theorem 12: Let |A\| = p(A) = p and z be the associated
eigenvector with ||z|| = 1. Then,

p(A) = Al = [zl = [|Az|| < |A]l [|=]] = [IA]l-

Claim: [|-||, < p(A) + €. There is a unitary U such that A = U*RU,
where R is upper triangular.

Let Dy = diag(t,t?, - ,t"). For t > 0 large enough, the sum of all
absolute values of the off-diagonal elements of D;RD; " is less than e.
So, it holds || D;RD; ||, < p(A) + € for large t(¢) > 0. Define |||, for
any B by

1B, |D.UBU*D |,
= H(UD;l)‘lB(UDgl)Hl.

This implies,
JAll, = [ DeRD;Y| < p(4) +e.
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Backward and Forward errors

Proof of Theorem 14: There are x € C", y € C™ with
lz|ly = ||lylly = 1 such that Az = oy, where
o=Aly (Al = sup [Az|,). Let V = [z, V1] € C"*", and

z]l;=1

U = [y,U1] € C™*™ be unitary. Then

(%)

|A1]]3 > 0 + w*w  from

T A
e[ %]
2
> (02 + w*w)?, it follows
2

Since

2

(1)

2 >7 ww.
w 2

But 0?2 = HAH? = ||A1||§ it implies w = 0. Hence, the theorem holds by
induction. 0J
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Backward and Forward errors

Proof of (8): Claim [|z[|q < [|z[l,, (p < ¢): It holds

Cpq llll, »

x
] Hllxll T
! P lll,

where

Cra = el o= (e sen)”

We now show that Cp, ; < 1. From p < ¢, we have

lellg = Z|€v|q<2|eylp L (by fei <1).

Hence, Cp 4 <1, thus [[zq < |[z]],.
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Backward and Forward errors

To prove the second inequality: Let @ = ¢/p > 1. Then the Jensen
ineqality holds for the convex function p(x) = z™:

Lisras= [ aseyrae= ([ Iflpdx)m

with |Q| = 1. Consider the discrete measure > =1 and

f(i) = |x;|. It follows that

n 1 n 1 a/p
q ap =
Slat > (S k)

=1 i=1

Zln

Hence, we have ) )
n=a |zl = n"F [z,

Thus,
n(=P/P ]| > ||,
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Backward and Forward errors

Proof of (9): Let ¢ — oo and qlglgo zll, =zl

1
1 n a4
ol = l2i] = (J2x)F < (Z '“'q> = ll=ll,

i=1

On the other hand,

1 1
lzll, = <Z xzq> (nllzli) < ne =)l -

1 = . D
It follows that qhﬁnolO lzll, = llzll
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Backward and Forward errors

To prove the second inequality: Let @ = ¢/p > 1. Then the Jensen
ineqality holds for the convex function p(x) = z™:

Lisrae= [y ([ |f|pdx)Q/p

with || = 1.
Consider the discrete measure ' | 2 =1 and f(i) = || It follows
that

n

Hence, we have . )
n=alzll, = n7e 2],
Thus,
nlPP g > ],
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Backward and Forward errors

Proof of (10): The first inequality holds obviously. Now, for the second
inequality, we have

n
[Ayll, < > lyslllasl]
P
j=1

n
< D lyslmaxayll,
° J
j=1
= |yl max|la;][,
J

< @ VP max||a,ll, . (by(8))
J
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Proof of (15): It holds

Az, = A
HHﬁaX (| Az]l, H£I|1\ X i _1‘( x) y‘
= T AT
Iyl =1 Hgﬁa:l‘ (ATy)]
= T
= e [|4%],
]
Proof of (16): By (12) and (15), we get
mi Al = b AT, =7,

ma—1D/q HATH1 > HATHq _ ||A||p-



Backward and Forward errors

Proof of (17): It holds
1Al ANl = [|AT]], 1141, = [|ATA]|, > [|A" A,

The last inequality holds by the following statement: Let S be a
symmetric matrix. Then |||, < ||S]|, for any matrix operator norm |-

Since |A] < |I9]I,
Sy = S5*S) = S2) = Al = [Amax] -
151l \/P( ) \/P( ) )\Iélaaé)| | = |

This implies, [|S]|, < [|S]].

Proof of (18): By (8), we get

|All, = max [[Az], < max m@ /2| Ag]|, = maP/PT|| 4],
el = Jall, <1
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