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Vectors and matrices

A ∈ F with

A = [aij ] =

 a11 · · · a1n

...
. . .

...
am1 · · · amn

 , F = R or C.

Product of matrices: C = AB, where cij =
∑n
k=1 aikbkj ,

i = 1, . . . ,m, j = 1, . . . , p.

Transpose: C = AT , where cij = aji ∈ R.

Conjugate transpose: C = A∗ or C = AH , where cij = āji ∈ C.

Differentiation: Let C = (cij(t)). Then Ċ = d
dt C = [ċij(t)].
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Outer product of x ∈ Fm and y ∈ Fn:

xy∗ =

 x1ȳ1 · · · x1ȳn
...

. . .
...

xmȳ1 · · · xmȳn

 ∈ Fm×n.

Inner product of x ∈ Fn and y ∈ Fn:

〈y, x〉 := xT y =

n∑
i=1

xiyi = yTx ∈ R,

〈y, x〉 := x∗y =

n∑
i=1

x̄iyi = y∗x ∈ C.
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Sherman-Morrison Formula:
Let A ∈ Rn×n be nonsingular, u, v ∈ Rn. If vTA−1u 6= −1, then

(A+ uvT )−1 = A−1 −A−1uvTA−1/(1 + vTA−1u). (1)

Sherman-Morrison-Woodbury Formula:
Let A ∈ Rn×n, be nonsingular U , V ∈ Rn×k. If (I + V TA−1U) is
invertible, then

(A+ UV T )−1 = A−1 −A−1U(I + V TA−1U)−1V TA−1.

Proof of (1):

(A+ uvT )[A−1 −A−1uvTA−1/(1 + vTA−1u)]

= I +
1

1 + vTA−1u
[uvTA−1(1 + vTA−1u)− uvTA−1 − uvTA−1uvTA−1]

= I +
1

1 + vTA−1u
[u(vTA−1u)vTA−1 − u(vTA−1u)vTA−1]

= I.
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Example 1

Ã =


3 −1 1 1 1
0 1 2 2 2
0 0 4 1 1
0 0 0 3 0
0 −1 0 0 3

 = A+


0
0
0
0
−1

 [ 0 1 0 0 0
]
,

where

A =


3 −1 1 1 1
0 1 2 2 2
0 0 4 1 1
0 0 0 3 0
0 0 0 0 3

 .
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Rank and orthogonality

Let A ∈ Rm×n. Then

R(A) = {y ∈ Rm | y = Ax for some x ∈ Rn} ⊆ Rm is the range
space of A.

N (A) = {x ∈ Rn | Ax = 0} ⊆ Rn is the null space of A.

rank(A) = dim[R(A)] = the number of maximal linearly
independent columns of A.

rank(A) = rank(AT ).

dim(N (A))+ rank(A) = n.

If m = n, then A is nonsingular ⇔ N (A) = {0} ⇔ rank(A) = n.
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Let {x1, · · · , xp} in Rn. Then {x1, · · · , xp} is said to be
orthogonal if

xTi xj = 0, for i 6= j

and orthonormal if
xTi xj = δij ,

where δij = 0 if i 6= j and δij = 1 if i = j.

S⊥ = {y ∈ Rm | yTx = 0, for x ∈ S} = orthogonal complement of
S.

Rm = R(A)⊕N (AT ).

Rn = R(AT )⊕N (A).

R(A)⊥ = N (AT ).

R(AT )⊥ = N (A).

8 / 56



師
大

Vectors and matrices Rank and orthogonality Eigenvalues and Eigenvectors Norm Backward and Forward errors

Special matrices

A ∈ Rn×n

Symmetric: AT = A
skew-symmetric: AT = −A
positive definite: xTAx > 0, x 6= 0
non-negative definite: xTAx ≥ 0
indefinite: (xTAx)(yTAy) < 0, for some x, y
orthogonal: ATA = In
normal: ATA = AAT

positive: aij > 0
non-negative: aij ≥ 0.

A ∈ Cn×n

Hermitian: A∗ = A (AH = A)
skew-Hermitian: A∗ = −A
positive definite: x∗Ax > 0, x 6= 0
non-negative definite: x∗Ax ≥ 0
indefinite: (x∗Ax)(y∗Ay) < 0, for some x, y
unitary: A∗A = In
normal: A∗A = AA∗
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Let A ∈ Fn×n. Then the matrix A is

diagonal if aij = 0, for i 6= j. Denote D = diag(d1, · · · , dn) ∈ Dn;

tridiagonal if aij = 0, |i− j| > 1;

upper bi-diagonal if aij = 0, i > j or j > i+ 1;

(strictly) upper triangular if aij = 0, i > j (i ≥ j);

upper Hessenberg if aij = 0, i > j + 1.
(Note: the lower case is the same as above.)

Sparse matrix: n1+r, where r < 1 (usually between 0.2 ∼ 0.5). If
n = 1000, r = 0.9, then n1+r = 501187.
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Eigenvalues and Eigenvectors

Definition 2

Let A ∈ Cn×n. Then λ ∈ C is called an eigenvalue of A, if there exists
x 6= 0, x ∈ Cn with Ax = λx and x is called an eigenvector
corresponding to λ.

Notations:
σ(A) := spectrum of A = the set of eigenvalues of A.
ρ(A) := radius of A = max{|λ| : λ ∈ σ(A)}.

λ ∈ σ(A)⇔ det(A− λI) = 0.

p(λ) = det(λI −A) = characteristic polynomial of A.

p(λ) =
∏s
i=1(λ− λi)m(λi), λi 6= λj (for i 6= j) and

∑s
i=1m(λi) = n.

m(λi) = algebraic multiplicity of λi.

n(λi) = n− rank(A− λiI) = geometric multiplicity of λi.

1 ≤ n(λi) ≤ m(λi).

11 / 56



師
大

Vectors and matrices Rank and orthogonality Eigenvalues and Eigenvectors Norm Backward and Forward errors

If there is some i such that n(λi) < m(λi), then A is called degenerated.

The following statements are equivalent:

(1) There are n linearly independent eigenvectors;

(2) A is diagonalizable, i.e., there is a nonsingular matrix T such that
T−1AT ∈ Dn;

(3) For each λ ∈ σ(A), it holds m(λ) = n(λ).

If A is degenerated, then eigenvectors plus principal vectors derive Jordan
form.
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Theorem 3 (Schur decomposition)

(1) Let A ∈ Cn×n. There is a unitary matrix U such that U∗AU is
upper triangular.

(2) Let A ∈ Rn×n. There is an orthogonal matrix Q such that QTAQ is
quasi-upper triangular, i.e., an upper triangular matrix possibly with
nonzero subdiagonal elements in non-consecutive positions.

(3) A is normal if and only if there is a unitary U such that U∗AU = D
is diagonal.

(4) A is Hermitian if and only if A is normal and σ(A) ⊆ R.

(5) A is symmetric if and only if there is an orthogonal U such that
UTAU = D is diagonal and σ(A) ⊆ R.
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Norms and eigenvalues

Let X be a vectorspace over F = R or C.

Definition 4 (Vector norms)

Let N be a real-valued function defined on X (N : X −→ R+). Then N
is a (vector) norm, if

N1: N(αx) = |α|N(x), α ∈ F, for x ∈ X;

N2: N(x+ y) ≤ N(x) +N(y), for x, y ∈ X;

N3: N(x) = 0 if and only if x = 0.

The usual notation is ‖x‖ = N(x).
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Example 5

Let X = Cn, p ≥ 1. Then ‖x‖p = (
∑n
i=1 |xi|

p
)
1/p

is an lp-norm.
Especially,

‖x‖1 =
n∑
i=1

|xi| ( l1-norm),

‖x‖2 =

(
n∑
i=1

|xi|2
)1/2

( Euclidean-norm),

‖x‖∞ = max
1≤i≤n

|xi| ( maximum-norm).
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Lemma 6

N(x) is a continuous function in the components x1, · · · , xn of x.

Proof:

|N(x)−N(y)| ≤ N(x−y) ≤
n∑
j=1

|xj − yj |N(ej) ≤ ‖x− y‖∞
n∑
j=1

N(ej).

Theorem 7 (Equivalence of norms)

Let N and M be two norms on Cn. Then there exist constants
c1, c2 > 0 such that

c1M(x) ≤ N(x) ≤ c2M(x), for all x ∈ Cn.

Proof of Theorem 7

Remark: Theorem 7 does not hold in infinite dimensional space.
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Norms and eigenvalues

Definition 8 (Matrix-norms)

Let A ∈ Cm×n. A real value function ‖ · ‖ : Cm×n → R+ satisfying

N1: ‖αA‖ = |α|‖A‖;

N2: ‖A+B‖ ≤ ‖A‖+ ‖B‖;

N3: ‖A‖ = 0 if and only if A = 0;

N4: ‖AB‖ ≤ ‖A‖‖B‖;

N5: ‖Ax‖v ≤ ‖A‖‖x‖v.

If ‖ · ‖ satisfies N1 to N4, then it is called a matrix norm. In addition,
matrix and vector norms are compatible for some ‖ · ‖v in N5.
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Example 9 (Frobenius norm)

Let ‖A‖F =
{∑n

i,j=1 |ai,j |
2
}1/2

.

‖AB‖F =

∑
i,j

∣∣∣∣∣∑
k

aikbkj

∣∣∣∣∣
2
1/2

≤

∑
i,j

{∑
k

|aik|2
}{∑

k

|bkj |2
}1/2

(Cauchy-Schwartz Ineq.)

=

(∑
i

∑
k

|aik|2
)1/2

∑
j

∑
k

|bkj |2
1/2

= ‖A‖F ‖B‖F .

This implies that N4 holds.

‖Ax‖2 =

∑
i

∣∣∣∣∣∣
∑
j

aijxj

∣∣∣∣∣∣
21/2

≤

∑
i

∑
j

|aij |2
∑

j

|xj |2


1/2

= ‖A‖F ‖x‖2.

(2)

This implies N5 holds. Also, N1, N2 and N3 hold obviously. (‖I‖F =
√
n)
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Example 10 (Operator norm)

Given a vector norm ‖·‖. An associated matrix norm is defined by

‖A‖ = sup
x6=0

‖Ax‖
‖x‖

= max
x6=0

‖Ax‖
‖x‖

= max
‖x‖=1

{‖Ax‖} .

N5 holds immediately. On the other hand,

‖(AB)x‖ = ‖A(Bx)‖ ≤ ‖A‖ ‖Bx‖
≤ ‖A‖ ‖B‖ ‖x‖

for all x 6= 0. This implies that

‖AB‖ ≤ ‖A‖ ‖B‖ .

Thus, N4 holds. (‖I‖ = 1).
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Three useful matrix norms:

‖A‖1 = sup
x 6=0

‖Ax‖1
‖x‖1

= max
1≤j≤n

n∑
i=1

|aij | (3)

‖A‖∞ = sup
x6=0

‖Ax‖∞
‖x‖∞

= max
1≤i≤n

n∑
j=1

|aij | (4)

‖A‖2 = sup
x 6=0

‖Ax‖2
‖x‖2

=
√
ρ(A∗A) (5)

Proof of (3)-(5)

Example 11 (Dual norm)

Let 1
p + 1

q = 1. Then ‖·‖∗p = ‖·‖q , (p =∞, q = 1). (It concluds from the

application of the Hölder inequality, i.e. |y∗x| ≤ ‖x‖p ‖y‖q.)
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Theorem 12

Let A ∈ Cn×n. Then for any operator norm ‖·‖, it holds

ρ(A) ≤ ‖A‖ .

Moreover, for any ε > 0, there exists an operator norm ‖·‖ε such that

‖·‖ε ≤ ρ(A) + ε.

Proof of Theorem 12

Lemma 13

Let U and V are unitary. Then

‖UAV ‖F = ‖A‖F , ‖UAV ‖2 = ‖A‖2

From

‖UA‖F =
√
‖Ua1‖22 + · · ·+ ‖Uan‖22,

ρ(A∗A) = ρ(AA∗).
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Theorem 14 (Singular Value Decomposition (SVD))

Let A ∈ Cm×n. Then there exist unitary matrices
U = [u1, · · · , um] ∈ Cm×m and V = [v1, · · · , vn] ∈ Cn×n such that

U∗AV = diag(σ1, · · · , σp) = Σ, (6)

where p = min{m,n} and σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0. (Here, σi denotes
the i-th largest singular value of A).

Proof of Theorem 14

Remark: From (6), we have ‖A‖2 =
√
ρ(A∗A) = σ1, which is the

maximal singular value of A, and

‖ABC‖F = ‖UΣV ∗BC‖F = ‖ΣV ∗BC‖F ≤ σ1‖BC‖F = ‖A‖2‖BC‖F .
This implies

‖ABC‖F ≤ ‖A‖2‖B‖F ‖C‖2. (7)

In addition, by (2) and (7), we get

‖A‖2 ≤ ‖A‖F ≤
√
n‖A‖2.
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Theorem 15

Let A ∈ Cn×n. The statements are equivalent:

(1) lim
m→∞

Am = 0;

(2) lim
m→∞

Amx = 0 for all x;

(3) ρ(A) < 1.

Proof:

(1) ⇒ (2): Trivial.

(2) ⇒ (3): Let λ ∈ σ(A), i.e., Ax = λx, x 6= 0. This implies
Amx = λmx→ 0, as λm → 0. Thus |λ| < 1, i.e., ρ(A) < 1.

(3) ⇒ (1): There is a norm ‖ · ‖ with ‖A‖ < 1 (by Theorem 12).
Therefore, ‖Am‖ ≤ ‖A‖m → 0, i.e., Am → 0.
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Theorem 16

ρ(A) = lim
k→∞

∥∥Ak∥∥1/k
.

Proof: Since

ρ(A)k = ρ(Ak) ≤
∥∥Ak∥∥ ⇒ ρ(A) ≤

∥∥Ak∥∥1/k
,

for k = 1, 2, . . .. If ε > 0, then Ã = [ρ(A) + ε]−1A has spectral radius

< 1 and
∥∥∥Ãk∥∥∥→ 0 as k →∞. There is an N = N(ε, A) such that∥∥∥Ãk∥∥∥ < 1 for all k ≥ N . Thus,∥∥Ak∥∥ ≤ [ρ(A) + ε]k, for all k ≥ N

or ∥∥Ak∥∥1/k ≤ ρ(A) + ε, for all k ≥ N.

Since ρ(A) ≤
∥∥Ak∥∥1/k

, and k, ε are arbitrary, lim
k→∞

∥∥Ak∥∥1/k
exists and

equals ρ(A).
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Theorem 17

Let A ∈ Cn×n, and ρ(A) < 1. Then (I −A)−1 exists and

(I −A)−1 = I +A+A2 + · · · .

Proof: Since ρ(A) < 1, the eigenvalues of (I −A) are nonzero. Therefore, by
Theorem 15, (I −A)−1 exists and

(I −A)(I +A+A2 + · · ·+Am) = I −Am → I.

Corollary 18

If ‖A‖ < 1, then (I −A)−1 exists and∥∥(I −A)−1
∥∥ ≤ 1

1− ‖A‖ .

Proof: Since ρ(A) ≤ ‖A‖ < 1 (by Theorem 12),∥∥(I −A)−1
∥∥ =

∥∥∥∥∥
∞∑
i=0

Ai

∥∥∥∥∥ ≤
∞∑
i=0

‖A‖i = (1− ‖A‖)−1.
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Theorem 19 (without proof)

For A ∈ Fn×n the following statements are equivalent:

(1) There is a multiplicative norm p with p(Ak) ≤ 1, k = 1, 2, . . ..

(2) For each multiplicative norm p the power p(Ak) are uniformly
bounded, i.e., there exists a M(p) <∞ such that p(Ak) ≤M(p),
k = 0, 1, 2, . . ..

(3) ρ(A) ≤ 1 and all eigenvalue λ with |λ| = 1 are not degenerated.
(i.e., m(λ) = n(λ).)

(See Householder: The theory of matrix, pp.45-47.)
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In the following, we prove some important inequalities of vector norms
and matrix norms.

1 ≤
‖x‖p
‖x‖q

≤ n(q−p)/pq, (p ≤ q). (8)

Proof of (8)

1 ≤
‖x‖p
‖x‖∞

≤ n
1
p . (9)

Proof of (9)

max
1≤j≤n

‖aj‖p ≤ ‖A‖p ≤ n
(p−1)/p max

1≤j≤n
‖aj‖p , (10)

where A = [a1, · · · , an] ∈ Rm×n.

Proof of (10)
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max
i,j
|aij | ≤ ‖A‖p ≤ n

(p−1)/pm1/p max
i,j
|aij | , (11)

where A ∈ Rm×n.

Proof of (11): By (9) and (10) immediately.

m(1−p)/p ‖A‖1 ≤ ‖A‖p ≤ n
(p−1)/p ‖A‖1 . (12)

Proof of (12): By (10) and (8) immediately.
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Hölder inequality:∣∣xT y∣∣ ≤ ‖x‖p ‖y‖q , where
1

p
+

1

q
= 1. (13)

Proof of (13): Let αi = xi

‖x‖p
, βi = yi

‖y‖q
. Then

(αpi )
1/p(βqi )1/q ≤ 1

p
αpi +

1

q
βqi . (Jensen Inequality)

Since ‖α‖p = 1, ‖β‖q = 1, it follows that

n∑
i=1

αiβi ≤
1

p
+

1

q
= 1.

Then we have
∣∣xT y∣∣ ≤ ‖x‖p ‖y‖q.
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max{
∣∣xT y∣∣ : ‖x‖p = 1} = ‖y‖q . (14)

Proof of (14): Take xi = yq−1
i / ‖y‖q/pq . Then we have

‖x‖pp =

∑
|yi|q

‖y‖q/pq

=
‖y‖qq
‖y‖q/pq

= 1. ( ∵ (q − 1)p = 1)

It follows ∣∣∣∣∣
n∑
i=1

xTi yi

∣∣∣∣∣ =

∑
|yi|q

‖y‖q/pq

=
‖y‖qq
‖y‖q/pq

= ‖y‖q .

Remark: ∃ẑ with ‖ẑ‖p = 1 s.t. ‖y‖q = ẑT y. Let z = ẑ/ ‖y‖q. Then we

have ∃z s.t. zT y = 1 with ‖z‖p = 1
‖y‖q

.
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‖A‖p =
∥∥AT∥∥

q
(15)

Proof of (15)

n−
1
p ‖A‖∞ ≤ ‖A‖p ≤ m

1
p ‖A‖∞ . (16)

Proof of (16)

‖A‖2 ≤
√
‖A‖p ‖A‖q, (

1

p
+

1

q
= 1). (17)

Proof of (17)

n(p−q)/pq ‖A‖q ≤ ‖A‖p ≤ m
(q−p)/pq ‖A‖q , (18)

where A ∈ Rm×n and q ≥ p ≥ 1.

Proof of (18)
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Backward error and Forward error

Let x = F (a). We define backward and forward errors in Figure 1. In
Figure 1, x̂+ ∆x = F (a+ ∆a) is called a mixed forward-backward error,
where |∆x| ≤ ε|x|, |∆a| ≤ η|a|.

Definition 20

(i) An algorithm is backward stable, if for all a, it produces a
computed x̂ with a small backward error, i.e., x̂ = F (a+ ∆a) with
∆a small.

(ii) An algorithm is numerical stable, if it is stable in the mixed
forward-backward error sense, i.e., x̂+ ∆x = F (a+ ∆a) with both
∆a and ∆x small.

(iii) If a method which produces answers with forward errors of similar
magnitude to those produced by a backward stable method, is called
a forward stable.
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(i) An algorithm is backward stable, if for all a, it produces a computed x̂
with a small backward error, i.e., x̂ = F (a+�a) with �a small.

(ii) An algorithm is numerical stable, if it is stable in the mixed forward-
backward error sense, i.e., x̂ + �x = F (a + �a) with both �a and �x
small.

(iii) If a method which produces answers with forward errors of similar magni-
tude to those produced by a backward stable method, is called a forward
stable.

1

Figure: Relationship between backward and forward errors.

Remark:

(i) Backward stable ⇒ forward stable, no vice versa!

(ii) Forward error ≤ condition number × backward error
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Consider

x̂− x = F (a+ ∆a)− F (a) = F ′(a)∆a+
F ′′(a+ θ∆a)

2
(∆a)2, θ ∈ (0, 1).

Then we have

x̂− x
x

=

(
aF ′(a)

F (a)

)
∆a

a
+O

(
(∆a)2

)
.

The quantity C(a) =
∣∣∣aF ′(a)
F (a)

∣∣∣ is called the condition number of F. If x or

F is a vector, then the condition number is defined in a similar way using
norms and it measures the maximum relative change, which is attained
for some, but not all ∆a.

Backward error:

{
Àpriori error estimate !

Àposteriori error estimate !
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Lemma 21

{
Ax = b
(A+ ∆A)x̂ = b+ ∆b

with ‖∆A‖ ≤ δ ‖A‖ and ‖∆b‖ ≤ δ ‖b‖. If δκ(A) = r < 1 then A+ ∆A

is nonsingular and ‖x̂‖‖x‖ ≤
1+r
1−r .

Proof: Since
∥∥A−1∆A

∥∥ < δ
∥∥A−1

∥∥ ‖A‖ = r < 1, it follows that
A+ ∆A is nonsingular. From (I +A−1∆A)x̂ = x+A−1∆b, we have

‖x̂‖ ≤
∥∥(I +A−1∆A)−1

∥∥ (‖x‖+ δ
∥∥A−1

∥∥ ‖b‖)
≤ 1

1− r
(
‖x‖+ δ

∥∥A−1
∥∥ ‖b‖)

=
1

1− r

(
‖x‖+ r

‖b‖
‖A‖

)
⇒ ‖x̂‖ ≤ 1

1−r (‖x‖+ r ‖x‖) . (∵ ‖b‖ = ‖Ax‖ ≤ ‖A‖ ‖x‖)

35 / 56



師
大

Vectors and matrices Rank and orthogonality Eigenvalues and Eigenvectors Norm Backward and Forward errors

Normwise Forward Error Bound

Theorem 22

If the condition of Lemma 21 hold, then

‖x− x̂‖
‖x‖

≤ 2δ

1− r
κ(A).

Proof: Since x̂− x = A−1∆b−A−1∆Ax̂, we have

‖x̂− x‖ ≤ δ
∥∥A−1

∥∥ ‖b‖+ δ
∥∥A−1

∥∥ ‖A‖ ‖x̂‖ .
So, by Lemma 21, we have

‖x̂− x‖
‖x‖

≤ δκ(A)
‖b‖

‖A‖ ‖x‖
+ δκ(A)

‖x̂‖
‖x‖

≤ δκ(A)

(
1 +

1 + r

1− r

)
=

2δ

1− r
κ(A).
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Componentwise Forward Error Bounds

Theorem 23

Let Ax = b and (A+ ∆A)x̂ = b+ ∆b. Let |∆A| ≤ δ |A| and
|∆b| ≤ δ |b|. If δκ∞(A) = r < 1 then (A+ ∆A) is nonsingular and

‖x̂− x‖∞
‖x‖∞

≤ 2δ

1− r
∥∥∣∣A−1

∣∣ |A|∥∥∞ .

Proof: Since ‖∆A‖∞ ≤ δ ‖A‖∞ and ‖∆b‖∞ ≤ δ ‖b‖∞, the conditions
of Lemma 21 are satisfied in ∞-norm. Then A+ ∆A is nonsingular and
‖x̂‖∞
‖x‖∞

≤ 1+r
1−r .

Since x̂− x = A−1∆b−A−1∆Ax̂, we have

|x̂− x| ≤
∣∣A−1

∣∣ |∆b|+ ∣∣A−1
∣∣ |∆A| |x̂|

≤ δ
∣∣A−1

∣∣ |b|+ δ
∣∣A−1

∣∣ |A| |x̂| ≤ δ ∣∣A−1
∣∣ |A| (|x|+ |x̂|).
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Taking ∞-norm, we get

‖x̂− x‖∞ ≤ δ
∥∥∣∣A−1

∣∣ |A|∥∥∞(‖x‖∞ +
1 + r

1− r
‖x‖∞

)
=

2δ

1− r
‖
∣∣A−1

∣∣ |A|︸ ︷︷ ︸ ‖∞
Skeel condition number

.
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Condition Number by First Order Approximation

(A+ εF )x(ε) = b+ εf, x(0) = x

ẋ(0) = A−1(f − Fx)

x(ε) = x+ εẋ(0) + o(ε2)

‖x(ε)− x‖
‖x‖

≤ ε
∥∥A−1

∥∥{‖f‖
‖x‖

+ ‖F‖
}

+ o(ε2)

Condition number κ(A) := ‖A‖
∥∥A−1

∥∥
‖b‖ ≤ ‖A‖ ‖x‖ ,

‖x(ε)− x‖
‖x‖

≤ κ(A)(ρA + ρb) + o(ε2).

ρ
A

= ε
‖F‖
‖A‖

, ρb = ε
‖f‖
‖b‖

, κ2(A) =
σ1(A)

σn(A)
.
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Normwise Backward Error Bound

Theorem 24

Let x̂ be the computed solution of Ax = b. Then the normwise backward
error bound

η(x̂) := min {ε|(A+ ∆A)x̂ = b+ ∆b, ‖∆A‖ ≤ ε ‖A‖ , ‖∆b‖ ≤ ε ‖b‖}

is given by

η(x̂) =
‖r‖

‖A‖ ‖x̂‖+ ‖b‖
, (19)

where r = b−Ax̂ is the residual.
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Proof: The right hand side of (19) is a upper bound of η(x̂). This upper
bound is attained for the perturbation (by construction)

∆Amin =
‖A‖ ‖x̂‖ rzT

‖A‖ ‖x̂‖+ ‖b‖ , ∆bmin = − ‖b‖
‖A‖ ‖x̂‖+ ‖b‖r,

where z is the dual vector of x̂, i.e. zT x̂ = 1 and ‖z‖∗ = 1
‖x̂‖ .

Check:
‖∆Amin‖ = η(x̂) ‖A‖ ,

or

‖∆Amin‖ =
‖A‖ ‖x̂‖

∥∥rzT∥∥
‖A‖ ‖x̂‖+ ‖b‖ =

(
‖r‖

‖A‖ ‖x̂‖+ ‖b‖

)
‖A‖ ,

i.e. claim ∥∥∥rzT∥∥∥ =
‖r‖
‖x̂‖ .

Since∥∥∥rzT∥∥∥ = max
‖u‖=1

∥∥∥(rzT )u
∥∥∥ = ‖r‖ max

‖u‖=1

∣∣∣zTu∣∣∣ = ‖r‖ ‖z‖∗ = ‖r‖ 1

‖x̂‖ ,

we have done. Similarly, ‖∆bmin‖ = η(x̂) ‖b‖.
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Componentwise Backward Error Bound

Theorem 25

The componentwise backward error bound

ω(x̂) := min {ε|(A+ ∆A)x̂ = b+ ∆b, |∆A| ≤ ε |A| , |∆b| ≤ ε |b|}

is given by

ω(x̂) = max
i

|r|i
(A |x̂|+ b)i

, (20)

where r = b−Ax̂. (note: ξ/0 = 0 if ξ = 0; ξ/0 =∞ if ξ 6= 0.)

Proof: The right hand side of (20) is a upper bound for ω(x̂). This
bound is attained for the perturbation

∆A = D1AD2, ∆b = −D1b,

where

D1 = diag(ri/(A |x̂|+ b)i) and D2 = diag(sign(x̂i)).
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Determinents and Nearness to Singularity

Bn =


1 −1 · · · −1

1
. . .

...
1 −1

0 1

 , B−1
n =


1 1 · · · 2n−2

. . .
. . .

...
. . . 1

0 1

 ,
det(Bn) = 1, κ∞(Bn) = n2n−1, σn(Bn) ≈ 10−8(n = 30).

Dn =

 10−1 0
. . .

0 10−1

 ,
det(Dn) = 10−n, κp(Dn) = 1, σn(Dn) = 10−1.
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Appendix

Proof of Theorem 7: Without loss of generality (W.L.O.G.) we can
assume that M(x) = ‖x‖∞ and N is arbitrary. We claim

c1‖x‖∞ ≤ N(x) ≤ c2‖x‖∞

or
c1 ≤ N(z) ≤ c2, for z ∈ S = {z ∈ Cn|‖z‖∞ = 1}.

From Lemma 6, N is continuous on S (closed and bounded). By
maximum and minimum principle, there are c1, c2 ≥ 0 and z1, z2 ∈ S
such that

c1 = N(z1) ≤ N(z) ≤ N(z2) = c2.

If c1 = 0, then N(z1) = 0. Thus, z1 = 0. This contradicts that
z1 ∈ S.

Return
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Proof of (3):

‖Ax‖1 =
∑
i

∣∣∣∣∣∣
∑
j

aijxj

∣∣∣∣∣∣ ≤
∑
i

∑
j

|aij | |xj | =
∑
j

|xj |
∑
i

|aij | .

Let
C :=

∑
i

|aik| = max
j

∑
i

|aij | .

Then ‖Ax‖1 ≤ C ‖x‖1, thus ‖A‖1 ≤ C. On the other hand, ‖ek‖1 = 1
and ‖Aek‖1 =

∑n
i=1 |aik| = C.
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Proof of (4):

‖Ax‖∞ = max
i

∣∣∣∣∣∣
∑
j

aijxj

∣∣∣∣∣∣ ≤ max
i

∑
j

|aijxj |

≤ max
i

∑
j

|aij | ‖x‖∞ ≡
∑
j

|akj | ‖x‖∞ ≡ Ĉ ‖x‖∞ .

This implies, ‖A‖∞ ≤ Ĉ. If A = 0, then there is nothing to prove.
Assume A 6= 0. Thus, the k-th row of A is nonzero. Define
z = [zi] ∈ Cn by {

zi = āki

|aki| if aki 6= 0,

zi = 1 if aki = 0.

Then ‖z‖∞ = 1 and akjzj = |akj |, for j = 1, . . . , n. It follows

‖A‖∞ ≥ ‖Az‖∞ = max
i

∣∣∣∣∣∑
j

aijzj

∣∣∣∣∣ ≥
∣∣∣∣∣∑

j

akjzj

∣∣∣∣∣ =
n∑

j=1

|akj | ≡ Ĉ.

Then, ‖A‖∞ ≥ max
1≤i≤n

∑n
j=1 |aij | ≡ Ĉ.
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Proof of (5): Let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 be the eigenvalues of A∗A.
There are muturally orthonormal vectors vj , j = 1, . . . , n such that
(A∗A)vj = λjvj . Let x =

∑
j αjvj . Since

‖Ax‖22 = (Ax,Ax) = (x,A∗Ax),

‖Ax‖22 =

∑
j

αjvj ,
∑
j

αjλjvj

 =
∑
j

λj |αj |2 ≤ λ1 ‖x‖22 .

Therefore, ‖A‖22 ≤ λ1. Equality follows by choosing x = v1 and

‖Av1‖22 = (v1, λ1v1) = λ1. So, we have ‖A‖2 =
√
ρ(A∗A).

Return
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Proof of Theorem 12: Let |λ| = ρ(A) ≡ ρ and x be the associated
eigenvector with ‖x‖ = 1. Then,

ρ(A) = |λ| = ‖λx‖ = ‖Ax‖ ≤ ‖A‖ ‖x‖ = ‖A‖ .

Claim: ‖·‖ε ≤ ρ(A) + ε. There is a unitary U such that A = U∗RU ,
where R is upper triangular.
Let Dt = diag(t, t2, · · · , tn). For t > 0 large enough, the sum of all
absolute values of the off-diagonal elements of DtRD

−1
t is less than ε.

So, it holds
∥∥DtRD

−1
t

∥∥
1
≤ ρ(A) + ε for large t(ε) > 0. Define ‖·‖ε for

any B by

‖B‖ε =
∥∥DtUBU

∗D−1
t

∥∥
1

=
∥∥(UD−1

t )−1B(UD−1
t )
∥∥

1
.

This implies,
‖A‖ε =

∥∥DtRD
−1
t

∥∥ ≤ ρ(A) + ε.

Return
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Proof of Theorem 14: There are x ∈ Cn, y ∈ Cm with
‖x‖2 = ‖y‖2 = 1 such that Ax = σy, where
σ = ‖A‖2 (‖A‖2 = sup

‖x‖2=1

‖Ax‖2). Let V = [x, V1] ∈ Cn×n, and

U = [y, U1] ∈ Cm×m be unitary. Then

A1 ≡ U∗AV =

[
σ w∗

0 B

]
.

Since

∥∥∥∥A1

(
σ
w

)∥∥∥∥2

2

≥ (σ2 + w∗w)2, it follows

‖A1‖22 ≥ σ2 + w∗w from

∥∥∥∥A1

(
σ
w

)∥∥∥∥2

2∥∥∥∥( σ
w

)∥∥∥∥2

2

≥ σ2 + w∗w.

But σ2 = ‖A‖22 = ‖A1‖22, it implies w = 0. Hence, the theorem holds by
induction.

Return
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Proof of (8): Claim ‖x‖q ≤ ‖x‖p, (p ≤ q): It holds

‖x‖q =

∥∥∥∥∥‖x‖p x

‖x‖p

∥∥∥∥∥
q

= ‖x‖p

∥∥∥∥∥ x

‖x‖p

∥∥∥∥∥
q

≤ Cp,q ‖x‖p ,

where
Cp,q = max

‖e‖p=1
‖e‖q , e = (e1, · · · , en)T .

We now show that Cp,q ≤ 1. From p ≤ q, we have

‖e‖qq =

n∑
i=1

|ei|q ≤
n∑
i=1

|ei|p = 1 (by |ei| ≤ 1).

Hence, Cp,q ≤ 1, thus ‖x‖q ≤ ‖x‖p.
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To prove the second inequality: Let α = q/p > 1. Then the Jensen
ineqality holds for the convex function ϕ(x) ≡ xα:∫

Ω

|f |q dx =

∫
Ω

(|f |p)q/p dx ≥
(∫

Ω

|f |p dx
)q/p

with |Ω| = 1. Consider the discrete measure
∑n
i=1

1
n = 1 and

f(i) = |xi|. It follows that

n∑
i=1

|xi|q
1

n
≥

(
n∑
i=1

|xi|p
1

n

)q/p
.

Hence, we have
n−

1
q ‖x‖q ≥ n

− 1
p ‖x‖p .

Thus,
n(q−p)/pq ‖x‖q ≥ ‖x‖p .

Return
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Proof of (9): Let q →∞ and lim
q→∞

‖x‖q = ‖x‖∞:

‖x‖∞ = |xk| = (|xk|q)
1
q ≤

(
n∑
i=1

|xi|q
) 1

q

= ‖x‖q .

On the other hand,

‖x‖q =

(
n∑
i=1

|xi|q
) 1

q

≤ (n ‖x‖q∞)
1
q ≤ n

1
q ‖x‖∞ .

It follows that lim
q→∞

‖x‖q = ‖x‖∞.

Return
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To prove the second inequality: Let α = q/p > 1. Then the Jensen
ineqality holds for the convex function ϕ(x) ≡ xα:∫

Ω

|f |q dx =

∫
Ω

(|f |p)q/p dx ≥
(∫

Ω

|f |p dx
)q/p

with |Ω| = 1.
Consider the discrete measure

∑n
i=1

1
n = 1 and f(i) = |xi|. It follows

that
n∑
i=1

|xi|q
1

n
≥

(
n∑
i=1

|xi|p
1

n

)q/p
.

Hence, we have
n−

1
q ‖x‖q ≥ n

− 1
p ‖x‖p .

Thus,
n(q−p)/pq ‖x‖q ≥ ‖x‖p .

Return
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Proof of (10): The first inequality holds obviously. Now, for the second
inequality, we have

‖Ay‖p ≤
n∑
j=1

|yj | ‖aj‖p

≤
n∑
j=1

|yj |max
j
‖aj‖p

= ‖y‖1 max
j
‖aj‖p

≤ n(p−1)/p max
j
‖aj‖p . (by (8))

Return
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Proof of (15): It holds

max
‖x‖p=1

‖Ax‖p = max
‖x‖p=1

max
‖y‖q=1

∣∣(Ax)T y
∣∣

= max
‖y‖q=1

max
‖x‖p=1

∣∣xT (AT y)
∣∣

= max
‖y‖q=1

∥∥AT y∥∥
q

=
∥∥AT∥∥

q
.

Proof of (16): By (12) and (15), we get

m
1
p ‖A‖∞ = m

1
p

∥∥AT∥∥
1

= m1− 1
q

∥∥AT∥∥
1

= m(q−1)/q
∥∥AT∥∥

1
≥
∥∥AT∥∥

q
= ‖A‖p .

Return
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Proof of (17): It holds

‖A‖p ‖A‖q =
∥∥AT∥∥

q
‖A‖q ≥

∥∥ATA∥∥
q
≥
∥∥ATA∥∥

2
.

The last inequality holds by the following statement: Let S be a
symmetric matrix. Then ‖S‖2 ≤ ‖S‖, for any matrix operator norm ‖·‖.
Since |λ| ≤ ‖S‖,

‖S‖2 =
√
ρ(S∗S) =

√
ρ(S2) = max

λ∈σ(S)
|λ| = |λmax| .

This implies, ‖S‖2 ≤ ‖S‖.

Proof of (18): By (8), we get

‖A‖p = max
‖x‖p=1

‖Ax‖p ≤ max
‖x‖q≤1

m(q−p)/pq ‖Ax‖q = m(q−p)/pq ‖A‖q .

Return
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