Gaussian Elimination for Linear Systems

Tsung-Ming Huang

Department of Mathematics
National Taiwan Normal University
October 3, 2011

Outline

(1) Elementary matrices
(2) $L R$-factorization

3 Gaussian elimination

4 Cholesky factorization
(5) Error estimation for linear systems

Elementary matrices

Let $A \in \mathbb{C}^{n \times n}$ be a nonsingular matrix. We want to solve the linear system $A x=b$ by
(a) Direct methods (finite steps);
(b) Iterative methods (convergence). (See Chapter 4)

$$
\begin{aligned}
A & =\left[\begin{array}{rrrr}
1 & 1 & 0 & 3 \\
2 & 1 & -1 & 1 \\
3 & -1 & -1 & 2 \\
-1 & 2 & 3 & -1
\end{array}\right] \\
\Rightarrow A_{1} & :=L_{1} A \equiv\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
-3 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] A=\left[\begin{array}{rrrr}
1 & 1 & 0 & 3 \\
0 & -1 & -1 & -5 \\
0 & -4 & -1 & -7 \\
0 & 3 & 3 & 2
\end{array}\right] \\
\Rightarrow A_{2} & :=L_{2} A_{1} \equiv\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -4 & 1 & 0 \\
0 & 3 & 0 & 1
\end{array}\right] A_{1}=\left[\begin{array}{rrrr}
1 & 1 & 0 & 3 \\
0 & -1 & -1 & -5 \\
0 & 0 & 3 & 13 \\
0 & 0 & 0 & -13
\end{array}\right] \\
& =L_{2} L_{1} A
\end{aligned}
$$

We have

$$
A=L_{1}^{-1} L_{2}^{-1} A_{2}=L R .
$$

where L and R are lower and upper triangular, respectively.

Question

How to compute L_{1}^{-1} and L_{2}^{-1} ?

$$
\begin{aligned}
& L_{1}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
-3 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]=I-\left[\begin{array}{r}
0 \\
2 \\
3 \\
-1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right] \\
& L_{2}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -4 & 1 & 0 \\
0 & 3 & 0 & 1
\end{array}\right]=I-\left[\begin{array}{r}
0 \\
0 \\
4 \\
-3
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Definition 1

A matrix of the form

$$
I-\alpha x y^{*} \quad\left(\alpha \in \mathbb{F}, x, y \in \mathbb{F}^{n}\right)
$$

is called an elementary matrix.
The eigenvalues of $\left(I-\alpha x y^{*}\right)$ are $\left\{1,1, \ldots, 1,1-\alpha y^{*} x\right\}$. Compute

$$
\left(I-\alpha x y^{*}\right)\left(I-\beta x y^{*}\right)=I-\left(\alpha+\beta-\alpha \beta y^{*} x\right) x y^{*} .
$$

If $\alpha y^{*} x-1 \neq 0$ and let $\beta=\frac{\alpha}{\alpha y^{*} x-1}$, then $\alpha+\beta-\alpha \beta y^{*} x=0$. We have

$$
\left(I-\alpha x y^{*}\right)^{-1}=\left(I-\beta x y^{*}\right)
$$

where $\frac{1}{\alpha}+\frac{1}{\beta}=y^{*} x$.

Example 1

Let $x \in \mathbb{F}^{n}$, and $x^{*} x=1$. Let $H=\left\{z: z^{*} x=0\right\}$ and

$$
Q=I-2 x x^{*} \quad\left(Q=Q^{*}, Q^{-1}=Q\right) .
$$

Then Q reflects each vector with respect to the hyperplane H. Let $y=\alpha x+w, w \in H$. Then, we have

$$
Q y=\alpha Q x+Q w=-\alpha x+w-2\left(x^{*} w\right) x=-\alpha x+w .
$$

Let $y=e_{i}$ to be the i-th column of the unit matrix and $x=l_{i}=\left[0, \cdots, 0, l_{i+1, i}, \cdots, l_{n, i}\right]^{T}$. Then,

$$
I+l_{i} e_{i}^{T}=\left[\begin{array}{ccccc}
1 & & & & \tag{1}\\
& \ddots & & & \\
& & 1 & & \\
& & l_{i+1, i} & & \\
& & \vdots & \ddots & \\
& & l_{n, i} & & 1
\end{array}\right]
$$

Since $e_{i}^{T} l_{i}=0$, we have

$$
\left(I+l_{i} e_{i}^{T}\right)^{-1}=\left(I-l_{i} e_{i}^{T}\right) .
$$

From the equality
$\left(I+l_{1} e_{1}^{T}\right)\left(I+l_{2} e_{2}^{T}\right)=I+l_{1} e_{1}^{T}+l_{2} e_{2}^{T}+l_{1}\left(e_{1}^{T} l_{2}\right) e_{2}^{T}=I+l_{1} e_{1}^{T}+l_{2} e_{2}^{T}$
follows that

$$
\begin{align*}
& \left(I+l_{1} e_{1}^{T}\right) \cdots\left(I+l_{i} e_{i}^{T}\right) \cdots\left(I+l_{n-1} e_{n-1}^{T}\right) \\
= & I+l_{1} e_{1}^{T}+l_{2} e_{2}^{T}+\cdots+l_{n-1} e_{n-1}^{T} \\
= & {\left[\begin{array}{cccc}
1 & & \\
l_{21} & \ddots & 0 & \\
\vdots & \ddots & \ddots & \\
l_{n 1} & \cdots & l_{n, n-1} & 1
\end{array}\right] } \tag{2}
\end{align*}
$$

Theorem 2

A lower triangular with " 1 " on the diagonal can be written as the product of $n-1$ elementary matrices of the form (1).

Remark: $\left(I+l_{1} e_{1}^{T}+\cdots+l_{n-1} e_{n-1}^{T}\right)^{-1}=\left(I-l_{n-1} e_{n-1}^{T}\right) \cdots\left(I-l_{1} e_{1}^{T}\right)$ which can not be simplified as in (2).

$L R$-factorization

Definition 3

Given $A \in \mathbb{C}^{n \times n}$, a lower triangular matrix L with " 1 " on the diagonal and an upper triangular matrix R. If $A=L R$, then the product $L R$ is called a $L R$-factorization (or $L R$-decomposition) of A.

Basic problem

Given $b \neq 0, b \in \mathbb{F}^{n}$. Find a vector $l_{1}=\left[0, l_{21}, \cdots, l_{n 1}\right]^{T}$ and $c \in \mathbb{F}$ such that

$$
\left(I-l_{1} e_{1}^{T}\right) b=c e_{1}
$$

Solution:

$$
\begin{aligned}
& \left\{\begin{array}{l}
b_{1}=c, \\
b_{i}-l_{i 1} b_{1}=0, \quad i=2, \ldots, n
\end{array}\right. \\
& \left\{\begin{array}{l}
b_{1}=0, \quad \text { it has no solution }(\text { since } b \neq 0), \\
b_{1} \neq 0, \quad \text { then } c=b_{1}, \quad l_{i 1}=b_{i} / b_{1}, \quad i=2, \ldots, n
\end{array}\right.
\end{aligned}
$$

Construction of LR-factorization:

Let $A=A^{(0)}=\left[\begin{array}{lll}a_{1}^{(0)} & \cdots & a_{n}^{(0)}\end{array}\right]$. Apply basic problem to $a_{1}^{(0)}$: If $a_{11}^{(0)} \neq 0$, then there exists $L_{1}=I-l_{1} e_{1}^{T}$ such that

$$
\left(I-l_{1} e_{1}^{T}\right) a_{1}^{(0)}=a_{11}^{(0)} e_{1}
$$

Thus

$$
\begin{aligned}
A^{(1)} & =L_{1} A^{(0)} \\
& =\left[\begin{array}{cccc}
L a_{1}^{(0)} & \cdots & L a_{n}^{(0)}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
a_{11}^{(0)} & a_{12}^{(0)} & \cdots & a_{1 n}^{(0)} \\
0 & a_{22}^{(1)} & & a_{2 n}^{(1)} \\
\vdots & \vdots & & \vdots \\
0 & a_{n 2}^{(1)} & \cdots & a_{n n}^{(1)}
\end{array}\right] .
\end{aligned}
$$

The k-th step:

$$
\begin{gather*}
A^{(k)}=L_{k} A^{(k-1)}=L_{k} L_{k-1} \cdots L_{1} A^{(0)} \tag{3}\\
=\left[\begin{array}{cccc|ccc}
a_{11}^{(0)} & \cdots & \cdots & \cdots & \cdots & \cdots & a_{1 n}^{(0)} \\
0 & a_{22}^{(1)} & \cdots & \cdots & \cdots & \cdots & a_{2 n}^{(1)} \\
\vdots & 0 & \ddots & & & & \vdots \\
\vdots & \vdots & \ddots & a_{k k}^{(k-1)} & \cdots & \cdots & a_{k n}^{(k-1)} \\
\hline \vdots & \vdots & & 0 & a_{k+1, k+1}^{(k)} & \cdots & a_{k+1, n}^{(k)} \\
\vdots & \vdots & & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 0 & a_{n, k+1}^{(k)} & \cdots & a_{n n}^{(k)}
\end{array}\right]
\end{gather*}
$$

- If $a_{k k}^{(k-1)} \neq 0$, for $k=1, \ldots, n-1$, then the method is executable and we have that

$$
A^{(n-1)}=L_{n-1} \cdots L_{1} A^{(0)}=R
$$

is an upper triangular matrix. Thus, $A=L R$.

- Explicit representation of L :

$$
\begin{aligned}
L_{k} & =I-l_{k} e_{k}^{T}, \quad L_{k}^{-1}=I+l_{k} e_{k}^{T} \\
L & =L_{1}^{-1} \cdots L_{n-1}^{-1}=\left(I+l_{1} e_{1}^{T}\right) \cdots\left(I+l_{n-1} e_{n-1}^{T}\right) \\
& =I+l_{1} e_{1}^{T}+\cdots+l_{n-1} e_{n-1}^{T} \quad(\text { by (2) })
\end{aligned}
$$

Theorem 4

Let A be nonsingular. Then A has an $L R$-factorization $(A=L R)$ if and only if $\kappa_{i}:=\operatorname{det}\left(A_{i}\right) \neq 0$, where A_{i} is the leading principal matrix of A, i.e.,

$$
A_{i}=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 i} \\
\vdots & & \vdots \\
a_{i 1} & \cdots & a_{i i}
\end{array}\right]
$$

for $i=1, \ldots, n-1$.
Proof: (Necessity " \Rightarrow "): Since $A=L R$, we have

$$
\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 i} \\
\vdots & & \vdots \\
a_{i 1} & \cdots & a_{i i}
\end{array}\right]=\left[\begin{array}{ccc}
l_{11} & & 0 \\
\vdots & \ddots & \\
l_{i 1} & \cdots & l_{i i}
\end{array}\right]\left[\begin{array}{ccc}
r_{11} & \cdots & r_{1 i} \\
& \ddots & \vdots \\
0 & & r_{i i}
\end{array}\right]
$$

From $\operatorname{det}(A) \neq 0$ follows that $\operatorname{det}(L) \neq 0$ and $\operatorname{det}(R) \neq 0$. Thus, $l_{j j} \neq 0$ and $r_{j j} \neq 0$, for $j=1, \ldots, n$. Hence $\kappa_{i}=l_{11} \cdots l_{i i} r_{11} \cdots r_{i i} \neq 0$.
(Sufficiency " \Leftarrow "): From (3) we have

$$
A^{(0)}=\left(L_{1}^{-1} \cdots L_{i}^{-1}\right) A^{(i)} .
$$

Consider the $(i+1)$-th leading principle determinant. From (3) we have

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
a_{11} & \cdots & a_{i, i+1} \\
\vdots & & \vdots \\
a_{i+1} & \cdots & a_{i+1, i+1}
\end{array}\right] } \\
&=\left[\begin{array}{cccccc}
1 & & & & 0 \\
l_{21} & \ddots & & & \\
\vdots & \ddots & \ddots & & \\
\vdots & & \ddots & \ddots & \\
l_{i+1,1} & \cdots & \cdots & l_{i+1, i} & 1
\end{array}\right]\left[\begin{array}{ccccc}
a_{11}^{(0)} & a_{12}^{(0)} & \cdots & \cdots & a_{1, i+1}^{(0)} \\
& a_{22}^{(1)} & \cdots & \cdots & a_{2, i+1}^{(1)} \\
& & \ddots & & \vdots \\
& & & a_{i i}^{(i-1)} & a_{i, i+1}^{(i-1)} \\
0 & & & & a_{i+1, i+1}^{(i)}
\end{array}\right]
\end{aligned}
$$

Thus, $\kappa_{i}=1 \cdot a_{11}^{(0)} a_{22}^{(1)} \cdots a_{i+1, i+1}^{(i)} \neq 0$ which implies $a_{i+1, i+1}^{(i)} \neq 0$.
Therefore, the $L R$-factorization of A exists.

Theorem 5

If a nonsingular matrix A has an $L R$-factorization with $A=L R$ and $l_{11}=\cdots=l_{n n}=1$, then the factorization is unique.

Proof: Let $A=L_{1} R_{1}=L_{2} R_{2}$. Then $L_{2}^{-1} L_{1}=R_{2} R_{1}^{-1}=I$.

Corollary 6

If a nonsingular matrix A has an $L R$-factorization with $A=L D R$, where D is diagonal, L and R^{T} are unit lower triangular (with one on the diagonal) if and only if $\kappa_{i} \neq 0$.

Theorem 7

Let A be a nonsingular matrix. Then there exists a permutation P, such that $P A$ has an $L R$-factorization.

Proof: By construction! Consider (3): There is a permutation P_{k}, which interchanges the k-th row with a row of index large than k, such that $0 \neq a_{k k}^{(k-1)}\left(\in P_{k} A^{(k-1)}\right)$. This procedure is executable, for $k=1, \ldots, n-1$. So we have

$$
\begin{equation*}
L_{n-1} P_{n-1} \cdots L_{k} P_{k} \cdots L_{1} P_{1} A^{(0)}=R \tag{4}
\end{equation*}
$$

Let P be a permutation which affects only elements $k+1, \ldots, n$. It holds

$$
P\left(I-l_{k} e_{k}^{T}\right) P^{-1}=I-\left(P l_{k}\right) e_{k}^{T}=I-\tilde{l}_{k} e_{k}^{T}=\tilde{L}_{k}, \quad\left(e_{k}^{T} P^{-1}=e_{k}^{T}\right)
$$

where \tilde{L}_{k} is lower triangular. Hence we have

$$
P L_{k}=\tilde{L}_{k} P .
$$

Now write all P_{k} in (4) to the right as

$$
L_{n-1} \tilde{L}_{n-2} \cdots \tilde{L}_{1} P_{n-1} \cdots P_{1} A^{(0)}=R .
$$

Then we have $P A=L R$ with $L^{-1}=L_{n-1} \tilde{L}_{n-2} \cdots \tilde{L}_{1}$ and $P=P_{n-1} \cdots P_{1}$.

Gaussian elimination

Given a linear system

$$
A x=b
$$

with A nonsingular. We first assume that A has an $L R$-factorization, i.e., $A=L R$. Thus

$$
L R x=b .
$$

We then (i) solve $L y=b$; (ii) solve $R x=y$. These imply that $L R x=L y=b$. From (4), we have

$$
L_{n-1} \cdots L_{2} L_{1}(A \mid b)=\left(R \mid L^{-1} b\right) .
$$

Algorithm: Gaussian elimination without permutation

```
1: for \(k=1, \ldots, n-1\) do
2: if \(a_{k k}=0\) then
3: Stop.
4: else
5: \(\quad \omega_{j}:=a_{k j}(j=k+1, \ldots, n)\);
6: end if
7: \(\quad\) for \(i=k+1, \ldots, n\) do
8: \(\quad \eta:=a_{i k} / a_{k k}, a_{i k}:=\eta\);
9: \(\quad\) for \(j=k+1, \ldots, n\) do
10: \(\quad a_{i j}:=a_{i j}-\eta \omega_{j}, b_{j}:=b_{j}-\eta b_{k}\).
11: end for
12: end for
13: end for
14: \(x_{n}=b_{n} / a_{n n}\);
15: for \(i=n-1, n-2, \ldots, 1\) do
16: \(\quad x_{i}=\left(b_{i}-\sum_{j=i+1}^{n} a_{i j} x_{j}\right) / a_{i i}\).
17: end for
```

Cost of computation (A flop is a floating point operation):
(i) $L R$-factorization: $2 n^{3} / 3$ flops;
(ii) Computation of $y: n^{2}$ flops;
(iii) Computation of $x: n^{2}$ flops.

For $A^{-1}: 8 / 3 n^{3} \approx 2 n^{3} / 3+2 k n^{2}$ ($k=n$ linear systems).

Pivoting: (a) Partial pivoting; (b) Complete pivoting.
From (3), we have

$$
A^{(k-1)}=\left[\begin{array}{cccccc}
a_{11}^{(0)} & \cdots & \cdots & \cdots & \cdots & a_{1 n}^{(0)} \\
0 & \ddots & & & & \vdots \\
\vdots & & a_{k-1, k-1}^{(k-2)} & \cdots & \cdots & a_{k-1, n}^{(k-2)} \\
\vdots & & 0 & a_{k k}^{(k-1)} & \cdots & a_{k n}^{(k-1)} \\
\vdots & & \vdots & \vdots & & \vdots \\
0 & \cdots & 0 & a_{n k}^{(k-1)} & \cdots & a_{n n}^{(k-1)}
\end{array}\right] .
$$

Partial pivoting

$$
\left\{\begin{array}{l}
\text { Find a } p \in\{k, \ldots, n\} \text { such that } \tag{5}\\
\qquad\left|a_{p k}\right|=\max _{k \leq i \leq n}\left|a_{i k}\right| \quad\left(r_{k}=p\right) \\
\text { swap } a_{k j} \text { with } a_{p j} \text { for } j=k, \ldots, n, \text { and } b_{k} \text { with } b_{p}
\end{array}\right.
$$

- Replacing stopping step in Line 3 of Gaussian elimination Algorithm by (5), we have a new factorization of A with partial pivoting, i.e., $P A=L R$ (by Theorem 7 and $\left|l_{i j}\right| \leq 1$ for $i, j=1, \ldots, n$).
- For solving linear system $A x=b$, we use

$$
P A x=P b \Rightarrow L(R x)=P^{T} b \equiv \tilde{b} .
$$

- It needs extra $n(n-1) / 2$ comparisons.

Complete pivoting

$$
\left\{\begin{array}{l}
\text { Find } p, q \in\{k, \ldots, n\} \text { such that } \\
\qquad\left|a_{p q}\right| \leq \max _{k \leq i, j \leq n}\left|a_{i j}\right|,\left(r_{k}:=p, c_{k}:=q\right) \tag{6}\\
\text { swap } a_{k j} \text { and } b_{k} \text { with } a_{p j} \text { and } b_{p}, \text { resp., }(j=k, \ldots, n), \\
\text { swap } a_{i k} \text { with } a_{i q}(i=1, \ldots, n) .
\end{array}\right.
$$

- Replacing stopping step in Line 3 of Gaussian elimination Algorithm by (6), we also have a new factorization of A with complete pivoting, i.e., $P A \Pi=L R$ (by Theorem 7 and $\left|l_{i j}\right| \leq 1$, for $i, j=1, \ldots, n$).
- For solving linear system $A x=b$, we use

$$
P A \Pi\left(\Pi^{T} x\right)=P b \Rightarrow L R \tilde{x}=\tilde{b} \Rightarrow x=\Pi \tilde{x}
$$

- It needs $n^{3} / 3$ comparisons.

Let

$$
A=\left[\begin{array}{cc}
10^{-4} & 1 \\
1 & 1
\end{array}\right]
$$

be in three decimal-digit floating point arithmetic.

- $\kappa(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty} \approx 4$. A is well-conditioned.
- Without pivoting:

$$
\begin{aligned}
L & =\left[\begin{array}{cc}
1 & 0 \\
f l\left(1 / 10^{-4}\right) & 1
\end{array}\right], \quad f l\left(1 / 10^{-4}\right)=10^{4}, \\
R & =\left[\begin{array}{cc}
10^{-4} & 1 \\
0 & f l\left(1-10^{4} \cdot 1\right)
\end{array}\right], \quad f l\left(1-10^{4} \cdot 1\right)=-10^{4} . \\
L R & =\left[\begin{array}{cc}
1 & 0 \\
10^{4} & 1
\end{array}\right]\left[\begin{array}{cc}
10^{-4} & 1 \\
0 & -10^{4}
\end{array}\right]=\left[\begin{array}{cc}
10^{-4} & 1 \\
1 & 0
\end{array}\right] \neq A .
\end{aligned}
$$

- Here a_{22} entirely "lost" from computation. It is numerically unstable.
- Let $A x=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Then $x \approx\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
- But $L y=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ solves $y_{1}=1$ and $y_{2}=f l\left(2-10^{4} \cdot 1\right)=-10^{4}$,
- $R \hat{x}=y$ solves $\hat{x}_{2}=f l\left(\left(-10^{4}\right) /\left(-10^{4}\right)\right)=1$, $\hat{x}_{1}=f l\left((1-1) / 10^{-4}\right)=0$.
- We have an erroneous solution with $\operatorname{cond}(L), \operatorname{cond}(R) \approx 10^{8}$.

Partial pivoting:

$$
\begin{aligned}
L & =\left[\begin{array}{cc}
1 & 0 \\
f l\left(10^{-4} / 1\right) & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
10^{-4} & 1
\end{array}\right], \\
R & =\left[\begin{array}{cc}
1 & 1 \\
0 & f l\left(1-10^{-4}\right)
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] .
\end{aligned}
$$

L and R are both well-conditioned.

$L D R$ - and $L L^{T}$-factorizations

Algorithm 2

[Crout's factorization or compact method]

$$
\begin{aligned}
& \text { For } k=1, \ldots, n \\
& \text { for } p=1,2, \ldots, k-1, \\
& \qquad r_{p}:=d_{p} a_{p k}, \\
& \omega_{p}:=a_{k p} d_{p} \\
& d_{k}:=a_{k k}-\sum_{p=1}^{k-1} a_{k p} r_{p} \\
& \text { if } d_{k}=0, \text { then stop; else } \\
& \text { for } i=k+1, \ldots, n, \\
& \\
& \quad a_{i k}:=\left(a_{i k}-\sum_{p=1}^{k-1} a_{i p} r_{p}\right) / d_{k} \\
& \\
& \quad a_{k i}:=\left(a_{k i}-\sum_{p=1}^{k-1} \omega_{p} a_{p i}\right) / d_{k}
\end{aligned}
$$

Cost: $n^{3} / 3$ flops.

- With partial pivoting: see Wilkinson EVP pp.225-.
- Advantage: One can use double precision for inner product.

Theorem 8

If A is nonsingular, real and symmetric, then A has a unique $L D L^{T}$ factorization, where D is diagonal and L is a unit lower triangular matrix (with one on the diagonal).

Proof: $A=L D R=A^{T}=R^{T} D L^{T}$. It implies $L=R^{T}$.

Theorem 9

If A is symmetric and positive definite, then there exists a lower triangular $G \in \mathbb{R}^{n \times n}$ with positive diagonal elements such that $A=G G^{T}$.

Proof:

A is symmetric positive definite
$\Leftrightarrow \quad x^{T} A x \geq 0$ for all nonzero vector $x \in \mathbb{R}^{n}$
$\Leftrightarrow \quad \kappa_{i} \geq 0$ for $i=1, \ldots, n$
$\Leftrightarrow \quad$ all eigenvalues of A are positive
From Corollary 6 and Theorem 8 we have $A=L D L^{T}$. From $L^{-1} A L^{-T}=D$ follows that

$$
d_{k}=\left(e_{k}^{T} L^{-1}\right) A\left(L^{-T} e_{k}\right)>0 .
$$

Thus, $G=L \operatorname{diag}\left\{d_{1}^{1 / 2}, \cdots, d_{n}^{1 / 2}\right\}$ is real, and then $A=G G^{T}$.

Derive an algorithm for computing the Cholesky factorization $A=G G^{T}$: Let

$$
A \equiv\left[a_{i j}\right] \text { and } G=\left[\begin{array}{cccc}
g_{11} & 0 & \cdots & 0 \\
g_{21} & g_{22} & \ddots & \vdots \\
\vdots & \vdots & \ddots & 0 \\
g_{n 1} & g_{n 2} & \cdots & g_{n n}
\end{array}\right]
$$

Assume the first $k-1$ columns of G have been determined after $k-1$ steps. By componentwise comparison with

$$
\left[a_{i j}\right]=\left[\begin{array}{cccc}
g_{11} & 0 & \cdots & 0 \\
g_{21} & g_{22} & \ddots & \vdots \\
\vdots & \vdots & \ddots & 0 \\
g_{n 1} & g_{n 2} & \cdots & g_{n n}
\end{array}\right]\left[\begin{array}{cccc}
g_{11} & g_{21} & \cdots & g_{n 1} \\
0 & g_{22} & \cdots & g_{n 2} \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & g_{n n}
\end{array}\right]
$$

one has

$$
a_{k k}=\sum_{j=1}^{k} g_{k j}^{2}
$$

which gives

$$
g_{k k}^{2}=a_{k k}-\sum_{j=1}^{k-1} g_{k j}^{2}
$$

Moreover,

$$
a_{i k}=\sum_{j=1}^{k} g_{i j} g_{k j}, \quad i=k+1, \ldots, n
$$

hence the k-th column of G can be computed by

$$
g_{i k}=\left(a_{i k}-\sum_{j=1}^{k-1} g_{i j} g_{k j}\right) / g_{k k}, \quad i=k+1, \ldots, n
$$

Cholesky Factorization

Input: $n \times n$ symmetric positive definite matrix A.
Output: Cholesky factorization $A=G G^{T}$.
1: Initialize $G=0$.
2: for $k=1, \ldots, n$ do
3: $\quad G(k, k)=\sqrt{A(k, k)-\sum_{j=1}^{k-1} G(k, j) G(k, j)}$
4: \quad for $i=k+1, \ldots, n$ do
5: $\quad G(i, k)=\left(A(i, k)-\sum_{j=1}^{k-1} G(i, j) G(k, j)\right) / G(k, k)$
6: end for
7: end for
In addition to n square root operations, there are approximately

$$
\sum_{k=1}^{n}[2 k-2+(2 k-1)(n-k)]=\frac{1}{3} n^{3}+\frac{1}{2} n^{2}-\frac{5}{6} n
$$

floating-point arithmetic required by the algorithm.

For solving symmetric, indefinite systems: See Golub/ Van Loan Matrix Computation pp. 159-168. $P A P^{T}=L D L^{T}, D$ is 1×1 or 2×2 block-diagonal matrix, P is a permutation and L is lower triangular with one on the diagonal.

Error estimation for linear systems

Consider the linear system

$$
\begin{equation*}
A x=b, \tag{7}
\end{equation*}
$$

and the perturbed linear system

$$
\begin{equation*}
(A+\delta A)(x+\delta x)=b+\delta b, \tag{8}
\end{equation*}
$$

where δA and δb are errors of measure or round-off in factorization.

Definition 10

Let $\|\cdot\|$ be an operator norm and A be nonsingular. Then $\kappa \equiv \kappa(A)=\|A\|\left\|A^{-1}\right\|$ is a condition number of A corresponding to $\|\|$.

Theorem 11 (Forward error bound)

Let x be the solution of (7) and $x+\delta x$ be the solution of the perturbed linear system (8). If $\|\delta A\|\left\|A^{-1}\right\|<1$, then

$$
\frac{\|\delta x\|}{\|x\|} \leq \frac{\kappa}{1-\kappa \frac{\|\delta A\|}{\|A\|}}\left(\frac{\|\delta A\|}{\|A\|}+\frac{\|\delta b\|}{\|b\|}\right)
$$

Proof: From (8) we have

$$
(A+\delta A) \delta x+A x+\delta A x=b+\delta b
$$

Thus,

$$
\begin{equation*}
\delta x=-(A+\delta A)^{-1}[(\delta A) x-\delta b] . \tag{9}
\end{equation*}
$$

Here, Corollary 2.7 implies that $(A+\delta A)^{-1}$ exists. Now,

$$
\left\|(A+\delta A)^{-1}\right\|=\left\|\left(I+A^{-1} \delta A\right)^{-1} A^{-1}\right\| \leq\left\|A^{-1}\right\| \frac{1}{1-\left\|A^{-1}\right\|\|\delta A\|} .
$$

On the other hand, $b=A x$ implies $\|b\| \leq\|A\|\|x\|$. So,

$$
\begin{equation*}
\frac{1}{\|x\|} \leq \frac{\|A\|}{\|b\|} \tag{10}
\end{equation*}
$$

From (9) follows that $\|\delta x\| \leq \frac{\left\|A^{-1}\right\|}{1-\left\|A^{-1}\right\|\|\delta A\|}(\|\delta A\|\|x\|+\|\delta b\|)$. By using (10), the inequality (11) is proved.

Remark 1

If $\kappa(A)$ is large, then A (for the linear system $A x=b$) is called ill-conditioned, else well-conditioned.

Error analysis for Gaussian algorithm

A computer in characterized by four integers:
(a) the machine base β;
(b) the precision t;
(c) the underflow limit L;
(d) the overflow limit U.

Define the set of floating point numbers.

$$
F=\left\{f= \pm 0 . d_{1} d_{2} \cdots d_{t} \times \beta^{e} \mid 0 \leq d_{i}<\beta, d_{1} \neq 0, L \leq e \leq U\right\} \cup\{0\}
$$

Let $G=\left\{x \in \mathbb{R}|m \leq|x| \leq M\} \cup\{0\}\right.$, where $m=\beta^{L-1}$ and $M=\beta^{U}\left(1-\beta^{-t}\right)$ are the minimal and maximal numbers of $F \backslash\{0\}$ in absolute value, respectively.

We define an operator $f l: G \rightarrow F$ by

$$
f l(x)=\text { the nearest } c \in F \text { to } x \text { by rounding arithmetic. }
$$

One can show that $f l$ satisfies

$$
f l(x)=x(1+\varepsilon), \quad|\varepsilon| \leq e p s,
$$

where eps $=\frac{1}{2} \beta^{1-t}$. (If $\beta=2$, then eps $=2^{-t}$). It follows that

$$
f l(a \circ b)=(a \circ b)(1+\varepsilon)
$$

or

$$
f l(a \circ b)=(a \circ b) /(1+\varepsilon),
$$

where $|\varepsilon| \leq e p s$ and $\circ=+,-, \times, /$.

Given $x, y \in \mathbb{R}^{n}$. The following algorithm computes $x^{T} y$ and stores the result in s.

$$
\begin{aligned}
& s=0 \\
& \text { for } k=1, \ldots, n \\
& \qquad s=s+x_{k} y_{k} .
\end{aligned}
$$

Theorem 12

If $n 2^{-t} \leq 0.01$, then

$$
f l\left(\sum_{k=1}^{n} x_{k} y_{k}\right)=\sum_{k=1}^{n} x_{k} y_{k}\left[1+1.01(n+2-k) \theta_{k} 2^{-t}\right],\left|\theta_{k}\right| \leq 1
$$

- Proof of Theorem 12

Let the exact $L R$-factorization of A be L and $R(A=L R)$ and let \tilde{L}, \tilde{R} be the $L R$-factorization of A by using Gaussian Algorithm (without pivoting). There are two possibilities:
(i) Forward error analysis: Estimate $|L-\tilde{L}|$ and $|R-\tilde{R}|$.
(ii) Backward error analysis: Let $\tilde{L} \tilde{R}$ be the exact $L R$-factorization of a perturbed matrix $\tilde{A}=A+E$. Then E will be estimated, i.e., $|E| \leq ?$

Theorem 13

The LR-factorization \tilde{L} and \tilde{R} of A using Gaussian Elimination with partial pivoting satisfies

$$
\begin{equation*}
\tilde{L} \tilde{R}=A+E, \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\|E\|_{\infty} \leq n^{2} \rho\|A\|_{\infty} 2^{-t} \tag{2.7}
\end{equation*}
$$

with

$$
\begin{equation*}
\rho=\max _{i, j, k}\left|a_{i j}^{(k)}\right| /\|A\|_{\infty} . \tag{2.8}
\end{equation*}
$$

Applying Theorem 12 to the linear system $\tilde{L} y=b$ and $\tilde{R} x=y$, respectively, the solution x satisfies

$$
(\tilde{L}+\delta \tilde{L})(\tilde{R}+\delta \tilde{R}) x=b
$$

or

$$
\begin{equation*}
(\tilde{L} \tilde{R}+(\delta \tilde{L}) \tilde{R}+\tilde{L}(\delta \tilde{R})+(\delta \tilde{L})(\delta \tilde{R})) x=b \tag{2.9}
\end{equation*}
$$

Since $\tilde{L} \tilde{R}=A+E$, substituting this equation into (2.9) we get

$$
[A+E+(\delta \tilde{L}) \tilde{R}+\tilde{L}(\delta \tilde{R})+(\delta \tilde{L})(\delta \tilde{R})] x=b
$$

The entries of \tilde{L} and \tilde{R} satisfy

$$
\left|\widetilde{l}_{i j}\right| \leq 1, \text { and }\left|\widetilde{r}_{i j}\right| \leq \rho\|A\|_{\infty}
$$

Therefore, we get

$$
\left\{\begin{array}{l}
\|\tilde{L}\|_{\infty} \leq n \tag{2.10}\\
\|\tilde{R}\|_{\infty} \leq n \rho\|A\|_{\infty} \\
\|\delta \tilde{L}\|_{\infty} \leq \frac{n(n+1)}{2} 1.01 \cdot 2^{-t} \\
\|\delta \tilde{R}\|_{\infty} \leq \frac{n(n+1)}{2} 1.01 \rho 2^{-t}
\end{array}\right.
$$

In practical implementation we usually have $n^{2} 2^{-t} \ll 1$. So it holds

$$
\|\delta \tilde{L}\|_{\infty}\|\delta \tilde{R}\|_{\infty} \leq n^{2} \rho\|A\|_{\infty} 2^{-t}
$$

Let

$$
\begin{equation*}
\delta A=E+(\delta \tilde{L}) \tilde{R}+\tilde{L}(\delta \tilde{R})+(\delta \tilde{L})(\delta \tilde{R}) . \tag{2.11}
\end{equation*}
$$

Then, from (2.7) and (2.10) we get

$$
\begin{align*}
\|\delta A\|_{\infty} & \leq\|E\|_{\infty}+\|\delta \tilde{L}\|_{\infty}\|\tilde{R}\|_{\infty}+\|\tilde{L}\|_{\infty}\|\delta \tilde{R}\|_{\infty}+\|\delta \tilde{L}\|_{\infty}\|\delta \tilde{R}\|_{\infty} \\
& \leq 1.01\left(n^{3}+3 n^{2}\right) \rho\|A\|_{\infty} 2^{-t} \tag{2.12}
\end{align*}
$$

Theorem 14

For a linear system $A x=b$ the solution x computed by Gaussian Elimination with partial pivoting is the exact solution of the equation $(A+\delta A) x=b$ and δA satisfies (2.12).

Remark: The quantity ρ defined by (2.9) is called a growth factor. The growth factor measures how large the numbers become during the process of elimination. In practice, ρ is usually of order 10 for partial pivot selection. But it can be as large as $\rho=2^{n-1}$, when

$$
A=\left[\begin{array}{cccccc}
1 & 0 & \cdots & \cdots & 0 & 1 \\
-1 & 1 & 0 & \cdots & 0 & 1 \\
\vdots & -1 & \ddots & \ddots & \vdots & 1 \\
\vdots & \vdots & \ddots & \ddots & 0 & 1 \\
-1 & -1 & \cdots & -1 & 1 & 1 \\
-1 & -1 & \cdots & \cdots & -1 & 1
\end{array}\right]
$$

Better estimates hold for special types of matrices. For example in the case of upper Hessenberg matrices, that is, matrices of the form

$$
A=\left[\begin{array}{cccc}
\times & \cdots & \cdots & \times \\
\times & \ddots & \ddots & \vdots \\
& \ddots & \ddots & \vdots \\
0 & & \times & \times
\end{array}\right]
$$

the bound $\rho \leq(n-1)$ can be shown. (Hessenberg matrices arise in eigenvalus problems.)

For tridiagonal matrices

$$
A=\left[\begin{array}{ccccc}
\alpha_{1} & \beta_{2} & & & 0 \\
\gamma_{2} & \ddots & \ddots & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & \beta_{n} \\
0 & & & \gamma_{n} & \alpha_{n}
\end{array}\right]
$$

it can even be shown that $\rho \leq 2$ holds for partial pivot selection. Hence, Gaussian elimination is quite numerically stable in this case.

For complete pivot selection, Wilkinson (1965) has shown that

$$
\left|a_{i j}^{k}\right| \leq f(k) \max _{i, j}\left|a_{i j}\right|
$$

with the function

$$
f(k):=k^{\frac{1}{2}}\left[2^{1} 3^{\frac{1}{2}} 4^{\frac{1}{3}} \cdots k^{\frac{1}{(k-1)}}\right]^{\frac{1}{2}} .
$$

This function grows relatively slowly with k :

k	10	20	50	100
$f(k)$	19	67	530	3300

Even this estimate is too pessimistic in practice. Up until now, no matrix has been found which fails to satisfy

$$
\left|a_{i j}^{(k)}\right| \leq(k+1) \max _{i, j}\left|a_{i j}\right| \quad k=1,2, \ldots, n-1
$$

when complete pivot selection is used. This indicates that Gaussian elimination with complete pivot selection is usually a stable process. Despite this, partial pivot selection is preferred in practice, for the most part, because:
(i) Complete pivot selection is more costly than partial pivot selection. (To compute $A^{(i)}$, the maximum from among $(n-i+1)^{2}$ elements must be determined instead of $n-i+1$ elements as in partial pivot selection.)
(ii) Special structures in a matrix, i.e. the band structure of a tridiagonal matrix, are destroyed in complete pivot selection.

Iterative Improvement:

Suppose that the linear system $A x=b$ has been solved via the $L R$-factorization $P A=L R$. Now we want to improve the accuracy of the computed solution x. We compute

$$
\left\{\begin{align*}
r & =b-A x \tag{2.13}\\
L y & =P r, \quad R z=y \\
x_{\text {new }} & =x+z .
\end{align*}\right.
$$

Then in exact arithmatic we have

$$
A x_{\text {new }}=A(x+z)=(b-r)+A z=b .
$$

This leads to solve

$$
A z=r
$$

by using $P A=L R$.

Unfortunately, $r=f l(b-A x)$ renders an $x_{\text {new }}$ that is no more accurate than x. It is necessary to compute the residual $b-A x$ with extended precision floating arithmetic.

Algorithm 4

$$
\begin{array}{lc}
\text { Compute } P A=L R \quad \text { (t-digit) } \\
\text { Repeat: } r:=b-A x \quad \text { (2t-digit) } \\
\text { Solve } L y=P r \text { for } y & \text { (t-digit) } \\
\text { Solve } R z=y \text { for } z & \text { (t-digit) } \\
\text { Update } x=x+z & \text { (t-digit) }
\end{array}
$$

From Theorem 14 we have $(A+\delta A) z=r$, i.e.,

$$
\begin{equation*}
A(I+F) z=r \text { with } F=A^{-1} \delta A . \tag{2.14}
\end{equation*}
$$

Theorem 15

Let $\left\{x_{k}\right\}$ be the sequence constructed by Algorithm 4 for solving $A x=b$ and $x^{*}=A^{-1} b$ be the exact solution. Assume F_{k} in (2.14) satisfying $\left\|F_{k}\right\| \leq \sigma<1 / 2$ for all k. Then $\left\{x_{k}\right\} \rightarrow x^{*}$.

Proof of Theorem 15

Corollary 16

If

$$
1.01\left(n^{3}+3 n^{2}\right) \rho 2^{-t}\|A\|\left\|A^{-1}\right\|<1 / 2
$$

then Algorithm 4 converges.
Proof: From (2.14) and (2.12) follows that

$$
\left\|F_{k}\right\| \leq 1.01\left(n^{3}+3 n^{2}\right) \rho 2^{-t} \kappa(A)<1 / 2
$$

Appendix

Proof of Theorem 12: Let $s_{p}=f l\left(\sum_{k=1}^{p} x_{k} y_{k}\right)$ be the partial sum in Algorithm 41. Then

$$
s_{1}=x_{1} y_{1}\left(1+\delta_{1}\right)
$$

with $\left|\delta_{1}\right| \leq e p s$ and for $p=2, \ldots, n$,

$$
s_{p}=f l\left[s_{p-1}+f l\left(x_{p} y_{p}\right)\right]=\left[s_{p-1}+x_{p} y_{p}\left(1+\delta_{p}\right)\right]\left(1+\varepsilon_{p}\right)
$$

with $\left|\delta_{p}\right|,\left|\varepsilon_{p}\right| \leq e p s$. Therefore

$$
f l\left(x^{T} y\right)=s_{n}=\sum_{k=1}^{n} x_{k} y_{k}\left(1+\gamma_{k}\right)
$$

where $\left(1+\gamma_{k}\right)=\left(1+\delta_{k}\right) \prod_{j=k}^{n}\left(1+\varepsilon_{j}\right)$, and $\varepsilon_{1} \equiv 0$. Thus,

$$
f l\left(\sum_{k=1}^{n} x_{k} y_{k}\right)=\sum_{k=1}^{n} x_{k} y_{k}\left[1+1.01(n+2-k) \theta_{k} 2^{-t}\right] .
$$

The result follows immediately from the following useful Lemma.

Lemma 7.1

If $(1+\alpha)=\prod_{k=1}^{n}\left(1+\alpha_{k}\right)$, where $\left|\alpha_{k}\right| \leq 2^{-t}$ and $n 2^{-t} \leq 0.01$, then

$$
\prod_{k=1}^{n}\left(1+\alpha_{k}\right)=1+1.01 n \theta 2^{-t} \text { with }|\theta| \leq 1
$$

Proof: From assumption it is easily seen that

$$
\left(1-2^{-t}\right)^{n} \leq \prod_{k=1}^{n}\left(1+\alpha_{k}\right) \leq\left(1+2^{-t}\right)^{n}
$$

Expanding the Taylor expression of $(1-x)^{n}$ as $-1<x<1$, we get

$$
(1-x)^{n}=1-n x+\frac{n(n-1)}{2}(1-\theta x)^{n-2} x^{2} \geq 1-n x .
$$

Hence

$$
\left(1-2^{-t}\right)^{n} \geq 1-n 2^{-t}
$$

Now, we estimate the upper bound of $\left(1+2^{-t}\right)^{n}$:

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=1+x+\frac{x}{2} x\left(1+\frac{x}{3}+\frac{2 x^{2}}{4!}+\cdots\right)
$$

If $0 \leq x \leq 0.01$, then

$$
1+x \leq e^{x} \leq 1+x+0.01 x \frac{1}{2} e^{x} \leq 1+1.01 x
$$

(Here, we use the fact $e^{0.01}<2$ to the last inequality.) Let $x=2^{-t}$.
Then the left inequality of (55) implies

$$
\left(1+2^{-t}\right)^{n} \leq e^{2^{-t} n}
$$

Let $x=2^{-t} n$. Then the second inequality of (55) implies

$$
e^{2^{-t} n} \leq 1+1.01 n 2^{-t}
$$

From (55) and (55) we have

$$
\left(1+2^{-t}\right)^{n} \leq 1+1.01 n 2^{-t} .
$$

Proof of Theorem 15: From (2.14) and $r_{k}=b-A x_{k}$ we have

$$
A\left(I+F_{k}\right) z_{k}=b-A x_{k} .
$$

Since A is nonsingular, we have $\left(I+F_{k}\right) z_{k}=x^{*}-x_{k}$.
From $x_{k+1}=x_{k}+z_{k}$ we have $\left(I+F_{k}\right)\left(x_{k+1}-x_{k}\right)=x^{*}-x_{k}$, i.e.,

$$
\begin{equation*}
\left(I+F_{k}\right) x_{k+1}=F_{k} x_{k}+x^{*} \tag{2.15}
\end{equation*}
$$

Subtracting both sides of (2.15) from $\left(I+F_{k}\right) x^{*}$ we get

$$
\left(I+F_{k}\right)\left(x_{k+1}-x^{*}\right)=F_{k}\left(x_{k}-x^{*}\right) .
$$

Then, $x_{k+1}-x^{*}=\left(I+F_{k}\right)^{-1} F_{k}\left(x_{k}-x^{*}\right)$. Hence,

$$
\left\|x_{k+1}-x^{*}\right\| \leq\left\|F_{k}\right\| \frac{\left\|x_{k}-x^{*}\right\|}{1-\left\|F_{k}\right\|} \leq \frac{\sigma}{1-\sigma}\left\|x_{k}-x^{*}\right\| .
$$

Let $\tau=\sigma /(1-\sigma)$. Then

$$
\left\|x_{k}-x^{*}\right\| \leq \tau^{k-1}\left\|x_{1}-x^{*}\right\| .
$$

But $\sigma<1 / 2$ follows $\tau<1$. This implies convergence of Algorithm 4.

