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Elementary matrices

Let A ∈ Cn×n be a nonsingular matrix. We want to solve the linear
system Ax = b by

(a) Direct methods (finite steps);

(b) Iterative methods (convergence). (See Chapter 4)
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A =




1 1 0 3
2 1 −1 1
3 −1 −1 2

−1 2 3 −1




⇒ A1 := L1A ≡




1 0 0 0
−2 1 0 0
−3 0 1 0
1 0 0 1


A =




1 1 0 3
0 −1 −1 −5
0 −4 −1 −7
0 3 3 2




⇒ A2 := L2A1 ≡




1 0 0 0
0 1 0 0
0 −4 1 0
0 3 0 1


A1 =




1 1 0 3
0 −1 −1 −5
0 0 3 13
0 0 0 −13




= L2L1A
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We have

A = L−1
1 L−1

2 A2 = LR.

where L and R are lower and upper triangular, respectively.

Question

How to compute L−1
1 and L−1

2 ?

L1 =




1 0 0 0
−2 1 0 0
−3 0 1 0
1 0 0 1


 = I −




0
2
3

−1



[
1 0 0 0

]

L2 =




1 0 0 0
0 1 0 0
0 −4 1 0
0 3 0 1


 = I −




0
0
4

−3



[
0 1 0 0

]
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Definition 1

A matrix of the form

I − αxy∗ (α ∈ F, x, y ∈ F
n)

is called an elementary matrix.

The eigenvalues of (I − αxy∗) are {1, 1, . . . , 1, 1− αy∗x}. Compute

(I − αxy∗)(I − βxy∗) = I − (α+ β − αβy∗x)xy∗.

If αy∗x− 1 6= 0 and let β = α
αy∗x−1 , then α+ β − αβy∗x = 0. We have

(I − αxy∗)−1 = (I − βxy∗),

where 1
α + 1

β = y∗x.
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Example 1

Let x ∈ Fn, and x∗x = 1. Let H = {z : z∗x = 0} and

Q = I − 2xx∗ (Q = Q∗, Q−1 = Q).

Then Q reflects each vector with respect to the hyperplane H . Let
y = αx+ w, w ∈ H . Then, we have

Qy = αQx+Qw = −αx+ w − 2(x∗w)x = −αx+ w.
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Let y = ei to be the i-th column of the unit matrix and
x = li = [0, · · · , 0, li+1,i, · · · , ln,i]

T . Then,

I + lie
T
i =




1
. . .

1
li+1,i

...
. . .

ln,i 1




(1)

Since eTi li = 0, we have

(I + lie
T
i )

−1 = (I − lie
T
i ).
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From the equality

(I + l1e
T
1 )(I + l2e

T
2 ) = I + l1e

T
1 + l2e

T
2 + l1(e

T
1 l2)e

T
2 = I + l1e

T
1 + l2e

T
2

follows that

(I + l1e
T
1 ) · · · (I + lie

T
i ) · · · (I + ln−1e

T
n−1)

= I + l1e
T
1 + l2e

T
2 + · · ·+ ln−1e

T
n−1

=













1

l21
. . . 0

...
. . .

. . .

ln1 · · · ln,n−1 1













. (2)

Theorem 2

A lower triangular with “1” on the diagonal can be written as the
product of n− 1 elementary matrices of the form (1).

Remark: (I + l1e
T
1 + · · ·+ ln−1e

T
n−1)

−1 = (I − ln−1e
T
n−1) · · · (I − l1e

T
1 )

which can not be simplified as in (2).
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LR-factorization

Definition 3

Given A ∈ C
n×n, a lower triangular matrix L with “1” on the diagonal

and an upper triangular matrix R. If A = LR, then the product LR is
called a LR-factorization (or LR-decomposition) of A.
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Basic problem

Given b 6= 0, b ∈ Fn. Find a vector l1 = [0, l21, · · · , ln1]
T and c ∈ F such

that
(I − l1e

T
1 )b = ce1.

Solution:
{

b1 = c,
bi − li1b1 = 0, i = 2, . . . , n.

{
b1 = 0, it has no solution (since b 6= 0),
b1 6= 0, then c = b1, li1 = bi/b1, i = 2, . . . , n.
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Construction of LR-factorization:

Let A = A(0) =
[
a
(0)
1 · · · a

(0)
n

]
. Apply basic problem to a

(0)
1 : If

a
(0)
11 6= 0, then there exists L1 = I − l1e

T
1 such that

(I − l1e
T
1 )a

(0)
1 = a

(0)
11 e1.

Thus

A(1) = L1A
(0)

=
[
La

(0)
1 · · · La

(0)
n

]

=




a
(0)
11 a

(0)
12 · · · a

(0)
1n

0 a
(1)
22 a

(1)
2n

...
...

...

0 a
(1)
n2 · · · a

(1)
nn



.
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The k-th step:

A(k) = LkA
(k−1) = LkLk−1 · · ·L1A

(0) (3)

=




a
(0)
11 · · · · · · · · · · · · · · · a

(0)
1n

0 a
(1)
22 · · · · · · · · · · · · a

(1)
2n

... 0
. . .

...
...

...
. . . a

(k−1)
kk · · · · · · a

(k−1)
kn

...
... 0 a

(k)
k+1,k+1 · · · a

(k)
k+1,n

...
...

...
...

...

0 0 · · · 0 a
(k)
n,k+1 · · · a

(k)
nn
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If a
(k−1)
kk 6= 0, for k = 1, . . . , n− 1, then the method is executable

and we have that

A(n−1) = Ln−1 · · ·L1A
(0) = R

is an upper triangular matrix. Thus, A = LR.

Explicit representation of L:

Lk = I − lke
T
k , L−1

k = I + lke
T
k

L = L−1
1 · · ·L−1

n−1 = (I + l1e
T
1 ) · · · (I + ln−1e

T
n−1)

= I + l1e
T
1 + · · ·+ ln−1e

T
n−1 (by (2)).
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Theorem 4

Let A be nonsingular. Then A has an LR-factorization (A = LR) if and
only if κi := det(Ai) 6= 0, where Ai is the leading principal matrix of A,
i.e.,

Ai =







a11 · · · a1i

.

.

.

.

.

.

ai1 · · · aii






,

for i = 1, . . . , n− 1.

Proof: (Necessity “⇒” ): Since A = LR, we have




a11 · · · a1i
...

...
ai1 · · · aii


 =




l11 0
...

. . .

li1 · · · lii







r11 · · · r1i
. . .

...
0 rii


 .

From det(A) 6= 0 follows that det(L) 6= 0 and det(R) 6= 0. Thus, ljj 6= 0
and rjj 6= 0, for j = 1, . . . , n. Hence κi = l11 · · · liir11 · · · rii 6= 0.
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(Sufficiency “⇐”): From (3) we have

A(0) = (L−1
1 · · ·L−1

i )A(i).

Consider the (i+ 1)-th leading principle determinant. From (3) we have







a11 · · · ai,i+1

...
...

ai+1 · · · ai+1,i+1







=





















1 0

l21
. . .

...
. . .

. . .
...

. . .
. . .

li+1,1 · · · · · · li+1,i 1





































a
(0)
11 a

(0)
12 · · · · · · a

(0)
1,i+1

a
(1)
22 · · · · · · a

(1)
2,i+1

. . .
...

a
(i−1)
ii a

(i−1)
i,i+1

0 a
(i)
i+1,i+1

















.

Thus, κi = 1 · a
(0)
11 a

(1)
22 · · · a

(i)
i+1,i+1 6= 0 which implies a

(i)
i+1,i+1 6= 0.

Therefore, the LR-factorization of A exists.

16 / 56



university-logo

Elementary matrices LR-factorization Gaussian elimination Cholesky factorization Error estimation

Theorem 5

If a nonsingular matrix A has an LR-factorization with A = LR and
l11 = · · · = lnn = 1, then the factorization is unique.

Proof: Let A = L1R1 = L2R2. Then L−1
2 L1 = R2R

−1
1 = I.

Corollary 6

If a nonsingular matrix A has an LR-factorization with A = LDR, where
D is diagonal, L and RT are unit lower triangular (with one on the
diagonal) if and only if κi 6= 0.
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Theorem 7

Let A be a nonsingular matrix. Then there exists a permutation P , such
that PA has an LR-factorization.

Proof: By construction! Consider (3): There is a permutation Pk,
which interchanges the k-th row with a row of index large than k, such

that 0 6= a
(k−1)
kk (∈ PkA

(k−1)). This procedure is executable, for
k = 1, . . . , n− 1. So we have

Ln−1Pn−1 · · ·LkPk · · ·L1P1A
(0) = R. (4)

Let P be a permutation which affects only elements k+1, . . . , n. It holds

P (I − lke
T
k )P

−1 = I − (Plk)e
T
k = I − l̃ke

T
k = L̃k, (eTk P

−1 = eTk )

where L̃k is lower triangular. Hence we have

PLk = L̃kP.
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Now write all Pk in (4) to the right as

Ln−1L̃n−2 · · · L̃1Pn−1 · · ·P1A
(0) = R.

Then we have PA = LR with L−1 = Ln−1L̃n−2 · · · L̃1 and
P = Pn−1 · · ·P1.
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Gaussian elimination

Given a linear system
Ax = b

with A nonsingular. We first assume that A has an LR-factorization, i.e.,
A = LR. Thus

LRx = b.

We then (i) solve Ly = b; (ii) solve Rx = y. These imply that
LRx = Ly = b. From (4), we have

Ln−1 · · ·L2L1(A | b) = (R | L−1b).
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Algorithm: Gaussian elimination without permutation

1: for k = 1, . . . , n− 1 do
2: if akk = 0 then
3: Stop.
4: else
5: ωj := akj (j = k + 1, . . . , n);
6: end if
7: for i = k + 1, . . . , n do
8: η := aik/akk, aik := η;
9: for j = k + 1, . . . , n do

10: aij := aij − ηωj , bj := bj − ηbk.
11: end for
12: end for
13: end for
14: xn = bn/ann;
15: for i = n− 1, n− 2, . . . , 1 do
16: xi = (bi −

∑n
j=i+1 aijxj)/aii.

17: end for
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Cost of computation (A flop is a floating point operation):

(i) LR-factorization: 2n3/3 flops;

(ii) Computation of y: n2 flops;

(iii) Computation of x: n2 flops.

For A−1: 8/3n3 ≈ 2n3/3 + 2kn2 (k = n linear systems).
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Pivoting: (a) Partial pivoting; (b) Complete pivoting.

From (3), we have

A(k−1) =




a
(0)
11 · · · · · · · · · · · · a

(0)
1n

0
. . .

...
... a

(k−2)
k−1,k−1 · · · · · · a

(k−2)
k−1,n

... 0 a
(k−1)
kk · · · a

(k−1)
kn

...
...

...
...

0 . . . 0 a
(k−1)
nk · · · a

(k−1)
nn




.

23 / 56



university-logo

Elementary matrices LR-factorization Gaussian elimination Cholesky factorization Error estimation

Partial pivoting






Find a p ∈ {k, . . . , n} such that
|apk| = maxk≤i≤n |aik| (rk = p)

swap akj with apj for j = k, . . . , n, and bk with bp.
(5)

Replacing stopping step in Line 3 of Gaussian elimination Algorithm
by (5), we have a new factorization of A with partial pivoting, i.e.,
PA = LR (by Theorem 7 and |lij | ≤ 1 for i, j = 1, . . . , n).

For solving linear system Ax = b, we use

PAx = Pb ⇒ L(Rx) = PT b ≡ b̃.

It needs extra n(n− 1)/2 comparisons.
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Complete pivoting





Find p, q ∈ {k, . . . , n} such that
|apq| ≤ max

k≤i,j≤n
|aij |, (rk := p, ck := q)

swap akj and bk with apj and bp, resp., (j = k, . . . , n),
swap aik with aiq(i = 1, . . . , n).

(6)

Replacing stopping step in Line 3 of Gaussian elimination Algorithm
by (6), we also have a new factorization of A with complete pivoting,
i.e., PAΠ = LR (by Theorem 7 and |lij | ≤ 1, for i, j = 1, . . . , n).

For solving linear system Ax = b, we use

PAΠ(ΠTx) = Pb ⇒ LRx̃ = b̃ ⇒ x = Πx̃.

It needs n3/3 comparisons.
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Let

A =

[
10−4 1
1 1

]

be in three decimal-digit floating point arithmetic.

κ(A) = ‖A‖∞‖A−1‖∞ ≈ 4. A is well-conditioned.

Without pivoting:

L =

[
1 0

fl(1/10−4) 1

]
, f l(1/10−4) = 104,

R =

[
10−4 1
0 fl(1− 104 · 1)

]
, f l(1− 104 · 1) = −104.

LR =

[
1 0
104 1

] [
10−4 1
0 −104

]
=

[
10−4 1
1 0

]
6= A.
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Here a22 entirely “lost” from computation. It is numerically
unstable.

Let Ax =

[
1
2

]
. Then x ≈

[
1
1

]
.

But Ly =

[
1
2

]
solves y1 = 1 and y2 = fl(2− 104 · 1) = −104,

Rx̂ = y solves x̂2 = fl((−104)/(−104)) = 1,
x̂1 = fl((1− 1)/10−4) = 0.

We have an erroneous solution with cond(L), cond(R) ≈ 108.
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Partial pivoting:

L =

[
1 0

fl(10−4/1) 1

]
=

[
1 0

10−4 1

]
,

R =

[
1 1
0 fl(1− 10−4)

]
=

[
1 1
0 1

]
.

L and R are both well-conditioned.
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LDR- and LL
T -factorizations

Algorithm 2

[Crout’s factorization or compact method]
For k = 1, . . . , n,

for p = 1, 2, . . . , k − 1,
rp := dpapk,
ωp := akpdp,

dk := akk −
∑k−1

p=1 akprp,
if dk = 0, then stop; else

for i = k + 1, . . . , n,
aik := (aik −

∑k−1
p=1 aiprp)/dk,

aki := (aki −
∑k−1

p=1 ωpapi)/dk.

Cost: n3/3 flops.

With partial pivoting: see Wilkinson EVP pp.225-.
Advantage: One can use double precision for inner product.
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Theorem 8

If A is nonsingular, real and symmetric, then A has a unique LDLT

factorization, where D is diagonal and L is a unit lower triangular matrix
(with one on the diagonal).

Proof: A = LDR = AT = RTDLT . It implies L = RT .
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Theorem 9

If A is symmetric and positive definite, then there exists a lower triangular
G ∈ Rn×n with positive diagonal elements such that A = GGT .

Proof:

A is symmetric positive definite

⇔ xTAx ≥ 0 for all nonzero vector x ∈ R
n

⇔ κi ≥ 0 for i = 1, . . . , n

⇔ all eigenvalues of A are positive

From Corollary 6 and Theorem 8 we have A = LDLT . From
L−1AL−T = D follows that

dk = (eTk L
−1)A(L−T ek) > 0.

Thus, G = Ldiag{d
1/2
1 , · · · , d

1/2
n } is real, and then A = GGT .
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Derive an algorithm for computing the Cholesky factorization A = GGT :
Let

A ≡ [aij ] and G =













g11 0 · · · 0

g21 g22
. . .

...
...

...
. . . 0

gn1 gn2 · · · gnn













.

Assume the first k − 1 columns of G have been determined after k − 1 steps.
By componentwise comparison with

[aij ] =













g11 0 · · · 0

g21 g22
. . .

...
...

...
. . . 0

gn1 gn2 · · · gnn























g11 g21 · · · gn1

0 g22 · · · gn2

...
. . .

. . .
...

0 · · · 0 gnn











,

one has

akk =
k

∑

j=1

g
2
kj ,
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which gives

g2kk = akk −

k−1∑

j=1

g2kj .

Moreover,

aik =
k∑

j=1

gijgkj , i = k + 1, . . . , n,

hence the k-th column of G can be computed by

gik =


aik −

k−1∑

j=1

gijgkj




/
gkk, i = k + 1, . . . , n.
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Cholesky Factorization

Input: n× n symmetric positive definite matrix A.
Output: Cholesky factorization A = GGT .
1: Initialize G = 0.
2: for k = 1, . . . , n do

3: G(k, k) =
√

A(k, k)−
∑k−1

j=1 G(k, j)G(k, j)

4: for i = k + 1, . . . , n do

5: G(i, k) =
(
A(i, k)−

∑k−1
j=1 G(i, j)G(k, j)

)/
G(k, k)

6: end for
7: end for

In addition to n square root operations, there are approximately

n∑

k=1

[2k − 2 + (2k − 1)(n− k)] =
1

3
n3 +

1

2
n2 −

5

6
n

floating-point arithmetic required by the algorithm.
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For solving symmetric, indefinite systems: See Golub/ Van Loan Matrix
Computation pp. 159-168. PAPT = LDLT , D is 1× 1 or 2× 2
block-diagonal matrix, P is a permutation and L is lower triangular with
one on the diagonal.
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Error estimation for linear systems

Consider the linear system
Ax = b, (7)

and the perturbed linear system

(A+ δA)(x + δx) = b+ δb, (8)

where δA and δb are errors of measure or round-off in factorization.

Definition 10

Let ‖ · ‖ be an operator norm and A be nonsingular. Then
κ ≡ κ(A) = ‖A‖‖A−1‖ is a condition number of A corresponding to ‖ ‖.
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Theorem 11 (Forward error bound)

Let x be the solution of (7) and x+ δx be the solution of the perturbed
linear system (8). If ‖δA‖‖A−1‖ < 1, then

‖δx‖

‖x‖
≤

κ

1− κ‖δA‖
‖A‖

(
‖δA‖

‖A‖
+

‖δb‖

‖b‖

)
.

Proof: From (8) we have

(A+ δA)δx +Ax+ δAx = b+ δb.

Thus,
δx = −(A+ δA)−1[(δA)x − δb]. (9)
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Here, Corollary 2.7 implies that (A+ δA)−1 exists. Now,

‖(A+ δA)−1‖ = ‖(I +A−1δA)−1A−1‖ ≤ ‖A−1‖
1

1− ‖A−1‖‖δA‖
.

On the other hand, b = Ax implies ‖b‖ ≤ ‖A‖‖x‖. So,

1

‖x‖
≤

‖A‖

‖b‖
. (10)

From (9) follows that ‖δx‖ ≤ ‖A−1‖
1−‖A−1‖‖δA‖ (‖δA‖‖x‖+ ‖δb‖). By using

(10), the inequality (11) is proved.

Remark 1

If κ(A) is large, then A (for the linear system Ax = b) is called
ill-conditioned, else well-conditioned.
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Error analysis for Gaussian algorithm

A computer in characterized by four integers:

(a) the machine base β;

(b) the precision t;

(c) the underflow limit L;

(d) the overflow limit U .

Define the set of floating point numbers.

F = {f = ±0.d1d2 · · · dt × βe | 0 ≤ di < β, d1 6= 0, L ≤ e ≤ U} ∪ {0}.

Let G = {x ∈ R | m ≤ |x| ≤ M} ∪ {0}, where m = βL−1 and
M = βU (1 − β−t) are the minimal and maximal numbers of F \ {0} in
absolute value, respectively.
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We define an operator fl : G → F by

fl(x) = the nearest c ∈ F to x by rounding arithmetic.

One can show that fl satisfies

fl(x) = x(1 + ε), |ε| ≤ eps,

where eps = 1
2β

1−t. (If β = 2, then eps = 2−t). It follows that

fl(a ◦ b) = (a ◦ b)(1 + ε)

or
fl(a ◦ b) = (a ◦ b)/(1 + ε),

where |ε| ≤ eps and ◦ = +,−,×, /.
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Given x, y ∈ R
n. The following algorithm computes xT y and stores the

result in s.
s = 0,
for k = 1, . . . , n,

s = s+ xkyk.

Theorem 12

If n2−t ≤ 0.01, then

fl(

n∑

k=1

xkyk) =

n∑

k=1

xkyk[1 + 1.01(n+ 2− k)θk2
−t], |θk| ≤ 1

Proof of Theorem 12
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Let the exact LR-factorization of A be L and R (A = LR) and let L̃, R̃
be the LR-factorization of A by using Gaussian Algorithm (without
pivoting). There are two possibilities:

(i) Forward error analysis: Estimate |L− L̃| and |R− R̃|.

(ii) Backward error analysis: Let L̃R̃ be the exact LR-factorization of a
perturbed matrix Ã = A+ E. Then E will be estimated, i.e.,
|E| ≤ ?.

Theorem 13

The LR-factorization L̃ and R̃ of A using Gaussian Elimination with
partial pivoting satisfies

L̃R̃ = A+ E, (2.6)

where
‖E‖∞ ≤ n2ρ‖A‖∞2−t (2.7)

with
ρ = max

i,j,k

∣∣∣a(k)ij

∣∣∣
/
‖A‖∞ . (2.8)
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Applying Theorem 12 to the linear system L̃y = b and R̃x = y,
respectively, the solution x satisfies

(L̃+ δL̃)(R̃ + δR̃)x = b

or
(L̃R̃+ (δL̃)R̃+ L̃(δR̃) + (δL̃)(δR̃))x = b. (2.9)

Since L̃R̃ = A+ E, substituting this equation into (2.9) we get

[A+ E + (δL̃)R̃+ L̃(δR̃) + (δL̃)(δR̃)]x = b.

The entries of L̃ and R̃ satisfy

|l̃ij | ≤ 1, and |r̃ij | ≤ ρ‖A‖∞.
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Therefore, we get




‖L̃‖∞ ≤ n,

‖R̃‖∞ ≤ nρ‖A‖∞,

‖δL̃‖∞ ≤ n(n+1)
2 1.01 · 2−t,

‖δR̃‖∞ ≤ n(n+1)
2 1.01ρ2−t.

(2.10)

In practical implementation we usually have n22−t << 1. So it holds

‖δL̃‖∞‖δR̃‖∞ ≤ n2ρ‖A‖∞2−t.

Let
δA = E + (δL̃)R̃ + L̃(δR̃) + (δL̃)(δR̃). (2.11)

Then, from (2.7) and (2.10) we get

‖δA‖∞ ≤ ‖E‖∞ + ‖δL̃‖∞‖R̃‖∞ + ‖L̃‖∞‖δR̃‖∞ + ‖δL̃‖∞‖δR̃‖∞

≤ 1.01(n3 + 3n2)ρ‖A‖∞2−t (2.12)
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Theorem 14

For a linear system Ax = b the solution x computed by Gaussian
Elimination with partial pivoting is the exact solution of the equation
(A+ δA)x = b and δA satisfies (2.12).

Remark: The quantity ρ defined by (2.9) is called a growth factor. The
growth factor measures how large the numbers become during the
process of elimination. In practice, ρ is usually of order 10 for partial
pivot selection. But it can be as large as ρ = 2n−1, when

A =





















1 0 · · · · · · 0 1
−1 1 0 · · · 0 1
... −1

. . .
. . .

... 1
...

...
. . .

. . . 0 1
−1 −1 · · · −1 1 1
−1 −1 · · · · · · −1 1





















.
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Better estimates hold for special types of matrices. For example in the
case of upper Hessenberg matrices, that is, matrices of the form

A =




× · · · · · · ×

×
. . .

. . .
...

. . .
. . .

...
0 × ×




the bound ρ ≤ (n− 1) can be shown. (Hessenberg matrices arise in
eigenvalus problems.)
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For tridiagonal matrices

A =




α1 β2 0

γ2
. . .

. . .
. . .

. . .
. . .

. . .
. . . βn

0 γn αn




it can even be shown that ρ ≤ 2 holds for partial pivot selection. Hence,
Gaussian elimination is quite numerically stable in this case.
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For complete pivot selection, Wilkinson (1965) has shown that

|akij | ≤ f(k)max
i,j

|aij |

with the function

f(k) := k
1
2

[
21 3

1
2 4

1
3 · · · k

1
(k−1)

] 1
2

.

This function grows relatively slowly with k:

k 10 20 50 100
f(k) 19 67 530 3300
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Even this estimate is too pessimistic in practice. Up until now, no matrix
has been found which fails to satisfy

|a
(k)
ij | ≤ (k + 1)max

i,j
|aij | k = 1, 2, ..., n− 1,

when complete pivot selection is used. This indicates that Gaussian
elimination with complete pivot selection is usually a stable process.
Despite this, partial pivot selection is preferred in practice, for the most
part, because:

(i) Complete pivot selection is more costly than partial pivot selection.
(To compute A(i), the maximum from among (n− i+ 1)2 elements
must be determined instead of n− i+ 1 elements as in partial pivot
selection.)

(ii) Special structures in a matrix, i.e. the band structure of a
tridiagonal matrix, are destroyed in complete pivot selection.
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Iterative Improvement:

Suppose that the linear system Ax = b has been solved via the
LR-factorization PA = LR. Now we want to improve the accuracy of
the computed solution x. We compute





r = b−Ax,
Ly = Pr, Rz = y,

xnew = x+ z.
(2.13)

Then in exact arithmatic we have

Axnew = A(x + z) = (b− r) +Az = b.

This leads to solve
Az = r

by using PA = LR.
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Unfortunately, r = fl(b−Ax) renders an xnew that is no more accurate
than x. It is necessary to compute the residual b−Ax with extended
precision floating arithmetic.

Algorithm 4

Compute PA = LR (t-digit)
Repeat: r := b−Ax (2t-digit)

Solve Ly = Pr for y (t-digit)
Solve Rz = y for z (t-digit)
Update x = x+ z (t-digit)

From Theorem 14 we have (A+ δA)z = r, i.e.,

A(I + F )z = r with F = A−1δA. (2.14)
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Theorem 15

Let {xk} be the sequence constructed by Algorithm 4 for solving Ax = b
and x∗ = A−1b be the exact solution. Assume Fk in (2.14) satisfying
‖Fk‖ ≤ σ < 1/2 for all k. Then {xk} → x∗.

Proof of Theorem 15

Corollary 16

If
1.01(n3 + 3n2)ρ2−t‖A‖ ‖A−1‖ < 1/2,

then Algorithm 4 converges.

Proof: From (2.14) and (2.12) follows that

‖Fk‖ ≤ 1.01(n3 + 3n2)ρ2−tκ(A) < 1/2.
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Appendix

Proof of Theorem 12: Let sp = fl(
∑p

k=1 xkyk) be the partial sum in
Algorithm 41. Then

s1 = x1y1(1 + δ1)

with |δ1| ≤ eps and for p = 2, . . . , n,

sp = fl[sp−1 + fl(xpyp)] = [sp−1 + xpyp(1 + δp)](1 + εp)

with |δp|, |εp| ≤ eps. Therefore

fl(xT y) = sn =

n∑

k=1

xkyk(1 + γk),

where (1 + γk) = (1 + δk)
∏n

j=k(1 + εj), and ε1 ≡ 0. Thus,

fl(

n∑

k=1

xkyk) =

n∑

k=1

xkyk[1 + 1.01(n+ 2− k)θk2
−t].

The result follows immediately from the following useful Lemma.
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Lemma 7.1

If (1 + α) =
∏n

k=1(1 + αk), where |αk| ≤ 2−t and n2−t ≤ 0.01, then

n∏

k=1

(1 + αk) = 1 + 1.01nθ2−t with |θ| ≤ 1.

Proof: From assumption it is easily seen that

(1− 2−t)n ≤

n∏

k=1

(1 + αk) ≤ (1 + 2−t)n.

Expanding the Taylor expression of (1− x)n as −1 < x < 1, we get

(1 − x)n = 1− nx+
n(n− 1)

2
(1− θx)n−2x2 ≥ 1− nx.

Hence
(1− 2−t)n ≥ 1− n2−t.
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Now, we estimate the upper bound of (1 + 2−t)n:

ex = 1 + x+
x2

2!
+

x3

3!
+ · · · = 1 + x+

x

2
x(1 +

x

3
+

2x2

4!
+ · · · ).

If 0 ≤ x ≤ 0.01, then

1 + x ≤ ex ≤ 1 + x+ 0.01x
1

2
ex ≤ 1 + 1.01x

(Here, we use the fact e0.01 < 2 to the last inequality.) Let x = 2−t.
Then the left inequality of (55) implies

(1 + 2−t)n ≤ e2
−tn

Let x = 2−tn. Then the second inequality of (55) implies

e2
−tn ≤ 1 + 1.01n2−t

From (55) and (55) we have

(1 + 2−t)n ≤ 1 + 1.01n2−t.

Return
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Proof of Theorem 15: From (2.14) and rk = b−Axk we have

A(I + Fk)zk = b−Axk.

Since A is nonsingular, we have (I + Fk)zk = x∗ − xk.

From xk+1 = xk + zk we have (I + Fk)(xk+1 − xk) = x∗ − xk, i.e.,

(I + Fk)xk+1 = Fkxk + x∗. (2.15)

Subtracting both sides of (2.15) from (I + Fk)x
∗ we get

(I + Fk)(xk+1 − x∗) = Fk(xk − x∗).

Then, xk+1 − x∗ = (I + Fk)
−1Fk(xk − x∗). Hence,

‖xk+1 − x
∗‖ ≤ ‖Fk‖

‖xk − x∗‖

1− ‖Fk‖
≤

σ

1− σ
‖xk − x

∗‖.

Let τ = σ/(1− σ). Then

‖xk − x∗‖ ≤ τk−1‖x1 − x∗‖.

But σ < 1/2 follows τ < 1. This implies convergence of Algorithm 4.

Return
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