Gaussian Elimination for Linear Systems

Tsung-Ming Huang

Department of Mathematics National Taiwan Normal University

October 3, 2011

1/56

-

イロト 不得 とくほと イロト

Elementary matrices	LR-factorization	Gaussian elimination	Cholesky factorization	Error estimation
Outline				

- 1 Elementary matrices
- 2 LR-factorization
- 3 Gaussian elimination
- Ocholesky factorization
- 5 Error estimation for linear systems

Elementary matrices	Elementary matrices	LR-factorization	Gaussian elimination	Cholesky factorization	Error estimation
Elementary matrices					
	Elementary	r matrices			

Let $A\in \mathbb{C}^{n\times n}$ be a nonsingular matrix. We want to solve the linear system Ax=b by

- (a) **Direct methods** (finite steps);
- (b) Iterative methods (convergence). (See Chapter 4)

Elementary matrices	LR-factorization	Gaussian elimination	Cholesky factorization	Error estimation

$$A = \begin{bmatrix} 1 & 1 & 0 & 3 \\ 2 & 1 & -1 & 1 \\ 3 & -1 & -1 & 2 \\ -1 & 2 & 3 & -1 \end{bmatrix}$$

$$\Rightarrow A_1 := L_1 A \equiv \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} A = \begin{bmatrix} 1 & 1 & 0 & 3 \\ 0 & -1 & -1 & -5 \\ 0 & -4 & -1 & -7 \\ 0 & 3 & 3 & 2 \end{bmatrix}$$

$$\Rightarrow A_2 := L_2 A_1 \equiv \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -4 & 1 & 0 \\ 0 & 3 & 0 & 1 \end{bmatrix} A_1 = \begin{bmatrix} 1 & 1 & 0 & 3 \\ 0 & -1 & -1 & -5 \\ 0 & 0 & 3 & 13 \\ 0 & 0 & 0 & -13 \end{bmatrix}$$

$$= L_2 L_1 A$$

・ロト・日本・日本・日本・日本・日本

Elementary matrices	LR-factorization	Gaussian elimination	Cholesky factorization	Error estimation

We have

$$A = L_1^{-1} L_2^{-1} A_2 = LR.$$

where L and R are lower and upper triangular, respectively.

Question

How to compute L_1^{-1} and L_2^{-1} ?

$$L_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} = I - \begin{bmatrix} 0 \\ 2 \\ 3 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$$
$$L_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -4 & 1 & 0 \\ 0 & 3 & 0 & 1 \end{bmatrix} = I - \begin{bmatrix} 0 \\ 0 \\ 4 \\ -3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}$$

Elementary matrices	LR-factorization	Gaussian elimination	Cholesky factorization	Error estimation

Definition 1

A matrix of the form

$$I - \alpha x y^* \quad (\alpha \in \mathbb{F}, x, y \in \mathbb{F}^n)$$

is called an elementary matrix.

The eigenvalues of $(I - \alpha xy^*)$ are $\{1, 1, \dots, 1, 1 - \alpha y^*x\}$. Compute

$$(I - \alpha xy^*)(I - \beta xy^*) = I - (\alpha + \beta - \alpha \beta y^* x)xy^*.$$

If $\alpha y^*x - 1 \neq 0$ and let $\beta = \frac{\alpha}{\alpha y^*x - 1}$, then $\alpha + \beta - \alpha \beta y^*x = 0$. We have

$$(I - \alpha x y^*)^{-1} = (I - \beta x y^*),$$

where $\frac{1}{\alpha} + \frac{1}{\beta} = y^* x$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQC

Elementary matrices	LR-factorization	Gaussian elimination	Cholesky factorization	Error estimation
Example 1				
Let $x \in \mathbb{F}^n$, and $x^*x = 1$.	Let $H = \{z : z^*x \in$	$= 0$ } and	
	Q = I - I	$2xx^* (Q = Q^*, Q$	$P^{-1} = Q).$	

Then Q reflects each vector with respect to the hyperplane H. Let $y=\alpha x+w,\,w\in H.$ Then, we have

$$Qy = \alpha Qx + Qw = -\alpha x + w - 2(x^*w)x = -\alpha x + w.$$

Let $y = e_i$ to be the *i*-th column of the unit matrix and $x = l_i = [0, \cdots, 0, l_{i+1,i}, \cdots, l_{n,i}]^T$. Then,

$$I + l_i e_i^T = \begin{bmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & \\ & & l_{i+1,i} & \\ & & \vdots & \ddots & \\ & & & l_{n,i} & & 1 \end{bmatrix}$$

(1)

Since $e_i^T l_i = 0$, we have

$$(I + l_i e_i^T)^{-1} = (I - l_i e_i^T).$$

・ロト・日本・モン・モン・モーショー うくや

From the equality

 $(I+l_1e_1^T)(I+l_2e_2^T) = \quad I+l_1e_1^T+l_2e_2^T+l_1(e_1^Tl_2)e_2^T = \quad I+l_1e_1^T+l_2e_2^T$ follows that

$$(I + l_1 e_1^T) \cdots (I + l_i e_i^T) \cdots (I + l_{n-1} e_{n-1}^T)$$

= $I + l_1 e_1^T + l_2 e_2^T + \cdots + l_{n-1} e_{n-1}^T$
= $\begin{bmatrix} 1 & & & \\ l_{21} & \ddots & 0 & \\ \vdots & \ddots & \ddots & \\ l_{n1} & \cdots & l_{n,n-1} & 1 \end{bmatrix}$. (2)

Theorem 2

A lower triangular with "1" on the diagonal can be written as the product of n - 1 elementary matrices of the form (1).

Remark: $(I + l_1 e_1^T + \dots + l_{n-1} e_{n-1}^T)^{-1} = (I - l_{n-1} e_{n-1}^T) \dots (I - l_1 e_1^T)$ which can not be simplified as in (2).

Definition 3

Given $A \in \mathbb{C}^{n \times n}$, a lower triangular matrix L with "1" on the diagonal and an upper triangular matrix R. If A = LR, then the product LR is called a LR-factorization (or LR-decomposition) of A.

Elementary matrices	LR-factorization	Gaussian elimination	Cholesky factorization	Error estimation

Basic problem

Given $b \neq 0$, $b \in \mathbb{F}^n$. Find a vector $l_1 = [0, l_{21}, \cdots, l_{n1}]^T$ and $c \in \mathbb{F}$ such that

$$(I - l_1 e_1^T)b = ce_1.$$

Solution:

$$\begin{cases} b_1 = c, \\ b_i - l_{i1}b_1 = 0, \quad i = 2, \dots, n. \end{cases}$$

$$\begin{cases} b_1 = 0, & \text{it has no solution (since } b \neq 0), \\ b_1 \neq 0, & \text{then } c = b_1, \ l_{i1} = b_i/b_1, \ i = 2, \dots, n. \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Construction of LR-factorization:

Let $A = A^{(0)} = \begin{bmatrix} a_1^{(0)} & \cdots & a_n^{(0)} \end{bmatrix}$. Apply basic problem to $a_1^{(0)}$: If $a_{11}^{(0)} \neq 0$, then there exists $L_1 = I - l_1 e_1^T$ such that

$$(I - l_1 e_1^T) a_1^{(0)} = a_{11}^{(0)} e_1.$$

Thus

$$A^{(1)} = L_1 A^{(0)}$$

$$= \begin{bmatrix} La_1^{(0)} & \cdots & La_n^{(0)} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11}^{(0)} & a_{12}^{(0)} & \cdots & a_{1n}^{(0)} \\ 0 & a_{22}^{(1)} & a_{2n}^{(1)} \\ \vdots & \vdots & \vdots \\ 0 & a_{n2}^{(1)} & \cdots & a_{nn}^{(1)} \end{bmatrix}$$

12 / 56

Elementary matrices LR-factorization Gaussian elimination Cholesky factorization Error estima	tion
---	------

The *k*-th step:

$$A^{(k)} = L_k A^{(k-1)} = L_k L_{k-1} \cdots L_1 A^{(0)}$$
(3)

$$= \begin{bmatrix} a_{11}^{(0)} & \cdots & \cdots & \cdots & a_{1n}^{(0)} \\ 0 & a_{22}^{(1)} & \cdots & \cdots & a_{2n}^{(1)} \\ \vdots & 0 & \ddots & & \vdots \\ \vdots & \vdots & \ddots & a_{kk}^{(k-1)} & \cdots & \cdots & a_{kn}^{(k-1)} \\ \vdots & \vdots & 0 & a_{k+1,k+1}^{(k)} & \cdots & a_{kn}^{(k)} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & a_{n,k+1}^{(k)} & \cdots & a_{nn}^{(k)} \end{bmatrix}$$

• If $a_{kk}^{(k-1)} \neq 0$, for $k = 1, \ldots, n-1$, then the method is executable and we have that

$$A^{(n-1)} = L_{n-1} \cdots L_1 A^{(0)} = R$$

is an upper triangular matrix. Thus, A = LR.

• Explicit representation of L:

$$\begin{split} L_k &= I - l_k e_k^T, \quad L_k^{-1} = I + l_k e_k^T \\ L &= L_1^{-1} \cdots L_{n-1}^{-1} = (I + l_1 e_1^T) \cdots (I + l_{n-1} e_{n-1}^T) \\ &= I + l_1 e_1^T + \cdots + l_{n-1} e_{n-1}^T \quad \text{(by (2))}. \end{split}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ●

Theorem 4

Let A be nonsingular. Then A has an LR-factorization (A = LR) if and only if $\kappa_i := det(A_i) \neq 0$, where A_i is the leading principal matrix of A, *i.e.*,

$$A_i = \left[\begin{array}{ccc} a_{11} & \cdots & a_{1i} \\ \vdots & & \vdots \\ a_{i1} & \cdots & a_{ii} \end{array} \right],$$

for i = 1, ..., n - 1.

Proof: (Necessity " \Rightarrow "): Since A = LR, we have

$$\begin{bmatrix} a_{11} & \cdots & a_{1i} \\ \vdots & & \vdots \\ a_{i1} & \cdots & a_{ii} \end{bmatrix} = \begin{bmatrix} l_{11} & & 0 \\ \vdots & \ddots & \\ l_{i1} & \cdots & l_{ii} \end{bmatrix} \begin{bmatrix} r_{11} & \cdots & r_{1i} \\ & \ddots & \vdots \\ 0 & & & r_{ii} \end{bmatrix}$$

From $\det(A) \neq 0$ follows that $\det(L) \neq 0$ and $\det(R) \neq 0$. Thus, $l_{jj} \neq 0$ and $r_{jj} \neq 0$, for j = 1, ..., n. Hence $\kappa_i = l_{11} \cdots l_{ii} r_{11} \cdots r_{ii} \neq 0$.

化白色 化晶色 化黄色 化黄色 一度一

(**Sufficiency** " \Leftarrow "): From (3) we have

$$A^{(0)} = (L_1^{-1} \cdots L_i^{-1}) A^{(i)}.$$

Consider the (i + 1)-th leading principle determinant. From (3) we have

 $\left[\begin{array}{cccc} a_{11} & \cdots & a_{i,i+1} \\ \vdots & & \vdots \\ a_{i+1} & \cdots & a_{i+1,i+1} \end{array}\right]$ $= \begin{bmatrix} 1 & & 0 \\ l_{21} & \ddots & & \\ \vdots & \ddots & \ddots & \\ \vdots & & \ddots & \ddots & \\ l_{i+1,1} & \cdots & \cdots & l_{i+1,i} & 1 \end{bmatrix} \begin{bmatrix} a_{11}^{(0)} & a_{12}^{(0)} & \cdots & \cdots & a_{1,i+1}^{(0)} \\ a_{22}^{(1)} & \cdots & \cdots & a_{2,i+1}^{(1)} \\ & & \ddots & & \vdots \\ & & & a_{ii}^{(i-1)} & a_{ii+1}^{(i-1)} \\ 0 & & & & a_{ii+1,i+1}^{(i)} \end{bmatrix}.$

Thus, $\kappa_i = 1 \cdot a_{11}^{(0)} a_{22}^{(1)} \cdots a_{i+1,i+1}^{(i)} \neq 0$ which implies $a_{i+1,i+1}^{(i)} \neq 0$. Therefore, the LR-factorization of A exists.

16/56

Elemer	tary matrices	LR-factorization	Gaussian elimination	Cholesky factorization	Error estimation
	Theorem 5				

If a nonsingular matrix A has an LR-factorization with A = LR and $l_{11} = \cdots = l_{nn} = 1$, then the factorization is unique.

Proof: Let $A = L_1 R_1 = L_2 R_2$. Then $L_2^{-1} L_1 = R_2 R_1^{-1} = I$.

Corollary 6

If a nonsingular matrix A has an LR-factorization with A = LDR, where D is diagonal, L and R^T are unit lower triangular (with one on the diagonal) if and only if $\kappa_i \neq 0$.

Theorem 7

Let A be a nonsingular matrix. Then there exists a permutation P, such that PA has an LR-factorization.

Proof: By construction! Consider (3): There is a permutation P_k , which interchanges the k-th row with a row of index large than k, such that $0 \neq a_{kk}^{(k-1)} (\in P_k A^{(k-1)})$. This procedure is executable, for $k = 1, \ldots, n-1$. So we have

$$L_{n-1}P_{n-1}\cdots L_k P_k \cdots L_1 P_1 A^{(0)} = R.$$
 (4)

Let P be a permutation which affects only elements $k + 1, \ldots, n$. It holds

$$P(I - l_k e_k^T) P^{-1} = I - (P l_k) e_k^T = I - \tilde{l}_k e_k^T = \tilde{L}_k, \quad (e_k^T P^{-1} = e_k^T)$$

where \tilde{L}_k is lower triangular. Hence we have

$$PL_k = \tilde{L}_k P.$$

Now write all P_k in (4) to the right as

$$L_{n-1}\tilde{L}_{n-2}\cdots\tilde{L}_1P_{n-1}\cdots P_1A^{(0)}=R.$$

Then we have PA = LR with $L^{-1} = L_{n-1}\tilde{L}_{n-2}\cdots\tilde{L}_1$ and $P = P_{n-1}\cdots P_1$.

Given a linear system

Ax = b

with A nonsingular. We first assume that A has an $LR\mbox{-factorization, i.e.,}$ A=LR. Thus

LRx = b.

We then (i) solve Ly = b; (ii) solve Rx = y. These imply that LRx = Ly = b. From (4), we have

 $L_{n-1} \cdots L_2 L_1 (A \mid b) = (R \mid L^{-1}b).$

イロト (同) (三) (三) (0)

Algorithm: Gaussian elimination without permutation

1: for
$$k = 1, ..., n - 1$$
 do
2: if $a_{kk} = 0$ then
3: Stop.
4: else
5: $\omega_j := a_{kj} (j = k + 1, ..., n);$
6: end if
7: for $i = k + 1, ..., n$ do
8: $\eta := a_{ik}/a_{kk}, a_{ik} := \eta;$
9: for $j = k + 1, ..., n$ do
10: $a_{ij} := a_{ij} - \eta \omega_j, b_j := b_j - \eta b_k.$
11: end for
12: end for
13: end for
14: $x_n = b_n/a_{nn};$
15: for $i = n - 1, n - 2, ..., 1$ do
16: $x_i = (b_i - \sum_{j=i+1}^n a_{ij}x_j)/a_{ii}.$
17: end for

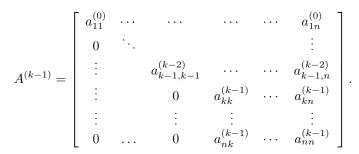
Cost of computation (A flop is a floating point operation):

- (i) LR-factorization: $2n^3/3$ flops;
- (ii) Computation of y: n^2 flops;
- (iii) Computation of x: n^2 flops.

For A^{-1} : $8/3n^3 \approx 2n^3/3 + 2kn^2$ (k = n linear systems).

Pivoting: (a) Partial pivoting; (b) Complete pivoting.

From (3), we have



$$\left\{ \begin{array}{l} \mbox{Find a} \quad p \in \{k, \dots, n\} \mbox{ such that} \\ |a_{pk}| = \max_{k \leq i \leq n} |a_{ik}| \quad (r_k = p) \\ \mbox{ swap } a_{kj} \mbox{ with } a_{pj} \mbox{ for } j = k, \dots, n, \mbox{ and } b_k \mbox{ with } b_p. \end{array} \right.$$

- Replacing stopping step in Line 3 of Gaussian elimination Algorithm by (5), we have a new factorization of A with partial pivoting, i.e., PA = LR (by Theorem 7 and $|l_{ij}| \le 1$ for i, j = 1, ..., n).
- For solving linear system Ax = b, we use

$$PAx = Pb \Rightarrow L(Rx) = P^T b \equiv \tilde{b}.$$

• It needs extra n(n-1)/2 comparisons.

(5)

$$\begin{cases} \text{Find } p,q \in \{k,\ldots,n\} \text{ such that} \\ |a_{pq}| \leq \max_{k \leq i,j \leq n} |a_{ij}|, \ (r_k := p, c_k := q) \\ \text{swap } a_{kj} \text{ and } b_k \text{ with } a_{pj} \text{ and } b_p, \text{ resp., } (j = k,\ldots,n), \\ \text{swap } a_{ik} \text{ with } a_{iq} (i = 1,\ldots,n). \end{cases}$$

$$(6)$$

 Replacing stopping step in Line 3 of Gaussian elimination Algorithm by (6), we also have a new factorization of A with complete pivoting, i.e., PAII = LR (by Theorem 7 and |l_{ij}| ≤ 1, for i, j = 1,...,n).

• For solving linear system Ax = b, we use

$$PA\Pi(\Pi^T x) = Pb \Rightarrow LR\tilde{x} = \tilde{b} \Rightarrow x = \Pi\tilde{x}.$$

• It needs $n^3/3$ comparisons.

25 / 56

Elementary matrices LR-factorization Gaussian elimination Cholesky factorization Error estimation

Let

 $A = \left[\begin{array}{cc} 10^{-4} & 1 \\ 1 & 1 \end{array} \right]$

be in three decimal-digit floating point arithmetic.

- $\kappa(A) = \|A\|_{\infty} \|A^{-1}\|_{\infty} \approx 4$. A is well-conditioned.
- Without pivoting:

$$L = \begin{bmatrix} 1 & 0 \\ fl(1/10^{-4}) & 1 \end{bmatrix}, \quad fl(1/10^{-4}) = 10^4,$$

$$R = \begin{bmatrix} 10^{-4} & 1 \\ 0 & fl(1-10^4 \cdot 1) \end{bmatrix}, \quad fl(1-10^4 \cdot 1) = -10^4.$$

$$LR = \begin{bmatrix} 1 & 0 \\ 10^4 & 1 \end{bmatrix} \begin{bmatrix} 10^{-4} & 1 \\ 0 & -10^4 \end{bmatrix} = \begin{bmatrix} 10^{-4} & 1 \\ 1 & 0 \end{bmatrix} \neq A.$$

- Here a_{22} entirely "lost" from computation. It is numerically unstable.
- Let $Ax = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Then $x \approx \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. • But $Ly = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ solves $y_1 = 1$ and $y_2 = fl(2 - 10^4 \cdot 1) = -10^4$, • $R\hat{x} = y$ solves $\hat{x}_2 = fl((-10^4)/(-10^4)) = 1$,
- Kx = y solves $\hat{x}_2 = fl((-10^4)/(-10^4)) = \hat{x}_1 = fl((1-1)/10^{-4}) = 0.$
- We have an erroneous solution with $\operatorname{cond}(L)$, $\operatorname{cond}(R) \approx 10^8$.

▲日▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー わんの

Partial pivoting:

$$\begin{aligned} L &= \begin{bmatrix} 1 & 0 \\ fl(10^{-4}/1) & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 10^{-4} & 1 \end{bmatrix}, \\ R &= \begin{bmatrix} 1 & 1 \\ 0 & fl(1-10^{-4}) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}. \end{aligned}$$

 \boldsymbol{L} and \boldsymbol{R} are both well-conditioned.

LDR- and LL^T -factorizations

Algorithm 2

 $\begin{aligned} & [\mathsf{Crout's factorization or compact method}] \\ & \mathsf{For } k = 1, \dots, n, \\ & \mathsf{for } p = 1, 2, \dots, k-1, \\ & r_p := d_p a_{pk}, \\ & \omega_p := a_{kp} d_p, \\ & d_k := a_{kk} - \sum_{p=1}^{k-1} a_{kp} r_p, \\ & \mathsf{if } d_k = 0, \mathsf{ then stop; else} \\ & \mathsf{for } i = k+1, \dots, n, \\ & a_{ik} := (a_{ik} - \sum_{p=1}^{k-1} a_{ip} r_p)/d_k, \\ & a_{ki} := (a_{ki} - \sum_{p=1}^{k-1} \omega_p a_{pi})/d_k. \end{aligned}$

Cost: $n^3/3$ flops.

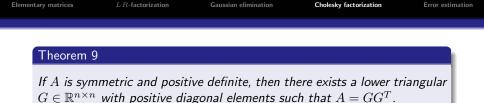
- With partial pivoting: see Wilkinson EVP pp.225-.
- Advantage: One can use double precision for inner product.

29 / 56

Elementary matrice	LR-factorization	Gaussian elimination	Cholesky factorization	Error estimation
factor	em 8 nonsingular, real and zation, where D is d one on the diagonal).	iagonal and L is a	•	

30 / 56

Proof: $A = LDR = A^T = R^T DL^T$. It implies $L = R^T$.



Proof:

A is symmetric positive definite

$$\Leftrightarrow \quad x^T A x \ge 0 \text{ for all nonzero vector } x \in \mathbb{R}^n$$

$$\Leftrightarrow \quad \kappa_i \ge 0 \text{ for } i = 1, \dots, n$$

 \Leftrightarrow all eigenvalues of A are positive

From Corollary 6 and Theorem 8 we have $A = LDL^T$. From $L^{-1}AL^{-T} = D$ follows that

$$d_k = (e_k^T L^{-1}) A(L^{-T} e_k) > 0.$$

Thus, G = Ldiag $\{d_1^{1/2}, \cdots, d_n^{1/2}\}$ is real, and then $A = GG^T$.

Derive an algorithm for computing the Cholesky factorization $A = GG^T$: Let

$$A \equiv [a_{ij}] \text{ and } G = \begin{bmatrix} g_{11} & 0 & \cdots & 0 \\ g_{21} & g_{22} & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ g_{n1} & g_{n2} & \cdots & g_{nn} \end{bmatrix}$$

Assume the first k-1 columns of G have been determined after k-1 steps. By componentwise comparison with

$$[a_{ij}] = \begin{bmatrix} g_{11} & 0 & \cdots & 0 \\ g_{21} & g_{22} & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ g_{n1} & g_{n2} & \cdots & g_{nn} \end{bmatrix} \begin{bmatrix} g_{11} & g_{21} & \cdots & g_{n1} \\ 0 & g_{22} & \cdots & g_{n2} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & g_{nn} \end{bmatrix},$$

one has

$$a_{kk} = \sum_{j=1}^k g_{kj}^2,$$

which gives

$$g_{kk}^2 = a_{kk} - \sum_{j=1}^{k-1} g_{kj}^2.$$

Moreover,

$$a_{ik} = \sum_{j=1}^{k} g_{ij} g_{kj}, \qquad i = k+1, \dots, n,$$

hence the k-th column of G can be computed by

$$g_{ik} = \left(a_{ik} - \sum_{j=1}^{k-1} g_{ij} g_{kj}\right) / g_{kk}, \quad i = k+1, \dots, n.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Elementary matrices	LR-factorization	Gaussian elimination	Cholesky factorization	Error estimatio
Cholesky I	actorization			
Input: n	imes n symmetric po	ositive definite mat	rix A.	
	Cholesky factoriz			
1: Initiali	ze G = 0.			
2: for k	$=1,\ldots,n$ do			
3: G(k	$(x,k) = \sqrt{A(k,k)}$	$-\sum_{j=1}^{k-1} G(k,j)G$	(k,j)	
4: for	$i = k + 1, \ldots, n$	do		
5: 6	$G(i,k) = \Big(A(i,k)\Big)$	$-\sum_{j=1}^{k-1} G(i,j)G$	$(k,j)\Big)\Big/G(k,k)$	
6: end	for		/	
7: end fo	or			

In addition to \boldsymbol{n} square root operations, there are approximately

$$\sum_{k=1}^{n} \left[2k - 2 + (2k - 1)(n - k)\right] = \frac{1}{3}n^3 + \frac{1}{2}n^2 - \frac{5}{6}n^3$$

35 / 56

For solving symmetric, indefinite systems: See Golub/ Van Loan *Matrix Computation* pp. 159-168. $PAP^T = LDL^T$, D is 1×1 or 2×2 block-diagonal matrix, P is a permutation and L is lower triangular with one on the diagonal.

Error estimation for linear systems

Consider the linear system

$$Ax = b, (7)$$

and the perturbed linear system

$$(A + \delta A)(x + \delta x) = b + \delta b,$$
(8)

where δA and δb are errors of measure or round-off in factorization.

Definition 10

Let $\|\cdot\|$ be an operator norm and A be nonsingular. Then $\kappa \equiv \kappa(A) = \|A\| \|A^{-1}\|$ is a condition number of A corresponding to $\| \|$.

36 / 56

Elementary matrices	LR-factorization	Gaussian elimination	Cholesky factorization	Error estimation

Theorem 11 (Forward error bound)

Let x be the solution of (7) and $x + \delta x$ be the solution of the perturbed linear system (8). If $\|\delta A\| \|A^{-1}\| < 1$, then

$$\frac{\|\delta x\|}{\|x\|} \leq \frac{\kappa}{1-\kappa \frac{\|\delta A\|}{\|A\|}} \left(\frac{\|\delta A\|}{\|A\|} + \frac{\|\delta b\|}{\|b\|}\right).$$

Proof: From (8) we have

$$(A + \delta A)\delta x + Ax + \delta Ax = b + \delta b.$$

Thus,

$$\delta x = -(A + \delta A)^{-1} [(\delta A)x - \delta b].$$
(9)

イロト イポト イヨト イヨト 三日

Here, Corollary 2.7 implies that $(A + \delta A)^{-1}$ exists. Now,

$$\|(A+\delta A)^{-1}\| = \|(I+A^{-1}\delta A)^{-1}A^{-1}\| \le \|A^{-1}\| \frac{1}{1-\|A^{-1}\|\|\delta A\|}.$$

On the other hand, b=Ax implies $\|b\|\leq \|A\|\|x\|.$ So,

$$\frac{1}{\|x\|} \le \frac{\|A\|}{\|b\|}.$$
 (10)

From (9) follows that $\|\delta x\| \leq \frac{\|A^{-1}\|}{1-\|A^{-1}\|\|\delta A\|} (\|\delta A\|\|x\| + \|\delta b\|)$. By using (10), the inequality (11) is proved.

Remark 1

If $\kappa(A)$ is large, then A (for the linear system Ax = b) is called ill-conditioned, else well-conditioned.

38 / 56

Error analysis for Gaussian algorithm

A computer in characterized by four integers:

- (a) the machine base β ;
- (b) the precision *t*;
- (c) the underflow limit L;
- (d) the overflow limit U.

Define the set of floating point numbers.

 $F = \{f = \pm 0.d_1d_2\cdots d_t \times \beta^e \mid 0 \le d_i < \beta, d_1 \ne 0, L \le e \le U\} \cup \{0\}.$ Let $G = \{x \in \mathbb{R} \mid m \le |x| \le M\} \cup \{0\}$, where $m = \beta^{L-1}$ and $M = \beta^U(1 - \beta^{-t})$ are the minimal and maximal numbers of $F \setminus \{0\}$ in absolute value, respectively.

We define an operator $fl: G \to F$ by

fl(x) = the nearest $c \in F$ to x by rounding arithmetic.

One can show that fl satisfies

$$fl(x) = x(1+\varepsilon), \quad |\varepsilon| \le eps,$$

where $eps = \frac{1}{2}\beta^{1-t}$. (If $\beta = 2$, then $eps = 2^{-t}$). It follows that

$$fl(a \circ b) = (a \circ b)(1 + \varepsilon)$$

or

$$fl(a\circ b)=(a\circ b)/(1+\varepsilon),$$

where $|\varepsilon| < eps$ and $\circ = +, -, \times, /$.

(日)

Elementary matrices	LR-factorization	Gaussian elimination	Cholesky factorization	Error estimation

Given $x,y \in \mathbb{R}^n.$ The following algorithm computes x^Ty and stores the result in s.

s = 0, for $k = 1, \dots, n$, $s = s + x_k y_k$.

Theorem 12

If
$$n2^{-t} \le 0.01$$
, then

$$fl(\sum_{k=1}^{n} x_k y_k) = \sum_{k=1}^{n} x_k y_k [1 + 1.01(n + 2 - k)\theta_k 2^{-t}], \ |\theta_k| \le 1$$

Proof of Theorem 12

Let the exact LR-factorization of A be L and R (A = LR) and let \tilde{L} , \tilde{R} be the LR-factorization of A by using Gaussian Algorithm (without pivoting). There are two possibilities:

- (i) Forward error analysis: Estimate $|L \tilde{L}|$ and $|R \tilde{R}|$.
- (ii) Backward error analysis: Let $\tilde{L}\tilde{R}$ be the exact LR-factorization of a perturbed matrix $\tilde{A} = A + E$. Then E will be estimated, i.e., $|E| \leq ?$.

Theorem 13

The LR-factorization \tilde{L} and \tilde{R} of A using Gaussian Elimination with partial pivoting satisfies

$$\tilde{L}\tilde{R} = A + E, \tag{2.6}$$

where

$$||E||_{\infty} \le n^2 \rho ||A||_{\infty} 2^{-t}$$
(2.7)

with

$$\rho = \max_{i,j,k} \left| a_{ij}^{(k)} \right| / \|A\|_{\infty} \,. \tag{2.8}$$

42 / 56

LR-factorization

Gaussian elimination

Cholesky factorization

Error estimation

Applying Theorem 12 to the linear system $\tilde{L}y = b$ and $\tilde{R}x = y$, respectively, the solution x satisfies

$$(\tilde{L} + \delta \tilde{L})(\tilde{R} + \delta \tilde{R})x = b$$

or

$$(\tilde{L}\tilde{R} + (\delta\tilde{L})\tilde{R} + \tilde{L}(\delta\tilde{R}) + (\delta\tilde{L})(\delta\tilde{R}))x = b.$$
(2.9)

Since $\tilde{L}\tilde{R} = A + E$, substituting this equation into (2.9) we get

$$[A + E + (\delta \tilde{L})\tilde{R} + \tilde{L}(\delta \tilde{R}) + (\delta \tilde{L})(\delta \tilde{R})]x = b.$$

The entries of \tilde{L} and \tilde{R} satisfy

$$|\widetilde{l}_{ij}| \leq 1$$
, and $|\widetilde{r}_{ij}| \leq \rho \|A\|_{\infty}$.

< □ ト < 部 ト < 臣 ト < 臣 ト 臣 の Q ()</p>
43 / 56

Elementary matrices LR-factorization Gaussian elimination Cholesky factorization Error estimation

Therefore, we get

$$\begin{split} \tilde{L} \|\tilde{L}\|_{\infty} &\leq n, \\ \|\tilde{R}\|_{\infty} &\leq n\rho \|A\|_{\infty}, \\ \|\delta \tilde{L}\|_{\infty} &\leq \frac{n(n+1)}{2} 1.01 \cdot 2^{-t}, \\ \|\delta \tilde{R}\|_{\infty} &\leq \frac{n(n+1)}{2} 1.01\rho 2^{-t}. \end{split}$$

$$(2.10)$$

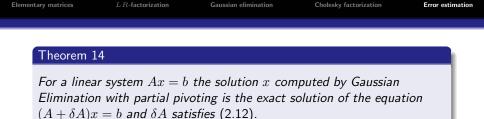
In practical implementation we usually have $n^2 2^{-t} << 1$. So it holds $\|\delta \tilde{L}\|_{\infty} \|\delta \tilde{R}\|_{\infty} \leq n^2 \rho \|A\|_{\infty} 2^{-t}.$

Let

$$\delta A = E + (\delta \tilde{L})\tilde{R} + \tilde{L}(\delta \tilde{R}) + (\delta \tilde{L})(\delta \tilde{R}).$$
(2.11)

Then, from (2.7) and (2.10) we get

$$\begin{split} \|\delta A\|_{\infty} &\leq \|E\|_{\infty} + \|\delta \tilde{L}\|_{\infty} \|\tilde{R}\|_{\infty} + \|\tilde{L}\|_{\infty} \|\delta \tilde{R}\|_{\infty} + \|\delta \tilde{L}\|_{\infty} \|\delta \tilde{R}\|_{\infty} \\ &\leq 1.01 (n^3 + 3n^2)\rho \|A\|_{\infty} 2^{-t} \tag{2.12}$$



Remark: The quantity ρ defined by (2.9) is called a growth factor. The growth factor measures how large the numbers become during the process of elimination. In practice, ρ is usually of order 10 for partial pivot selection. But it can be as large as $\rho = 2^{n-1}$, when

$$A = \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 & 1 \\ -1 & 1 & 0 & \cdots & 0 & 1 \\ \vdots & -1 & \ddots & \ddots & \vdots & 1 \\ \vdots & \vdots & \ddots & \ddots & 0 & 1 \\ -1 & -1 & \cdots & -1 & 1 & 1 \\ -1 & -1 & \cdots & \cdots & -1 & 1 \end{bmatrix}$$

・ロト ・ 一下・ ・ ヨト ・ 日 ・

Better estimates hold for special types of matrices. For example in the case of upper Hessenberg matrices, that is, matrices of the form

$$A = \begin{bmatrix} \times & \cdots & \cdots & \times \\ \times & \ddots & \ddots & \vdots \\ & \ddots & \ddots & \vdots \\ 0 & & \times & \times \end{bmatrix}$$

the bound $\rho \leq (n-1)$ can be shown. (Hessenberg matrices arise in eigenvalus problems.)

・ロト ・ 一下・ ・ ヨト ・ 日 ・

Elementary matrices	LR-factorization	Gaussian elimination	Cholesky factorization	Error estimation
For tridiagona	l matrices			

$A = \begin{bmatrix} \alpha_1 & \beta_2 & & 0\\ \gamma_2 & \ddots & \ddots & \\ & \ddots & \ddots & \ddots \\ & & \ddots & \ddots & \beta_n\\ 0 & & & \gamma_n & \alpha_n \end{bmatrix}$

it can even be shown that $\rho \leq 2$ holds for partial pivot selection. Hence, Gaussian elimination is quite numerically stable in this case.

LR-factorization

Gaussian elimination

Cholesky factorization

Error estimation

For complete pivot selection, Wilkinson (1965) has shown that

$$|a_{ij}^k| \le f(k) \max_{i,j} |a_{ij}|$$

with the function

$$f(k) := k^{\frac{1}{2}} \left[2^1 3^{\frac{1}{2}} 4^{\frac{1}{3}} \cdots k^{\frac{1}{(k-1)}} \right]^{\frac{1}{2}}.$$

This function grows relatively slowly with k:

k	10	20	50	100
f(k)	19	67	530	3300

48 / 56

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Even this estimate is too pessimistic in practice. Up until now, no matrix has been found which fails to satisfy

$$|a_{ij}^{(k)}| \le (k+1) \max_{i,j} |a_{ij}| \quad k = 1, 2, ..., n-1,$$

when complete pivot selection is used. This indicates that Gaussian elimination with complete pivot selection is usually a stable process. Despite this, partial pivot selection is preferred in practice, for the most part, because:

- (i) Complete pivot selection is more costly than partial pivot selection. (To compute $A^{(i)}$, the maximum from among $(n-i+1)^2$ elements must be determined instead of n-i+1 elements as in partial pivot selection.)
- (ii) Special structures in a matrix, i.e. the band structure of a tridiagonal matrix, are destroyed in complete pivot selection.

・ロト ・聞き ・ヨト ・ヨト ・ヨ

Iterative Improvement:

Suppose that the linear system Ax = b has been solved via the LR-factorization PA = LR. Now we want to improve the accuracy of the computed solution x. We compute

$$\begin{cases} r = b - Ax, \\ Ly = Pr, Rz = y, \\ x_{new} = x + z. \end{cases}$$
 (2.13)

Then in exact arithmatic we have

$$Ax_{new} = A(x+z) = (b-r) + Az = b.$$

This leads to solve

$$Az = r$$

by using PA = LR.

Unfortunately, r = fl(b - Ax) renders an x_{new} that is no more accurate than x. It is necessary to compute the residual b - Ax with extended precision floating arithmetic.

Algorithm 4

Compute
$$PA = LR$$
 (t-digit)
Repeat: $r := b - Ax$ (2t-digit)
Solve $Ly = Pr$ for y (t-digit)
Solve $Rz = y$ for z (t-digit)
Update $x = x + z$ (t-digit)

From Theorem 14 we have $(A + \delta A)z = r$, i.e.,

$$A(I+F)z = r \text{ with } F = A^{-1}\delta A.$$
(2.14)

51/56

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

 $||F_k|| \leq \sigma < 1/2$ for all k. Then $\{x_k\} \rightarrow x^*$.

Corollary 16

lf

$$1.01(n^3 + 3n^2)\rho 2^{-t} \|A\| \|A^{-1}\| < 1/2,$$

then Algorithm 4 converges.

From (2.14) and (2.12) follows that Proof:

 $||F_k|| \le 1.01(n^3 + 3n^2)\rho 2^{-t}\kappa(A) < 1/2.$

52 / 56

ヘロト 人間ト ヘヨト ヘヨト

Elementary matrices	LR-factorization	Gaussian elimination	Cholesky factorization	Error estimation
Appendix				

Proof of Theorem 12: Let $s_p = fl(\sum_{k=1}^p x_k y_k)$ be the partial sum in Algorithm 41. Then

$$s_1 = x_1 y_1 (1 + \delta_1)$$

with $|\delta_1| \leq eps$ and for $p=2,\ldots,n$,

$$s_p = fl[s_{p-1} + fl(x_p y_p)] = [s_{p-1} + x_p y_p(1 + \delta_p)](1 + \varepsilon_p)$$

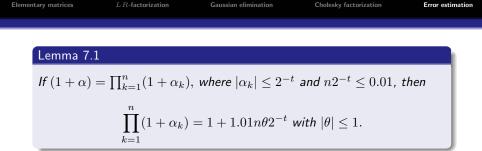
with $|\delta_p|$, $|\varepsilon_p| \le eps$. Therefore

$$fl(x^T y) = s_n = \sum_{k=1}^n x_k y_k (1 + \gamma_k),$$

where $(1 + \gamma_k) = (1 + \delta_k) \prod_{j=k}^n (1 + \varepsilon_j)$, and $\varepsilon_1 \equiv 0$. Thus,

$$fl(\sum_{k=1}^{n} x_k y_k) = \sum_{k=1}^{n} x_k y_k [1 + 1.01(n+2-k)\theta_k 2^{-t}].$$

The result follows immediately from the following useful Lemma.



Proof: From assumption it is easily seen that

$$(1-2^{-t})^n \le \prod_{k=1}^n (1+\alpha_k) \le (1+2^{-t})^n.$$

Expanding the Taylor expression of $(1-x)^n$ as -1 < x < 1, we get

$$(1-x)^n = 1 - nx + \frac{n(n-1)}{2}(1-\theta x)^{n-2}x^2 \ge 1 - nx.$$

Hence

$$(1-2^{-t})^n \ge 1-n2^{-t}.$$

54 / 56

Now, we estimate the upper bound of $(1+2^{-t})^n$:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots = 1 + x + \frac{x}{2}x(1 + \frac{x}{3} + \frac{2x^{2}}{4!} + \dots)$$

If $0 \leq x \leq 0.01,$ then

$$1 + x \le e^x \le 1 + x + 0.01x \frac{1}{2}e^x \le 1 + 1.01x$$

(Here, we use the fact $e^{0.01} < 2$ to the last inequality.) Let $x = 2^{-t}$. Then the left inequality of (55) implies

$$(1+2^{-t})^n \le e^{2^{-t}n}$$

Let $x = 2^{-t}n$. Then the second inequality of (55) implies

$$e^{2^{-t}n} \le 1 + 1.01n2^{-t}$$

From (55) and (55) we have

$$(1+2^{-t})^n \le 1+1.01n2^{-t}.$$

55 / 56

Proof of Theorem 15: From (2.14) and $r_k = b - Ax_k$ we have $A(I + F_k)z_k = b - Ax_k$.

Since A is nonsingular, we have $(I + F_k)z_k = x^* - x_k$.

From $x_{k+1} = x_k + z_k$ we have $(I + F_k)(x_{k+1} - x_k) = x^* - x_k$, i.e., $(I + F_k)x_{k+1} = F_k x_k + x^*.$ (2.15)

Subtracting both sides of (2.15) from $(I + F_k)x^*$ we get

$$(I + F_k)(x_{k+1} - x^*) = F_k(x_k - x^*).$$

Then, $x_{k+1} - x^* = (I + F_k)^{-1} F_k(x_k - x^*)$. Hence,

$$||x_{k+1} - x^*|| \le ||F_k|| \frac{||x_k - x^*||}{1 - ||F_k||} \le \frac{\sigma}{1 - \sigma} ||x_k - x^*||.$$

Let $\tau = \sigma/(1-\sigma)$. Then

$$||x_k - x^*|| \le \tau^{k-1} ||x_1 - x^*||.$$

But $\sigma < 1/2$ follows $\tau < 1$. This implies convergence of Algorithm 4.

56 / 56