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General procedures for the construction of iterative methods

Given a linear system of nonsingular A

Ax = b, (1)

we consider the splitting of A

A = M −N (2)

with M nonsingular. Then (1) is equivalent to Mx = Nx+ b, or

x = M−1Nx+M−1b ≡ Tx+ f.

This suggests an iterative process

xk+1 = Txk + f = M−1Nxk +M−1b, (3)

where x0 is given. Then the solution x of (1) is determined by iteration.

T.M. Huang (NTNU) Iterative Methods for LS October 25, 2011 3 / 45



師
大

Remark 1

(a) Define εk = xk − x. Then

εk+1 = xk+1 − x = M−1Nxk +M−1b−M−1Nx−M−1b
= (M−1N)εk = (M−1N)kε0

which implies that ρ(M−1N) < 1 if and only if {εk} → 0.

(b) Let rk = b−Axk. Then,

xk+1 = M−1Nxk +M−1b

= M−1(M −A)xk +M−1b

= xk +M−1(b−Axk)
= xk + zk

where Mzk = rk.
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Example 1

We consider the standard splitting of A

A = D − L−R, (4)

where A = [aij ]
n
i,j=1, D = diag(a11, a22, · · · , ann),

−L =


0 0
a21 0

...
. . .

. . .

an1 · · · an,n−1 0

 ,

−R =


0 a12 · · · a1n

0
. . .

...
. . . an−1,n

0 0

 .
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For ai,i 6= 0, i = 1, . . . , n, D is nonsingular. If we choose

M = D and N = L+R

in (2), we then obtain the Jacobi Method (Total-step Method):

xk+1 = D−1(L+R)xk +D−1b

or in formula

xk+1,j =
1

ajj
(−
∑
i 6=j

ajixk,i + bj), j = 1, . . . , n, k = 0, 1, . . . .
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Example 2

If D − L is nonsingular in (4), then we choose

M = D − L, N = R

as in (2) are possible and yields the so-called Gauss-Seidel Method
(Single-Step Method):

xk+1 = (D − L)−1Rxk + (D − L)−1b

or in formula

xk+1,j =
1

ajj
(−
∑
i<j

ajixk+1,i−
∑
i>j

ajixk,i+bj), j = 1, . . . , n, k = 1, 2, . . . .

- Total-Step Method = TSM = Jacobi method.

- Single-Step Method = SSM = Gauss-Seidel method.
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We consider the following points on Examples 1 and 2:

(i) flops counts per iteration step.

(ii) Convergence speed.

Let ‖ · ‖ be a vector norm, and ‖T‖ be the corresponding operator norm.
Then

‖εm‖
‖ε0‖

=
‖Tmε0‖
‖ε0‖

≤ ‖Tm‖. (5)

Here ‖Tm‖
1
m is a measure for the average of reduction of error εm per

iteration step. We call

Rm(T ) = − ln(‖Tm‖
1
m ) = − 1

m
ln(‖Tm‖) (6)

the average of convergence rate for m iterations.
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The larger is Rm(T ), so the better is convergence rate. Let

σ = (‖εm‖/‖ε0‖)
1
m . From (5) and (6) we get

σ ≤ ‖Tm‖
1
m ≤ e−Rm(T ),

or

σ1/Rm(T ) ≤ 1

e
.

That is, after 1/Rm(T ) steps in average the error is reduced by a factor of
1/e. Since Rm(T ) is not easy to determine, we consider m→∞. Since

lim
m→∞

‖Tm‖
1
m = ρ(T ),

it follows
R∞(T ) = lim

m→∞
Rm(T ) = − ln ρ(T ).

R∞ is called the asymptotic convergence rate. It holds always
Rm(T ) ≤ R∞(T ).
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Example 3

Consider the Dirichlet boundary-value problem (Model problem):

−∆u ≡ −uxx − uyy = f(x, y), 0 < x, y < 1, (7)

u(x, y) = 0 (x, y) ∈ ∂Ω,

for the unit square Ω := {x, y|0 < x, y < 1} ⊆ R2 with boundary ∂Ω.

To solve (7) by means of a difference methods, one replaces the
differential operator by a difference operator. Let

Ωh := {(xi, yi)|i, j = 1, . . . , N + 1},
∂Ωh := {(xi, 0), (xi, 1), (0, yj), (1, yj)|i, j = 0, 1, . . . , N + 1},

where
xi = ih, yj = jh, i, j = 0, 1, . . . , N + 1, h := 1

N+1 , N ≥ 1, an integer.
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The differential operator −uxx − uyy can be replaced for all (xi, yi) ∈ Ωh

by the difference operator:

4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1

h2
(8)

up to an error τi,j . For small h one can expect that the solution zi,j , for
i, j = 1, . . . , N , of the linear system

4zi,j − zi−1,j − zi+1,j − zi,j−1 − zi,j+1 = h2fi,j , i, j = 1, . . . , N, (9)

z0,j = zN+1,j = zi,0 = zi,N+1 = 0, i, j = 0, 1, . . . , N + 1,

obtained from (8) by omitting the error τi,j , agrees approximately with the
ui,j . Let

z = [z1,1, z2,1, · · · , zN,1, z1,2, · · · , zN,2, · · · , z1,N , · · · , zN,N ]T

and

b = h2[f1,1, · · · , fN,1, f1,2, · · · , fN,2, · · · , f1,N , · · · , fN,N ]T .
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Then (9) is equivalent to a linear system Az = b with the N2 ×N2 matrix.

4 −1 −1

−1
. . .

. . .
. . .

. . . −1
. . .

−1 4 −1

−1 4 −1
. . .

. . . −1
. . .

. . .
. . .

. . .
. . . −1

. . .

−1 −1 4
. . .

. . .
. . . −1

. . .
. . .

. . .

. . .
. . .

. . .

. . .
. . . −1

−1 4 −1

. . . −1
. . .

. . .

. . .
. . . −1

−1 −1 4


(11)
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Let A = D − L−R. The matrix J = D−1(L+R) belongs to the Jacobi
method (TSM). The N2 eigenvalues and eigenvectors of J can be
determined explicitly. We can verify at once, by substitution, that N2

vectors z(k,l), k, l = 1, . . . , N with components

z
(k,l)
i,j := sin

kπi

N + 1
sin

lπj

N + 1
, 1 ≤ i, j ≤ N,

satisfy
Jz(k,l) = λ(k,l)z(k,l)

with

λ(k,l) :=
1

2
(cos

kπ

N + 1
+ cos

lπ

N + 1
), 1 ≤ k, l ≤ N.
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J thus has eigenvalues λ(k,l), 1 ≤ k, l ≤ N . Then we have

ρ(J) = λ1,1 = cos
π

N + 1
= 1− π2h2

2
+O(h4) (12)

and

R∞(J) = − ln(1− π2h2

2
+O(h4)) =

π2h2

2
+O(h4).

These show that

(i) TSM converges;

(ii) Diminution of h will not only enlarge the flop counts per step, but
also the convergence speed will drastically make smaller.
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Some theorems and definitions

ρ(T ): A measure of quality for convergence.

Definition 4

A real m× n-matrix A = (aik) is called nonnegative (positive), denoted
by A ≥ 0 (A > 0), if aik ≥ 0 (> 0), i = 1, . . . ,m, k = 1, . . . , n.

Definition 5

An m× n-matrix A is called reducible, if there is a subset
I ⊂ Ñ ≡ {1, 2, . . . , n}, I 6= φ, I 6= Ñ such that i ∈ I, j 6∈ I ⇒ aij = 0.
A is not reducible ⇔ A is irreducible.
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Remark 2

G(A) is the directed graph associated with the matrix A. If A is an
n× n-matrix, then G(A) consists of n vertices P1, · · · , Pn and there is an
(oriented) arc Pi → Pj in G(A) precisely if aij 6= 0.

It is easily shown that A is irreducible if and only if the graph G(A) is
connected in the sense that for each pair of vertices (Pi, Pj) in G(A) there
is an oriented path from Pi to Pj . i.e., if i 6= j, there is a sequence of
indices i = i1, i2, · · · , is = j such that (ai1,i2 · · · ais−1,is) 6= 0.
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Theorem 6 (Perron-Frobenius)

Let A ≥ 0 irreducible. Then

(i) ρ = ρ(A) is a simple eigenvalue;

(ii) There is a positive eigenvector z associated to ρ, i.e., Az = ρz, z > 0;

(iii) If Ax = λx, x ≥ 0, then λ = ρ, x = αz, α > 0;

(iv) A ≤ B,A 6= B =⇒ ρ(A) < ρ(B).
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Theorem 7

Let A ≥ 0, x > 0. Define the quotients:

qi(x) ≡ (Ax)i
xi

=
1

xi

n∑
k=1

aikxk, for i = 1, . . . , n.

Then
min
1≤i≤n

qi(x) ≤ ρ(A) ≤ max
1≤i≤n

qi(x). (13)

If A is irreducible, then it holds additionally, either

q1 = q2 = · · · = qn (then x = µz, qi = ρ(A))

or
min
1≤i≤n

qi(x) < ρ(A) < max
1≤i≤n

qi(x). (14)
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Theorem 8

The statements in Theorem 7 can be formulated as: Let A ≥ 0, x > 0.
(13) corresponds: 

Ax ≤ µx ⇒ ρ ≤ µ,

Ax ≥ νx ⇒ ν ≤ ρ.
(15)

Let A ≥ 0, irreducible, x > 0. (14) corresponds :{
Ax ≤ µx, Ax 6= µx ⇒ ρ < µ,
Ax ≥ νx, Ax 6= νx ⇒ ν < ρ.

(16)

Definition 9

A real matrix B is called an M -matrix if bij ≤ 0, i 6= j and B−1 exists
with B−1 ≥ 0.
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Sufficient conditions for convergence of TSM and SSM

Theorem 10

Let B be a real matrix with bij ≤ 0 for i 6= j. Then the following statements are
equivalent.

(i) B is an M−matrix.

(ii) There exists a vector v > 0 so that Bv > 0.

(iii) B has a decomposition B = sI − C with C ≥ 0 and ρ(C) < s.

(iv) For each decomposition B = D − C with D = diag (di) and C ≥ 0, it
holds: di > 0, i = 1, 2, . . . , n, and ρ(D−1C) < 1.

(v) There is a decomposition B = D − C, with D = diag(di) and C ≥ 0 it
holds: di > 0, i = 1, 2, . . . , n and ρ(D−1C) < 1.
Further, if B is irreducible, then (vi) is equivalent to (i)-(v).

(vi) There exists a vector v > 0 so that Bv ≥ 0, 6= 0.

Proof
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Lemma 11

Let A be an arbitrary complex matrix and define |A| = [|aij |]. If |A| ≤ C, then
ρ(A) ≤ ρ(C). Especially ρ(A) ≤ ρ(|A|).

Proof

Theorem 12

Let A be an arbitrary complex matrix. It satisfies
either (Strong Row Sum Criterion):∑

j 6=i

|aij | < |aii|, i = 1, . . . , n. (17)

or (Weak Row Sum Criterion):∑
j 6=i

|aij | ≤ |aii|, i = 1, . . . , n,

< |ai0i0 |, at least one i0, (18)

for A irreducible. Then TSM(Jacobi) and SSM(GS) both are convergent.

Proof

T.M. Huang (NTNU) Iterative Methods for LS October 25, 2011 21 / 45



師
大

Relaxation Methods (Successive Over-Relaxation (SOR) Method)

Consider the parametrized linear system ωAx = ωb and consider the
splitting

ωA = ωD − ωL− ωR+D −D
= (D − ωL)− ((1− ω)D + ωR) ≡M −N.

From (3) we have the iteration

xk+1 = (D − ωL)−1 ((1− ω)D + ωR)xk + ω(D − ωL)−1b. (19)

From Remark 1 (b) the iteration (19) is equivalent to

xk+1 = xk + ωzk

where
(D − ωL)zk = rk ≡ b−Axk.
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Define
Lω := (D − ωL)−1 ((1− ω)D + ωR) .

We may assume D = I, i.e.,

Lω := (I − ωL)−1 ((1− ω)I + ωR) .

Otherwise, we can let Ã = D−1A, L̃ = D−1L, R̃ = D−1R. Then it holds
that

Ã = I − L̃− R̃.

ω < 1: under relaxation

ω = 1: single-step method (GS)

ω > 1: over relaxation.
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We now try to choose an ω such that ρ(Lω) is small as possible. But this
is only under some special assumptions possible. we first list a few
qualitative results about ρ(Lω).

Theorem 13

Let A = D − L− L∗ be Hermitian and positive definite. Then the
relaxation method is convergent for 0 < ω < 2.

Theorem 14

Let A be Hermitian and nonsingular with positive diagonal. If SSM
converges, then A is positive definite.
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Determination of the Optimal Parameter ω for 2-consistly
Ordered Matrices

For an important class of matrices the more qualitative assertions of
Theorems 13 and 14 can be considerably sharpened. This is the class of
consistly ordered matrices. The optimal parameter ωb with

ρ(Lωb
) = min

ω
ρ(Lω)

can be determined. We consider A = I − L−R.

Definition 15

A is called 2-consistly ordered, if the eigenvalues of αL+ α−1R are
independent of α.
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If A is 2-consistly ordered, then L+R and −(L+R) (α = −1) has the
same eigenvalues. The nonzero eigenvalues of L+R appear in pairs.
Hence

det(λI−L−R) = λm
r∏
i=1

(λ2−µ2i ), n = 2r+m (m = 0, possible). (20)

Theorem 16

Let A be 2-consistly ordered, aii = 1, ω 6= 0. Then hold:

(i) If λ 6= 0 is an eigenvalue of Lω and µ satisfies the equation

(λ+ ω − 1)2 = λµ2ω2, (21)

then µ is an eigenvalue of L+R (so is −µ).

(ii) If µ is an eigenvalue of L+R and λ satisfies the equation (21), then
λ is an eigenvalue of Lω.
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Remark 3

If ω = 1, then λ = µ2, and ρ((I − L)−1R) = (ρ(L+R))2.

Proof: We first prove the identity

det(λI − sL− rR) = det(λI −
√
sr(L+R)). (22)

Since both sides are polynomials of the form λn + · · · and

sL+ rR =
√
sr(

√
s

r
L+

√
r

s
R) =

√
sr(αL+ α−1R),

if sr 6= 0, then sL+ rR and
√
sr(L+R) have the same eigenvalues. It is

obviously also for the case sr = 0. The both polynomials in (22) have the
same roots, so they are identical.
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For

det(I − ωL) det(λI − Lω) = det(λ(I − ωL)− (1− ω)I − ωR)

= det((λ+ ω − 1)I − ωλL− ωR) = Φ(λ)

and det(I − ωL) 6= 0, λ is an eigenvalue of Lω if and only if Φ(λ) = 0.
From (22) follows

Φ(λ) = det((λ+ ω − 1)I − ω
√
λ(L+R))

and that is (from (20))

Φ(λ) = (λ+ ω − 1)m
r∏
i=1

((λ+ ω − 1)2 − λµ2iω2), (23)

where µi is an eigenvalue of L+R. Therefore, if µ is an eigenvalue of
(L+R) and λ satisfies (21), so is Φ(λ) = 0, then λ is eigenvalue of Lω.
This shows (ii).

T.M. Huang (NTNU) Iterative Methods for LS October 25, 2011 28 / 45



師
大

Now if λ 6= 0 an eigenvalue of Lω, then one factor in (23) must be zero.
Let µ satisfy (21). Then

(i) µ 6= 0: From (21) follows λ+ ω − 1 6= 0, so

(λ+ ω − 1)2 = λω2µ2i , for one i (from (23)),

= λω2µ2, (from (21)).

This shows that µ = ±µi, so µ is an eigenvalue of L+R.

(ii) µ = 0: We have λ+ ω − 1 = 0 and

0 = Φ(λ) = det((λ+ω− 1)I −ω
√
λ(L+R)) = det(−ω

√
λ(L+R)),

i.e., L+R is singular, so µ = 0 is eigenvalue of L+R.
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Theorem 17

Let A = I − L−R be 2-consistly ordered. If L+R has only real
eigenvalues and satisfies ρ(L+R) < 1, then it holds

ρ(Lωb
) = ωb − 1 < ρ(Lω), for ω 6= ωb,

where

ωb =
2

1 +
√

1− ρ2(L+R)
(solve ωb in (21)).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.9975

0.998

0.9985
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0.9995
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ω

 s
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Figure: figure of ρ(Lωb
)
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Theorem 18

One has in general,

ρ(Lω) =

{
ω − 1, for ωb ≤ ω ≤ 2

1− ω + 1
2ω

2µ2 + ωµ
√

1− ω + 1
4ω

2µ2, for 0 < ω ≤ ωb
(24)
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Remark: We first prove the following Theorem proposed by Kahan: For
arbitrary matrices A it holds

ρ(Lω) ≥ |ω − 1|, for all ω. (25)

Since det(I − ωL) = 1 for all ω, the characteristic polynomial Φ(λ) of Lω
is

Φ(λ) = det(λI − Lω) = det((I − ωL)(λI − Lω))

= det((λ+ ω − 1)I − ωλL− ωR).

For
n∏
i=1

λi(Lω) = Φ(0) = det((ω − 1)I − ωR) = (ω − 1)n, it follows

immediately that

ρ(Lω) = max
i
|λi(Lω)| ≥ |ω − 1|.
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Proof of Theorem: By assumption the eigenvalues µi of L+R are real
and −ρ(L+R) ≤ µi ≤ ρ(L+R) < 1. For a fixed ω ∈ (0, 2) (by (25) in
the Remark it suffices to consider the interval (0,2)) and for each µi there

are two eigenvalues λ
(1)
i (ω, µi) and λ

(2)
i (ω, µi) of Lω, which are obtained

by solving the quadratic equation (21) in λ.

Geometrically, λ
(1)
i (ω) and λ

(2)
i (ω) are obtained as abscissae of the points

of intersection of

the straight line gω(λ) =
λ+ ω − 1

ω

and
the parabola mi(λ) := ±

√
λµi

(see Figure 2). The line gω(λ) has the slope 1/ω and passes through the

point (1,1). If gω(λ) ∩mi(λ) = φ, then λ
(1)
i (ω) and λ

(2)
i (ω) are conjugate

complex with modulus |ω − 1| (from (21)).
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Evidently

ρ(Lω) = max
i

(|λ(1)i (ω)|, |λ(2)i (ω)|) = max(|λ(1)(ω)|, |λ(2)(ω)|),

where λ(1)(ω), λ(2)(ω) being obtained by intersecting gω(λ) with
m(λ) := ±

√
λµ, with µ = ρ(L+R) = maxi |µi|. By solving (21) with

µ = ρ(L+R) for λ, one verifies (24) immediately, and thus also the
remaining assertions of the theorem.
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Application to Finite Difference Methods: Model Problem

We consider the Dirichlet boundary-value problem (Model problem) as
in Example 3. We shall solve a linear system Az = b of the N2 ×N2

matrix A as in (11).

To Jacobi method: The iterative matrix is

J = L+R =
1

4
(4I −A).

It is easily seen that A is 2-consistly ordered (Exercise!).

To Gauss-Seidel method: The iterative matrix is

H = (I − L)−1R.
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From the Remark of Theorem 16 and (12) follows that

ρ(H) = ρ(J)2 = cos2
π

N + 1
.

According to Theorem 17 the optimal relaxation parameter ωb and ρ(Lωb
)

are given by

ωb =
2

1 +
√

1− cos2 π
N+1

=
2

1 + sin π
N+1

and

ρ(Lωb
) =

cos2 π
N+1

(1 + sin π
N+1)2

.

The number k = k(N) with ρ(J)k = ρ(Lωb
) indicates that the k steps of

Jacobi method produce the same reduction as one step of the optimal
relaxation method. Clearly,

k = ln ρ(Lωb
)/ ln ρ(J).
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Now for small z one has ln(1 + z) = z − z2/2 +O(z3) and for large N we
have

cos

(
π

N + 1

)
= 1− π2

2(N + 1)2
+O(

1

N4
).

Thus that

ln ρ(J) =
π2

2(N + 1)2
+O(

1

N4
).

Similarly,

ln ρ(Lωb
) = 2[ln ρ(J)− ln(1 + sin

π

N + 1
)]

= 2[− π2

2(N + 1)2
− π

N + 1
+

π2

2(N + 1)2
+O(

1

N3
)]

= − 2π

N + 1
+O(

1

N3
) (for large N).

and

k = k(N) ≈ 4(N + 1)

π
.
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The optimal relaxation method is more than N times as fast as the Jacobi
method. The quantities

RJ :=
− ln 10

ln ρ(J)
≈ 0.467(N + 1)2. (26)

RH :=
1

2
RJ ≈ 0.234(N + 1)2 (27)

RLωb
:= − ln 10

ln ρ(Lωb
)
≈ 0.367(N + 1) (28)

indicate the number of iterations required in the Jacobi, the Gauss-Seidel
method, and the optimal relaxation method, respectively, in order to
reduce the error by a factor of 1/10.
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SSOR (Symmetric Successive Over Relaxation):

A is symmetric and A = D − L− LT . Let{
Mω : = D − ωL,
Nω : = (1− ω)D + ωLT ,

and

{
MT
ω = D − ωLT ,

NT
ω = (1− ω)D + ωL.

Then from the iterations

Mωxi+1/2 = Nωxi + ωb,

MT
ω xi+1 = NT

ω xi+1/2 + ωb,

follows that

xi+1 =
(
M−Tω NT

ωM
−1
ω Nω

)
xi + b̃

≡ Gxi + ω
(
M−Tω NT

ωM
−1
ω +M−Tω

)
b

≡ Gxi +M(ω)−1b.
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It holds that

((1− ω)D + ωL) (D − ωL)−1 + I

= (ωL−D − ωD + 2D)(D − ωL)−1 + I

= −I + (2− ω)D(D − ωL)−1 + I

= (2− ω)D(D − ωL)−1,

Thus
M(ω)−1 = ω

(
D − ωLT

)−1
(2− ω)D(D − ωL)−1,

then

M(ω) =
1

ω(2− ω)
(D − ωL)D−1

(
D − ωLT

)
(29)

≈ (D − L)D−1
(
D − LT

)
, (ω = 1).
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Appendix

Proof of Theorem

(1) =⇒ (2): Let e = (1, · · · , 1)T . Since B−1 ≥ 0 is nonsingular it follows
ν = B−1e > 0 and Bν = B(B−1e) = e > 0.

(2) =⇒ (3): Let s > max(bii). It follows B = sI − C with C ≥ 0. There
exists a ν > 0 with Bν = sν − Cν (via (2)), also sν > Cν. From the
statement (15) in Theorem 8 follows ρ(C) < s.

(3) =⇒ (1): B = sI−C = s(I− 1
sC). For ρ(1sC) < 1 and from Theorem

2.6 (I − 1
sC)−1 follows that there exists a series expansion

∞∑
ν=0

(1sC)k.

Since the terms in sum are nonnegtive, we get B−1 = 1
s (I − 1

sC)−1 ≥ 0.

(2) =⇒ (4): From Bν = Dν −Cν > 0 follows Dν > Cν ≥ 0 and di > 0,
for i = 1, 2, · · · , n. Hence D−1 ≥ 0 and ν > D−1Cν ≥ 0. From (15)
follows that ρ(D−1C) < 1.

(4) =⇒ (5): Trivial.
T.M. Huang (NTNU) Iterative Methods for LS October 25, 2011 42 / 45



師
大

(5) =⇒ (1): Since ρ(D−1C) < 1, it follows from Theorem 2.6 that

(I −D−1C)−1 exists and equals to
∞∑
k=0

(D−1C)k. Since the terms in sum

are nonnegative, we have (I −D−1C)−1 is nonnegative and
B−1 = (I −D−1C)−1D−1 ≥ 0.

(2) =⇒ (6): Trivial.

(6) =⇒ (5): Consider the decomposition B = D − C, with di = bii. Let
{I = i | di ≤ 0}. From diνi −

∑
k 6=i cikνk ≥ 0 follows cik = 0 for i ∈ I,

and k 6= i. Since Bν ≥ 0, 6= 0 =⇒ I 6= {1, · · · , n}. But B is irreducible
=⇒ I = ∅ and di > 0. Hence for Dν >, 6= Cν also ν >, 6= D−1Cν and
(16) show that ρ(D−1C) < 1.

return
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Proof of Lemma 11 There is a x 6= 0 with Ax = λx and |λ| = ρ(A).
Hence

ρ(A)|xi| = |
n∑
k=1

aikxk| ≤
n∑
k=1

|aik||xk| ≤
n∑
k=1

cik|xk|.

Thus,
ρ(A)|x| ≤ C|x|.

If |x| > 0, then from (15) we have ρ(A) ≤ ρ(C). Otherwise, let
I = {i | xi 6= 0} and CI be the matrix, which consists of the ith row and
ith column of C with i ∈ I. Then we have ρ(A)|xI | ≤ CI |xI |. Here |xI |
consists of ith component of |x| with i ∈ I. Then from |xI | > 0 and (15)
follows ρ(A) ≤ ρ(CI). We now fill CI with zero up to an n× n matrix C̃I .
Then C̃I ≤ C. Thus, ρ(CI) = ρ(C̃I) ≤ ρ(C) (by Theorem ??(3)).

return
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Proof of Theorem ?? Let A = D − L−R. From (17) and (18) D must
be nonnsingular and then as in Remark 9.3 we can w.l.o.g. assume that
D = I. Now let B = I − |L| − |R|. Then (17) can be written as Be > 0.
From Theorem 10(2) and (1) follows that B is an M -matrix.
(18) can be written as Be ≥ 0, Be 6= 0. Since A is irreducible, also B,
from Theorem 10 (6) and (1) follows that B is an M -matrix.
Especially, from theorem 10(1), (4) and Theorem ?? follows that

ρ(|L|+ |R|) < 1 and ρ((I − |L|)−1|R|) < 1.

Now Lemma 11 shows that

ρ(L+R) ≤ ρ(|L|+ |R|) < 1.

So TSM is convergent. Similarly,

ρ((I − L)−1R) = ρ(R+ LR+ · · ·+ Ln−1R)

≤ ρ(|R|+ |L||R|+ · · ·+ |L|n−1|R|)
= ρ((I − |L|)−1|R|) < 1.

So SSM is convergent.

return
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