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A Variational Problem, Steepest Descent Method

(Gradient Method)

Let A ∈ R
n×n be a large and sparse symmetric positive definite (s.p.d.)

matrix. Consider the linear system

Ax = b

and the functional F : Rn → R with

F (x) =
1

2
xTAx− bTx. (1)

Then it holds:
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Theorem 1

For a vector x∗ the following statements are equivalent:

(i) F (x∗) < F (x), for all x 6= x∗,

(ii) Ax∗ = b.

Proof: From assumption there exists z0 = A−1b and F (x) can be
rewritten as

F (x) =
1

2
(x− z0)

TA(x− z0)−
1

2
zT0 Az0. (2)

Since A is positive definite, F (x) has a minimum at x = z0 and only at
x = z0, it follows the assertion.
The solution of the linear system Ax = b is equal to the solution of the
minimization problem

minF (x) ≡ min

(

1

2
xTAx− bTx

)

.
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Steepest Descent Method

Let xk be an approximate of the exact solution x∗ and pk be a search
direction. We want to find an αk such that

F (xk + αkpk) < F (xk).

Set xk+1 := xk + αkpk. This leads to the basic problem:

Given x, p 6= 0, find α∗ such that

Φ(α∗) = F (x+ α∗p) = min
α∈R

F (x+ αp).
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Solution: Since

F (x+ αp) =
1

2
(x+ αp)TA(x+ αp)− bT (x+ αp)

=
1

2
α2pTAp+ α(pTAx− pT b) + F (x),

it follows that if we take

α∗ =
(b−Ax)T p

pTAp
=

rT p

pTAp
, (3)

where r = b−Ax = −gradF (x) = residual, then x+ α∗p is the minimal
solution. Moreover,

F (x+ α∗p) = F (x)− 1

2

(rT p)2

pTAp
.
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Lemma 2

Let

xk+1 = xk +
rTk pk

pTkApk
pk, rk = b−Axk, (4)

F (xk+1) = F (xk)−
1

2

(rTk pk)
2

pTkApk
, k = 0, 1, 2, · · · . (5)

Then, it holds
rTk+1pk = 0. (6)

Proof: Since
d

dα
F (xk + αpk) = gradF (xk + αpk)

T pk,

it follows that gradF (xk + αk+1pk)
T pk = 0 where αk+1 =

rTk pk
pTk Apk

. Thus

(b−Axk+1)
T pk = rTk+1pk = 0,

hence (6) holds.
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How to choose search direction pk?

Let Φ : Rn → R be a differential function on x. Then it holds

Φ(x+ εp)− Φ(x)

ε
= Φ

′

(x)T p+O(ε).

The right hand side takes minimum at p = − Φ
′

(x)

‖Φ′(x)‖ (i.e., the largest

descent) for all p with ‖p‖ = 1 (neglect O(ε)). Hence, it suggests to
choose

pk = −gradF (xk) = b−Axk = rk.
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Algorithm: Gradient Method

1: Give x0 and set k = 0.

2: Compute rk = b−Axk and αk =
rTk rk
rTk Ark

;

3: repeat
4: Compute xk+1 = xk + αkrk and set k := k + 1;

5: Compute rk = b−Axk and αk =
rTk rk
rTk Ark

.

6: until rk = 0

Cost in each step: compute Axk (Ark does not need to compute).
To prove the convergence of Gradient method, we need the Kontorowitsch
inequality:

Let λ1 ≥ λ2 ≥ · · · ≥ λn > 0, αi ≥ 0,
n
∑

i=1
αi = 1. Then it holds

n
∑

i=1

αiλi

n
∑

j=1

αjλ
−1
j ≤ (λ1 + λn)

2

4λ1λn
=

1

4

(

√

λ1

λn
+

√

λn

λ1

)2

.
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Theorem 3

If xk, xk−1 are two approximations of Gradient Method Algorithm for
solving Ax = b and λ1 ≥ λ2 ≥ · · · ≥ λn > 0 are the eigenvalues of A,
then it holds:

F (xk) +
1

2
bTA−1b ≤

(

λ1 − λn

λ1 + λn

)2

[F (xk−1) +
1

2
bTA−1b], (7a)

i.e.,

‖xk − x∗‖A ≤
(

λ1 − λn

λ1 + λn

)

‖xk−1 − x∗‖A, (7b)

where ‖x‖A =
√
xTAx. Thus the gradient method is convergent.
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Conjugate gradient method

It is favorable to choose that the search directions {pi} as mutually
A-conjugate, where A is symmetric positive definite.

Definition 4

Two vectors p and q are called A-conjugate (A-orthogonal), if pTAq = 0.

Remark 1

Let A be symmetric positive definite. Then there exists a unique s.p.d. B
such that B2 = A. Denote B = A1/2. Then pTAq = (A1/2p)T (A1/2q).
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Lemma 5

Let p0, . . . , pr 6= 0 be pairwisely A-conjugate. Then they are linearly
independent.

Proof: From 0 =
r
∑

j=0
cjpj follows that

0 = pTkA





r
∑

j=0

cjpj



 =
r
∑

j=0

cjp
T
kApj = ckp

T
kApk,

so ck = 0, for k = 1, . . . , r.
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Theorem 6

Let A be s.p.d. and p0, . . . , pn−1 be nonzero pairwisely A-conjugate
vectors. Then

A−1 =

n−1
∑

j=0

pjp
T
j

pTj Apj
. (8)

Remark 2

A = I, U = (p0, . . . , pn−1), p
T
i pi = 1, pTi pj = 0, i 6= j. UUT = I and

I = UUT . Then

I = (p0, . . . , pn−1)







pT0
...

pTn−1






= p0p

T
0 + · · ·+ pn−1p

T
n−1.
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Proof of Theorem 6: Since p̃j =
A1/2pj
√

pTj Apj
are orthonormal, for

j = 0, 1, . . . , n− 1, we have

I = p̃0p̃0
T + · · ·+ p̃n−1p̃

T
n−1

=
n−1
∑

j=0

A1/2pjp
T
j A

1/2

pTj Apj
= A1/2





n−1
∑

j=0

pjp
T
j

pTj Apj



A1/2.

Thus,

A−1/2IA−1/2 = A−1 =
n−1
∑

j=0

pjp
T
j

pTj Apj
.

Remark 3

Let Ax∗ = b and x0 be an arbitrary vector. Then from
x∗ − x0 = A−1(b−Ax0) and (8) follows that

x∗ = x0 +

n−1
∑

j=0

pTj (b−Ax0)

(pTj Apj)
pj. (9)
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Theorem 7

Let A be s.p.d. and p0, . . . , pn−1 ∈ R
n\{0} be pairwisely A-orthogonal.

Given x0 and let r0 = b−Ax0. For k = 0, . . . , n− 1, let

αk =
pTk rk

pTkApk
, (10)

xk+1 = xk + αkpk, (11)

rk+1 = rk − αkApk. (12)

Then the following statements hold:

(i) rk = b−Axk. (By induction).

(ii) xk+1 minimizes F (x) on x = xk + αpk, α ∈ R.

(iii) xn = A−1b = x∗.

(iv) xk minimizes F (x) on the affine subspace x0 + Sk, where Sk =
Span{p0, . . . , pk−1}.
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Proof: (i): By Induction and using (11), (12).
(ii): From (3) and (i).
(iii): It is enough to show that xk corresponds with the partial sum in (9),

xk = x0 +

k−1
∑

j=0

pTj (b−Ax0)

pTj Apj
pj.

Then it follows that xn = x∗ from (9). From (10) and (11) we have

xk = x0 +
k−1
∑

j=0

αjpj = x0 +
k−1
∑

j=0

pTj (b−Axj)

pTj Apj
pj .

To show that
pTj (b −Axj) = pTj (b−Ax0). (13)

From xk − x0 =
k−1
∑

j=0

αjpj we obtain

pTkAxk − pTkAx0 =
k−1
∑

j=0

αjp
T
kApj = 0.

So (13) holds.
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(iv): From (12) and (10) follows that

pTk rk+1 = pTk rk − αkp
T
kApk = 0.

From (11), (12) and by the fact that rk+s − rk+s+1 = αk+sApk+s and pk
are A-orthogonal (for s ≥ 1) follows that

pTk rk+1 = pTk rk+2 = · · · = pTk rn = 0.

Hence we have

pTi rk = 0, i = 0, . . . , k − 1, k = 1, 2, . . . , n. (i.e., i < k). (14)

We now consider F (x) on x0 + Sk:

F (x0 +

k−1
∑

j=0

ξjpj) = ϕ(ξ0, · · · , ξk−1).
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F (x) is minimal on x0 + Sk if and only if all derivatives ∂ϕ
∂ξs

vanish at x.
But

∂ϕ

∂ξs
= [gradF (x0 +

k−1
∑

j=0

ξjpj)]
T ps, s = 0, 1, . . . , k − 1.

If x = xk, then gradF (x) = −rk. From (14) follows that

∂ϕ

∂ξs
(xk) = 0, for s = 0, 1, . . . , k − 1.
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Remark 4

The following conditions are equivalent:

(i) pTi Apj = 0, i 6= j,

(ii) pTi rk = 0, i < k,

(iii) rTi rj = 0, i 6= j.

Proof of (iii): for i < k,

pTi rk = 0 ⇔ (rTi + βi−1p
T
i−1)rk = 0

⇔ rTi rk = 0

⇔ rTi rj = 0, i 6= j.
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Remark 5

It holds

〈p0, p1, · · · , pk〉 = 〈r0, r1, · · · , rk〉 =
〈

r0, Ar0, · · · , Akr0

〉

.

Since

p1 = r1 + β0p0 = r1 + β0r0,

r1 = r0 − α0Ar0,

by induction, we have

r2 = r1 − α0Ap1

= r1 − α0A(r1 + β0r0)

= r0 − α0Ar0 − α0A(r0 − α0Ar0 + β0r0).

T.M. Huang (NTNU) Conjugate Gradient Method October 10, 2011 20 / 36



university-logo

Method of conjugate directions

Input: Let A be s.p.d., b and x0 ∈ R
n. Given p0, . . . , pn−1 ∈ R

n\{0}
pairwisely A-orthogonal.

1: Compute r0 = b−Ax0;
2: for k = 0, . . . , n− 1 do
3: Compute αk = pkrk

pTk Apk
, xk+1 = xk + αkpk,;

4: Compute rk+1 = rk − αkApk = b−Axk+1.
5: end for

From Theorem 7 we get xn = A−1b.
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Practical Implementation

Algorithm: Conjugate Gradient method (CG-method)

Input: Given s.p.d. A, b ∈ R
n and x0 ∈ R

n and r0 = b−Ax0 = p0.
1: Set k = 0.
2: repeat

3: Compute αk =
pTk rk
pTk Apk

;

4: Compute xk+1 = xk + αkpk;
5: Compute rk+1 = rk − αkApk = b−Axk+1;

6: Compute βk =
−rTk+1

Apk

pTk Apk
;

7: Compute pk+1 = rk+1 + βkpk;
8: Set k = k + 1;
9: until rk = 0
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Theorem 8

The CG-method holds

(i) If k steps of CG-method are executable, i.e., ri 6= 0, for i = 0, . . . , k,
then pi 6= 0, i ≤ k and

pTi Apj = 0 for i, j ≤ k, i 6= j.

(ii) The CG-method breaks down after N steps for rN = 0 and N ≤ n.

(iii) xN = A−1b.
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Proof:

(i): By induction on k, it is trivial for k = 0. Suppose that (i) is true until
k and rk+1 6= 0. Then pk+1 is well-defined. We want to verify

pTk+1Apj = 0, for j = 0, 1, . . . , k.

From Lines 6 and 7 in CG Algorithm, we have

pTk+1Apk = rTk+1Apk + βkp
T
kApk = 0.

Let j < k, from Line 7 we have

pTk+1Apj = rTk+1Apj + βkp
T
kApj = rTk+1Apj.

It is enough to show that

Apj ∈ span{p0, ...., pj+1}, j < k. (15)

Then from the relation pTi rj = 0, i < j ≤ k + 1, which has been proved in
(14), follows assention.
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Claim (15): For rj 6= 0, it holds that αj 6= 0. Line 5shows that

Apj =
1

αj
(rj − rj+1) ∈ span{r0, ...., rj+1}.

Line 7 shows that span{r0, ...., rj+1} = span{p0, ...., pj+1} with r0 = p0,
so is (15).
(ii): Since {pi}k+1

i=0 6= 0 and are mutually A-orthogonal, p0, ..., pk+1 are
linearly independent. Hence there exists a N ≤ n with rN = 0. This
follows xN = A−1b.

Advantage

1 Break-down in finite steps.

2 Less cost in each step: one matrix × vector.
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Convergence of CG-method

Consider the A-norm with A being s.p.d.

‖x‖A = (xTAx)1/2.

Let x∗ = A−1b. Then from (2) we have

F (x)− F (x∗) =
1

2
(x− x∗)TA(x− x∗) =

1

2
‖x− x∗‖2A,

where xk is the k-th iterate of CG-method. From Theorem 7 xk minimizes
the functional F on x0+ span{p0, ...., pk−1}. Hence it holds

‖xk − x∗‖A ≤ ‖y − x∗‖A, y ∈ x0 + span{p0, .., pk−1}. (16)
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From Lines 5 and 7 in CG Algorithm it is easily seen that both pk and rk
can be written as linear combination of r0, Ar0, . . . , A

k−1r0.
If y ∈ x0 + span{p0, . . . , pk−1}, then

y = x0 + c1r0 + c2Ar0 + ..... + ckA
k−1r0 = x0 + P̃k−1(A)r0,

where P̃k−1 is a polynomial of degree ≤ k − 1. But
r0 = b−Ax0 = A(x∗ − x0), thus

y − x∗ = (x0 − x∗) + P̃k−1(A)A(x
∗ − x0)

=
[

I −AP̃k−1(A)
]

(x0 − x∗) = Pk(A)(x0 − x∗), (17)

where degree Pk ≤ k and
Pk(0) = 1. (18)
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Conversely, if Pk is a polynomial of degree ≤ k and satisfies (18), then

x∗ + Pk(A)(x0 − x∗) ∈ x0 + Sk.

Hence (16) means that if Pk is a polynomial of degree ≤ k with
Pk(0) = 1, then

‖xk − x∗‖A ≤ ‖Pk(A)(x0 − x∗)‖A.

Lemma 9

Let A be s.p.d. It holds for every polynominal Qk of degree k that

max
x 6=0

‖Qk(A)x‖A
‖x‖A

= ρ(Qk(A)) = max{|Qk(λ)| : λ eigenvalue of A}.
(19)

Proof
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From (19) we have that

‖xk − x∗‖A ≤ ρ(Pk(A))‖x0 − x∗‖A, (20)

where degree Pk ≤ k and Pk(0) = 1.

Replacement problem for (20): For 0 < a < b,

min{max{|Pk(λ)| : a ≤ λ ≤ b,∀deg(Pk(λ)) ≤ k with Pk(0) = 1}} (21)

We use Chebychev poly. of the first kind for the solution. They are defined
by

{

T0(t) = 1, T1(t) = t,
Tk+1(t) = 2tTk(t)− Tk−1(t).

it holds Tk(cosφ) = cos(kφ) by using
cos((k + 1)φ) + cos((k − 1)φ) = 2 cos φ cos kφ. Especially,

Tk(cos
jπ

k
) = cos(jπ) = (−1)j , for j = 0, . . . , k,
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i.e. Tk takes maximal value “one” at k + 1 positions in [−1, 1] with
alternating sign. In addition (Exercise!), we have

Tk(t) =
1

2

[

(t+
√

t2 − 1)k + (t−
√

t2 − 1)k
]

. (22)

Lemma 10

The solution of the problem (21) is given by

Qk(t) = Tk

(

2t− a− b

b− a

)/

Tk

(

a+ b

a− b

)

,

i.e., for all Pk of degree ≤ k with Pk(0) = 1 it holds

max
λ∈[a,b]

|Qk(λ)| ≤ max
λ∈[a,b]

|Pk(λ)|.
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Proof: Qk(0) = 1. If t runs through the interval [a, b], then
(2t− a− b)/(b− a) runs through the interval [−1, 1]. Hence, in [a, b],
Qk(t) has k + 1 extreme with alternating sign and absolute value
δ = |Tk(

a+b
a−b )

−1|.
If there are a Pk with

max {|Pk(λ)| : λ ∈ [a, b]} < δ,

then Qk −Pk has the same sign as Qk of the extremal values, so Qk −Pk

changes sign at k + 1 positions. Hence Qk − Pk has k roots, in addition a
root zero. This contradicts that degree (Qk −Pk) ≤ k.
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Lemma 11

It holds

δ =

∣

∣

∣

∣

∣

Tk

(

b+ a

a− b

)−1
∣

∣

∣

∣

∣

=
1

Tk

(

b+a
b−a

) =
2ck

1 + c2k
≤ 2ck,

where c =
√
κ−1√
κ+1

and κ = b/a.

Proof

Theorem 12

CG-method satisfies the following error estimate

‖xk − x∗‖A ≤ 2ck‖x0 − x∗‖A,

where c =
√
κ−1√
κ+1

, κ = λ1

λn
and λ1 ≥ · · · ≥ λn > 0 are the eigenvalues of A.

Proof
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Remark 6

To compare with Gradient method (see (7b)): Let xGk be the kth iterate of
Gradient method. Then

‖xGk − x∗‖A ≤
∣

∣

∣

∣

λ1 − λn

λ1 + λn

∣

∣

∣

∣

k

‖x0 − x∗‖A.

But
λ1 − λn

λ1 + λn
=

κ− 1

κ+ 1
>

√
κ− 1√
κ+ 1

= c,

because in general
√
κ ≪ κ. Therefore the CG-method is much better

than Gradient method.
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Appendix

Proof:

‖Qk(A)x‖2A
‖x‖2A

=
xTQk(A)AQk(A)x

xTAx

=
(A1/2x)TQk(A)Qk(A)(A

1/2x)

(A1/2x)(A1/2x)
(Let z := A1/2x)

=
zTQk(A)

2z

zT z
≤ ρ(Qk(A)

2) = ρ2(Qk(A)).

Equality holds for suitable x, hence the first equality is shown. The second
equality holds by the fact that Qk(λ) is an eigenvalue of Qk(A), where λ
is an eigenvalue of A.

return
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Proof: For t = b+a
b−a = κ+1

κ−1 , we compute

t+
√

t2 − 1 =

√
κ+ 1√
κ− 1

= c−1

and

t−
√

t2 − 1 =

√
κ− 1√
κ+ 1

= c.

Hence from (22) follows

δ =
2

ck + c−k
=

2ck

1 + c2k
≤ 2ck.

return
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Proof: From (20) we have

‖xk − x∗‖A ≤ ρ (Pk(A)) ‖x0 − x∗‖A
≤ max {|Pk(λ)| : λ1 ≥ λ ≥ λn} ‖x0 − x∗‖A,

for all Pk of degree ≤ k with Pk(0) = 1. From Lemma 10 and Lemma 11
follows that

‖xk − x∗‖A ≤ max {|Qk(λ)| : λ1 ≥ λ ≥ λn} ‖x0 − x∗‖A
≤ 2ck‖x0 − x∗‖A.

return
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