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A Variational Problem, Steepest Descent Method

(Gradient Method)

Let A € R™*™ be a large and sparse symmetric positive definite (s.p.d.)
matrix. Consider the linear system

Ax =b

and the functional F': R™ — R with
1

F(z) = §xTAx — bl (1)

Then it holds:
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For a vector x* the following statements are equivalent:

Proof: From assumption there exists 2o = A~'b and F(z) can be
rewritten as
1 1

F(z)= §(z —20)TA(z — 2) — 370 Azp. (2)
Since A is positive definite, F'(x) has a minimum at z = 2 and only at
T = zq, it follows the assertion. [ |

The solution of the linear system Ax = b is equal to the solution of the
minimization problem

min F(z) = min (%xTAa: - bTa:> .
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Steepest Descent Method

Let x; be an approximate of the exact solution z* and p; be a search
direction. We want to find an «ay, such that

F(xg + agpr) < F(zg).
Set xy41 1= Xk + agpg. This leads to the basic problem:

Given x, p # 0, find a, such that

®(as) = F(z + axp) = glel]%F(x + ap).
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Solution: Since
_ 1 T 4T
F(z+ap) = g(z+ap) Alz+ap) = b (z+ap)
1
= Sa’p' Ap+a(p’ Az —p'h) + F(w),

it follows that if we take

(b—Ax)Tp  rTp

Oy = = , 3
pT Ap pl Ap 3)
where r = b — Ax = —gradF'(z) = residual, then x 4+ «,p is the minimal
solution. Moreover,
1(r"p)?

Flo+ ap) = Fla) - 5 ol
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Let
T
r
Tpt1 = T+ :,{Cpk Pks Tk = b — Awzy, (4)
Py APk
1 (rFpg)?
Flxpy) = Flaogp)— =———,k=0,1,2,--- . 5
Then, it holds
Tg-upk = 0. (6)

Proof: Since

d
%F(azk + apg) = gradF'(zy + Oépk)Tpka

T
)'pe = 0 where gy = 2% Thus

it follows that gradF'(zy + akr1pk o7 Apn

(b — Azpy1) pr = 7”;{+1pk =0,
hence (6) holds. |
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How to choose search direction p;?
Let ® : R™ — R be a differential function on z. Then it holds

B(z + sz;) — @) _ ¢/ ()Tp + O(e).

The right hand side takes minimum at p = _Ili’ggll

descent) for all p with |[p|| = 1 (neglect O(g)). Hence, it suggests to
choose

(i.e., the largest

Pk = —gradF(xk) =b— Axk =Tk.
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Algorithm: Gradient Method

1: Give zg and set k = 0.
T
: — — "k"k .
2: Compute rp, = b — Axy and o = Ty
3: repeat
4:  Compute Tp41 = T + axrg and set k =k + 1;
T
_ B _ "eTk
5 Compute 1, = b — Az and o = Ty
6: until rp, =0

Cost in each step: compute Axy (Ary does not need to compute).
To prove the convergence of Gradient method, we need the Kontorowitsch

inequality:
Let \y > X2 >--> X, >0, 0; >0, > «a; =1. Then it holds

i=1

2
- - _ M+ 1 A\l An
z)\z ')\»1<(7:— — — .
;O‘ jz_:lau = TN, 4<\//\n+\/)\1
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Theorem 3

If x, xp_1 are two approximations of Gradient Method Algorithm for
solving Ax =b and \y > Xy > --- > A, > 0 are the eigenvalues of A,
then it holds:

Al — A
AL+ Ay

2
Flzx) + %bTA‘lb < ( > [F(zp_1) + %bTA‘lb],

i.e.,
)\l_)\n
T — 7|4 < Tp—1 — | A,
Jow = 2*la < (352 ) llokor =21

where ||z||4 = VaT Ax. Thus the gradient method is convergent.
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Conjugate gradient method

It is favorable to choose that the search directions {p;} as mutually
A-conjugate, where A is symmetric positive definite.

Definition 4
Two vectors p and ¢ are called A-conjugate (A-orthogonal), if p” Ag = 0.

Let A be symmetric positive definite. Then there exists a unique s.p.d. B
such that B> = A. Denote B = A'/2. Then p" Aq = (AY/?p)T(A'/?q).
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Let pg,...,pr # 0 be pairwisely A-conjugate. Then they are linearly
independent.

Proof: From 0 = ) ¢;p; follows that
j=0

T T
0=pr A (> cpj | = cipf Apj = cupfl Ap,
j=0 3=0

soc,=0,fork=1,...,r. |
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Let A be s.p.d. and pg,...,pn_1 be nonzero pairwisely A-conjugate

vectors. Then
n—1

T
A—IZ pjp.]

= P Ap;

(8)

Remark 2

A=1,U=(po,..spn-1), Pipi=1,plp; =0,i#j. UUT =1 and
I =UUT. Then

| \

= (Po,---sPn-1) | | =popd + -+ Puo1pi 1.
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Al/2pj

Proof of Theorem 6: Since p; =
pj Apj

are orthonormal, for
7=0,1,...,n—1, we have
I = popo’ + -+ Pn1bp_y
- nz_:l M z_: JpJ ne
= P p; Ap; =P
Thus,

n—1

A-V27 412 — g1 pijT

.
=0 P AP

Let Ax* = b and x be an arbitrary vector. Then from
x* — 29 = A~Y(b— Axg) and (8) follows that

n—1 T
p] b—AJ}o)
gy aE ) i 9)
JZO Ap]) !

4
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Theorem 7

Let A be s.p.d. and py,...,pn—1 € R"\{0} be pairwisely A-orthogonal.
Given xg and let 1o = b — Axg. Fork=0,...,n—1, let

T

Pr Tk
Thyl = Tk + Dk, (11)
Th41 = Tk — pADE. (12)

Then the following statements hold:

(i) e =b— Azx.  (By induction).

(i) xk4+1 minimizes F(z) on x = xp, + apg, a € R.

(i) zp, = A71b = 2*.

(iv) xp minimizes F(x) on the affine subspace xy + Sy, where Sy, =
Span{po,...,pr-1}
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Proof: (i): By Induction and using (11), (12).
(ii): From (3) and (i).
(ii): It is enough to show that zj corresponds with the partial sum in (9),

xk—x0+zpj (b—

7=0

ALCQ
Apj Pj-

Then it follows that x,, = z* from (9). From (10) and (11) we have

pr(b— Az;)
xk—xo—l—ZaJpJ—xo—FZ j A J Pj-
Dj
To show that
p; (b~ Azj) = pj (b — Axo). (13)
k-1
From z; —xo = Y a;p; we obtain
§=0
k-1
pi Axy, — ptAxg = Z a;pf Ap; = 0.
3=0

So (13) holds.
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(iv): From (12) and (10) follows that
Pk k41 = Ph Tk — awpl Apg, = 0.

From (11), (12) and by the fact that x4 s — Tkist1 = QgrsAPgts and py
are A-orthogonal (for s > 1) follows that

PETk1 = PpThia =+ = Piry = 0.
Hence we have
plr,=0,i=0,....,k—1, k=1,2,....,n. (e, i<k). (14

We now consider F(z) on xo + Sk:

F(xo + ijpj 0(&0s 1 Erm1)-
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F(z) is minimal on z¢ 4 S if and only if all derivatives g—é vanish at z.
But

k—1
0
620 = [gradF'(zo + Zéjpj)]Tps, s=0,1,...,k—1.
S =0

If © =z, then gradF'(z) = —rj. From (14) follows that

dyp
95

(xx) =0, for s=0,1,...,k— 1.
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Remark 4

The following conditions are equivalent:
(i) o Ap; =0, i # j,

(i) pfre =0, <k,

(iii) 7ir; =0, i # 3.

Proof of (iii): for i < k,

p;[?”k =0« (T‘;‘F + ,Bi_lp;fp_l)?”k =0
= TZTTk =0

<:>r;frj:0, i j.
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It holds

<p07p17"' ’pk> = <7”0,7”1,“‘ ,Tk> = <r07AT0)"' 7AkTO> .

Since

p1 =11+ Bopo = 11 + Boro,
r1 =19 — g Aro,

by induction, we have

ro =11 — apApy
r1 — apA(r1 + Boro)
=19 — agArg — agA(rg — agArg + Soro).
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Method of conjugate directions

Input: Let A bes.p.d., b and 2y € R™. Given py,...,pp—1 € R"\{0}

pairwisely A-orthogonal.
1: Compute r9 = b — Axg;
2: fork=0,....,n—1do
3:  Compute oy = bEk
4
5

Thal = Tk + QEPL,,
T Apy? Tkl = T+ OkDk,
Compute 7541 =1 — QpApr = b — Az,
. end for

From Theorem 7 we get x, = A~'b.
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Practical Implementation

Algorithm: Conjugate Gradient method (CG-method)

Input: Given s.p.d. A, b€ R"™ and 29 € R™ and rg = b — Axy = po.
1: Set k= 0.

2: repeat

PLTh

pi Ap'

3:  Compute oy =

4:  Compute xpy1 = Tk + pPk;

5 Compute 1541 = 7;k — agApy = b — Argyq;
- Apg,

6: Compute 8j = pl,?Tlm;

7. Compute pri1 = k41 + BkPk;

8 Setk=~k+1;

9: until r, =0
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The CG-method holds

(i) If k steps of CG-method are executable, i.e., r; #0, fori =0,...k,
then p; #£ 0, i < k and

plApj =0 fori,j <k, i#j.

(i) The CG-method breaks down after N steps for ry = 0 and N < n.
(i) zy = A~ b,
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Proof:

(i): By induction on £k, it is trivial for K = 0. Suppose that (i) is true until
k and 741 # 0. Then pg. 1 is well-defined. We want to verify

phiAp; =0, for j=0,1,....k
From Lines 6 and 7 in CG Algorithm, we have
Ph1Apk = 1l Apy + Bipi Apr, = 0.
Let j < k, from Line 7 we have
Phy1Apj = T Apj + Bpi Apj = T, Apj.
It is enough to show that
Ap; € span{po, .....,Dj+1}, J < k. (15)

Then from the relation pz-Trj =0,¢<j <k+1, which has been proved in
(14), follows assention.
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Claim (15): For r; # 0, it holds that a;; # 0. Line 5shows that

Apj = 5(?”]' — Tj+1) S span{ro, ....,Tj+1}.
J
Line 7 shows that span{ry, ....,7j4+1} = span{po, ..., pj+1} with ro = po,
so is (15).
(ii): Since {p; fiol # 0 and are mutually A-orthogonal, pg, ..., ppr1 are
linearly independent. Hence there exists a N < n with vy = 0. This
follows zny = A~ 1b. [ ]

Advantage

© Break-down in finite steps.

© Less cost in each step: one matrix x vector.
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Convergence of CG-method

Consider the A-norm with A being s.p.d.
lz]la = (27 Az)"/2.
Let 2* = A~'b. Then from (2) we have
F(o) = F@*) = 50— 2" Alx - a) = 3o o P,

where x. is the k-th iterate of CG-method. From Theorem 7 xj;, minimizes
the functional F' on z¢+ span{py, ....,pr—1}. Hence it holds

||33k - x*HA < ||y - :E*HAv Yy € xo+ Span{po’ "’pk—l}' (16)
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From Lines 5 and 7 in CG Algorithm it is easily seen that both p; and
can be written as linear combination of 7o, Arg, ..., AF1rg.
If y € xo + span{po,...,pr—1}, then

Yy =g+ c1rg + cArg + ..... + e AP ey = 2o + ﬁk_l(A)ro,

where Pj_; is a polynomial of degree < k — 1. But
rg=b— Axg = A(a:* — xo), thus

y—z* = (vg—2a")+ 751@—1(14)14(33* — o)
- [I — AP 1(A)| (w0 — &%) = Pr(A) (w0 — 2*),  (17)

where degree P, < k and
Pr(0) = 1. (18)
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Conversely, if Py is a polynomial of degree < k and satisfies (18), then
x4+ Pr(A)(zo — x¥) € zp + Sk.

Hence (16) means that if Py is a polynomial of degree < k with
Pr(0) =1, then

[k — 2[4 < |Pe(A) (20 — 27)[[a-

Let A be s.p.d. It holds for every polynominal Qi of degree k that

ax J@E(A)zlla _

270 || a P(Qr(A)) = max{|Qr(N)| : A eigenvalue of A}.

(19)
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From (19) we have that
[z — 2[4 < p(Pr(A))llzo — 27|, (20)
where degree Py, < k and Py (0) = 1.
Replacement problem for (20): For 0 < a < b,
min{max{|Px(A)| : @ < A < b,Vdeg(Pr(N)) < k with P,(0) =1}} (21)

We use Chebychev poly. of the first kind for the solution. They are defined
by

{ To(t) = 1,T(t) = t,
Tes1(t) = 205 (t) — T (2).

it holds Ty (cos ¢) = cos(k¢) by using
cos((k 4+ 1)¢) + cos((k — 1)¢) = 2cos ¢ cos k¢. Especially,

Ty (cos %) = cos(jm) = (—1)7, for j =0,...,k,
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i.e. T}, takes maximal value "one” at k + 1 positions in [—1, 1] with
alternating sign. In addition (Exercise!), we have

Ty(t) = % [(t VR - Ve 1)’f] . (22)

Lemma 10

The solution of the problem (21) is given by

Qr(t) = Tk <%%aa_b>/Tk (ZJ_FZ)

i.e., for all Py, of degree < k with Py(0) = 1 it holds

A < PN
g@f@]@k( )| _g@f;]\ k()]
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Proof: (1 (0) = 1. If t runs through the interval [a,b], then

(2t — a — b)/(b — a) runs through the interval [—1,1]. Hence, in [a,b],
Qr(t) has k + 1 extreme with alternating sign and absolute value

§ = |Tu(E) -

If there are a P;, with
max {|Px(A)] : X € [a,b]} <0,

then Qp — Px has the same sign as Q) of the extremal values, so Qr — P
changes sign at k + 1 positions. Hence @ — Px has k roots, in addition a
root zero. This contradicts that degree (Qr — Pi) < k. |
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It holds
1 2
5= Tk<b+a> _ _ C2k§2ck’
a—>b i (lg—l—z) 1+c

where ¢ = ﬁ: and k =b/a.

| 5\

Theorem 12

CG-method satisfies the following error estimate
= 2*||.a < 2¢¥|lzo — 2*|4,

=il A .
where ¢ = % K= ﬁ and \1 > --- > A\, > 0 are the eigenvalues of A.

v
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Remark 6

To compare with Gradient method (see (7b)): Let 2§ be the kth iterate of

Gradient method. Then

k

A1 — A
LT g — |4

AL+ Ay

|m§—was\

But
A=A k=1 VE—1

= > =
AM+A k17 e+
because in general \/k < k. Therefore the CG-method is much better
than Gradient method.

&)
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Appendix

Proof:
1Qk(A)z]% 2" Qr(A)AQk(A)x
l]|% B ol Az
(AY22)T Qu(A)Qr(A) (A 2x)
- : (Algat)(AI;/?x) . (Let 2= 4%2)
2 Q(A)%z

= ZERE o b QR(A)?) = pR(Qu(A)).

2Tz

Equality holds for suitable x, hence the first equality is shown. The second
equality holds by the fact that Q(\) is an eigenvalue of Qr(A), where A
is an eigenvalue of A. |
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Proof: Fort =22 = &t e compute

and
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Proof: From (20) we have

ok —alla < p(Pr(A)) [lzo — 27||a
< max {|Pr(N)| : A1 > A > A} |wo — 2| 4,

for all Py, of degree < k with P,(0) = 1. From Lemma 10 and Lemma 11
follows that

ok —alla < max{QuN|: A 2 A > Mg} g — %4

2ck||m0 —z¥||a.

IN N
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