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Consider the linear system of a symmetric positive definite matrix A
Az =b.
Let C be a nonsingular matrix and consider a new linear system
Az = (1)

with A=C"TAC 'spd,b=C"Thand & = Cx.
Applying CG-method to (1) it yields:

Input: Given % € R" and 7o = b — A%y = py. Set k = 0.
1: repeat
2:  Compute &y, = p} 7 /pr C~TAC™ py;
3:  Compute T = Tk + OxDk;
4. Compute 7pp1 = 7 — apC~TAC™ 1Py
5. Compute 3 = —f  CTAC /5 C~TAC™ py;
6: Compute piy1 = Tg+1 + BiDrk;
7. Setk=Fk+1;
8: until 7, =0
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Simplification: Let

—1x —1x 1
C ' pr=pk, 21, =0C T, 2, =0C "Tp.

Then
rp = CTry, = O (B - Af:k)
=CT(C™Tb—CTAC™'Cay,)
=b— Axy.
and

re = CTCz, = Mz,
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Algorithm: CG-method with preconditioner M

Input: Given ¢ and rg = b — Axg, solve Mpy = rg. Set k = 0.
1: repeat
2. Compute ap = p;‘g’r’k/pzApk;

3 Compute zp11 = o) + apDk;

4 Compute i1 = 1 — apApg;

5: if Tkl = 0 then

6: Stop;

7 else

8 Solve M zp41 = rga1;

9 Compute B = —z,alApk/pkApk;

10: Compute pr11 = 2k+1 + BrPr;

11:  end if

122 Setk=k+1,

13: until 7, =0

Additional cost per step: solve one linear system Mz = r for z.
Advantage: cond(M~Y/2AM~1/?) < cond(A).

T.M. Huang (NTNU) Preconditioning CG-Method October 22, 2011



A new point of view of PCG

From [(I1) Conjugate Gradient Method] (21) and Theorem 4.8 follows that

pilry=0fori<k, ie.,

0= (ri" +Bicipia )re=ri g, i <k

and
pil Apj =0, # j.

That is, the CG method requires ;7r; = 0, i # j. So, the PCG method

satisfies p;’ C~'AC~'p; =0 & 7[7; =0, i# j and requires
z;‘Fsz = T;TFM_lMM_lrj = riTM_lrj
= (e Y (C7try) = mir =0, i#].
Consider the iteration (in two parameters):
Thy1 = Tp—1 + Wett (Qr2p + T — Tp—1)

with o and w1 being two undetermined parameters.

(@)
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Let A= M — N. Then from Mz, = rp = b — Axy, follows that

Mzjpi1 =b— A(xp_1 + wig1 (zk + 2 — Tp—1))
= Mzp1 — Wit [ (M — N)zg + M (251 — 2)] (3)

For PCG method {aj, w11} are computed so that
szqu:O, p#gq, p,g=0,1,...,n—1. (4)

Since M > 0, there is some k < n such that 2z = 0. Thus, z;, = z, the
iteration converges no more than n steps. We show that (4) holds by
induction. Assume

2t Mz, =0, p#q, pg=0,1,... .k

holds until .
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If we choose
A = ZkTMZk/ZkT(M — N)zk,

then, from (3),
2 Mg =0

and if we choose

T
_{(, 2L Nz,
R AT ONT Mo
—1 -

then
T _
2 1Mz = 0.
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From (3) for j < k —1 we have
ijMzkH = akwk+1ijNzk.
But (3) holds for j < k — 1,
Mzjiy = Mzj_y —wj1 (aj(M — N)z; + M(zj—1 — 25)) .~ (5)
Multiplying (5) by 2T we get
szsz = 0.
Since N = N7 it follows that
2T Mz =0, for j<k-—1

Thus, we proved that szqu =0,p#q,p, ¢q=0,1,--- , n—1 |
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Consider (2) again
Tpy1 = Tp—1 + W1 (02 + T — Tp_1).
Since Mz, = 1), = b — Axy, if we set w11 = ay =1, then
Tpor = ) + 25 = 2 + M 1y (6)

Here zj is referred to as a correction . Write A = M — N. Then (6)
becomes

Thy1 = Tp + M (b — Axy,)

=z 4+ M Y(b— (M — N)zy,)
= M Ny + M. (7)
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Recall the Iterative Improvement in Subsection
Solve Az = b,

Ty = b— Axk,

Azk =71, & Mz, =1y,

Tht1 = Tk + 2k-

(i) Jacobi method (w1 = =1): A=D—(L+ R),
Th+1 = Tkt D_l?”k

xp + Db — Axy)
D YL+ R)x, +D7'b

(i) Gauss-Seidel (wi+1 = o = 1): A=(D-L)-R,

Tk+1 = Tp+ 2%
xp + (D — L) (b — Axy)
= (D—- L) 'Rap+ (D - L) .
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(i) SOR-method (wi4+1 =1, =w): Solve wAz = wb. Write

wA=(D—-wlL)—((1-w)D+wR)=M — N.

Then with A = D — L — R we have

Tl41

(D —wL) M (wR+ (1 —w)D)xyp + (D — wL) wb
(D —wL) Y (D —wL) — wA)zy + (D — wL) 'wb
(I — (D —wL)'wA)zp + (D —wL) 'wb

z,+ (D —wL)lw(b — Axy)

z +wM

Tp + wzg.
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(iv) Chebychev Semi-iterative method (later!)
(Wh41 = Ct1, af =)

Tpt1 = Th—1 + wrt1 (Y2 + Tk — Tp—1) -

We can think of the scalars wy.t1, a in (2) as acceleration
parameters that can be chosen to speed the convergence of the
iteration M a1 = Nxp +b. Hence any iterative method based on
the splitting A = M — N can be accelerated by the Conjugate
Gradient Algorithm so long as M (the preconditioner) is symmetric
and positive definite.
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Choices of M (Criterion):

(i) cond(M~Y2AM~1/?) is nearly by 1, i.e.,
M= Y2AM-Y2~ T A~ M.

(i) The linear system Mz = r must be easily solved. e.g. M = LLT
(see Section 16.)

(iii) M is symmetric positive definite.
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SSOR (Symmetric Successive Over Relaxation):

Ais symmetricand A=D — L — L7, Let

M,: =D —wL, and MI'=D —wL”,
Ny: =(1—-w)D +wLT, NI'=(1—-w)D +wL.

Then from the iterations

Mwmi+1/2 = Nyz; + wb,

Mz = Ngﬂfi+1/2 + wb,
follows that

ziv1 = (MyTNIMZIN,)z;+0b
= Goj+w(M;INIMZ + M;T)b
= Gu;+ M(w)™'b.
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It holds that

(1=w)D+wL)(D—-wL)™ +1

= (wL — D —wD+2D)(D —wL)  +1
= JT+2-w)DD—-wL) 41

= (2-w)D(D —wL)™},

Thus
Mw) ™" =w(D-wL") ™ (2-w)DD —wL)™,
then
M(w) = ﬁw ~wL)D™' (D —wL") (8)
~ (D-L)D'(D-L"), (w=1)
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For a suitable w the condition number cond(M (w)~"2AM (w)~'/?). Can
be considered smaller than cond(A). Axelsson(1976) showed (without
proof): Let

T Dx
<
b e T Ax (< cond(4))

and T( 1T _ 1p)

z! (LD~'L* — -D)x 1
1
=m > -,
0 m;%())( T Ax - 4
lhen

14 @229 45
2w

* 2 *\ H *\
for w* = YEY ey k(w*) is minimal and k(w*) = 1/2 4+ /(1/2+ ) p.
Especially

cond (M(w)_l/QAM(w)_l/Q) <

= k(w)

cond (M(w*)_l/QAM(w )™ 1/2) <~ +/(1/2 + 6)cond(A) ~ /cond(A

Disadvantage : u, & in general are unknown.
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Incomplete Cholesky Decomposition

Let A be sparse and symmetric positive definite. Consider the Cholesky
decomposition of A = LLT. L is a lower triangular matrix with
lii >0 (i=1,...,n). L can be heavily occupied (fill-in). Consider the
following decomposition
A=LLT - N, (9)

where L is a lower triangular matrix with prescribed reserved pattern F
and N is “small”.
Reserved Pattern: E C {1,...n} x {1,...,n} with

(i,i) e E,i=1,...n
{ (ij) €E = (j,i) € E
For a given reserved pattern E we construct the matrices L and N as in
(9) with

() A =LL"-N, (10a)
(i) L: lower triangular with l;; > 0 and l;; # 0 = (i,j) € E(10b)
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First step: Consider the Cholesky decomposition of A,

()= ) (6 ) (5 ),

where Zl = A1 — ala{/an. Then

10\ .7
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For the Incomplete Cholesky decomposition the first step will be so
modified. Define by = (bay, - - - ,bnl)T and ¢; = (ca1,- - ,cnl)T by

I aj1, (jvl)EE) P RN 0’ (jvl)EE)
bjr = { 0, otherwise, ¢ = b —aj = —aji, otherwise.

(11)
Then

. ail b? . 0 C? D
A_< b1 A1> <Cl 0 _BO Cl'

Compute the Cholesky decomposition on B, we get

o (off D)3 2 4 oo

bl/\/all I 0 Bl 0
and
T
B = A, - b1b1
ail
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Then
A=LB LT - . (12)

Consequently, compute the Cholesky decomposition on Bj:
By = LyBy LY — ¢,
Thus,
A=L1LoB LI LT — Lot — ¢y
and so on, hence
A=L1-"LnIL£---L1T—Cn—1—Cn—2—-"—C'1

with
L=Ly---L,and N=C{+Cy+---+C,. (13)
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Let A be s.p.d. and E be a reserved patten. Then there is at most a
decomposition A = LLT — N, which satisfies the conditions:

O L is lower triangular with l;; > 0, l;; # 0 = (i,7) € E.
Q N = (nij), Nnij = 0, If(’L,j) e F.

The Incomplete Cholesky decomposition may not exist, if

m—1

Sm ‘= Amm — Z (lmk)2 <0.
k=1
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Example 2
Let

2 0 -3 10

10 0 0

. -1 -1 0 0

The Cholesky decomposition of A follows L = 0 -1 1 0
2 2 -1 1
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Example 3
Consider the Incomplete Cholesky decomposition with patten

E=EA) =

X © X X
S X X X
X X X O
X X © X

Above procedures (11)-(13) can be performed on A until the computation
of l44 (see proof of Lemma 1),

By=am— 13— 15,2, =10—9—4=-3.

The Incomplete Cholesky decomposition does not exit for this pattern E.

v
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Example 4

Now take

o O X X
o X X X

X X X O

— L exists and L =

X X © O

0 O
1 0
-1 1
0 -3

_ o O O
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Find the certain classes of matrices, which have no breakdown by
Incomplete Cholesky decomposition. The classes are

M-matrices, H-matrices.

Definition 5

A € R™™ is an M-matrix. If there is a decomposition A = oI — B with
B>0(B>0by>0forij=1,.,n) and

p(B) = max {|A| : A is an eigenvalue of B} < 0. Equivalence: a;; <0
for i # j and A~ > 0.
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A is symmetric, a;; <0, i # j. Then the following statements are
equivalent

(i) A is an M-matrix.

(ii)) A iss.p.d.

Let A be a symmetric M-matrix. Then the Incomplete Cholesky method
described in (11)-(13) is executable and yields a decomposition
A= LLT — N, which satisfies (10).
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Definition 8

A € R™"™ Decomposition A = M — N is called regular, if M-1t>0,
N > 0 (regular splitting).
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Theorem 9

Let A=' >0 and A= M — N is a regular decomposition. Then
p(M~'N) < 1. ie., the iterative method Mxy 1 = Nxj +b for Az = b is
convergent for all xg.

Proof: Since T=M"'N>0, M ' (M -N)=M1A=1-T,it
follows that
(I-T)A™ =ML,

Then
0<) T'M 1= T -T)A =1 -T"hHa <A™l
=0 =0

That is, the monotone sequence Zf:o T'M~' is uniformly bounded.
Hence T*M~! — 0 for k — oo, then T% — 0 and p(T) < 1. [ |
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Theorem 10

If A= >0 and A = M; — Ny = My — N, are two regular decompositions
with 0 < Ny < Ny, then it holds p(M; "1 Ny) < p(My™1Ny).

Proof: Let A= M — N, A1 > 0. Then

p(MTIN) = p((A+N)"'N) = p([A(I + A7'N)]"'N)
p(ATIN)
1+ p(A-IN)’

-1

= p(I+A7IN) A7IN) =

A — 1_}_% monotone for A > 0].

Because 0 < Nj < Ny it follows p(A~1Ny) < p(A~1Ny). Then

p(ATINY)  _ p(ATIN,)

M,"INy) =
PN = T AN = T (A1)

= p(My " Na),

since A — 1%\ is monotone for A > 0. [ |
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If A is a symmetric M-matrix, then the decomposition A = LLT — N
according to Theorem 7 is a regular decomposition.

Proof: Because each Lj_1 >0, it follows (LLT)=1 >0, (from
(I 1)yt =(T+1e"),1>0). N=C1+Co+---+ Cp_q and all
C; > 0. |
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History:

(i) CG-method, Hestenes-Stiefel (1952).

(i) CG-method as iterative method, Reid (1971).

(iii) CG-method with preconditioning, Concus-Golub-Oleary (1976).

(iv) Incomplete Cholesky decomposition, Meijerink-Van der Vorst (1977).

(v) Nonsymmetric matrix, H-matrix, Incomplete Cholesky decomposition,
Manteufel (1979).
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Other preconditioning:

(i) A blockform A = [A;;] with A;; blocks. Take
M = diag[All, T 7Akk]

(i) Try Incomplete Cholesky decomposition: Breakdown can be avoided
by two ways. If z; = a;; — E;;lll?k < 0, breakdown, then either set
ly=1and goonorsetljx =0, (k=1,...,4—1) until z; >0
(change reserved pattern E).

(iii) A is an arbitrary nonsingular matrix with all principle determinants
#0. Then A = LDR exists, where D is diagonal, L and RT are unit
lower triangular. Consider the following generalization of Incomplete
Cholesky decomposition.
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Theorem 12 (Generalization)

Let A be an n X n matrix and E be an arbitrary reserved pattern with

(i,1) € E,i=1,2,...,n. A decomposition of the foom A = LDR — N

which satisfies:

(i) L is lower triangular, l;; =1, l;; # 0, then (i,j) € E,
(ii) R is upper triangular, ry; = 1, 735 # 0, then (i,j) € E,
(i) D is diagonal # 0,

(iv) N = (nij), ng; = 0 for (i, §) € E.

is uniquely determined. (The decomposition almost exists for all matrices).
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Chebychev Semi-Iteration Acceleration Method

Consider the linear system Ax = b. The splitting A = M — N leads to the
form

=T+ f, T=M1Nand f =M b (14)
The basic iterative method of (14) is
Tr+1 = Tap + f. (15)

How to modify the convergence rate?

Definition 13

The iterative method (15) is called symmetrizable, if there is a matrix W
with detW # 0 and such that W (I — T)W ™! is symmetric positive
definite.
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Example 14
Let Aand M bespd, A=M—N and T = M~LN, then

I-T=1-M'N=M1*M-N)=M1A

Set W = M1/2. Thus,

W —T)W ™= MYV2MTAM Y2 = M~Y2AM =2 spd.

(i) M = dlag(am) Jacobi method.

(i): M w(z 5 (D - wL)D~Y(D — wL™) SSOR-method.
(ii): M = LLT Incomplete Cholesky decomposition.
(iv): M =1= x4 = (I — A)zy + b Richardson method.
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If (15) is symmetrizable, then the eigenvalues u; of T are real and satisfy

w; <1, fori =1,2,...,n. (16)

Proof: Since W(I — T)W ! is s.p.d., the eigenvalues 1 — p; of I — T are large
than zero. Thus p; are real and (16) holds. |

Definition 16

Let 341 = T, + f be symmetrizable. The iterative method

uo = o,
{ upr1 = a(Tur+ f)+ (1 — a)ug (17)
= (T4 (1 —a)ug + af = Taur + of.

is called an Extrapolation method of (15).

| A\

Remark 1

To =aoT + (1 — )l is a new iterative matrix (Ty = T). T, arises from the
decomposition A= LM — (N + (£ — 1)M).
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Theorem 17

If (15) is symmetrizable and T has the eigenvalues satisfying
w1 < po < - < py, < 1, then it holds for o = > ( that

2#1 2

En =M in p(Ty).

1>P(Ta*)=m i
n

4

Proof: Eigenvalues of T, are au; + (1 —a) = 1+ a(u; — 1). Consider the
problem

mmmax\l + a(p; — 1)| = min!

= |[T+a(pn =1 =1+ a(p —1)|,
— 1+ alu,—1)=a(l — u,) — 1 (otherwise p1 = py,).

This implies a = o* =

—, then 1+ a*(up, — 1) = gE—1— [ |

2
2—p1—p 2—p1—pin
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From (15) and (17) follows that

k k
U = E a;T;, and E ap; = 1
=0 i=0

with suitable ag;. Hence, we have the following idea:

k

Find a sequence {ay;}, k=1,2,...,i=0,1,2,...,k and > ax; = 1 such
i=0

that

2
U = Zakﬂi, up = o
i=0
is a good approximation of x* (Ax* = b). Hereby the cost of computation
of ug should not be more expensive than xy.
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Error: Let

ex =z — 2%, e, = TFeq, eg = g — * = ug — 2* = dp.

Hence,
Kk
d, = up,—2z2"= Zaki(xi —z*) (18)
i=0
= ZakiTZEO = (Z akiTZ)eo
i=0 ki
== Pk(T)eo = Pk(T)do,
where

k
Pr(A) =Y ap\'
i=0

is a polynomial in A with P (1) = 1.
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Problem: Find Py, such that p(Py(T")) is small as possible.

Remark 2
Let ||z||w = ||[Wzl|l2. Then

1T [w
T|w =
[ X
|WTW Wzl
= max
2£0 Wzl
= [WIW™2 = p(T),
because WTW =1 is symmetric. We take || - ||w-norm on both sides of

(18) and have

ldellw < 1Pe(D)llwlldollw = IWPK(T)W " l2lidoll2 (19)
1Px(WTW ) |2lldollw = p(Pw(T))ldollw-
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Replacement problem: Let 1 > p, > --- > u; be the eigenvalues of 7.
Determine

min [{max [Pu(\)] £ i1 € A < jia} : deg(Py) < b Pu(1) = 1] (20)
Solution of (20): The replacement problem

max{|Pr(N)|: 0 <a <A <b} =min!, Pr0)=1

Qult) =T <%> /Tk <Zf‘;>

has the solution
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Let )\~: 1—t%t,thenl—p; <t<1-— ,un,Pk()\) = Pk(l — t) = Pk(t)
with P, (0) = 1. The problem (20) can be transformed to [(Il) Conjugate
Gradient Method] (34) as

minfmax{ Py (t)[1 — p1 <t <1— py,} : deg(Py) < k, P(0) = 1]

Hence, the solution of (20) is given by

Oult) = T <m> / - <m> @
H1 — Un M1 — Hn

k .
Write Qi (t) := > ag;t'. Then we have
i=0

k
U = g QAfiLis
i=0

which is called the optimal Chebychev semi-iterative method.
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Effective Computation of uy: Using recursion of T:

{ To(t) =1, Ti(t) =1,
Thy1(t) = 2tTk(t) — Tp—1(2),

we get
To(t) = 1, Ty(t) = t, Thur(t) = 2T (t) — Tho1(2).

Transforming T (t) to the form of Qx(t) as in (21) we get

_ _ 2t — 1 — pn _ .
Qo(t) =1, Q:1(t) = P — pt+(1-p) (22a)
and
Qut1(t) = [pt + (1 — p)]cr1Qr(t) + (1 — cpg1) Qr—1(1), (22b)
where
_ 2 2T (1/r) i — i
T ALY Rl ST e
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Recursion for uy:

diy1 = Qry1(T)do = (pT + (1 — p)I)cp41Qr(T)do + (1 — cy1)Qr—1(T')do.
" = (pT + (1 = p)I)cpp12™ + (1 — cpq1)z™ + p(I — T)z" cpqr-

Adding above two equations together we get

upr1 = [PT+ (1 = p)I]cgrr1ur + (1 — cpg1)uk—1 + crr1pf
= Cpp{Tur + f —up} + cpprup + (1 — 1) Up—1-

Then we obtain the optimal Chebychev semi-iterative Algorithm.
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[Optimal Chebychev semi-iterative Algorithm]

_ _M1—ln _ 2 _
Let r = 5 P = o= €1 =2
Uup = o,
Uy :p(Tu0+f)+(1 _p)uO (24)
Fork=1,2,---,

U1 = Cppr [P(Tup + f) + (1 = plug] + (1 — ) up—1,
Ck+1 = (1 — T2/4Ck)_1.
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Remark 3
Here ug1 can be rewritten as the three terms recursive formula with two
parameters as in (2):

U1 = Chy1 [P (Tup + ) + (1 = pug] + (1 — cpp1) ub—1
= Cpp1 [PM T (M — A)ug +b) + (1 — p)ug] + tp—1 — Ch1Up—1
= Cpp1 [up + M1 (b — Aug) — up—1] + up—1
= Up—1+ Chy1(Par + Uk — up—1),

where M z;, = b — Auy,. |
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Recursion for c;: Since

thus

SIORIORA10

(from [(I) Conjugate Gradient Method] (35)). It follows

1 1T (1) 72 | 2T5-1 (1) r’
= 1 = 1 _ — 1 = 1 - _Ck
Ck+1 2Tk (;) 4 T‘Tk (;) 4
Then we have
1 . M1 Hn
c =—————— with r= 25
ST T ) o) p — (25)
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Error estimate: It holds

* 2 - -
g — "l < 'Tk (A)
1 — Hn

-1
l[uo — [l (26)

Proof: From (19) and (21) we have

ldellw = [[Qr(T)dollw < p(Qk(T)) lldollw
max {|Qr(A)] : 1 <A < pn ) ||do|lw

A
\Tk (7 ) ol
M1 — Un

IA

IN
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We want to estimate the quantity g := |T;(1/7)|~! (see also Lemma
4.11). From [(I) Conjugate Gradient Method] (36),we have

X0

where ¢ =

T.M. Huang (NTNU)

N =

DN =

<1+\/1—r2>k+ (1—\/1—r2>k

(I+V1I—r2)F 4+ (1 —V1I—r2)*
(r2)k/2

(1+VI—r2)k + (1 - V1—r2)F
_[(14—@)(1—@)}%

(ck/2 —I—c_k/2) > 2;/2 )
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Thus g, < 2¢%/2. Rewrite the eigenvalues of T — T as A\; = 1 — p,
AM>X>---> X, >0. Then

I U :/\1—/\n:/€—1 ﬁ:ﬁ
2 — 1 — pn AL+ A k+1’ An
_1-vizE _ (fm-1)?
Thus, from ¢ = 1+\/1_:2 = (ﬁ+1) follows
VE—1\*
<2 . 27
as2(YE (1)

That is, after k steps of the Chebychev semi-iterative method the residual

k
|lug — 2*||w is reduced by a factor 2 (ﬁ:) from the original residual
[uo — ™ |lw-
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If tmin = w1 =0, then g =T} (2;“” . Table 1 shows the convergence
rate of the quantity ¢;. All above statements are true, if we replace u, by
ph, (> pin) and pq by py (p) < p1), because X is still in [u7, ., for all
eigenvalue A of T.

| k| @ | G | s | 7 |J
08| 5[00426| 8 |[14]906(-4) |17-18 |31
0.9 10 | 0.1449 | 9-10 | 18 | 1. 06( 2) 22-23 | 43
0.95 | 20 | 0.3159 | 11-12 | 22 | 5.25(-2) | 29-30 | 57
0.99 | 100 | 0.7464 | 14-15 | 29 | 3. 86( 1) 47 95

J ;o
Table: Convergence rate of g, where j : (ﬁ_l) /A qu, qs and j :pl = qu, gs.
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Example 18

Let 1 > p = p(T). If we set u,, = p, i} = —p, then p and r defined in (23)
become p =1 and r = p, respectively. Algorithm 46 can be simplified by

up = o,

up = Tuo + f,

g1 = Crt1(Tug + ) + (1 — crg1)up—1,
k1 = (1 — (p*/4) ck)_l with ¢; = 2.

Also, Algorithm 46 can be written by the form of (28), by replacing T" by
Tox =T, = (pT + (1 —p)I) and it leads to

Uk41 = Ckt1 (Tpuk + f) + (1 — Ck+1) Uk_1- (29)

Here puy + (1 —p) = % and pun, + (1 —p) = 72521_5;1% are
eigenvalues of 7},
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Remark 4
(i) In (24) it holds (r = p)

cy>c3>cq >+, and lim ¢ =

2
k—00 14+v1—r2
(ii) If T is symmetric, then by (21) we get

(Exercise!)

1Qx(T)|l2 = max{|Qk(p:)| : wi is an eigenvalue of T'}

< max{|Qr(A)]: —p <A< p}
=il
= |Tu(1/p)| .+ (p=p(T)).
1 1 k/2

- It i (30)

F2 4 k2 T 1+ (wy— 1)F

_ 1—y/1-p2 _ . . 2
where ¢ = ey i wp — 1 with wy, = EEwY et

T.M. Huang (NTNU) Preconditioning CG-Method October 22, 2011 54 / 58



Appendix

Proof: Let A= LL" — N = LLT — N. Then

an =13 =03, = lhy =1l (since Iy is positive). Also,

Ap1 = lkllll — NE1 = lkllll — N1, SO we have
If (k, 1) EEF=—=—npy =01 =0= 11 = [kl = akl/lll, (313)
If (k, 1) gFE =l = [kl =0= ng1 = Ng1 = —ax1- (31b)

Suppose that lp; = lp;, npi = Agi, for k=14,---,n, 1 <i<m—1. Then
from
m—1 m—1
amm:l?nm"i_ Zl?nk:&m"i_zl?nk
k=0 k=1
follows that L, = Lym. Also from
m—1 o m—1 o
arm = lrmlmm + Z Llmk — nem = Lonlonm + Z Leklmk — oem
k=1 k=0
and (31) follows that 1.y, = fipm and Ly, = L (1 > m). [ ]
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Proof: (i) = (ii): A=o0l — B, p(B) < 0. The eigenvalues of A have
the form o — A\, where X is an eigenvalue of B and |\| < 0. Since A is real,
so 0 — A > 0 for all eigenvalues ], it follows that A has only positive
eigenvalues. Thus (ii) holds.

(i) = (i): For a;; <0, (i # j), there is a decomposition A = ol — B,

B > 0 (for example ¢ = max(a;;)). Claim p(B) < 0. By
Perron-Frobenius Theorem ??, we have that p(B) is an eigenvalue of B.
Thus o — p(B) is an eigenvalue of A, so o — p(B) > 0. Then (i) holds. ®
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Proof: It is sufficient to show that the matrix By constructed by
(11)-(12) is a symmetric M-matrix.

(i): We first claim: By is an M-matrix. A = By — C; < By, (since only
negative elements are neglected) There is a k > 0 such that A = kI — A,
By =kI — BO with A >0, BO > 0, then BO < A. By Perron-Frobenius
Theorem ?? follows p(By) < p(A) < k. This implies that By is an
M-matrix.

(ii): Thus By is positive definite, hence By = Ll_léo (Ll_l)T is also
positive definite. By has nonpositive off-diagonal element, since

B, =A4, — blbl . Then By is an M-matrix (by Lemma 6) |
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Claim: (22b)

Qrt1(t) = Tchrl(Qt;lM1 )/Tk+l(%)
1
T (

- TR o ()
Thta(1/7) p1 = pn p = T =
2t
_ 27 T( i I —*‘—*‘—m )
rTr41(1/7) H1 = pn Tw(1/7)
2—p1 —pin 2—p1—pn
_Tk 1( H1—Hn )Tk 1( I—Llll—bn )
T (i)~ a1/

= cpt1[pt + (1= p)]Qx(t) — [1 — cr+1]Qr—1(t),

since

2t — 1 — pn 2t — 1 — pn
= —pt+(1—
T( p1 = fin ) 2——pn P 1-p)
and
1—¢ _ . 20(1/r) rTea(1/r) — 2T%(1/7)
k+1 = rTea(1/r) rTr1(1/7)
—rT—1(1/1) —Ti—1(1/7)

rTep(1/r) T (1/r)

T.M. Huang (NTNU) Preconditioning CG-Method October 22, 2011



	Main Part
	A new point of view of PCG
	Incomplete Cholesky Decomposition
	Chebychev Semi-Iteration Acceleration Method


