GCG-type Methods for Nonsymmetric Linear Systems

Tsung-Ming Huang

Department of Mathematics
National Taiwan Normal University
December 6, 2011

Outline

(1) GCG method(Generalized Conjugate Gradient)
(2) BCG method (A: unsymmetric)
(3) The polynomial equivalent method of the CG method
(4) Squaring the CG algorithm
(5) Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems

Recall: A is s.p.d. Consider the quadratic functional

$$
\begin{gathered}
F(x)=\frac{1}{2} x^{T} A x-x^{T} b \\
A x^{*}=b \Longleftrightarrow \min _{x \in \mathbb{R}^{n}} F(x)=F\left(x^{*}\right)
\end{gathered}
$$

Consider

$$
\begin{equation*}
\varphi(x)=\frac{1}{2}(b-A x)^{T} A^{-1}(b-A x)=F(x)+\frac{1}{2} b^{T} A^{-1} b, \tag{1}
\end{equation*}
$$

where $\frac{1}{2} b^{T} A^{-1} b$ is a constant. Then

$$
A x^{*}=b \Longleftrightarrow \varphi\left(x^{*}\right)=\min _{x \in \mathbb{R}^{n}} \varphi(x)=\left[\min _{x \in \mathbb{R}^{n}} F(x)\right]+\frac{1}{2} b^{T} A^{-1} b
$$

Algorithm: Conjugate Gradient method (CG-method)

Input: Given s.p.d. $A, b \in \mathbb{R}^{n}$ and $x_{0} \in \mathbb{R}^{n}$ and $r_{0}=b-A x_{0}=p_{0}$.
1: Set $k=0$.
2: repeat
3: \quad Compute $\alpha_{k}=\frac{p_{k}^{T} r_{k}}{p_{k}^{T} A p_{k}}$;
4: Compute $x_{k+1}=x_{k}+\alpha_{k} p_{k}$;
5: \quad Compute $r_{k+1}=r_{k}-\alpha_{k} A p_{k}=b-A x_{k+1}$;
6: \quad Compute $\beta_{k}=\frac{-r_{k+1}^{T} A p_{k}}{p_{k}^{T} A p_{k}}$;
7: \quad Compute $p_{k+1}=r_{k+1}+\beta_{k} p_{k}$;
8: \quad Set $k=k+1$;
9: until $r_{k}=0$
Numerator: $r_{k+1}^{T}\left(\left(r_{k}-r_{k+1}\right) / \alpha_{k}\right)=\left(-r_{k+1}^{T} r_{k+1}\right) / \alpha_{k}$
Denominator: $p_{k}^{T} A p_{k}=\left(r_{k}^{T}+\beta_{k-1} p_{k-1}^{T}\right)\left(\left(r_{k}-r_{k+1}\right) / \alpha_{k}\right)=\left(r_{k}^{T} r_{k}\right) / \alpha_{k}$.

Remark 1

CG method does not need to compute any parameters. It only needs matrix vector and inner product of vectors. Hence it can not destroy the sparse structure of the matrix A.

The vectors r_{k} and p_{k} generated by CG-method satisfy:

$$
\begin{aligned}
& p_{i}^{T} r_{k}=\left(p_{i}, r_{k}\right)=0, \quad i<k \\
& r_{i}^{T} r_{j}=\left(r_{i}, r_{j}\right)=0, \quad i \neq j \\
& p_{i}^{T} A p_{j}=\left(p_{i}, A p_{j}\right)=0, \quad i \neq j
\end{aligned}
$$

$x_{k+1}=x_{0}+\sum_{i=0}^{k} \alpha_{i} p_{i}$ minimizes $F(x)$ over $x=x_{0}+<p_{0}, \cdots, p_{k}>$.

GCG method(Generalized Conjugate Gradient)

GCG method is developed to minimize the residual of the linear equation under some special functional. In conjugate gradient method we take

$$
\varphi(x)=\frac{1}{2}(b-A x)^{T} A^{-1}(b-A x)=\frac{1}{2} r^{T} A^{-1} r=\frac{1}{2}\|r\|_{A^{-1}}^{2},
$$

where $\|x\|_{A^{-1}}=\sqrt{x^{T} A^{-1} x}$.
Let A be a unsymmetric matrix. Consider the functional

$$
f(x)=\frac{1}{2}(b-A x)^{T} P(b-A x),
$$

where P is s.p.d. Thus $f(x)>0$, unless $x^{*}=A^{-1} b \Rightarrow f\left(x^{*}\right)=0$, so x^{*} minimizes the functional $f(x)$.

Different choices of P:

(i) $P=A^{-1}$ (A is s.p.d.) $\Rightarrow \mathrm{CG}$ method (classical)
(ii) $P=I \Rightarrow$ GCR method (Generalized Conjugate Residual).

$$
f(x)=\frac{1}{2}(b-A x)^{T}(b-A x)=\frac{1}{2}\|r\|_{2}^{2}
$$

Here $\left\{r_{i}\right\}$ forms A-conjugate.
(iii) Consider $M^{-1} A x=M^{-1} b$. Take $P=M^{T} M>0 \Rightarrow$ GCGLS method (Generalized Conjugate Gradient Least Square).
(iv) Similar to (iii), take $P=\left(A+A^{T}\right) / 2$ (note: P is not positive definite) and $M=\left(A+A^{T}\right) / 2$ we get GCG method (by Concus, Golub and Widlund). In general, P is not necessary to be taken positive definite, but it must be symmetric $\left(P^{T}=P\right)$. Therefore, the minimality property does not hold.

Let

$$
(x, y)_{o}=x^{T} P y \Longrightarrow(x, y)_{o}=(y, x)_{o} .
$$

Algorithm: GCG method

Input: Given $A, b \in \mathbb{R}^{n}$ and $x_{0} \in \mathbb{R}^{n}$ and $r_{0}=b-A x_{0}=p_{0}$.
1: Set $k=0$.
2: repeat
3: \quad Compute $\alpha_{k}=\left(r_{k}, A p_{k}\right)_{o} /\left(A p_{k}, A p_{k}\right)_{o}$;
4: \quad Compute $x_{k+1}=x_{k}+\alpha_{k} p_{k}$;
5: \quad Compute $r_{k+1}=r_{k}-\alpha_{k} A p_{k}=b-A x_{k+1}$;
6: \quad Compute $\beta_{k}=-\left(A r_{k+1}, A p_{i}\right)_{o} /\left(A p_{i}, A p_{i}\right)_{o}$, for $i=0,1, \ldots, k$;
7: \quad Compute $p_{k+1}=r_{k+1}+\sum_{i=0}^{k} \beta_{i}^{(k)} p_{i}$;
8: \quad Set $k=k+1$;
9: until $r_{k}=0$

In GCG method, the choice of $\left\{\beta_{i}^{(k)}\right\}_{i=1}^{k}$ satisfy:

$$
\begin{align*}
\left(r_{k+1}, A p_{i}\right)_{o}=0, & i \leq k \tag{2a}\\
\left(r_{k+1}, A r_{i}\right)_{o}=0, & i \leq k \tag{2b}\\
\left(A p_{i}, A p_{j}\right)_{o}=0, & i \neq j \tag{2c}
\end{align*}
$$

Theorem 1

$$
\begin{aligned}
& x_{k+1}=x_{0}+\sum_{i=0}^{k} \alpha_{k} p_{i} \text { minimizes } f(x)=\frac{1}{2}(b-A x)^{T} P(b-A x) \text { over } \\
& x=x_{0}+<p_{0}, \cdots, p_{k}>\text {, where } P \text { is s.p.d. }
\end{aligned}
$$

(The proof is the same as that of classical CG method). If P is indefinite, which is allowed in GCG method, then the minimality property does not hold. x_{k+1} is the critical point of $f(x)$ over $x=x_{0}+<p_{0}, \cdots, p_{k}>$.

Question

Can the GCG method break down? i.e., Can α_{k} in GCG method be zero?
Consider the numerator of α_{k} :

$$
\begin{align*}
\left(r_{k}, A p_{k}\right)_{o} & =\left(r_{k}, A r_{k}\right)_{o} \quad[\text { by Line } 7 \text { in GCG Algorithm and (2a) }] \\
& =r_{k}^{T} P A r_{k} \\
& =r_{k}^{T} A^{T} P r_{k} \quad[\text { Take transpose }] \\
& =r_{k}^{T} \frac{\left(P A+A^{T} P\right)}{2} r_{k} . \tag{3}
\end{align*}
$$

From (3), if $\left(P A+A^{T} P\right)$ is positive definite, then $\alpha_{k} \neq 0$ unless $r_{k}=0$. Hence if the matrix A satisfies $\left(P A+A^{T} P\right)$ positive definite, then GCG method can not break down.

From Lines 5 and 7 in GCG Algorithm, r_{k} and p_{k} can be rewritten by

$$
\begin{align*}
& r_{k}=\psi_{k}(A) r_{0}, \tag{4a}\\
& p_{k}=\varphi_{k}(A) r_{0}, \tag{4b}
\end{align*}
$$

where ψ_{k} and φ_{k} are polynomials of degree $\leq k$ with $\psi_{k}(0)=1$. From (4a) and (2b) follows that

$$
\begin{equation*}
\left(r_{k+1}, A^{i+1} r_{0}\right)_{o}=0, \quad i=0,1, \ldots, k . \tag{5}
\end{equation*}
$$

From (4b) and Line 6 in GCG Algorithm, the numerator of $\beta_{i}^{(k)}$ can be expressed by

$$
\begin{equation*}
\left(A r_{k+1}, A p_{i}\right)_{o}=r_{k+1}^{T} A^{T} P A p_{i}=r_{k+1}^{T} A^{T} P A \varphi_{i}(A) r_{0} \tag{6}
\end{equation*}
$$

If $A^{T} P$ can be expressed by

$$
\begin{equation*}
A^{T} P=P \theta_{s}(A) \tag{7}
\end{equation*}
$$

where θ_{s} is some polynomial of degree s. Then (6) can be written by

$$
\begin{align*}
\left(A r_{k+1}, A p_{i}\right)_{o} & =r_{k+1}^{T} A^{T} P A \varphi_{i}(A) r_{0} \\
& =r_{k+1}^{T} P \theta_{s}(A) A \varphi_{i}(A) r_{0} \tag{8}\\
& =\left(r_{k+1}, A \theta_{s}(A) \varphi_{i}(A) r_{0}\right)_{o}
\end{align*}
$$

From (5) we know that if $s+i \leq k$, then (8) is zero, i.e., $\left(A r_{k+1}, A p_{i}\right)_{o}=0$. Hence

$$
\beta_{i}^{(k)}=0, i=0,1, \ldots, k-s
$$

But only in the special case s will be small.

For instance :
(i) In classical CG method, A is s.p.d, P is taking by A^{-1}. Then $A^{T} P=A A^{-1}=I=A^{-1} A=A^{-1} \theta_{1}(A)$, where $\theta_{1}(x)=x, s=1$.
So, $\beta_{i}^{(k)}=0$, for all $i+1 \leq k$, it is only $\beta_{k}^{(k)} \neq 0$.
(ii) Concus, Golub and Widlund proposed GCG method, it solves $M^{-1} A x=M^{-1} b$. (A: unsymmetric), where $M=\left(A+A^{T}\right) / 2$ and $P=\left(A+A^{T}\right) / 2(P$ may be indefinite $)$.

- Check condition (7):
$\left(M^{-1} A\right)^{T} P=A^{T} M^{-1} M=A^{T}=M\left(2 I-M^{-1} A\right)=P\left(2 I-M^{-1} A\right)$.
Then

$$
\theta_{s}\left(M^{-1} A\right)=2 I-M^{-1} A
$$

where $\theta_{1}(x)=2-x, s=1$. Thus $\beta_{i}^{(k)}=0, i=0,1, \ldots, k-1$.
Therefore we only use r_{k+1} and p_{k} to construct p_{k+1}.

- Check condition $A^{T} P+P A$:

$$
\left(M^{-1} A\right)^{T} M+M M^{-1} A=A^{T}+A \quad \text { indefinite }
$$

The method can possibly break down.
(iii) The other case $s=1$ is BCG (BiCG) (See next paragraph).

Remark 2

Except the above three cases, the degree s is usually very large. That is, we need to save all directions $p_{i}(i=0,1, \ldots, k)$ in order to construct p_{k+1} satisfying the conjugate orthogonalization condition (2c). In GCG method, each iteration step needs to save $2 k+5$ vectors $\left(x_{k+1}, r_{k+1}\right.$, $p_{k+1},\left\{A p_{i}\right\}_{i=0}^{k},\left\{p_{i}\right\}_{i=0}^{k}$), $k+3$ inner products (Here k is the iteration number). Hence, if k is large, then the space of storage and the computation cost can become very large and can not be acceptable. So, GCG method, in general, has some practical difficulty. Such as GCR, GMRES (by SAAD) methods, they preserve the optimality ($P>0$), but it is too expensive (s is very large).

Modification:

(i) Restarted: If GCG method does not converge after $m+1$ iterations, then we take x_{k+1} as x_{0} and restart GCG method. There are at most $2 m+5$ saving vectors.
(ii) Truncated: The most expensive step of GCG method is to compute $\beta_{i}^{(k)}, i=0,1, \ldots, k$ so that p_{k+1} satisfies (2c). We now release the condition (2c) to require that p_{k+1} and the nearest m direction $\left\{p_{i}\right\}_{i=k-m+1}^{k}$ satisfy the conjugate orthogonalization condition.

BCG method (A: unsymmetric)

BCG is similar to the CG, it does not need to save the search direction. But the norm of the residual by BCG does not preserve the minimal property.
Solve $A x=b$ by considering $A^{T} y=c$ (phantom). Let

$$
\tilde{A}=\left[\begin{array}{cc}
A & 0 \\
0 & A^{T}
\end{array}\right], \quad \tilde{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \quad \tilde{b}=\left[\begin{array}{l}
b \\
c
\end{array}\right] .
$$

Consider

$$
\tilde{A} \tilde{x}=\tilde{b}
$$

Take $P=\left[\begin{array}{cc}0 & A^{-T} \\ A^{-1} & 0\end{array}\right]\left(P=P^{T}\right)$. This implies

$$
\tilde{A}^{T} P=P \tilde{A}
$$

From (7) we know that $s=1$ for $\tilde{A} \tilde{x}=\tilde{b}$. Hence it only needs to save one direction p_{k} as in the classical CG method.

Apply GCG method to $\tilde{A} \tilde{x}=\tilde{b}$

1: Given $\tilde{x}_{0}=\left[\begin{array}{c}x_{0} \\ \hat{x_{0}}\end{array}\right]$, compute $\tilde{p}_{0}=\tilde{r}_{0}=\tilde{b}-\tilde{A} \tilde{x}_{0}=\left[\begin{array}{c}r_{0} \\ \hat{r_{0}}\end{array}\right]$.
2: Set $k=0$.

3: repeat

4: \quad Compute $\alpha_{k}=\left(\tilde{r}_{k}, \tilde{A} \tilde{p}_{k}\right)_{o} /\left(\tilde{A} \tilde{p}_{k}, \tilde{A} \tilde{p}_{k}\right)_{o}$;
5: Compute $\tilde{x}_{k+1}=\tilde{x}_{k}+\alpha_{k} \tilde{p}_{k}$;
6: \quad Compute $\tilde{r}_{k+1}=\tilde{r}_{k}-\alpha_{k} \tilde{A} \tilde{p}_{k}$;
7: \quad Compute $\beta_{k}=-\left(\tilde{A} \tilde{r}_{k+1}, \tilde{A} \tilde{p}_{k}\right)_{o} /\left(\tilde{A} \tilde{p}_{k}, \tilde{A} \tilde{p}_{k}\right)_{o}$;
8: \quad Compute $\tilde{p}_{k+1}=\tilde{r}_{k+1}+\beta_{k} \tilde{p}_{k}$;
9: \quad Set $k=k+1$;
10: until $\tilde{r}_{k}=0$

Simplification (BCG method)

1: Given x_{0}, compute $p_{0}=r_{0}=b-A x_{0}$.
2: Choose $\hat{r}_{0}, \hat{p}_{0}=\hat{r}_{0}$.
3: Set $k=0$.
4: repeat
5: \quad Compute $\alpha_{k}=\left(\hat{r}_{k}, r_{k}\right) /\left(\hat{p}_{k}, A p_{k}\right)$;
6: \quad Compute $x_{k+1}=x_{k}+\alpha_{k} p_{k}$;
7: \quad Compute $r_{k+1}=r_{k}-\alpha_{k} A p_{k}, \quad \hat{r}_{k+1}=\hat{r}_{k}-\alpha_{k} A^{T} \hat{p}_{k}$;
8: \quad Compute $\beta_{k}=\left(\hat{r}_{k+1}, r_{k+1}\right) /\left(\hat{r}_{k}, r_{k}\right)$;
9: \quad Compute $p_{k+1}=r_{k+1}+\beta_{k} p_{k}, \quad \hat{p}_{k+1}=\hat{r}_{k+1}+\beta_{k} \hat{p}_{k}$;
10: \quad Set $k=k+1$;
11: until $r_{k}=0$
From above we have

$$
\left(\tilde{A} \tilde{p}_{k}, \tilde{A} \tilde{p}_{k}\right)_{o}=\left[p_{k}^{T} A^{T}, \hat{p}_{k}^{T} A\right]\left[\begin{array}{cc}
0 & A^{-T} \\
A^{-1} & 0
\end{array}\right]\left[\begin{array}{c}
A p_{k} \\
A^{T} \hat{p}_{k}
\end{array}\right]=2\left(\hat{p}_{k}, A p_{k}\right) .
$$

BCG method satisfies the following relations:

$$
\begin{align*}
r_{k}^{T} \hat{p}_{i}=\hat{r}_{k}^{T} p_{i}=0, & i<k \tag{9a}\\
p_{k}^{T} A^{T} \hat{p}_{i}=\hat{p}_{k}^{T} A p_{i}=0, & i<k \tag{9b}\\
r_{k}^{T} \hat{r}_{i}=\hat{r}_{k}^{T} r_{i}=0, & i<k \tag{9c}
\end{align*}
$$

Definition 2

(9c) and (9b) are called biorthogonality and biconjugacy condition, respectively.

Property:

(i) In BCG method, the residual of the linear equation does not satisfy the minimal property, because P is taken by

$$
P=\left(\begin{array}{cc}
0 & A^{-T} \\
A^{-1} & 0
\end{array}\right)
$$

and P is symmetric, but not positive definite. The minimal value of the functional $f(x)$ may not exist.
(ii) BCG method can break down, because $Z=\left(\tilde{A}^{T} P+P \tilde{A}\right) / 2$ is not positive definite. From above discussion, α_{k} can be zero. But this case occurs very few.

GCG	
GCR, GCR (k)	BCG
Orthomin (k)	CGS
Orthodir	BiCGSTAB
Orthores	QMR
GMRES (m)	TFQMR
FOM	
Axelsson LS	

The polynomial equivalent method of the CG method

Consider first A is s.p.d.

CG-method

1: $r_{0}=b-A x_{0}=p_{0}$.
2: Set $k=0$.
3: repeat

$$
\begin{array}{ll}
\text { 4: } & \alpha_{k}=\frac{\left(r_{k}, p_{k}\right)}{\left(p_{k}, A p_{k}\right)}=\frac{\left(r_{k}, r_{k}\right)}{\left(p_{k}, A p_{k}\right)} ; \\
\text { 5: } & x_{k+1}^{=x_{k}+\alpha_{k} p_{k} ;} \\
\text { 6: } & r_{k+1}=r_{k}-\alpha_{k} A p_{k} ; \\
\text { 7: } & \beta_{k}=\frac{-\left(r_{k+1}, A p_{k}\right)}{\left(p_{k} A p_{k}\right)}=-\frac{\left(r_{k+1}, r_{k+1}\right)}{\left(r_{k}, r_{k}\right)} ; \\
\text { 8: } & p_{k+1}=r_{k+1}+\beta_{k} p_{k} ; \\
9: & k=k+1 ;
\end{array}
$$

$$
\text { 10: until } r_{k}=0
$$

Equivalent CG-method

1: $r_{0}=b-A x_{0}=p_{0}, p_{-1}=$ $1, \rho_{-1}=-1$.
2: Set $k=0$.
3: repeat
4: $\quad \rho_{k}=r_{k}^{T} r_{k}, \beta_{k}=\frac{\rho_{k}}{\rho_{k-1}}$;
5: $\quad p_{k}=r_{k}+\beta_{k} p_{k-1}$;
6: $\quad \sigma_{k}=p_{k}^{T} A p_{k}, \alpha_{k}=\frac{\rho_{k}}{\sigma_{k}}$;
7: $\quad x_{k+1}=x_{k}+\alpha_{k} p_{k}$;
8: $\quad r_{k+1}=r_{k}-\alpha_{k} A p_{k}$;
$k=k+1$;
10: until $r_{k}=0$

Remark 3

$$
\begin{aligned}
& \text { 1. } E_{k}=r_{k}^{T} A^{-1} r_{k}=\min _{x \in x_{0}+K_{k}}\|b-A x\|_{A^{-1}}^{2} \\
& \text { 2. } r_{i}^{T} r_{j}=0, \quad p_{i}^{T} A p_{j}=0, i \neq j
\end{aligned}
$$

From the structure of the new form of the CG method, we write

$$
r_{k}=\varphi_{k}(A) r_{0}, \quad p_{k}=\psi_{k}(A) r_{0}
$$

where φ_{k} and ψ_{k} are polynomial of degree $\leq k$. Define $\varphi_{0}(\tau) \equiv 1$ and $\varphi_{-1}(\tau) \equiv 0$. Then we find

$$
\begin{equation*}
p_{k}=\varphi_{k}(A) r_{0}+\beta_{k} \psi_{k-1}(A) r_{0} \equiv \psi_{k}(A) r_{0} \tag{10a}
\end{equation*}
$$

with

$$
\begin{equation*}
\psi_{k}(\tau) \equiv \varphi_{k}(\tau)+\beta_{k} \psi_{k-1}(\tau) \tag{10b}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{k+1}=\varphi_{k}(A) r_{0}-\alpha_{k} A \psi_{k}(A) r_{0} \equiv \varphi_{k+1}(A) r_{0} \tag{11a}
\end{equation*}
$$

with

$$
\begin{equation*}
\varphi_{k+1}(\tau) \equiv \varphi_{k}(\tau)-\alpha_{k} \tau \psi_{k}(\tau) \tag{11b}
\end{equation*}
$$

The polynomial equivalent method of the CG method :
1: $\varphi_{0} \equiv 1, \varphi_{-1} \equiv 0, \rho_{-1}=1$.
2: for $k=0,1,2, \ldots$ do
3: $\quad \rho_{k}=\left(\varphi_{k}, \varphi_{k}\right), \beta_{k}=\frac{\rho_{k}}{\rho_{k-1}}$;
4: $\quad \psi_{k}=\varphi_{k}+\beta_{k} \psi_{k-1}$;
5: $\quad \sigma_{k}=\left(\psi_{k}, \theta \psi_{k}\right), \alpha_{k}=\frac{\rho_{k}}{\sigma_{k}} ;$
6: $\quad \varphi_{k+1}=\varphi_{k}-\alpha_{k} \theta \psi_{k}$;

7: end for

where $\theta(\tau)=\tau$.

The minimization property reads

$$
E_{k}=\left(\varphi_{k}, \theta^{-1} \varphi_{k}\right)=\min _{\varphi \in P^{N}} \frac{\left(\varphi, \theta^{-1} \varphi\right)}{\varphi(0)^{2}}
$$

We also have

$$
\begin{gathered}
\left(\varphi_{i}, \varphi_{j}\right)=0, \quad i \neq j \text { from }\left(r_{i}, r_{j}\right)=0, \quad i \neq j \\
\left(\psi_{i}, \theta \psi_{j}\right)=0, \quad i \neq j \text { from }\left(p_{i}, A p_{j}\right)=0, \quad i \neq j
\end{gathered}
$$

Theorem 3

Let $[\cdot, \cdot]$ be any symmetric bilinear form satisfying

$$
[\varphi \chi, \psi]=[\varphi, \chi \psi] \quad \forall \varphi, \psi, \chi \in P^{N}
$$

Let the sequence of φ_{i} and ψ_{i} be constructed according to PE algorithm, but using $[\cdot, \cdot]$ instead (\cdot, \cdot). Then as long as the algorithm does not break down by zero division, then φ_{i} and ψ_{i} satisfy

$$
\left[\varphi_{i}, \varphi_{j}\right]=\rho_{i} \delta_{i j}, \quad\left[\psi_{i}, \theta \psi_{j}\right]=\sigma_{i} \delta_{i j}
$$

with $\theta(\tau) \equiv \tau$.

Bi-Conjugate Gradient algorithm

1: Given $r_{0}=b-A x_{0}, p_{-1}=\hat{p}_{-1}$ and \hat{r}_{0} arbitrary.
2: for $k=0,1,2, \ldots$ do
3: $\quad \rho_{k}=\hat{r}_{k}^{T} r_{k}, \beta_{k}=\rho_{k} / \rho_{k-1}$;
4: $\quad p_{k}=r_{k}+\beta_{k} p_{k-1}, \hat{p}_{k}=\hat{r}_{k}+\beta_{k} \hat{p}_{k-1}$;
5: $\quad \sigma_{k}=\hat{p}_{k}^{T} A p_{k}, \alpha_{k}=\rho_{k} / \sigma_{k}$;
6: $\quad r_{k+1}=r_{k}-\alpha_{k} A p_{k}, \hat{r}_{k+1}=\hat{r}_{k}-\alpha_{k} A^{T} \hat{p}_{k}$;
7: $\quad x_{k+1}=x_{k}+\alpha_{k} p_{k}$;
8: end for

Property:

$r_{k}=b-A x_{k}, r_{i}^{T} \hat{r}_{j}=0, i \neq j$ and $p_{i}^{T} A^{T} \hat{p}_{j}=0, i \neq j$.

Consider

$$
A x=b, \quad A: \text { nonsymmetric. }
$$

Given $x_{0}, r_{0}=b-A x_{0}$, let \hat{r}_{0} be a suitably chosen vector. Define $[\cdot, \cdot]$ by

$$
[\varphi, \psi]=\hat{r}_{0}^{T} \varphi(A) \psi(A) r_{0}=\left(\varphi\left(A^{T}\right) \hat{r}_{0}\right)^{T} \psi(A) r_{0}
$$

and define $p_{-1}=\hat{p}_{-1}=0$. (If A symmetric : $\left.(\varphi, \psi)=r_{0}^{T} \varphi(A) \psi(A) r_{0}\right)$.
Then we have

$$
\begin{array}{ll}
r_{k}=\varphi_{k}(A) r_{0}, & \hat{r}_{k}=\varphi_{k}\left(A^{T}\right) \hat{r}_{0} \\
p_{k}=\psi_{k}(A) r_{0}, & \hat{p}_{k}=\psi_{k}\left(A^{T}\right) \hat{r}_{0}
\end{array}
$$

with φ_{k} and ψ_{k} according to (10b) and (11b). Indeed, these vectors can be produced by the Bi-Conjugate Gradient algorithm:

Squaring the CG algorithm: CGS Algorithm (SISC, 1989, Sonneveld)

Assume that Bi-CG is converging well. Then $r_{k} \rightarrow 0$ as $k \rightarrow \infty$. Because $r_{k}=\varphi_{k}(A) r_{0}, \varphi_{k}(A)$ behaves like contracting operators.

- Expect: $\varphi_{k}\left(A^{T}\right)$ behaves like contracting operators (i.e., $\hat{r}_{k} \rightarrow 0$). But "quasi-residuals" \hat{r}_{k} is not exploited, they need to be computed for the ρ_{k} and σ_{k}.
- Disadvantage: Work of Bi-CG is twice the work of CG and in general $A^{T} v$ is not easy to compute. Especially if A is stored with a general data structure.
- Improvement: Using Polynomial equivalent algorithm to CG. Since $\rho_{k}=\left[\varphi_{k}, \varphi_{k}\right]$ and $\sigma_{k}=\left[\psi_{k}, \theta \psi_{k}\right],[\cdot, \cdot]$ has the property $[\varphi \chi, \psi]=[\varphi, \chi \psi]$. Let $\varphi_{0}=1$. Then

$$
\begin{gathered}
\rho_{k}=\left[\varphi_{0}, \varphi_{k}^{2}\right], \quad \sigma_{k}=\left[\varphi_{0}, \theta \psi_{k}^{2}\right] \\
\left\{\begin{array}{l}
\varphi_{k+1}=\varphi_{k}-\alpha_{k} \theta \psi_{k} \\
\psi_{k}=\varphi_{k}+\beta_{k} \psi_{k-1}
\end{array}\right.
\end{gathered}
$$

Remark 4

$$
\begin{aligned}
& \rho_{k}=\hat{r}_{k}^{T} r_{k}=\left(\varphi_{k}\left(A^{T}\right) \hat{r}_{0}\right)^{T}\left(\varphi_{k}(A) r_{0}\right)=\hat{r}_{0}^{T} \varphi_{k}^{2}(A) r_{0} \\
& \sigma_{k}=\hat{p}_{k}^{T} A p_{k}=\left(\psi_{k}\left(A^{T}\right) \hat{r}_{0}\right)^{T} A\left(\psi_{k}(A) r_{0}\right)=\hat{r}_{0}^{T} A \psi_{k}^{2}(A) r_{0}
\end{aligned}
$$

- Purpose:
(1) Find an algorithm that generates the polynomial φ_{k}^{2} and ψ_{k}^{2} rather than φ_{k} and ψ_{k}.
(2) Compute approximated solution x_{k} with $r_{k}=\varphi_{k}^{2}(A) r_{0}$ as residuals (try to interpret). Because $\rho_{k}=\hat{r}_{0}^{T} r_{k}$ with $r_{k}=\varphi_{k}^{2}(A) r_{0}, \hat{r}_{k}$ and \hat{p}_{k} need not to be computed.

How to compute φ_{k}^{2} and ψ_{k}^{2} ?

$$
\begin{aligned}
\psi_{k}^{2} & =\left[\varphi_{k}+\beta_{k} \psi_{k-1}\right]^{2}=\varphi_{k}^{2}+2 \beta_{k} \varphi_{k} \psi_{k-1}+\beta_{k}^{2} \psi_{k-1}^{2}, \\
\varphi_{k+1}^{2} & =\left[\varphi_{k}-\alpha_{k} \theta \psi_{k}\right]^{2}=\varphi_{k}^{2}-2 \alpha_{k} \theta \varphi_{k} \psi_{k}+\alpha_{k}^{2} \theta^{2} \psi_{k}^{2} .
\end{aligned}
$$

Since

$$
\varphi_{k} \psi_{k}=\varphi_{k}\left[\varphi_{k}+\beta_{k} \psi_{k-1}\right]=\varphi_{k}^{2}+\beta_{k} \varphi_{k} \psi_{k-1}
$$

we only need to compute $\varphi_{k} \psi_{k-1}, \varphi_{k}^{2}$ and ψ_{k}^{2}. Now define for $k \geq 0$:

$$
\Phi_{k}=\varphi_{k}^{2}, \quad \Theta_{k}=\varphi_{k} \psi_{k-1}, \quad \Psi_{k-1}=\psi_{k-1}^{2}
$$

From

$$
\begin{aligned}
\psi_{k}^{2} & =\varphi_{k}^{2}+2 \beta_{k} \varphi_{k} \psi_{k-1}+\beta_{k}^{2} \psi_{k-1}^{2}, \\
\varphi_{k+1} \psi_{k} & =\left(\varphi_{k}-\alpha_{k} \theta \psi_{k}\right) \psi_{k}=\varphi_{k} \psi_{k}-\alpha_{k} \theta \psi_{k}^{2}, \\
\varphi_{k+1}^{2} & =\varphi_{k}^{2}-2 \alpha_{k} \theta \varphi_{k} \psi_{k}+\alpha_{k}^{2} \theta^{2} \psi_{k}^{2} \\
& =\varphi_{k}^{2}-\alpha_{k} \theta\left(\varphi_{k} \psi_{k}-\alpha_{k} \theta \psi_{k}^{2}\right)-\alpha_{k} \theta \varphi_{k} \psi_{k}=\varphi_{k}^{2}-\alpha_{k} \theta\left(\varphi_{k+1} \psi_{k}+\varphi_{k} \psi_{k}\right),
\end{aligned}
$$

we have

$$
\begin{aligned}
Y_{k} & =\varphi_{k} \psi_{k}=\Phi_{k}+\beta_{k} \Theta_{k} \\
\Psi_{k} & =\Phi_{k}+2 \beta_{k} \Theta_{k}+\beta_{k}^{2} \Psi_{k-1}=Y_{k}+\beta_{k}\left(\Theta_{k}+\beta_{k} \Psi_{k-1}\right), \\
\Theta_{k+1} & =Y_{k}-\alpha_{k} \theta \Psi_{k}, \\
\Phi_{k+1} & =\Phi_{k}-\alpha_{k} \theta\left(Y_{k}+\Theta_{k+1}\right) .
\end{aligned}
$$

Bi-Conjugate Gradient

1: Given $r_{0}=b-A x_{0}$, $p_{-1}=\hat{p}_{-1}$ and arbitrary \hat{r}_{0}.
2: for $k=0,1,2, \ldots$ do
3: $\quad \rho_{k}=\hat{r}_{k}^{T} r_{k}$,
$\beta_{k}=\rho_{k} / \rho_{k-1} ;$
4: $\quad p_{k}=r_{k}+\beta_{k} p_{k-1}$,

$$
\hat{p}_{k}=\hat{r}_{k}+\beta_{k} \hat{p}_{k-1} ;
$$

5: $\quad \sigma_{k}=\hat{p}_{k}^{T} A p_{k}$,

$$
\alpha_{k}=\rho_{k} / \sigma_{k}
$$

6: $\quad r_{k+1}=r_{k}-\alpha_{k} A p_{k}$, $\hat{r}_{k+1}=\hat{r}_{k}-\alpha_{k} A^{T} \hat{p}_{k} ;$
7: $\quad x_{k+1}=x_{k}+\alpha_{k} p_{k}$;
8: end for

CGS

$$
\begin{aligned}
& \text { 1: } \Phi_{0} \equiv 1, \Theta_{0} \equiv \Psi_{-1} \equiv 0 \\
& \\
& \quad \rho_{-1}=1 . \\
& \text { 2: for } k=0,1,2, \ldots \text { do } \\
& \text { 3: } \quad \rho_{k}=\left[1, \Phi_{k}\right], \beta_{k}=\rho_{k} / \rho_{k-1} ; \\
& \text { 4: } \quad Y_{k}=\Phi_{k}+\beta_{k} \Theta_{k} ; \\
& \text { 5: } \quad \Psi_{k}=Y_{k}+\beta_{k}\left(\Theta_{k}+\beta_{k} \Psi_{k-1}\right) ; \\
& \text { 6: } \\
& \sigma_{k}=\left[1, \theta \Psi_{k}\right], \alpha_{k}=\rho_{k} / \sigma_{k} ; \\
& \text { 7: } \quad \Theta_{k+1}=Y_{k}-\alpha_{k} \theta \Psi_{k} ; \\
& \text { 8: } \quad \Phi_{k+1}=\Phi_{k}-\alpha_{k} \theta\left(Y_{k}+\Theta_{k+1}\right) ; \\
& \text { 9: end for }
\end{aligned}
$$

CGS

$$
\begin{aligned}
1: & \Phi_{0} \equiv 1, \Theta_{0} \equiv \Psi_{-1} \equiv 0 \\
& \rho_{-1}=1
\end{aligned}
$$

2: for $k=0,1,2, \ldots$ do
3: $\quad \rho_{k}=\left[1, \Phi_{k}\right], \beta_{k}=\rho_{k} / \rho_{k-1}$;
4: $\quad Y_{k}=\Phi_{k}+\beta_{k} \Theta_{k}$;
5: $\quad \Psi_{k}=Y_{k}+\beta_{k}\left(\Theta_{k}+\beta_{k} \Psi_{k-1}\right)$;
6: $\quad \sigma_{k}=\left[1, \theta \Psi_{k}\right], \alpha_{k}=\rho_{k} / \sigma_{k}$;
7: $\quad \Theta_{k+1}=Y_{k}-\alpha_{k} \theta \Psi_{k}$;
8: $\quad \Phi_{k+1}=\Phi_{k}-\alpha_{k} \theta\left(Y_{k}+\Theta_{k+1}\right)$;
9: end for

CGS Variant

1: Given $r_{0}=b-A x_{0}$,

$$
q_{0}=p_{-1}=0, \rho_{-1}=1
$$

2: for $k=0,1,2, \ldots$ do
3: $\quad \rho_{k}=\hat{r}_{0}^{T} r_{k}, \beta_{k}=\rho_{k} / \rho_{k-1}$;
4: $\quad u_{k}=r_{k}+\beta_{k} q_{k}$;
5: $\quad p_{k}=u_{k}+\beta_{k}\left(q_{k}+\beta_{k} p_{k-1}\right)$;
6: $\quad v_{k}=A p_{k}$;
7: $\quad \sigma_{k}=\hat{r}_{0}^{T} v_{k}, \alpha_{k}=\rho_{k} / \sigma_{k}$;
8: $\quad q_{k+1}=u_{k}-\alpha_{k} v_{k}$;
9: $\quad r_{k+1}=r_{k}-\alpha_{k} A\left(u_{k}+q_{k+1}\right)$;
10: $\quad x_{k+1}=x_{k}+\alpha_{k}\left(u_{k}+q_{k+1}\right)$;
11: end for

Define $r_{k}=\Phi_{k}(A) r_{0}, q_{k}=\Theta_{k}(A) r_{0}, p_{k}=\Psi_{k}(A) r_{0}$ and $u_{k}=Y_{k}(A) r_{0}$.

Since $r_{0}=b-A x_{0}, r_{k+1}-r_{k}=A\left(x_{k}-x_{k+1}\right)$, we have that $r_{k}=b-A x_{k}$. So this algorithm produces x_{k} of which the residual satisfy

$$
r_{k}=\varphi_{k}^{2}(A) r_{0}
$$

Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems (SISC, 1992, Van der Vorst)

Bi-CG method

1: Given $r_{0}=b-A x_{0},\left(\hat{r}_{0}, r_{0}\right) \neq 0, \rho_{0}=1, \hat{p}_{0}=p_{0}=0$.
2: for $k=1,2, \ldots$ do
3: $\quad \rho_{k}=\left(\hat{r}_{k-1}, r_{k-1}\right)$;
4: $\quad \beta_{k}=\rho_{k} / \rho_{k-1}$;
5: $\quad p_{k}=r_{k-1}+\beta_{k} p_{k-1}, \hat{p}_{k}=\hat{r}_{k-1}+\beta_{k} \hat{p}_{k-1}$;
6: $\quad v_{k}=A p_{k}$;
7: $\quad \alpha_{k}=\rho_{k} /\left(\hat{p}_{k}, v_{k}\right)$;
8: $\quad x_{k}=x_{k-1}+\alpha_{k} p_{k}$;
9: Stop here, if x_{k} is accurate enough.
10: $\quad r_{k}=r_{k-1}-\alpha_{k} v_{k}=r_{k-1}-\alpha_{k} A p_{k}$;
11: $\quad \hat{r}_{k}=\hat{r}_{k-1}-\alpha_{k} A^{T} \hat{p}_{k}$;

12: end for

Property:

(i) $r_{k} \perp \hat{r}_{0}, \ldots, \hat{r}_{k-1}$ and $\hat{r}_{k} \perp r_{0}, \ldots, r_{k-1}$.
(ii) three-term recurrence relations between $\left\{r_{k}\right\}$ and $\left\{\hat{r}_{k}\right\}$.
(iii) It terminates within n steps, but no minimal property.

Since

$$
r_{k}^{B i-C G}=\varphi_{k}(A) r_{0}, \quad \hat{r}_{k}^{B i-C G}=\varphi_{k}\left(A^{T}\right) \hat{r}_{0}
$$

it implies that

$$
\left(r_{k}, \hat{r}_{i}\right)=\left(\varphi_{k}(A) r_{0}, \varphi_{i}\left(A^{T}\right) \hat{r}_{0}\right)=\left(\varphi_{i}(A) \varphi_{k}(A) r_{0}, \hat{r}_{0}\right)=0, \quad i<k
$$

CGS Method

1: Given $x_{0}, r_{0}=b-A x_{0},\left(r_{0}, \hat{r}_{0}\right) \neq 0, \hat{r}_{0}=r_{0}, \rho_{0}=1, p_{0}=q_{0}=0$.
2: for $k=1,2, \ldots$ do
3: $\quad \rho_{k}=\left(\hat{r}_{0}, r_{k-1}\right), \beta_{k}=\rho_{k} / \rho_{k-1}$;
4: $\quad u_{k}=r_{k-1}+\beta_{k} q_{k-1}$;
5: $\quad p_{k}=u_{k}+\beta_{k}\left(q_{k-1}+\beta_{k} p_{k-1}\right)$;
6: $\quad v_{k}=A p_{k}$;
7: $\quad \alpha_{k}=\rho_{k} /\left(\hat{r}_{0}, v_{k}\right)$;
8: $\quad q_{k}=u_{k}-\alpha_{k} v_{k}$;
9: $\quad w_{k}=u_{k}+q_{k}$;
10: $\quad x_{k}=x_{k-1}+\alpha_{k} w_{k}$;
11: Stop here, if x_{k} is accurate enough.
12: $\quad r_{k}=r_{k-1}-\alpha_{k} A w_{k}$;

13: end for

We have $r_{k}^{\text {CGS }}=\varphi_{k}(A)^{2} r_{0}$.

From Bi-CG method we have $r_{k}^{B i-C G}=\varphi_{k}(A) r_{0}$ and $p_{k+1}=\psi_{k}(A) r_{0}$. Thus we get

$$
\psi_{k}(A) r_{0}=\left(\varphi_{k}(A)+\beta_{k} \psi_{k-1}(A)\right) r_{0}
$$

and

$$
\varphi_{k}(A) r_{0}=\left(\varphi_{k-1}(A)-\alpha_{k} A \psi_{k-1}(A)\right) r_{0}
$$

where $\psi_{k}=\varphi_{k}+\beta_{k} \psi_{k-1}$ and $\varphi_{k}=\varphi_{k-1}-\alpha_{k} \theta \psi_{k-1}$. Since

$$
\left(\varphi_{k}(A) r_{0}, \varphi_{j}\left(A^{T}\right) \hat{r}_{0}\right)=0, \quad j<k
$$

it holds that

$$
\varphi_{k}(A) r_{0} \perp \hat{r}_{0}, A^{T} \hat{r}_{0}, \ldots,\left(A^{T}\right)^{k-1} \hat{r}_{0}
$$

if and only if

$$
\left(\tilde{\varphi}_{j}(A) \varphi_{k}(A) r_{0}, \hat{r}_{0},\right)=0
$$

for some polynomial $\tilde{\varphi}_{j}$ of degree $j<k$ for $j=0,1, \ldots, k-1$.

In Bi-CG method, we take $\tilde{\varphi}_{j}=\varphi_{j}, \hat{r}_{k}=\varphi_{k}\left(A^{T}\right) \hat{r}_{0}$ and exploit it in CGS to get $r_{k}^{C G S}=\varphi_{k}^{2}(A) r_{0}$. Now $r_{k}=\tilde{\varphi}_{k}(A) \varphi_{k}(A) r_{0}$. How to choose $\tilde{\varphi}_{k}$ polynomial of degree k so that $\left\|r_{k}\right\|$ satisfies the minimum. Like polynomial, we can determine the optimal parameters of $\tilde{\varphi}_{k}$ so that $\left\|r_{k}\right\|$ satisfies the minimum. But the optimal parameters for the Chebychev polynomial are in general not easily obtainable. Now we take

$$
\tilde{\varphi}_{k} \equiv \eta_{k}(x)
$$

where

$$
\eta_{k}(x)=\left(1-\omega_{1} x\right)\left(1-\omega_{2} x\right) \cdots\left(1-\omega_{k} x\right) .
$$

Here ω_{j} are suitable constants to be selected.

Define

$$
r_{k}=\eta_{k}(A) \varphi_{k}(A) r_{0}
$$

Then

$$
\begin{aligned}
r_{k}= & \eta_{k}(A) \varphi_{k}(A) r_{0} \\
= & \left(1-\omega_{k} A\right) \eta_{k-1}(A)\left(\varphi_{k-1}(A)-\alpha_{k} A \psi_{k-1}(A)\right) r_{0} \\
= & \left\{\left(\eta_{k-1}(A) \varphi_{k-1}(A)-\alpha_{k} A \eta_{k-1}(A) \psi_{k-1}(A)\right)\right\} r_{0} \\
& -\omega_{k} A\left\{\left(\eta_{k-1}(A) \varphi_{k-1}(A)-\alpha_{k} A \eta_{k-1}(A) \psi_{k-1}(A)\right)\right\} r_{0} \\
= & r_{k-1}-\alpha_{k} A p_{k}-\omega_{k} A\left(r_{k-1}-\alpha_{k} A p_{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
p_{k+1}= & \eta_{k}(A) \psi_{k}(A) r_{0} \\
= & \eta_{k}(A)\left(\varphi_{k}(A)+\beta_{k} \psi_{k-1}(A)\right) r_{0} \\
= & \eta_{k}(A) \varphi_{k}(A) r_{0}+\beta_{k}\left(1-\omega_{k} A\right) \eta_{k-1}(A) \psi_{k-1}(A) r_{0} \\
= & \eta_{k}(A) \varphi_{k}(A) r_{0}+\beta_{k} \eta_{k-1}(A) \psi_{k-1}(A) r_{0} \\
& -\beta_{k} \omega_{k} A \eta_{k-1}(A) \psi_{k-1}(A) r_{0} \\
= & r_{k}+\beta_{k}\left(p_{k}-\omega_{k} A p_{k}\right) .
\end{aligned}
$$

Recover the constants ρ_{k}, β_{k}, and α_{k} in Bi-CG method.

We now compute β_{k} : Let

$$
\hat{\rho}_{k+1}=\left(\hat{r}_{0}, \eta_{k}(A) \varphi_{k}(A) r_{0}\right)=\left(\eta_{k}\left(A^{T}\right) \hat{r}_{0}, \varphi_{k}(A) r_{0}\right) .
$$

From Bi-CG we have $\varphi_{k}(A) r_{0} \perp$ all vectors $\mu_{k-1}\left(A^{T}\right) \hat{r}_{0}$, where μ_{k-1} is an arbitrary polynomial of degree $k-1$. Consider the highest order term of $\eta_{k}\left(A^{T}\right)$ (when computing $\hat{\rho}_{k+1}$) is $(-1)^{k} \omega_{1} \omega_{2} \cdots \omega_{k}\left(A^{T}\right)^{k}$. From Bi-CG method, we also have

$$
\rho_{k+1}=\left(\varphi_{k}\left(A^{T}\right) \hat{r}_{0}, \varphi_{k}(A) r_{0}\right) .
$$

The highest order term of $\varphi_{k}\left(A^{T}\right)$ is $(-1)^{k} \alpha_{1} \cdots \alpha_{k}\left(A^{T}\right)^{k}$. Thus

$$
\beta_{k}=\left(\hat{\rho}_{k} / \hat{\rho}_{k-1}\right)\left(\alpha_{k-1} / \omega_{k-1}\right),
$$

because

$$
\begin{aligned}
\beta_{k} & =\frac{\rho_{k}}{\rho_{k-1}}=\frac{\left(\alpha_{1} \cdots \alpha_{k-1}\left(A^{T}\right)^{k-1} \hat{r}_{0}, \varphi_{k-1}(A) r_{0}\right)}{\left(\alpha_{1} \cdots \alpha_{k-2}\left(A^{T}\right)^{k-2} \hat{r}_{0}, \varphi_{k-2}(A) r_{0}\right)} \\
& =\frac{\left(\frac{\alpha_{1} \cdots \alpha_{k-1}}{\omega_{1} \cdots \omega_{k-1}} \omega_{1} \cdots \omega_{k-1}\left(A^{T}\right)^{k-1} \hat{r}_{0}, \varphi_{k-1}(A) r_{0}\right)}{\left(\frac{\alpha_{1} \cdots \alpha_{k-2}}{\omega_{1} \cdots \omega_{k-2}} \omega_{1} \cdots \omega_{k-2}\left(A^{T}\right)^{k-2} \hat{r}_{0}, \varphi_{k-2}(A) r_{0}\right)} \\
& =\left(\hat{\rho}_{k} / \hat{\rho}_{k-1}\right)\left(\alpha_{k-1} / \omega_{k-1}\right) .
\end{aligned}
$$

Similarly, we can compute ρ_{k} and α_{k}. Let

$$
r_{k}=r_{k-1}-\gamma A y, \quad x_{k}=x_{k-1}+\gamma y \quad \text { (side product). }
$$

Compute ω_{k} so that $r_{k}=\eta_{k}(A) \varphi_{k}(A) r_{0}$ is minimized in 2-norm as a function of ω_{k}.

Bi-CGSTAB Method

1: Given $x_{0}, r_{0}=b-A x_{0}, \hat{r}_{0}$ arbitrary, such that $\left(r_{0}, \hat{r}_{0}\right) \neq 0$, e.g. $\hat{r}_{0}=r_{0}, \rho_{0}=\alpha=\omega_{0}=1, v_{0}=p_{0}=0$.
2: for $k=1,2, \ldots$ do
3: $\quad \rho_{k}=\left(\hat{r}_{0}, r_{k-1}\right), \beta=\left(\rho_{k} / \rho_{k-1}\right)\left(\alpha / \omega_{k-1}\right)$;
4: $\quad p_{k}=r_{k-1}+\beta\left(p_{k-1}-\omega_{k-1} v_{k-1}\right)$;
5: $\quad v_{k}=A p_{k}$;
6: $\quad \alpha=\rho_{k} /\left(\hat{r}_{0}, v_{k}\right)$;
7: $\quad s=r_{k-1}-\alpha v_{k}$;
8: $\quad t=A s$;
$9: \quad \omega_{k}=(t, s) /(t, t) ;$
10: $\quad x_{k}=x_{k-1}+\alpha p_{k}+\omega_{k} s \quad\left(=x_{k-1}+\alpha p_{k}+\omega_{k}\left(r_{k-1}-\alpha A p_{k}\right)\right)$;
11: Stop here, if x_{k} is accurate enough.
12: $\quad r_{k}=s-\omega_{k} t\left(=r_{k-1}-\alpha A p_{k}-\omega_{k} A\left(r_{k-1}-\alpha A p_{k}\right)=\right.$ $r_{k-1}-A\left(\alpha p_{k}+\omega_{k}\left(r_{k-1}-\alpha A p_{k}\right)\right)$;
13: end for

Preconditioned Bi-CGSTAB-P:

Rewrite $A x=b$ as

$$
\tilde{A} \tilde{x}=\tilde{b} \quad \text { with } \quad \tilde{A}=K_{1}^{-1} A K_{2}^{-1}
$$

where $x=K_{2}^{-1} \tilde{x}$ and $\tilde{b}=K_{1}^{-1} b$. Then

$$
\begin{aligned}
& \tilde{p}_{k}:=K_{1}^{-1} p_{k}, \\
& \tilde{v}_{k}:=K_{1}^{-1} v_{k}, \\
& \tilde{r}_{k}:=K_{1}^{-1} r_{k}, \\
& \tilde{s}:=K_{1}^{-1} s, \\
& \tilde{t}:=K_{1}^{-1} t, \\
& \tilde{x}_{k}:=K_{2} x_{k}, \\
& \tilde{r}_{0}:=K_{1}^{T} \hat{r}_{0} .
\end{aligned}
$$

