GMRES: Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems

Tsung-Ming Huang
Department of Mathematics
National Taiwan Normal University

December 4, 2011

Ref: SISC, 1984, Saad

Theorem 1 (Implicit Q theorem)

Let $A V_{1}=V_{1} H_{1}$ and $A V_{2}=V_{2} H_{2}$, where H_{1}, H_{2} are Hessenberg and V_{1}, V_{2} are unitary with $V_{1} e_{1}=V_{2} e_{1}=q_{1}$. Then $V_{1}=V_{2}$ and $H_{1}=H_{2}$.

$$
A\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{n}
\end{array}\right]=\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{n}
\end{array}\right]\left[\begin{array}{cccc}
h_{11} & h_{12} & \cdots & h_{1 n} \\
h_{21} & h_{22} & & h_{2 n} \\
& \ddots & \ddots & \vdots \\
& & h_{n, n-1} & h_{n n}
\end{array}\right]
$$

with

$$
v_{i}^{T} v_{j}=\delta_{i j}, \quad i, j=1, \ldots, n
$$

Arnoldi Algorithm

Input: Given v_{1} with $\left\|v_{1}\right\|_{2}=1$;
Output: Arnoldi factorization: $A V_{k}=V_{k} H_{k}+h_{k+1, k} v_{k+1} e_{k}^{T}$.
1: Set $k=0$.
2: repeat
3: \quad Compute $h_{i k}=\left(A v_{k}, v_{i}\right)$ for $i=1,2, \ldots, k$;
4: \quad Compute $\tilde{v}_{k+1}=A v_{k}-\sum_{i=1}^{k} h_{i k} v_{i}$;
5: \quad Compute $h_{k+1, k}=\left\|\tilde{v}_{k+1}\right\|_{2}$;
6: \quad Compute $v_{k+1}=\tilde{v}_{k+1} / h_{k+1, k}$;
7: \quad Set $k=k+1$;
8: until convergent

Remark 1

(a) Let $V_{k}=\left[v_{1}, \cdots, v_{k}\right] \in \mathbb{R}^{n \times k}$ where v_{j}, for $j=1, \ldots, k$, is generated by Arnoldi algorithm. Then $H_{k} \equiv V_{k}^{T} A V_{k}$ is upper $k \times k$ Hessenberg.
(b) Arnoldi's original method was a Galerkin method for approximate the eigenvalue of A by H_{k}.

In order to solve $A x=b$ by the Galerkin method using $<K_{k}>\equiv<V_{k}>$, we seek an approximate solution $x_{k}=x_{0}+z_{k}$ with

$$
z_{k} \in K_{k}=<r_{0}, A r_{0}, \cdots, A^{k-1} r_{0}>
$$

and $r_{0}=b-A x_{0}$.

Definition 2

$\left\{x_{k}\right\}$ is said to be satisfied the Galerkin condition if $r_{k} \equiv b-A x_{k}$ is orthogonal to K_{k} for each k.

The Galerkin method can be stated as that find

$$
\begin{equation*}
x_{k}=x_{0}+z_{k} \quad \text { with } \quad z_{k} \in V_{k} \tag{1}
\end{equation*}
$$

such that

$$
\left(b-A x_{k}, v\right)=0, \quad \forall v \in V_{k}
$$

which is equivalent to find

$$
\begin{equation*}
z_{k} \equiv V_{k} y_{k} \in V_{k} \tag{2}
\end{equation*}
$$

such that

$$
\begin{equation*}
\left(r_{0}-A z_{k}, v\right)=0, \quad \forall v \in V_{k} \tag{3}
\end{equation*}
$$

Substituting (2) into (3), we get

$$
V_{k}^{T}\left(r_{0}-A V_{k} y_{k}\right)=0
$$

which implies that

$$
\begin{equation*}
y_{k}=\left(V_{k}^{T} A V_{k}\right)^{-1}\left\|r_{0}\right\| e_{1} \tag{4}
\end{equation*}
$$

Since V_{k} is computed by the Arnoldi algorithm with $v_{1}=r_{0} /\left\|r_{0}\right\|, y_{k}$ in (4) can be represented as

$$
y_{k}=H_{k}^{-1}\left\|r_{0}\right\| e_{1}
$$

Substituting it into (2) and (1), we get

$$
x_{k}=x_{0}+V_{k} H_{k}^{-1}\left\|r_{0}\right\| e_{1}
$$

Using the result that $A V_{k}=V_{k} H_{k}+h_{k+1, k} v_{k+1} e_{k}^{T}, r_{k}$ can be reformulated as

$$
\begin{aligned}
r_{k} & =b-A x_{k}=r_{0}-A V_{k} y_{k}=r_{0}-\left(V_{k} H_{k}+h_{k+1, k} v_{k+1} e_{k}^{T}\right) y_{k} \\
& =r_{0}-V_{k}\left\|r_{0}\right\| e_{1}-h_{k+1, k} e_{k}^{T} y_{k} v_{k+1}=-\left(h_{k+1, k} e_{k}^{T} y_{k}\right) v_{k+1}
\end{aligned}
$$

The generalized minimal residual (GMRES) algorithm

The approximate solution of the form $x_{0}+z_{k}$, which minimizes the residual norm over $z_{k} \in K_{k}$, can in principle be obtained by following algorithms:

- The ORTHODIR algorithm of Jea and Young;
- the generalized conjugate residual method (GCR);
- GMRES.

Let
$V_{k}=\left[v_{1}, \cdots, v_{k}\right], \quad \tilde{H}_{k}=\left[\begin{array}{cccc}h_{1,1} & h_{1,2} & \cdots & h_{1, k} \\ h_{2,1} & h_{2,2} & \cdots & h_{2, k} \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & h_{k, k-1} & h_{k, k} \\ 0 & \cdots & 0 & h_{k+1, k}\end{array}\right] \in \mathbb{R}^{(k+1) \times k}$.

By Arnoldi algorithm, we have

$$
\begin{equation*}
A V_{k}=V_{k+1} \tilde{H}_{k} \tag{5}
\end{equation*}
$$

To solve the least square problem:

$$
\begin{equation*}
\min _{z \in K_{k}}\left\|r_{o}-A z\right\|_{2}=\min _{z \in K_{k}}\left\|b-A\left(x_{o}+z\right)\right\|_{2} \tag{6}
\end{equation*}
$$

where $K_{k}=<r_{o}, A r_{o}, \cdots, A^{k-1} r_{o}>=<v_{1}, \cdots, v_{k}>$ with $v_{1}=\frac{r_{o}}{\left\|r_{o}\right\|_{2}}$.

Set $z=V_{k} y$, the least square problem (6) is equivalent to

$$
\begin{equation*}
\min _{y \in \mathbb{R}^{k}} J(y)=\min _{y \in \mathbb{R}^{k}}\left\|\beta v_{1}-A V_{k} y\right\|_{2}, \quad \beta=\left\|r_{o}\right\|_{2} \tag{7}
\end{equation*}
$$

Using (5), we have

$$
\begin{equation*}
J(y)=\left\|V_{k+1}\left(\beta e_{1}-\tilde{H}_{k} y\right)\right\|_{2}=\left\|\beta e_{1}-\tilde{H}_{k} y\right\|_{2} \tag{8}
\end{equation*}
$$

Hence, the solution of the least square (6) is

$$
x_{k}=x_{o}+V_{k} y_{k}
$$

where y_{k} minimize the function $J(y)$ defined by (8) over $y \in \mathbb{R}^{k}$.

GMRES Algorithm

Input: Choose x_{0}, compute $r_{0}=b-A x_{0}$ and $v_{1}=r_{0} /\left\|r_{0}\right\|$;
Output: Solution of linear system $A x=b$.
1: for $j=1,2, \ldots, k$ do
2: \quad Compute $h_{i j}=\left(A v_{j}, v_{i}\right)$ for $i=1,2, \ldots, j$;
3: \quad Compute $\tilde{v}_{j+1}=A v_{j}-\sum_{i=1}^{j} h_{i j} v_{i}$;
4: \quad Compute $h_{j+1, j}=\left\|\tilde{v}_{j+1}\right\|_{2}$;
5: \quad Compute $v_{j+1}=\tilde{v}_{j+1} / h_{j+1, j}$;
6: end for
7: Form the solution:

$$
x_{k}=x_{0}+V_{k} y_{k}
$$

where y_{k} minimizes $J(y)$ in (8).
Difficulties: when k is increasing, storage for v_{j}, like k, the number of multiplications is like $\frac{1}{2} k^{2} N$.

GMRES(m) Algorithm

Input: Choose x_{0}, compute $r_{0}=b-A x_{0}$ and $v_{1}=r_{0} /\left\|r_{0}\right\|$;
Output: Solution of linear system $A x=b$.
1: for $j=1,2, \ldots, m$ do
2: Compute $h_{i j}=\left(A v_{j}, v_{i}\right)$ for $i=1,2, \ldots, j$;
3: \quad Compute $\tilde{v}_{j+1}=A v_{j}-\sum_{i=1}^{j} h_{i j} v_{i}$;
4: \quad Compute $h_{j+1, j}=\left\|\tilde{v}_{j+1}\right\|_{2}$;
5: \quad Compute $v_{j+1}=\tilde{v}_{j+1} / h_{j+1, j}$;
6: end for
7: Form the solution:

$$
x_{m}=x_{0}+V_{m} y_{m},
$$

where y_{m} minimizes $\left\|\beta e_{1}-\widetilde{H}_{m} y\right\|$ for $y \in \mathbb{R}^{m}$.
8: Restart: Compute $r_{m}=b-A x_{m}$;
9: if $\left\|r_{m}\right\|$ is small, then
10: stop,
11: else
12: Compute $x_{0}=x_{m}$ and $v_{1}=r_{m} /\left\|r_{m}\right\|$, GoTo for step.

13: end if

Practical Implementation: Consider $Q R$ factorization of \widetilde{H}_{k}

Consider the matrix \widetilde{H}_{k}. We want to solve the least squares problem:

$$
\min _{y \in \mathbb{R}^{k}}\left\|\beta e_{1}-\widetilde{H}_{k} y\right\|_{2} .
$$

Assume Givens rotations $F_{i}, i=1, \ldots, j$ such that

$$
\begin{aligned}
F_{j} \cdots F_{1} \widetilde{H}_{j}= & F_{j} \cdots F_{1}\left[\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
0 & \times & \times & \times \\
0 & 0 & \times & \times \\
0 & 0 & 0 & \times
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times \\
& \times & \times \\
& & \times \\
& & 0
\end{array}\right] \equiv R_{j} \in \mathbb{R}^{(j+1) \times j} .
\end{aligned}
$$

In order to obtain R_{j+1} we must start by premultiptying the new column by the previous rotations.
$\widetilde{H}_{j+1}=\left[\begin{array}{ccccc}\times & \times & \times & \times & + \\ \times & \times & \times & \times & + \\ 0 & \times & \times & \times & + \\ 0 & 0 & \times & \times & + \\ 0 & 0 & 0 & \times & + \\ \hline 0 & 0 & 0 & 0 & +\end{array}\right] \Rightarrow F_{j} \cdots F_{1} \widetilde{H}_{j+1}=\left[\begin{array}{ccccc}\times & \times & \times & \times & + \\ & \times & \times & \times & + \\ & & \times & \times & + \\ & & \times & + \\ & & 0 & r \\ & & & 0 & h\end{array}\right]$
The principal upper $(j+1) \times j$ submatrix is nothing but R_{j}, and $h:=h_{j+2, j+1}$ is not affected by the previous rotations. The next rotation F_{j+1} defined by

$$
\left\{\begin{aligned}
c_{j+1} & \equiv r /\left(r^{2}+h^{2}\right)^{1 / 2} \\
s_{j+1} & =-h /\left(r^{2}+h^{2}\right)^{1 / 2}
\end{aligned}\right.
$$

Thus, after k steps of the above process, we have achieved

$$
Q_{k} \widetilde{H}_{k}=R_{k}
$$

where Q_{k} is a $(k+1) \times(k+1)$ unitary matrix and

$$
\begin{equation*}
J(y)=\left\|\beta e_{1}-\widetilde{H}_{k} y\right\|=\left\|Q_{k}\left(\beta e_{1}-\widetilde{H}_{k} y\right)\right\|=\left\|g_{k}-R_{k} y\right\|, \tag{9}
\end{equation*}
$$

where $g_{k} \equiv Q_{k} \beta e_{1}$. Since the last row of R_{k} is a zero row, the minimization of (9) is achieved at $y_{k}=\widetilde{R}_{k}^{-1} \widetilde{g}_{k}$, where \widetilde{R}_{k} and \widetilde{g}_{k} are removed the last row of R_{k} and the last component of g_{k}, respectively.

Proposition 1

$r_{k}\|=\| b-A x_{k} \|=\mid$ The $(k+1)$-st component of $g_{k} \mid$.

Proposition 2

The solution x_{j} produced by GMRES at step j is exact which is equivalent to
(i) The algorithm breaks down at step j,
(ii) $\tilde{v}_{j+1}=0$,
(iii) $h_{j+1, j}=0$,
(iv) The degree of the minimal polynomial of r_{0} is j.

Corollary 3

For an $n \times n$ problem GMRES terminates at most n steps.
This uncommon type of breakdown is sometimes referred to as a "Lucky" breakdown is the context of the Lanczos algorithm.

Proposition 3

Suppose that A is diagonalizable so that $A=X D X^{-1}$ and let

$$
\varepsilon^{(m)}=\min _{p \in P_{m}, p(0)=1} \max _{\lambda_{i} \in \sigma(A)}\left|p\left(\lambda_{i}\right)\right|
$$

Then

$$
\left\|r_{m+1}\right\| \leq \kappa(X) \varepsilon^{(m)}\left\|r_{0}\right\|
$$

where $\kappa(X)=\|X\|\left\|X^{-1}\right\|$.
When A is positive real with symmetric part M, it holds that

$$
\left\|r_{m}\right\| \leq[1-\alpha / \beta]^{m / 2}\left\|r_{0}\right\|
$$

where $\alpha=\left(\lambda_{\min }(M)\right)^{2}$ and $\beta=\lambda_{\max }\left(A^{T} A\right)$.
This proves the convergence of $\operatorname{GMRES}(m)$ for all m, when A is positive real.

Theorem 4

Assume $\lambda_{1}, \ldots, \lambda_{\nu}$ of A with positive(negative) real parts and the other eigenvalues enclosed in a circle centered at C with $C>0$ and have radius R with $C>R$. Then

$$
\varepsilon^{(m)} \leq\left[\frac{R}{C}\right]^{m-\nu} \max _{j=\nu+1, \cdots, N} \prod_{i=1}^{\nu} \frac{\left|\lambda_{i}-\lambda_{j}\right|}{\left|\lambda_{i}\right|} \leq\left[\frac{D}{d}\right]^{2}\left[\frac{R}{C}\right]^{m-\nu}
$$

where

$$
D=\max _{\substack{i=1, \cdots, \nu \\ j=\nu+1, \cdots, N}}\left|\lambda_{i}-\lambda_{j}\right| \quad \text { and } \quad d=\min _{i=1, \cdots, \nu}\left|\lambda_{i}\right|
$$

Proof.

Consider $p(z)=r(z) q(z)$ where $r(z)=\left(1-z / \lambda_{1}\right) \cdots\left(1-z / \lambda_{\nu}\right)$ and $q(z)$ arbitrary polynomial of $\operatorname{deg} \leq m-\nu$ such that $q(0)=1$. Since $p(0)=1$ and $p\left(\lambda_{i}\right)=0$, for $i=1, \ldots, \nu$, we have

$$
\varepsilon^{(m)} \leq \max _{j=\nu+1, \cdots, N}\left|p\left(\lambda_{j}\right)\right| \leq \max _{j=\nu+1, \cdots, N}\left|r\left(\lambda_{j}\right)\right| \max _{j=\nu+1, \cdots, N}\left|q\left(\lambda_{j}\right)\right| .
$$

It is easily seen that

$$
\max _{j=\nu+1, \cdots, N}\left|r\left(\lambda_{j}\right)\right|=\max _{j=\nu+1, \cdots, N} \prod_{i=1}^{\nu} \frac{\left|\lambda_{i}-\lambda_{j}\right|}{\left|\lambda_{i}\right|} \leq\left[\frac{D}{d}\right]^{\nu} .
$$

By maximum principle, the maximum of $|q(z)|$ for $z \in\left\{\lambda_{j}\right\}_{j=\nu+1}^{N}$ is on the circle. Taking $\sigma(z)=[(C-z) / C]^{m-\nu}$ whose maximum on the circle is $(R / C)^{m-\nu}$ yields the desired result.

Corollary 5

Under the assumptions of Proposition 3 and Theorem 4, GMRES(m) converges for any initial x_{0} if

$$
m>\nu \log \left[\frac{D C}{d R} \kappa(X)^{1 / \nu}\right] / \log \left[\left.\frac{C}{R} \right\rvert\,\right.
$$

Appendix

Proof of Implicit Q Theorem

Let

$$
A\left[\begin{array}{llll}
q_{1} & q_{2} & \cdots & q_{n}
\end{array}\right]=\left[\begin{array}{llll}
q_{1} & q_{2} & \cdots & q_{n}
\end{array}\right]\left[\begin{array}{ccccc}
h_{11} & h_{12} & \cdots & \cdots & h_{1 n} \tag{10}\\
h_{21} & h_{22} & \ddots & & \vdots \\
0 & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & h_{n-1, n} \\
0 & \cdots & 0 & h_{n, n-1} & h_{n n}
\end{array}\right]
$$

Then we have

$$
\begin{equation*}
A q_{1}=h_{11} q_{1}+h_{21} q_{2} \tag{11}
\end{equation*}
$$

Since $q_{1} \perp q_{2}$, it implies that

$$
h_{11}=q_{1}^{*} A q_{1} / q_{1}^{*} q_{1} .
$$

From (11), we get that

$$
\tilde{q_{2}} \equiv h_{21} q_{2}=A q_{1}-h_{11} q_{1} .
$$

That is

$$
q_{2}=\tilde{q_{2}} /\left\|\tilde{q_{2}}\right\|_{2} \quad \text { and } \quad h_{21}=\left\|\tilde{q_{2}}\right\|_{2}
$$

Similarly, from (10),

$$
A q_{2}=h_{12} q_{1}+h_{22} q_{2}+h_{32} q_{3}
$$

where

$$
h_{12}=q_{1}^{*} A q_{2} \quad \text { and } \quad h_{22}=q_{2}^{*} A q_{2} .
$$

Let

$$
\tilde{q_{3}}=A q_{2}-h_{12} q_{1}+h_{22} q_{2}
$$

Then

$$
q_{3}=\tilde{q_{3}} /\left\|\tilde{q_{3}}\right\|_{2} \quad \text { and } \quad h_{32}=\left\|\tilde{q_{3}}\right\|,
$$

and so on.

Therefore, $\left[q_{1}, \cdots, q_{n}\right]$ are uniquely determined by q_{1}. Thus, uniqueness holds.
Let $K_{n}=\left[v_{1}, A v_{1}, \cdots, A^{n-1} v_{1}\right]$ with $\left\|v_{1}\right\|_{2}=1$ is nonsingular. $K_{n}=U_{n} R_{n}$ and $U_{n} e_{1}=v_{1}$. Then

$$
A K_{n}=K_{n} C_{n}=\left[v_{1}, A v_{1}, \cdots, A^{n-1} v_{1}\right]\left[\begin{array}{ccccc}
0 & \cdots & \cdots & 0 & * \tag{12}\\
1 & \ddots & & \vdots & * \\
0 & \ddots & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & 0 & \vdots \\
0 & \cdots & 0 & 1 & *
\end{array}\right]
$$

Since K_{n} is nonsingular, (12) implies that

$$
A=K_{n} C_{n} K_{n}^{-1}=\left(U_{n} R_{n}\right) C_{n}\left(R_{n}^{-1} U_{n}^{-1}\right)
$$

That is

$$
A U_{n}=U_{n}\left(R_{n} C_{n} R_{n}^{-1}\right)
$$

where $\left(R_{n} C_{n} R_{n}^{-1}\right)$ is Hessenberg and $U_{n} e_{1}=v_{1}$. Because $<U_{n}>=<K_{n}>$, find $A V_{n}=V_{n} H_{n}$ by any method with $V_{n} e_{1}=v_{1}$, then it holds that $V_{n}=U_{n}$, i.e., $v_{n}^{(i)}=u_{n}^{(i)}$ for $i=1, \cdots, n$.

Definition 6 (Givens rotation)

A plane rotation (also called a Givens rotation) is a matrix of the form

$$
G=\left[\begin{array}{cc}
c & s \\
-\bar{s} & c
\end{array}\right]
$$

where $|c|^{2}+|s|^{2}=1$.
Given $a \neq 0$ and b, set

$$
v=\sqrt{|a|^{2}+|b|^{2}}, c=|a| / v \text { and } s=\frac{a}{|a|} \cdot \frac{\bar{b}}{v}
$$

then

$$
\left[\begin{array}{cc}
c & s \\
-\bar{s} & c
\end{array}\right]\left[\begin{array}{c}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
v \frac{a}{|a|} \\
0
\end{array}\right]
$$

