Jacobi Davidson method and its applications

Tsung-Ming Huang
Department of Mathematics
National Taiwan Normal University, Taiwan

October 31, 2008

JD method and applications

Outline

(1) Some basic theorems
(2) Jacobi-Davidson method for linear eigenvalue problems
(3) Polynomial eigenvalue problems
(4) Locking method for computing $\lambda_{2}, \ldots, \lambda_{\ell}$
(5) Non-equivalence deflation of quadratic eigenproblems
(6) Non-equivalence deflation for cubic polynomial eigenproblems
(7) Applications
(8) Numerical experiments for linear eigenproblems
(9) Numerical experiments for polynomial eigenproblems

Some basic theorems

Eigenproblems

- Standard eigenproblems: $A x=\lambda x$
- Generalized eigenproblems: $A x=\lambda B x$
- Higher order poly. eigenproblems: $\left(A_{0}+\lambda A_{1}+\ldots .+\lambda^{n} A_{n}\right) x=0$
- Eigenproblems of λ-matrices: $F(\lambda) x=0$

What do we care ?

(i) In theory: eigenstructure, spectrum decomposition, canonical form, ..., etc.
(ii) In computation: eigenvalues, eigenvectors, invariant subspaces, ..., etc.

Theorem (Fischer)
Let the Hermitian matrix A have eigenvalues

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}
$$

Then

$$
\lambda_{i}=\min _{\operatorname{dim}(\mathcal{W})=n-i+1}\left\{\max _{w \in \mathcal{W},\|w\|_{2}=1} w^{H} A w\right\}
$$

and

$$
\lambda_{i}=\max _{\operatorname{dim}(\mathcal{W})=i}\left\{\min _{w \in \mathcal{W},\|w\|_{2}=1} w^{H} A w\right\} .
$$

Theorem

Let \mathcal{X} be an eigenspace of A and let X be a basis for \mathcal{X}. Then there is a unique matrix L such that

$$
A X=X L
$$

The matrix L is given by

$$
L=X^{\prime} A X
$$

where X^{\prime} is a matrix satisfying $X^{\prime} X=1$. If (λ, x) is an eigenpair of A with $x \in \mathcal{X}$, then $\left(\lambda, X^{\prime} x\right)$ is an eigenpair of L. Conversely, if (λ, u) is an eigenpair of L, then $(\lambda, X u)$ is an eigenpair of A.

Proof:

Let

$$
X=\left[x_{1} \cdots x_{k}\right] \quad \text { and } \quad Y=A X=\left[y_{1} \cdots y_{k}\right] .
$$

Since $y_{i} \in \mathcal{X}$ and X is a basis for \mathcal{X}, there is a unique vector ℓ_{i} such that

$$
y_{i}=X \ell_{i}
$$

If we set $L=\left[\ell_{1} \cdots \ell_{k}\right]$, then $A X=X L$ and

$$
L=X^{\prime} X L=X^{\prime} A X
$$

Now let (λ, x) be an eigenpair of A with $x \in \mathcal{X}$. Then there is a unique vector u such that $x=X u$. However, $u=X^{\prime} x$. Hence

$$
\lambda x=A x=A X u=X L u \quad \Rightarrow \quad \lambda u=\lambda X^{\prime} x=L u
$$

Conversely, if $L u=\lambda u$, then

$$
A(X u)=(A X) u=(X L) u=X(L u)=\lambda(X u)
$$

so that $(\lambda, X u)$ is an eigenpair of A.

Theorem (Optimal residuals)
Let $\left[X X_{\perp}\right]$ be unitary. Let

$$
R=A X-X L \quad \text { and } \quad S^{H}=X^{H} A-L X^{H} .
$$

Then ||R\| and \|S\| are minimized when

$$
L=X^{H} A X
$$

in which case

$$
\begin{array}{ll}
\text { (a) } & \|R\|=\left\|X_{\perp}^{H} A X\right\| \\
\text { (b) } & \|S\|=\left\|X^{H} A X_{\perp}\right\| \\
\text { (c) } & X^{H} R=0
\end{array}
$$

Proof:

Set

$$
\left[\begin{array}{l}
X^{H} \\
X_{\perp}^{H}
\end{array}\right] A\left[\begin{array}{ll}
X & X_{\perp}
\end{array}\right]=\left[\begin{array}{ll}
\hat{L} & H \\
G & M
\end{array}\right] .
$$

Then

$$
\left[\begin{array}{l}
X^{H} \\
X_{\perp}^{H}
\end{array}\right] R=\left[\begin{array}{ll}
\hat{L} & H \\
G & M
\end{array}\right]\left[\begin{array}{c}
X^{H} \\
X_{\perp}^{H}
\end{array}\right] X-\left[\begin{array}{c}
X^{H} \\
X_{\perp}^{H}
\end{array}\right] X L=\left[\begin{array}{c}
\hat{L}-L \\
G
\end{array}\right] .
$$

It implies that

$$
\|R\|=\left\|\left[\begin{array}{c}
X^{H} \\
X_{\perp}^{H}
\end{array}\right] R\right\|=\left\|\left[\begin{array}{c}
\hat{L}-L \\
G
\end{array}\right]\right\|
$$

which is minimized when $L=\hat{L}=X^{H} A X$ and

$$
\min \|R\|=\|G\|=\left\|X_{\perp}^{H} A X\right\| .
$$

The proof for S is similar. If $L=X^{H} A X$, then

$$
X^{H} R=X^{H} A X-X^{H} X L=X^{H} A X-L=0
$$

Definition

Let X be of full column rank and let X^{\prime} be a left inverse of X. Then $X^{\prime} A X$ is a Rayleigh quotient of A.

Theorem
Let X be orthonormal, A be Hermitian and

$$
R=A X-X L
$$

If $\ell_{1}, \ldots, \ell_{k}$ are the eigenvalues of L, then there are eigenvalues $\lambda_{j_{1}}, \ldots, \lambda_{j_{k}}$ of A such that

$$
\left|\ell_{i}-\lambda_{j_{i}}\right| \leq\|R\|_{2} \quad \text { and } \quad \sqrt{\sum_{i=1}^{k}\left(\ell_{i}-\lambda_{j_{i}}\right)^{2}} \leq \sqrt{2}\|R\|_{F} .
$$

Jacobi's orthogonal component correction (JOCC), 1846

Consider the eigenvalue problem

$$
A\left[\begin{array}{l}
1 \tag{1}\\
z
\end{array}\right] \equiv\left[\begin{array}{ll}
\alpha & c^{T} \\
b & F
\end{array}\right]\left[\begin{array}{l}
1 \\
z
\end{array}\right]=\lambda\left[\begin{array}{l}
1 \\
z
\end{array}\right]
$$

where A is diagonal dominant and α is the largest diagonal element. (1) is equivalent to

$$
\left\{\begin{array}{l}
\lambda=\alpha+c^{T} z \\
(F-\lambda I) z=-b
\end{array}\right.
$$

Jacobi iteration : (with $z_{1}=0$)

$$
\left\{\begin{array}{l}
\theta_{k}=\alpha+c^{T} z_{k}, \tag{2}\\
\left(D-\theta_{k} I\right) z_{k+1}=(D-F) z_{k}-b
\end{array}\right.
$$

where $D=\operatorname{diag}(F)$.

Davidson's method (1975)

Algorithm (Davidson's method)

Given unit vector v, set $V=[v]$
Iterate until convergence
Compute desired eigenpair (θ, s) of $V^{\top} A V$.
Compute $u=V s$ and $r=A u-\theta u$.
If $\left(\|r\|_{2}<\varepsilon\right)$, stop.
Solve $\left(D_{A}-\theta I\right) t=r$.
Orthog. $t \perp V \rightarrow v, V=[V, v]$
end

Let $u_{k}=\left(1, z_{k}^{T}\right)^{T}$. Then

$$
r_{k}=\left(A-\theta_{k} I\right) u_{k}=\left[\begin{array}{l}
\alpha-\theta_{k}+c^{\top} z_{k} \\
\left(F-\theta_{k} I\right) z_{k}+b
\end{array}\right]
$$

Substituting the residual vector r_{k} into linear systems

$$
\left(D_{A}-\theta_{k} I\right) t_{k}=-r_{k}, \quad \text { where } \quad D_{A}=\left[\begin{array}{cc}
\alpha & 0 \\
0 & D
\end{array}\right]
$$

we get

$$
\begin{aligned}
\left(D-\theta_{k} I\right) y_{k} & =-\left(F-\theta_{k} I\right) z_{k}-b \\
& =(D-F) z_{k}-\left(D-\theta_{k} I\right) z_{k}-b
\end{aligned}
$$

From (2) and above equality, we see that

$$
\left(D-\theta_{k} I\right)\left(z_{k}+y_{k}\right)=(D-F) z_{k}-b=\left(D-\theta_{k} I\right) z_{k+1}
$$

This implies that $z_{k+1}=z_{k}+y_{k}$ as one step of JOCC starting with z_{k}.

Polynomial eigenvalue problems

- Polynomial eigenvalue problems:

$$
\begin{equation*}
\mathbf{A}(\lambda) x \equiv\left(\lambda^{\tau} A_{\tau}+\cdots++\lambda^{2} A_{2}+\lambda A_{1}+A_{0}\right) x=0 \tag{3}
\end{equation*}
$$

- Enlarged linear eigenvalue problem: (e.g. cubic polynomial)

$$
\left[\begin{array}{ccc}
0 & l & 0 \\
0 & 0 & l \\
A_{0} & A_{1} & A_{2}
\end{array}\right]\left[\begin{array}{c}
x \\
\lambda x \\
\lambda^{2} x
\end{array}\right]=\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & l & 0 \\
0 & 0 & -A_{3}
\end{array}\right]\left[\begin{array}{c}
x \\
\lambda x \\
\lambda^{2} x
\end{array}\right] .
$$

- Disadvantages:
- The order of the larger matrices are tripled
- The condition number of eigenvalues and eigenvectors may increase
- Consider the quadratic eigenvalue problem ${ }^{1}$

$$
Q(\lambda) x \equiv\left(\lambda^{2} M+\lambda C+K\right) x=0
$$

with

$$
\begin{aligned}
& M=\frac{1}{2} I_{n}, K=\operatorname{diag}_{1 \leq j \leq n}\left(j^{2} \pi^{2}\left(j^{2} \pi^{2}+\tau-\kappa v^{2}\right) / 2\right), \\
& C=-C^{T}=\left(c_{i j}\right) \text { with } c_{i j}= \begin{cases}\frac{4 i j}{j^{2}-i^{2}} v & \text { if } i+j \text { is odd } \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Take $v=10, \kappa=0.8$ and $\tau=77.9$.

- Enlarged linear eigenvalue problem:

$$
\left[\begin{array}{cc}
K & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{c}
x \\
\lambda x
\end{array}\right]=\lambda\left[\begin{array}{cc}
-C & -M \\
I & 0
\end{array}\right]\left[\begin{array}{c}
x \\
\lambda x
\end{array}\right]
$$

Figure: The spectrum of $Q(\lambda)$

Polynomial Jacobi-Davidson method

$\left(\theta_{k}, u_{k}\right)$: approx. eigenpair of $\mathbf{A}(\lambda), \theta_{k} \approx \lambda$, with

$$
u_{k}=V_{k} s_{k}, V_{k}^{T} \mathbf{A}(\lambda) V_{k} s_{k}=0 \quad \text { and }\left\|s_{k}\right\|_{2}=1 .
$$

Let

$$
r_{k}=\mathbf{A}\left(\theta_{k}\right) u_{k}
$$

Then

$$
u_{k}^{T} r_{k}=u_{k}^{T} \mathbf{A}\left(\theta_{k}\right) u_{k}=s_{k}^{T} V_{k}^{T} \mathbf{A}\left(\theta_{k}\right) V_{k} s_{k}=0 \Rightarrow r_{k} \perp u_{k}
$$

Find the correction t such that

$$
\mathbf{A}(\lambda)\left(u_{k}+t\right)=0
$$

That is

$$
\mathbf{A}(\lambda) t=-\mathbf{A}(\lambda) u_{k}=-r_{k}+\left(\mathbf{A}\left(\theta_{k}\right)-\mathbf{A}(\lambda)\right) u_{k}
$$

Let

$$
p_{k}=\mathbf{A}^{\prime}\left(\theta_{k}\right) u_{k} \equiv\left(\sum_{i=1}^{\tau} i \theta_{k}^{i-1} A_{i}\right) u_{k}
$$

- $\mathbf{A}(\lambda)=A-\lambda I$:

$$
\begin{aligned}
& p_{k}=-u_{k} \\
& \left(\mathbf{A}\left(\theta_{k}\right)-\mathbf{A}(\lambda)\right) u_{k}=\left(\lambda-\theta_{k}\right) u_{k}=\left(\theta_{k}-\lambda_{k}\right) p_{k}
\end{aligned}
$$

- $\mathbf{A}(\lambda)=A-\lambda B$:

$$
\begin{aligned}
& p_{k}=-B u_{k} \\
& \left(\mathbf{A}\left(\theta_{k}\right)-\mathbf{A}(\lambda)\right) u_{k}=\left(\lambda-\theta_{k}\right) B u_{k}=\left(\theta_{k}-\lambda\right) p_{k}
\end{aligned}
$$

- $\mathbf{A}(\lambda)=\sum_{i=0}^{\tau} \lambda^{i} A_{i}$ with $\tau \geq 2$:

$$
\begin{aligned}
\left(\mathbf{A}\left(\theta_{k}\right)-\mathbf{A}(\lambda)\right) u_{k} & =\left[\left(\theta_{k}-\lambda\right) \mathbf{A}^{\prime}\left(\theta_{k}\right)-\frac{1}{2}\left(\theta_{k}-\lambda\right)^{2} \mathbf{A}^{\prime \prime}\left(\xi_{k}\right)\right] u_{k} \\
& =\left(\theta_{k}-\lambda\right) p_{k}-\frac{1}{2}\left(\theta_{k}-\lambda\right)^{2} \mathbf{A}^{\prime \prime}\left(\xi_{k}\right) u_{k}
\end{aligned}
$$

Hence

$$
\mathbf{A}(\lambda) t=-r_{k}+\left(\theta_{k}-\lambda\right) p_{k}-\frac{1}{2}\left(\theta_{k}-\lambda\right)^{2} \mathbf{A}^{\prime \prime}\left(\xi_{k}\right) u_{k}
$$

Since $r_{k} \perp u_{k}$, we have

$$
\left(I-\frac{p_{k} u_{k}^{T}}{u_{k}^{T} p_{k}}\right) \mathbf{A}(\lambda) t=-r_{k}-\frac{1}{2}\left(\theta_{k}-\lambda\right)^{2}\left(I-\frac{p_{k} u_{k}^{T}}{u_{k}^{T} p_{k}}\right) \mathbf{A}^{\prime \prime}\left(\xi_{k}\right) u_{k}
$$

Correction equation:

$$
\left(I-\frac{p_{k} u_{k}^{T}}{u_{k}^{T} p_{k}}\right) \mathbf{A}\left(\theta_{k}\right)\left(I-u_{k} u_{k}^{T}\right) t=-r_{k} \text { and } t \perp u_{k}
$$

or

$$
\left(I-\frac{p_{k} u_{k}^{T}}{u_{k}^{T} p_{k}}\right)\left(A-\theta_{k} B\right)\left(I-\frac{u_{k} p_{k}^{T}}{p_{k}^{T} u_{k}}\right) t=-r_{k} \text { and } t \perp_{B} u_{k},
$$

with symmetric positive definite matrix B.

Solving correction vector t

Correction equation:

$$
\begin{equation*}
\left(I-\frac{p_{k} u_{k}^{T}}{u_{k}^{T} p_{k}}\right) \mathbf{A}\left(\theta_{k}\right)\left(I-u_{k} u_{k}^{T}\right) t=-r_{k} \tag{4}
\end{equation*}
$$

Method I:

- Use preconditioning iterative approximations, e.g., GMRES, to solve (4).
- Use a preconditioner

$$
\mathcal{M}_{p} \equiv\left(I-\frac{p_{k} u_{k}^{T}}{u_{k}^{T} p_{k}}\right) \mathcal{M}\left(I-u_{k} u_{k}^{T}\right) \approx\left(I-\frac{p_{k} u_{k}^{T}}{u_{k}^{T} p_{k}}\right) \mathbf{A}\left(\theta_{k}\right)\left(I-u_{k} u_{k}^{T}\right)
$$

where \mathcal{M} is an approximation of $\mathbf{A}\left(\theta_{k}\right)$.

- In each of the iterative steps, it needs to solve the linear system

$$
\begin{equation*}
\mathcal{M}_{p} t=y, \quad t \perp u_{k} \tag{5}
\end{equation*}
$$

for a given y.

- Since $t \perp u_{k}$, Eq. (5) can be rewritten as

$$
\left(I-\frac{p_{k} u_{k}^{T}}{u_{k}^{T} p_{k}}\right) \mathcal{M} t=y \Rightarrow \mathcal{M} t=\frac{u_{k}^{T} \mathcal{M} t}{u_{k}^{T} p_{k}} p_{k}+y \equiv \eta_{k} p_{k}+y .
$$

Hence

$$
t=\mathcal{M}^{-1} y+\eta_{k} \mathcal{M}^{-1} p_{k}
$$

where

$$
\eta_{k}=-\frac{u_{k}^{T} \mathcal{M}^{-1} y}{u_{k}^{T} \mathcal{M}^{-1} p_{k}}
$$

- SSOR preconditioner: Let $\mathbf{A}\left(\theta_{k}\right)=L+D+U$. Then

$$
\mathcal{M}=(D+\omega L) D^{-1}(D+\omega U) .
$$

Method II: Since $t \perp u_{k}$, Eq. (4) can be rewritten as

$$
\begin{equation*}
\mathbf{A}\left(\theta_{k}\right) t=\frac{u_{k}^{T} \mathbf{A}\left(\theta_{k}\right) t}{u_{k}^{T} p_{k}} p_{k}-r_{k} \equiv \varepsilon p_{k}-r_{k} \tag{6}
\end{equation*}
$$

- Let t_{1} and t_{2} be approximated solutions of the following linear systems:

$$
\mathbf{A}\left(\theta_{k}\right) t=-r_{k} \quad \text { and } \quad \mathbf{A}\left(\theta_{k}\right) t=p_{k},
$$

respectively. Then the approximated solution \tilde{t} for (6) is

$$
\tilde{t}=t_{1}+\varepsilon t_{2} \quad \text { for } \quad \varepsilon=-\frac{u_{k}^{T} t_{1}}{u_{k}^{T} t_{2}} .
$$

- The approximated solution \tilde{t} for (6) is

$$
\tilde{t}=-\mathcal{M}^{-1} r_{k}+\varepsilon \mathcal{M}^{-1} p_{k} \quad \text { for } \quad \varepsilon=\frac{u_{k}^{T} \mathcal{M}^{-1} r_{k}}{u_{k}^{T} \mathcal{M}^{-1} p_{k}}
$$

where \mathcal{M} is an approximation of $\mathbf{A}\left(\theta_{k}\right)$.

Method III:

- Eq. (6) implies that

$$
t=\varepsilon \mathbf{A}\left(\theta_{k}\right)^{-1} p_{k}-\mathbf{A}\left(\theta_{k}\right)^{-1} r_{k}=\varepsilon \mathbf{A}\left(\theta_{k}\right)^{-1} p_{k}-u_{k} .
$$

Let t_{1} be approximated solution of the following linear system:

$$
\mathbf{A}\left(\theta_{k}\right) t=p_{k} .
$$

Then the approximated solution \tilde{t} for (6) is

$$
\tilde{t}=\varepsilon t_{1}-u_{k} \quad \text { for } \quad \varepsilon=\left(u_{k}^{T} t_{1}\right)^{-1}
$$

Algorithm (Jacobi-Davidson Algorithm for solving $\mathbf{A}(\lambda) x=0$)

Choose an n-by- m orthonormal matrix V_{0}
Do $k=0,1,2, \cdots$
Compute all the eigenpairs of $V_{k}^{T} \mathbf{A}(\lambda) V_{k}=0$.
Select the desired (target) eigenpair $\left(\theta_{k}, s_{k}\right)$ with $\left\|s_{k}\right\|_{2}=1$.
Compute $u_{k}=V_{k} s_{k}, r_{k}=\mathbf{A}\left(\theta_{k}\right) u_{k}$ and $p_{k}=\mathbf{A}^{\prime}\left(\theta_{k}\right) u_{k}$.
If $\left(\left\|r_{k}\right\|_{2}<\varepsilon\right), \lambda=\theta_{k}, x=u_{k}$, Stop
Solve (approximately) a $t_{k} \perp u_{k}$ from

$$
\left(I-\frac{p_{k} u_{k}^{T}}{u_{k}^{T} p_{k}}\right) \mathbf{A}\left(\theta_{k}\right)\left(I-u_{k} u_{k}^{T}\right) t=-r_{k} .
$$

Orthogonalize $t_{k} \perp V_{k} \rightarrow v_{k+1}, V_{k+1}=\left[V_{k}, v_{k+1}\right]$

Restarting

- A double precision real variable needs to 8 bytes to save in Memory.
- 125 double precision real variables $\approx 1 \mathrm{~KB}$
- 125,000 double precision real variables $\approx 1 \mathrm{MB}$
- Keep the locked Schur vectors as well as the Schur vectors of interest in the subspace and throw away those we are not interested.
(v) Solve correct equation (approximately) to obtain a $t \perp u_{k}$ by the method determined below. If $\left(\left\|r_{k}\right\|_{2}>0.1\right.$ and $\left.k \leq 9\right)$ then Use $\left\{\right.$ BiCGSTAB, No precond., $\left.7,10^{-3}\right\}$
else
Use $\left\{\right.$ GMRES, SSOR, $\left.30,10^{-3}\right\}$
End if

Figure: The heuristic strategy for computing the first target eigenvalue.

Locking for $A x=\lambda x$

V_{k} with $V_{k}^{*} V=I_{k}$ are convergent Schur vectors, i.e.,

$$
A V_{k}=V_{k} T_{k}
$$

for some upper triangular T_{k}. Set $V=\left[V_{k}, V_{q}\right]$ with $V^{*} V=I_{k+q}$ in $k+1$-th iteration of Jacobi-Davidson Algorithm. Then

$$
\begin{aligned}
V^{*} A V & =\left[\begin{array}{cc}
V_{k}^{*} A V_{k} & V_{k}^{*} A V_{q} \\
V_{q}^{*} A V_{k} & V_{q}^{*} A V_{q}
\end{array}\right]=\left[\begin{array}{cc}
T_{k} & V_{k}^{*} A V_{q} \\
V_{q}^{*} V_{k} T_{k} & V_{q}^{*} A V_{q}
\end{array}\right] \\
& =\left[\begin{array}{cc}
T_{k} & V_{k}^{*} A V_{q} \\
0 & V_{q}^{*} A V_{q}
\end{array}\right] .
\end{aligned}
$$

Locking Polynomial Jacobi-Davidson Method

(0) Given $\mathbf{A}(\lambda)=\sum_{i=0}^{\tau} \lambda^{i} A_{i}$ and the number of desired eigenvalues σ.
(1) Initialize $V=\left[V_{i n i}\right]$ as an orthonormal matrix and $V_{x}=[]$.
(2) For $j=1,2, \ldots, \sigma$
(2.1) Iterate until convergence
(i) Compute the j th desired eigenpairs (θ, s) of $V^{T} \mathbf{A}(\theta) V$
(ii) Compute $u=V s, p=\mathbf{A}^{\prime}(\theta) u$, and $r=\mathbf{A}(\theta) u$.
(iii) If $\left(\|r\|_{2}<\varepsilon\right)$, Set $\lambda_{j}=\theta, x_{j}=u$, Goto Step (2.2).
(iv) Solve (approximately) a $t \perp u$ from $\left(I-\frac{p u^{T}}{u^{T} p}\right) \mathbf{A}(\theta)\left(I-u u^{T}\right) t=-r$.
(v) Orthogonalize $t \perp V \rightarrow v, V=[V, v]$
(2.2) Orthogonalize $x_{j} \perp V_{x} \rightarrow x_{j} ; V_{x}=\left[V_{x}, x_{j}\right]$
(2.3) Choose an orthonormal matrix $V_{\text {ini }} \perp V_{x}$; Set $V=\left[V_{x}, V_{\text {ini }}\right]$

Ref: G. L. G. Sleijpen, G. L. Booten, D. R. Fokkema and H. A. van der Vorst, BIT, 36:595-633, 1996
(v) Solve correct equation (approximately) to obtain a $t \perp u_{k}$ by the method determined below. If $\left(\left\|r_{k}\right\|_{2}>0.1\right.$ and $\left.k<10\right)$ then Use $\left\{\right.$ BiCGSTAB, No precond., $\left.7,10^{-3}\right\}$ else if $\left(\left\|r_{k}\right\|_{2} \geq 0.1\right.$ and $\left.k>14\right)$ then Use \{GMRES, SSOR, 30, 10^{-3} \} else if $\left(\left\|r_{k}\right\|_{2}<0.1\right.$ and $\left.\left\|r_{k-1}\right\|_{2} /\left\|r_{k}\right\|_{2}<4\right)$ then Set $j=\min (30, j+2)$ and use $\left\{\right.$ GMRES, SSOR, $\left.j, 10^{-3}\right\}$ else

Use \{GMRES, SSOR, j, 10^{-3} \}
End if

Figure: The heuristic strategy for computing eigenvalues other than the first convergent eigenvalue.

Non-equivalence deflation of quadratic eigenproblems

Let λ_{1} be a real eigenvalue of $\mathbf{Q}(\lambda)$ and x_{1}, z_{1} be the associated right and left eigenvectors, respectively, with $z_{1}^{T} K x_{1}=1$. Let

$$
\theta_{1}=\left(z_{1}^{T} M x_{1}\right)^{-1} .
$$

We introduce a deflated quadratic eigenproblem

$$
\widetilde{\mathbf{Q}}(\lambda) x \equiv\left[\lambda^{2} \widetilde{M}+\lambda \widetilde{C}+\widetilde{K}\right] x=0
$$

where

$$
\begin{aligned}
\widetilde{M} & =M-\theta_{1} M x_{1} z_{1}^{T} M \\
\widetilde{C} & =C+\frac{\theta_{1}}{\lambda_{1}}\left(M x_{1} z_{1}^{T} K+K x_{1} z_{1}^{T} M\right), \\
\widetilde{K} & =K-\frac{\theta_{1}}{\lambda_{1}^{2}} K x_{1} z_{1}^{T} K .
\end{aligned}
$$

Complex deflation

Let $\lambda_{1}=\alpha_{1}+i \beta_{1}$ be a complex eigenvalue of $\mathbf{Q}(\lambda)$ and $x_{1}=x_{1 R}+i x_{1 /}$, $z_{1}=z_{1 R}+i z_{1 /}$ be the associated right and left eigenvectors, respectively, such that

$$
Z_{1}^{\top} K X_{1}=I_{2}
$$

where $X_{1}=\left[x_{1 R}, x_{1 l}\right]$ and $Z_{1}=\left[z_{1 R}, z_{1 I}\right]$. Let

$$
\Theta_{1}=\left(Z_{1}^{T} M X_{1}\right)^{-1}
$$

Then we introduce a deflated quadratic eigenproblem with

$$
\begin{aligned}
\widetilde{M} & =M-M X_{1} \Theta_{1} Z_{1}^{T} M \\
\widetilde{C} & =C+M X_{1} \Theta_{1} \Lambda_{1}^{-T} Z_{1}^{T} K+K X_{1} \Lambda_{1}^{-1} \Theta_{1}^{T} Z_{1}^{T} M \\
\widetilde{K} & =K-K X_{1} \Lambda_{1}^{-1} \Theta_{1} \Lambda_{1}^{-T} Z_{1}^{T} K
\end{aligned}
$$

in which $\Lambda_{1}=\left[\begin{array}{cc}\alpha_{1} & \beta_{1} \\ -\beta_{1} & \alpha_{1}\end{array}\right]$.

Theorem

(i) Let λ_{1} be a simple real eigenvalue of $\mathbf{Q}(\lambda)$. Then the spectrum of $\widetilde{\mathbf{Q}}(\lambda)$ is given by

$$
\left(\sigma(\mathbf{Q}(\lambda)) \backslash\left\{\lambda_{1}\right\}\right) \cup\{\infty\}
$$

provided that $\lambda_{1}^{2} \neq \theta_{1}$.
(ii) Let λ_{1} be a simple complex eigenvalue of $\mathbf{Q}(\lambda)$. Then the spectrum of $\widetilde{\mathbf{Q}}(\lambda)$ is given by

$$
\left(\sigma(\mathbf{Q}(\lambda)) \backslash\left\{\lambda_{1}, \bar{\lambda}_{1}\right\}\right) \cup\{\infty, \infty\}
$$

provided that $\Lambda_{1} \Lambda_{1}^{T} \neq \Theta_{1}$.
Furthermore, in both cases (i) and (ii), if $\lambda_{2} \neq \lambda_{1}$ and $\left(\lambda_{2}, x_{2}\right)$ is an eigenpair of $\mathbf{Q}(\lambda)$ then the pair $\left(\lambda_{2}, x_{2}\right)$ is also an eigenpair of $\widetilde{\mathbf{Q}}(\lambda)$.

Ref: T.-M. Hwang, W.-W. Lin and V. Mehrmann, SIAM J. Sci. Comput.

Suppose that M, C, K are symmetric. Given an eigenmatrix pair $\left(\Lambda_{1}, X_{1}\right) \in \mathbb{R}^{r \times r} \times \mathbb{R}^{n \times r}$ of $Q(\lambda)$, where Λ_{1} is nonsingular and X_{1} satisfies

$$
X_{1}^{\top} K X_{1}=I_{r}, \quad \Theta_{1}:=\left(X_{1}^{\top} M X_{1}\right)^{-1} .
$$

We define $\tilde{Q}(\lambda):=\lambda^{2} \tilde{M}+\lambda \tilde{C}+\tilde{K}$, where

$$
\begin{aligned}
\tilde{M} & :=M-M X_{1} \Theta_{1} X_{1}^{T} M, \\
\tilde{C} & :=C+M X_{1} \Theta_{1} \Lambda_{1}^{-T} X_{1}^{T} K+K X_{1} \Lambda_{1}^{-1} \Theta_{1} X_{1}^{T} M, \\
\tilde{K} & :=K-K X_{1} \Lambda_{1}^{-1} \Theta_{1} \Lambda_{1}^{-T} X_{1}^{T} K .
\end{aligned}
$$

Theorem

Suppose that $\Theta_{1}-\Lambda_{1} \Lambda_{1}^{T}$ is nonsingular. Then the eigenvalues of the real symmetric quadratic pencil $\tilde{Q}(\lambda)$ are the same as those of $Q(\lambda)$ except that the eigenvalues of Λ_{1}, which are closed under complex conjugation, are replaced by r infinities.

Proof:

Since $\left(\Lambda_{1}, X_{1}\right)$ is an eigenmatrix pair of $Q(\lambda)$, i.e.,

$$
M X_{1} \Lambda_{1}^{2}+C X_{1} \Lambda_{1}+K X_{1}=0
$$

we have

$$
\begin{aligned}
\tilde{Q}(\lambda) & =Q(\lambda)+\left[M X_{1}\left(\lambda I_{r}+\Lambda_{1}\right)+C X_{1}\right] \Theta_{1} \Lambda_{1}^{-T}\left(X_{1}^{T} K-\lambda \Lambda_{1}^{T} X_{1}^{T} M\right) \\
& =Q(\lambda)+Q(\lambda) X_{1}\left(\lambda I_{r}-\Lambda_{1}\right)^{-1} \Theta_{1} \Lambda_{1}^{-T}\left(X_{1}^{T} K-\lambda \Lambda_{1}^{T} X_{1}^{T} M\right)
\end{aligned}
$$

By using the identity

$$
\operatorname{det}\left(I_{n}+R S\right)=\operatorname{det}\left(I_{m}+S R\right)
$$

where $R, S^{T} \in \mathbb{R}^{n \times m}$, we have

$$
\begin{aligned}
& \operatorname{det}[\tilde{Q}(\lambda)] \\
= & \operatorname{det}[Q(\lambda)] \operatorname{det}\left[I+X_{1}\left(\lambda I_{r}-\Lambda_{1}\right)^{-1} \Theta_{1} \Lambda_{1}^{-T}\left(X_{1}^{T} K-\lambda \Lambda_{1}^{T} X_{1}^{T} M\right)\right] \\
= & \operatorname{det}[Q(\lambda)] \operatorname{det}\left[I_{r}+\left(\lambda I_{r}-\Lambda_{1}\right)^{-1} \Theta_{1} \Lambda_{1}^{-T}\left(I_{r}-\lambda \Lambda_{1}^{T} \Theta_{1}^{-1}\right)\right] \\
= & \frac{\operatorname{det}[Q(\lambda)]}{\operatorname{det}\left(\lambda I_{r}-\Lambda_{1}\right)} \operatorname{det}\left(\Theta_{1} \Lambda_{1}^{-T}-\Lambda_{1}\right)
\end{aligned}
$$

Since $\left(\Theta_{1}-\Lambda_{1} \Lambda_{1}^{T}\right) \in \mathbb{R}^{r \times r}$ is nonsingular, we have

$$
\operatorname{det}\left(\Theta_{1} \Lambda_{1}^{-T}-\Lambda_{1}\right) \neq 0
$$

Therefore, $\tilde{Q}(\lambda)$ has the same eigenvalues as $Q(\lambda)$ except that r eigenvalues of Λ_{1} are replaced by r infinities.

Non-equivalence deflation for cubic polynomial eigenproblems

Let $\left(\Lambda, V_{u}\right) \in \mathbb{R}^{r \times r} \times \mathbb{R}^{n \times r}$ be an eigenmatrix pair of $\mathbf{A}(\lambda)$ with $V_{u}^{T} V_{u}=I_{r}$ and $0 \notin \sigma(\Lambda)$, i.e.,

$$
\begin{equation*}
A_{3} V_{u} \Lambda^{3}+A_{2} V_{u} \Lambda^{2}+A_{1} V_{u} \Lambda+A_{0} V_{u}=0 \tag{7}
\end{equation*}
$$

Define a new deflated cubic eigenvalue problem by

$$
\begin{equation*}
\tilde{\mathbf{A}}(\lambda) u=\left(\lambda^{3} \tilde{A}_{3}+\lambda^{2} \tilde{A}_{2}+\lambda \tilde{A}_{1}+\tilde{A}_{0}\right) u=0 \tag{8}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
\tilde{A}_{0}=A_{0}, \\
\tilde{A}_{1}=A_{1}-\left(A_{1} V_{u} V_{u}^{T}+A_{2} V_{u} \wedge V_{u}^{T}+A_{3} V_{u} \Lambda^{2} V_{u}^{T}\right), \tag{9}\\
\tilde{A}_{2}=A_{2}-\left(A_{2} V_{u} V_{u}^{T}+A_{3} V_{u} \Lambda V_{u}^{T}\right), \\
\tilde{A}_{3}=A_{3}-A_{3} V_{u} V_{u}^{T} .
\end{array}\right.
$$

Lemma

Let $\mathbf{A}(\lambda)$ and $\widetilde{\mathbf{A}}(\lambda)$ be cubic pencils given by (3) and (8), respectively. Then it holds

$$
\begin{equation*}
\tilde{\mathbf{A}}(\lambda)=\mathbf{A}(\lambda)\left(I_{n}-\lambda V_{u}\left(\lambda I_{r}-\Lambda\right)^{-1} V_{u}^{T}\right) . \tag{10}
\end{equation*}
$$

Theorem

Let $\left(\Lambda, V_{u}\right)$ be an eigenmatrix pair of $\mathbf{A}(\lambda)$ with $V_{u}^{\top} V_{u}=I_{r}$. Then
(i) $(\sigma(\mathbf{A}(\lambda)) \backslash \sigma(\Lambda)) \cup\{\infty\}=\sigma(\widetilde{\mathbf{A}}(\lambda))$.
(ii) Let (μ, z) be an eigenpair of $\mathbf{A}(\lambda)$ with $\|z\|_{2}=1$ and $\mu \notin \sigma(\Lambda)$. Define

$$
\begin{equation*}
\tilde{z}=\left(I_{n}-\mu V_{u} \Lambda^{-1} V_{u}^{T}\right) z \equiv T(\mu) z . \tag{11}
\end{equation*}
$$

Then (μ, \tilde{z}) is an eigenpair of $\widetilde{\mathbf{A}}(\lambda)$.

Proof of Lemma:

Using (9) and (7), and the fundamental matrix calculation, we have

$$
\begin{aligned}
\tilde{\mathbf{A}}(\lambda)= & \mathbf{A}(\lambda)-\lambda\left(\lambda^{2} A_{3} V_{F} V_{F}^{T}+\lambda A_{2} V_{F} V_{F}^{T}+\lambda A_{3} V_{F} \Lambda V_{F}^{T}+A_{1} V_{F} V_{F}^{T}\right. \\
& \left.+A_{2} V_{F} \Lambda V_{F}^{T}+A_{3} V_{F} \Lambda^{2} V_{F}^{T}\right) \\
= & \mathbf{A}(\lambda)-\lambda\left(A_{3} V_{F}\left(\lambda I_{r}-\Lambda\right)^{3}\left(\lambda I_{r}-\Lambda\right)^{-1} V_{F}^{T}\right. \\
& +3 A_{3} V_{F} \Lambda\left(\lambda I_{r}-\Lambda\right)^{2}\left(\lambda I_{r}-\Lambda\right)^{-1} V_{F}^{T} \\
& +3 A_{3} V_{F} \Lambda^{2}\left(\lambda I_{r}-\Lambda\right)\left(\lambda I_{r}-\Lambda\right)^{-1} V_{F}^{T} \\
& +A_{2} V_{F}\left(\lambda I_{r}-\Lambda\right)^{2}\left(\lambda I_{r}-\Lambda\right)^{-1} V_{F}^{T} \\
& +2 A_{2} V_{F} \Lambda\left(\lambda I_{r}-\Lambda\right)\left(\lambda I_{r}-\Lambda\right)^{-1} V_{F}^{T} \\
& \left.+A_{1} V_{F}\left(\lambda I_{r}-\Lambda\right)\left(\lambda I_{r}-\Lambda\right)^{-1} V_{F}^{T}\right)
\end{aligned}
$$

$$
\begin{aligned}
\tilde{\mathbf{A}}(\lambda)= & \mathbf{A}(\lambda)-\lambda\left\{\left[A_{3} V_{F}\left(\lambda^{3} I_{r}-\Lambda^{3}\right)+A_{2} V_{F}\left(\lambda^{2} I_{r}-\Lambda^{2}\right)\right.\right. \\
& \left.\left.+A_{1} V_{F}\left(\lambda I_{r}-\Lambda\right)+A_{0} V_{F}-A_{0} V_{F}\right]\left(\lambda I_{r}-\Lambda\right)^{-1} V_{F}^{T}\right\} \\
= & \mathbf{A}(\lambda)-\lambda\left[\mathbf{A}(\lambda) V_{F}\left(\lambda I_{r}-\Lambda\right)^{-1} V_{F}^{T}\right] \\
= & \mathbf{A}(\lambda)\left[I_{n}-\lambda V_{F}\left(\lambda I_{r}-\Lambda\right)^{-1} V_{F}^{T}\right] .
\end{aligned}
$$

Proof of Theorem

: (i) Using the identity

$$
\operatorname{det}\left(I_{n}+R S\right)=\operatorname{det}\left(I_{m}+S R\right)
$$

and Lemma 8, we have

$$
\begin{aligned}
\operatorname{det}(\tilde{\mathbf{A}}(\lambda)) & =\operatorname{det}(\mathbf{A}(\lambda)) \operatorname{det}\left(I_{n}-\lambda V_{F}\left(\lambda I_{r}-\Lambda\right)^{-1} V_{F}^{T}\right) \\
& =\operatorname{det}(\mathbf{A}(\lambda)) \operatorname{det}\left(I_{n}-\lambda\left(\lambda I_{r}-\Lambda\right)^{-1}\right) \\
& =\operatorname{det}(\mathbf{A}(\lambda)) \operatorname{det}\left(\lambda I_{r}-\Lambda\right)^{-1} \operatorname{det}(-\Lambda)
\end{aligned}
$$

Since $0 \notin \sigma(\Lambda), \operatorname{det}(-\Lambda) \neq 0$. Thus, $\widetilde{\mathbf{A}}(\lambda)$ and $\mathbf{A}(\lambda)$ have the same finite spectrum except the eigenvalues in $\sigma(\Lambda)$. Furthermore, dividing Eq. (8) by λ^{3} and using the fact that

$$
\widetilde{\mathbf{A}}_{3} V_{F}=\left(A_{3}-A_{3} V_{F} V_{F}^{T}\right) V_{F}=0
$$

we see that $\left(\operatorname{diag}_{r}\{\infty, \cdots, \infty\}, V_{F}\right)$ is an eigenmatrix pair of $\widetilde{\mathbf{A}}(\lambda)$ corresponding to infinite eigenvalues.
(ii) Since $\mu \notin \sigma(\Lambda)$, the matrix $T(\mu)=\left(I-\mu V_{F} \Lambda^{-1} V_{F}^{T}\right)$ in (11) is invertible with the inverse

$$
\begin{equation*}
T(\mu)^{-1}=I_{n}-\mu V_{F}\left(\mu I_{r}-\Lambda\right)^{-1} V_{F}^{T} . \tag{12}
\end{equation*}
$$

From Lemma 8, we have

$$
\tilde{\mathbf{A}}(\mu) \tilde{z}=\mathbf{A}(\mu)\left[I_{n}-\mu V_{F}\left(\mu I_{r}-\Lambda\right)^{-1} V_{F}^{T}\right]\left[I_{n}-\mu V_{F} \Lambda^{-1} V_{F}^{T}\right] z=0 .
$$

This completes the proof.

Applications

- Quantum well (2 dim.)

- Quantum wire (1 dim.)

- Quantum dot (0 dim.)

Nanometer

- $1 \mathrm{~nm}=10^{-9} \mathrm{~m}$

Nano-scale $\approx 1-100 \mathrm{~nm}$

- A semiconductor QD $\approx 10 \mathrm{~nm}$
- QD : hair $\approx 1: 10000$
- Why consider quantum effects? Small devices imply significant quantum effect

Quantum dot

- Cross-sections of hetero-structure $\operatorname{InAs} / \mathrm{GaAs}$ QDs by Transmission Electron Microscope [Schoenfeld, 00]

Molecular beam epitaxy

Figure 2.2-1: Schematic of the PCI growth process: (a) As-grown InAs QDs, (b) partial coverage of islands, (c) re-melt, and (c) overgrowth by GaAs.

Quantum dot

- Cross-sections of hetero-structure $\operatorname{InAs} / \mathrm{GaAs}$ QDs by Transmission Electron Microscope [Schoenfeld, 00]

Energy levels (eigenvalues)

Numerical experiments for linear eigenproblems

- The Schrödinger equation for Semiconductor:

$$
-\nabla \cdot(\alpha \nabla u)+V u=\lambda u
$$

where

$$
\alpha=\left\{\begin{array}{lll}
\alpha^{-} \equiv \frac{\hbar^{2}}{2 m_{1}} & \text { inside, } \\
\alpha^{+} \equiv \frac{\hbar^{2}}{2 m_{2}} & \text { outside, }
\end{array} \quad V= \begin{cases}V^{-}=V_{1} & \text { inside } \\
V^{+}=V_{2} & \text { outside }\end{cases}\right.
$$

\hbar : Plank constant
m_{ℓ} : parabolic effective mass
V_{ℓ} : confinement potential $\quad \lambda$: total energy

- Interface condition:

$$
\left.\alpha^{-} \frac{\partial u}{\partial n}\right|_{\partial D_{-}}=\left.\alpha^{+} \frac{\partial u}{\partial n}\right|_{\partial D_{+}}
$$

- Dirichlet boundary conditions

Symmetric eigenvalue problem

$$
A x=\lambda x
$$

where A is a symmetric matrix.
Reference:

- Tsung-Min Hwang, Wen-Wei Lin, Wei-Cheng Wang and Weichung Wang, Numerical simulation of three dimensional pyramid quantum dot, Journal of Computational Physics, Vol 196, pp. 208-232, 2004.

Figure: PRB, 54, 8743, (1996)

Three dimensional pyramid quantum dot

- Finite volume discretized scheme
- Symmetric eigenvalue problems: $A x=\lambda x$
- Second order convergent rate
- Correction vector with SSOR preconditioner:

$$
t=-M_{A}^{-1} r+\varepsilon M_{A}^{-1} p
$$

with

$$
\varepsilon=\frac{u^{T} M_{A}^{-1} r}{u^{T} M_{A}^{-1} p}
$$

where $M_{\mathbf{A}}=(D+\omega L) D^{-1}(D+\omega U)$.

Figure: Structure schema of a pyramid quantum dot.

- The width of the QD (matrix) base is $12.4 \mathrm{~nm}(24.8 \mathrm{~nm})$; the height of the QD (matrix) is $6.2 \mathrm{~nm}(18.6 \mathrm{~nm})$.
- InAs QD: $\alpha_{1}=0.024 m_{e}$ and $V_{1}=0.0$ GaAs matrix: $\alpha_{2}=0.067 m_{e}$ and $V_{2}=0.70$.
- Stopping criteria: residual $<10^{-10}$
- Convergent rate

$(\mathrm{L}, \mathrm{M}, \mathrm{N})$	Mtx. dim.	λ_{1}	Rate	λ_{2}	Rate
$(16,16,12)$	2,475	0.4226	-	0.6527	-
$(32,32,24)$	22,103	0.4001	-	0.6423	-
$(64,64,48)$	186,543	0.3934	1.744	0.6391	1.708
$(128,128,96)$	$1,532,255$	0.3916	1.905	0.6383	1.866
$(256,256,192)$	$12,419,775$	0.3911	1.954	0.6380	1.912

Table: Convergent rate $=\log _{2}\left(\left(\lambda^{(4 h)}-\lambda^{(2 h)}\right) /\left(\lambda^{(2 h)}-\lambda^{(h)}\right)\right)$

- $\operatorname{dim}(A)=1,532,255$ on PC with P4 1.8 GHz CPU and 1 GB of main memory.

	Value	Ite. no.	CPU time (sec.)
λ_{1}	0.3916	72	278.0
λ_{2}	0.6383	72	284.3
λ_{3}	0.6383	125	521.4

- $\operatorname{dim}(A)=32,401,863$ on HP workstation with a 1.0 GHz Intel Itanium II CPU and 12 GBs of main memory.

	Value	Ite. no.	CPU time (sec.)
λ_{1}	0.3910	138	5,852
λ_{2}	0.6380	133	5,354
λ_{3}	0.6380	220	8,511

Unsymmetric eigenvalue problem

$$
A x=\lambda x
$$

where A is a unsymmetric matrix.
Reference:

- Tsung-Min Hwang, Wei-Hua Wang and Weichung Wang, Efficient numerical schemes for electronic states in coupled quantum dots, accepted for publication in Journal of Nanoscience and Nanotechnology.

Figure: JAP, 90-12, (2001)

Vertically aligned quantum dot array

(b) Uniform meh

- Reduce three-dimensional systems to two-dimensional systems by Fourier transformation.
- Finite volume discretized scheme
- Unsymmetric eigenvalue problems: $A x=\lambda x$

- Second order convergent rate
- Method II with SSOR preconditioner:

$$
M_{\mathbf{A}}=(D+\omega L) D^{-1}(D+\omega U)
$$

Figure: Structure schema of a cylindrical vertically aligned quantum dot array.

- Reduce three-dimensional systems to two-dimensional systems by Fourier transformation.
- Finite volume discretized scheme
- Unsymmetric eigenvalue problems: $A x=\lambda x$
- Second order convergent rate
- Method II with SSOR preconditioner:

$$
M_{\mathbf{A}}=(D+\omega L) D^{-1}(D+\omega U) .
$$

Figure: Structure schema of a cylindrical vertically aligned quantum dot array.

- Reduce three-dimensional systems to two-dimensional systems by Fourier transformation.
- Finite volume discretized scheme
- Unsymmetric eigenvalue problems: $A x=\lambda x$

- Second order convergent rate
- Method II with SSOR preconditioner:

$$
M_{\mathbf{A}}=(D+\omega L) D^{-1}(D+\omega U)
$$

Figure: Structure schema of a cylindrical vertically aligned quantum dot array.

- gap $=6 \mathrm{~nm}$ and $\operatorname{dim}(A)=12,288,000$ on HP workstation with a 1.0 GHz Intel Itanium II CPU and 12 GBs of main memory.

	$r_{2}=3.198$			$r_{2}=3.223$		
	Value	Ite. no.	Time (sec.)	Value	Ite. no.	Time (sec.)
λ_{1}	0.1587	83	20,287	0.1587	84	23,840
λ_{2}	0.35553	109	26,030	0.3526	91	31,612
λ_{3}	0.3558	53	13,831	0.3555	61	25,706

- gap $=3 \mathrm{~nm}$ and $\operatorname{dim}(A)=11,059,200$ on HP workstation with a 1.0 GHz Intel Itanium II CPU and 12 GBs of main memory.

	$r_{2}=3.198$			$r_{2}=3.223$		
	Value	Ite. no.	Time (sec.)	Value	Ite. no.	Time (sec.)
λ_{1}	0.1586	85	20,072	0.1586	83	18,455
λ_{2}	0.3540	257	56,811	0.3515	130	29,506
λ_{3}	0.3564	53	12,257	0.3558	54	13,082

Generalized eigenvalue problem

$$
A x=\lambda B x
$$

where A is symmetric positive definite and B is a positive diagonal matrix.

Reference:

- Tsung-Min Hwang, Wei-Cheng Wang and Weichung Wang, Numerical schemes for three dimensional irregular shape quantum dots over curvilinear coordinate systems, accepted for publication in Journal of Computational Physics.

Three dimensional arbitrary shape quantum dots

Appl. Phys. Lett., Vol. 82, No. 21, 26 May 2003

FIG. 2. X-STM current image of a stack of MBE-grown $\left(512^{\circ} \mathrm{C}\right) \operatorname{In} A \mathrm{~s}$ SADs in GaAs (image size $55 \times 55 \mathrm{~nm}^{2}$). The structure contains five SAD layers formed after deposition of 2.4 ML . of InAs for each SAD layer.

- Curvilinear coordinate system
- Reduce three-dimensional systems to two-dimensional systems by Fourier transformation.
- Jump condition capturing scheme (nine points)
- Generalized eigenvalue problems: $A x=\lambda B x, A$ is symmetric positive definite and B is a positive diagonal matrix.
- Second order convergent rate
- Method I with SSOR preconditioner:

Figure: Structure schema of the quantum dot model.

$$
M_{\mathbf{A}}=(D+\omega L) D^{-1}(D+\omega U)
$$

- $\operatorname{dim}(A)=1,935,090$ on HP workstation with a 1.3 GHz Intel Itanium II CPU and 24 GBs of main memory.

Figure: Average timing results for computing all the target eigenvalues by using three different SSOR preconditioner parameter σ.

Numerical experiments for polynomial eigenproblems

- The Schrödinger equation for Semiconductor:

$$
-\nabla \cdot(\alpha \nabla u)+V u=\lambda u
$$

where

$$
\alpha=\left\{\begin{array}{lll}
\alpha^{-} \equiv \frac{\hbar^{2}}{2 m_{1}} & \text { inside, } \\
\alpha^{+} \equiv \frac{\hbar^{2}}{2 m_{2}} & \text { outside, }
\end{array} \quad V= \begin{cases}V^{-}=V_{1} & \text { inside }, \\
V^{+}=V_{2} & \text { outside }\end{cases}\right.
$$

- non-parabolic effective mass

$$
\frac{1}{m_{\ell}(\lambda)}=\frac{P_{\ell}^{2}}{\hbar^{2}}\left(\frac{2}{\lambda+g_{\ell}-V_{\ell}}+\frac{1}{\lambda+g_{\ell}-V_{\ell}+\delta_{\ell}}\right), \quad \ell=1,2
$$

- Interface condition:

$$
\left.\alpha^{-} \frac{\partial u}{\partial n}\right|_{\partial D_{-}}=\left.\alpha^{+} \frac{\partial u}{\partial n}\right|_{\partial D_{+}}
$$

- Dirichlet boundary conditions

Cubic polynomial eigenvalue problem

$$
\left(\lambda^{3} A_{3}+\lambda^{2} A_{2}+\lambda A_{1}+A_{0}\right) x=0
$$

Reference:

- Weichung Wang, Tsung-Min Hwang, Wen-Wei Lin and Jinn-Liang Liu, Numerical methods for semiconductor heterostructures with band nonparabolicity, Journal of Computational Physics, Vol. 190, pp. 141-158, 2003.
- Tsung-Min Hwang, Wen-Wei Lin, Jinn-Liang Liu and Weichung Wang, Fixed point methods for a semiconductor quantum dot model, Mathematical and Computer Modelling, Vol 40, pp. 519-533, 2004.
- Tsung-Min Hwang, Wen-Wei Lin, Jinn-Liang Liu and Weichung Wang, Jacobi-Davidson methods for cubic eigenvalue problems, Numerical Linear Algebra with Applications, Vol. 12, pp. 585-682, 2005.

Three dimensional cylindrical quantum dot

- non-parabolic effective mass

$$
\frac{1}{m_{\ell}(\lambda)}=\frac{P_{\ell}^{2}}{\hbar^{2}}\left(\frac{2}{\lambda+g_{\ell}-V_{\ell}}+\frac{1}{\lambda+g_{\ell}-V_{\ell}+\delta_{\ell}}\right), \quad \ell=1,2
$$

- Central finite difference scheme with nonuniform grid points
- Multiply the common denominator for all grid points
- A cubic polynomial eigenvalue problem:

$$
\left(\lambda^{3} A_{3}+\lambda^{2} A_{2}+\lambda A_{1}+A_{0}\right) x=0 .
$$

Figure: Sparsity patterns of matrices A_{i}.

- The diameter and the height of the cylindrical QD (matrix) are 15 (75) and 2.5 (12.5) nm, respectively.
- $V_{1}=0.000, g_{1}=0.235, \delta_{1}=0.81, P_{1}=0.2875, V_{2}=0.350$, $g_{2}=1.590, \delta_{2}=0.80$, and $P_{2}=0.1993$.
- Correction vector with SSOR preconditioner:

$$
t=-M_{A}^{-1} r+\varepsilon M_{A}^{-1} p
$$

with

$$
\varepsilon=\frac{u^{T} M_{A}^{-1} r}{u^{T} M_{A}^{-1} p}
$$

where $M_{\mathbf{A}}=(D+\omega L) D^{-1}(D+\omega U)$.

Figure: Comparison of efficiency. Average timing results calculated by two ways are compared for the four methods.

Energy states and wave functions

Quintic polynomial eigenvalue problem

$$
\left(\lambda^{5} A_{5}+\lambda^{4} A_{4}+\lambda^{3} A_{3}+\lambda^{2} A_{2}+\lambda A_{1}+A_{0}\right) x=0 .
$$

Reference:

- Tsung-Min Hwang, Wen-Wei Lin, Wei-Cheng Wang and Weichung Wang, Numerical simulation of three dimensional pyramid quantum dot, Journal of Computational Physics, Vol 196, pp. 208-232, 2004.

Three dimensional pyramid quantum dot

- non-parabolic effective mass

$$
\frac{1}{m_{\ell}(\lambda)}=\frac{P_{\ell}^{2}}{\hbar^{2}}\left(\frac{2}{\lambda+g_{\ell}-V_{\ell}}+\frac{1}{\lambda+g_{\ell}-V_{\ell}+\delta_{\ell}}\right), \quad \ell=1,2
$$

- Finite volume discretized scheme with uniform grid points
- Multiply the common denominator for all grid points
- A quintic polynomial eigenvalue problem:

$$
\left(\sum_{i=0}^{5} \lambda^{i} A_{i}\right) x=0
$$

Figure: Sparsity patterns of matrices A_{i}.

- Second order convergent rate.
- $\operatorname{dim}(A)=1,532,255$ on PC with P4 1.8 GHz CPU and 1 GB of main memory.

	Value	Ite. no.	CPU time (sec.)
λ_{1}	0.4165	47	447.4
λ_{2}	0.5993	45	460.7
λ_{3}	0.5993	50	544.7

- $\operatorname{dim}(A)=32,401,863$ on HP workstation with a 1.0 GHz Intel Itanium II CPU and 12 GBs of main memory.

	Value	Ite. no.	CPU time (sec.)
λ_{1}	0.4162	84	4,856
λ_{2}	0.5991	74	4,835
λ_{3}	0.5991	113	8,280

Reference

B Z. Bai, J. Demmel, J. Dongarra, A. Ruhe and H. van der Vorst. Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide.
SIAM, Philadelphia, 2000.
T.-M. Hwang, W.-W. Lin and V. Mehrmann.

Numerical solution of quadratic eigenvalue problems with structure preserving methods,
SIAM J. Sci. Comput. Vol. 24, No. 4, pp. 1283-1302, 2003.
嗇 T.-M. Hwang, W.-W. Lin, W.-C. Wang and W. Wang.
Numerical simulation of three dimensional pyramid quantum dot, Journal of Computational Physics, Vol 196, 208-232, 2004.

T-M. Hwang, W.-W. Lin, J.-L. Liu and W. Wang. Jacobi-Davidson methods for cubic eigenvalue problems, Numerical Linear Algebra with Applications, Vol. 12, pp. 605-624, 2005.

Reference

围 T．－M．Hwang，W．－C．Wang and W．Wang．
Numerical schemes for three dimensional irregular shape quantum dots over curvilinear coordinate systems， Journal of Computational Physics，Vol．226，pp．754－773， 2007.
K．Meerbergen，
Locking and restarting quadratic eigenvalue solvers， SIAM J．Sci．Comput．，Vol．22，pp．1814－1839， 2001.

冨 G．L．G．Sleijpen，A．G．L．Booten，D．R．Fokkema and H．A．van der Vorst，
Jacobi－Davidson type methods for generalized eigenproblems and polynomial eigenproblems．
BIT，Vol．36，pp．595－633， 1996.
雷 G．L．G．Sleijpen and H．A．van der Vorst，
A Jacobi－Davidson iteration method for linear eigenvalue problems， SIAM J．Matrix Anal．Appl．，Vol．17，pp．401－425；1996．

