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Householder transformation

Definition
A Householder transformation or elementary reflector is a
matrix of

H=1—uu*

where ||ull2 = v/2.

Note that H is Hermitian and unitary.

Theorem

Let = be a vector such that ||z| = 1 and x; is real and
nonnegative. Let

u=(z+e)/V1+x.
Then

Hr = (I —wu)x = —ey.
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Householder transformation

Proof:

rr+x zTte
\/1+$1 \/1+£Cl
= xz—(z+e)=—e

I—wzs = z— (ur)u==2x

Let z be a vector with 1 # 0. Let

_x
Pl T4

1+ pp2t-

[[]l2

where p = 1 /|x1|. Then

Hz = —p|z|2e1.
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Householder transformation

Proof: Since

[pz*/||z||2 + €] ][pz/ ||z + e1]
pp + pr1/l|zll2 + pr1/|lxll2 + 1
= 21 + px1/||z]l2],
it follows that
wvu=2 = |ula=v2

and -
v PllEle + a1
U r—= —F]—---

/ T
1+Pm
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Householder transformation

Hence,

pllzlls + 1 PR T €

\/1+P||xu2 VIt rEh

Hx = z— (u'z)u

B [1 (Pllzllz + =1) gl pllzllz + 1
= — T - x
1+ prds L+ p1ls
_ Pl Ao
1+ ot
= —pllzllzer.
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Householder transformation

Definition

A complex m x n-matrix R = [r;;] is called an upper (lower)
triangular matrix, if r;; = 0 for i > j (i < j).

Definition
Given A € C™*" @ € C™*™ unitary and R € C™*" upper

triangular such that A = QR. Then the product is called a
Q) R-factorization of A.

| A

Theorem

Any complex m x n. matrix A can be factorized by the product
A = QR, where Q is m x m-unitary. R is m x n upper triangular.
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Householder transformation
Proof: Let A® = A = [a\|a{”]- - |a{”]. Find
Q1 = (I — 2wywy) such that Qlago) = ce;. Then

A(l) = Q]_A(O) = [Q1a50)7 Qlag))v Ty Qla’gO)]

| x| |
’ (1)
= agl) o ag)
0
. 1 0 (1)
Find Q> = 07— wyus such that (I — 2wow3)ay ' = coe;.
Then
(e x| % oo %]
0 C2
A® =AW =1 0 0
S R
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Householder transformation

We continue this process. Then after | = min(m,n) steps A
is an upper triangular matrix satisfying

ATD = R=Qi_y - Q1A

Then A = QR, where Q = Q}--- Q.. .

Let A be a nonsingular n x n matrix. Then the Q R- factorization
is essentially unique. Thatis, if A = Q1 R1 = Q2 R, then there
is a unitary diagonal matrix D = diag(d;) with |d;| = 1 such that
Ql = QQD and DR, = R».

Proof: Let A= Q1R = Q2Ry. Then Q3Q1 = RoR; ' = D must
be a diagonal unitary matrix. [ ]
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Arnoldi decompositions

Suppose that the columns of K, are linearly independent
and let

Kiy1 = U1 Rpa

be the QR factorization of Kj ;. Then the columns of U, are
results of successively orthogonalizing the columns of K.

Theorem

Let ||u1||2 = 1 and the columns of Ky 1(A, uy) be linearly
independent. LetUyy1 =] w1 --- wugs1 | be the Q-factor of
Ky.1. Then there is a (k + 1) x k unreduced upper Hessenberg
matrix Hy, such that

AUy, = Up11Hy. )

Conversely, if Uy1 is orthonormal and satisfies (2), where H,
is a (k+ 1) x k unreduced upper Hessenberg matrix, then Uy,
is the Q-factor of Kj.11(A, uy).
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Arnoldi decompositions

Proof: (“=") Let K, = Uy Ry be the QR factorization and
Sy = R;;'. Then

0 0 -
AU, = AKS, = K [ g ] = U1 Rk11 [ g } = Up+1H,
k k
where
- 0
HkZRkH[Sk}
It implies that H, is a (k + 1) x k Hessenberg matrix and

Tit1,i+1
T'ii

hiv1i = riv1,it186 =

Thus by the nonsingularity of Ry, Hj, is unreduced.
(“<=") If k=1, then
—h11 1

— Auq.
ha1 w ha1 "

Aup = hjqug + hotus = ug =
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Arnoldi decompositions

Since [ u; wug ] is orthonormal and u, is a linear combination
of u; and Auq, [ w1 us ] is the Q-factor of Ko.
Assume Uy, is the Q-factor of K. If we partition

3 Hiow Iy }
= ,
: [ 0 hggik
then from (2)
Auy, = Uphg + hip1 pUp41-

Thus ug41 is a linear combination of Awuy and the columns of
Ui. Hence Uy, is the Q-factor of Kj. [ ]
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Arnoldi decompositions

Let Uy+1 € C™(*1) be orthonormal. If there is a (k + 1) x k
unreduced upper Hessenberg matrix H; such that

AUy, = Up11 Hy, (3)

then (3) is called an Arnoldi decomposition of order k. If Hj, is
reduced, we say the Arnoldi decomposition is reduced.

Partition
- H
M= { hk+126;€ ] 7
and set
Bk = hgt1k-
Then (3) is equivalent to
AUy, = UpHy, + Brugtiet -
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Arnoldi decompositions

Suppose the Krylov sequence K. 1(A,u;) does not terminate
atk + 1. Then up to scaling of the columns of Uy 1, the Arnoldi
decomposition of Ky, 1 is unique.

Proof: Since the Krylov sequence Ky 1(A,u;) does not
terminate at £ + 1, the columns of K} 1(A,u;) are linearly
independent. By Theorem 8, there is an unreduced matrix Hy,
and g # 0 such that

AUy = U Hy, + Brupi1et (4)

where U1 = [Uy, ug1] is an orthonormal basis for
Kr+1(A,u1). Suppose there is another orthonormal basis
Ups1 = [Uk tig41] for Kpp1(A,uy), unreduced matrix Hj, and
Bk # 0 such that

AUy, = UpHy, + Brigsrep -
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Arnoldi decompositions

Then we claim that

ﬁ,fukﬂ = 0.
For otherwise there is a column 4; of U, such that
U = augs1 + Uga, o #0.
Hence
At = aAup + AUga

which implies that A; contains a component along A*+1u;.
Since the Krylov sequence Ky 1(A,u;) does not terminate at
k + 1, we have

Kit2(A, u1) # Kgy1(A, ur).

Therefore, At lies in Kj12(A, u1) but notin Kp1 (A, ui) which
is a contradiction.

Since Uy.41 and Uy, are orthonormal bases for Ky 1 (A, u1)
and Ulfug41 = 0, it follows that
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Arnoldi decompositions

R(U) =R(U,) and Ufdg =0,
that is
Uy = UrQ
for some unitary matrix Q. Hence
AUxQ) = (UxQ)(Q" HyQ) + Briins1 (e Q)
or
AU = Up(Q" HyQ) + Brii+161 Q. (5)

On premultiplying (4) and (5) by U, we obtain

Hy, = U AU, = Q" H,Q.
Similarly, premultiplying by u/’, |, we obtain

T H 5 H ~ T
Brey, = Upq1 AUy = Bk(“k—i—lukJrl)ek Q.
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Arnoldi decompositions

It follows that the last row of Q is wke{, where |wi| = 1. Since
the norm of the last column of @ is one, the last column of Q) is
wreg. Since Hy is unreduced, it follows from the implicit @
theorem that

Q:diag(wl,m,wk), ]wj|:1,j:1,...,k.

Thus up to column scaling U, = U Q is the same as Us.
Subtracting (5) from (4), we find that

Brup41 = wiBrlg41

so that up to scaling ux1 and @1 are the same. [ |
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Arnoldi decompositions

Let the orthonormal matrix Uy, satisfy
AUy = U1 Hy,

where H,, is Hessenberg. Then H,, is reduced if and only if
R(Uy) contains an eigenspace of A.

Proof. (“=") Suppose that H,, is reduced, say that h; 1 ; = 0.
Partition

A H H
HkZ[ 011 H;z} and Up=[Un U],

where Hyp is an j x j matrix and Uy, is consisted the first j
columns of Uy14. Then

Hyi Hip ]

Al Un U |=[Un Uiz upy | [ 0 Hy
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Arnoldi decompositions

It implies that

AUy = U Hn

so that Uy, is an eigenbasis of A.

(“<") Suppose that A has an eigenspace that is a subset of
R(Uy) and Hj, is unreduced. Let (\, Ujw) for some w be an
eigenpair of A. Then

0 = (A= N)Upw = (Upg1 Hy — \Up)w
N I N
= <UI<:+1Hk — AUg+1 [ 0 D w = Upr1 Hyw,

where
. Hy — M
H, = .
* [ hit1 kel }

Since H, is unreduced, the matrix Uk+1FIA is of full column
rank. It follows that w = 0 which is a contradiction. [ ]
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Arnoldi decompositions

Write the k-th column of the Arnoldi decomposition
AUy, = UgHy, + Brugiaef,

in the form

Auy, = Uphy, + Brug41.
Then from the orthonormality of U1, we have

hy, = UL Auy,.

Since

Brukt+1 = Aug — Ughy,
and ||ugy1|]2 = 1, we must have

Br = [Aug — Uphg|l2
and
ups1 = By, (Aug, — Uphy).
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Arnoldi decompositions

Algorithm (Arnoldi process)

1. fork=1,2,...
2 hk = U,fAuk

3 v = Auy — Ughy

4. Bre = b1 = [[v]l2
5. Ugt1 = v[ﬂk
6

7.

3 He 1 hy
H, =
g [ 0 A1k

end for k

@ The computation of uj; is actually a form of the
well-known Gram-Schmidt algorithm.

@ In the presence of inexact arithmetic cancelation in
statement 3 can cause it to fail to produce orthogonal
vectors.

@ The cure is process called reorthogonalization.
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Arnoldi decompositions

Algorithm (Reorthogonalized Arnoldi process)

fork=1,2,...
hk:U,fAuk
v = Auy — Ughy
w:U,fv
hp = hy +w

v=v— Upw
B = hir1k = [[v]l2
Ukt1 = v/ Pk

i, — [ Hi_1  hy ]

0 hktik
end for k
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Lanczos decompositions

Let A be Hermitian and let

AU]€ = Ui, + ﬁkukﬂef (6)

be an Arnoldi decomposition. Since T}, is upper Hessenberg

and T, = U,f’AUk is Hermitian, it follows that T, is tridiagonal

and can be written in the form

[ a1 B

p1 e B2
B2 as B3

Br—2 k—1 Br-1
Br—1 o

Equation (6) is called a Lanczos decomposition. The first
column of (6) is

Auy = oqug + Brue,
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Lanczos decompositions

or

Au1 — 1U1
Ug = ——.

A

From the orthonormality of u; and wus, it follows that
a1 = u{{Aul
and
B = [|Aur — aqugl|o.
More generality, from the j-th column of (6) we get the relation

s N AUj — OéjUj — Bj_luj_l
j+1 =
B;

where
aj=ufAu; and B = ||Au; — ayu; — Bi—1uj1lla.

This is the Lanczos three-term recurrence.
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Lanczos decompositions

Algorithm (Lanczos recurrence)

Let u; be given. This algorithm generates the Lanczos
decomposition
AUy, = Uy Ty, + Brugi1el

where Ty, is Hermitian tridiagonal.

1. w=0;8=0;

2. forj=1tok

3 Uj+1 = Au]'

4 a5 = u;-LIUj+1

5, UV =1Ujy1 — OjU; — ﬂj,1Uj,1

6. fj= |l

7. u]'_|_1 = ’U/ﬁj

8. endforj
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Krylov decompositions

Let uy,us,...,ur1 be linearly independent and let
Up = [ug - ug).

AUy, = Uy By, + up 1051

is called a Krylov decomposition of order k. R(Uy1) is called
the space spanned by the decomposition. Two Krylov
decompositions spanning the same spaces are said to be
equivalent.

Let [V v]¥ be any left inverse for Uy, 1. Then it follows that
By =VHAU, and b, =v" AU,

In particular, By, is a Rayleigh quotient of A.
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Krylov decompositions

Let
AU, = U By, + uk+1ka+1

be a Krylov decomposition and @ be nonsingular. That is

AUy = Up1B),  with By, = { bg’“ ] : 7)
k+1
Then we get an equivalent Krylov decomposition of (7) in the
form
—1
AUrQ) = <Uk+1 [ 602 ?D ([ % (1)] BkQ)
-1
= [ U:Q wis1 | [ QbHBkQ ]
k+1
= (hQ)(Q ' BQ) + w11 (b1 Q). 8)

The two Krylov decompositions (7) and (8) are said to be
similar.
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Krylov decompositions
Let
Ylgy1 = ugt1 — Uga.

Since uq, ..., ug, ur+1 are linearly independent, we have ~ # 0.
Then it follows that

AUy = Ug(By, + abiy ) + G (Ybk1)-

Since R([Ux uk+1]) = R([Uk tx+1]), this Krylov decomposition
is equivalent to (7).

Every Krylov decomposition is equivalent to a (possibly
reduced) Arnoldi decomposition.

Proof: Let
AU = UB + ub”

be a Krylov decomposition and let
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Krylov decompositions

U=UR
be the QR factorization of U. Then
AU = AUR™Y) = (URY)(RBR™ ) +u(b"R™) = UB + ub”
is an equivalent decomposition. Let
i=~"Y(u—Ua)

be a vector with ||i||> = 1 such that U@ = 0. Then

AT = (B + ab™) + a(v0") = UB + ab?
is an equivalent orthonormal Krylov decomposition. Let @) be a
unitary matrix such that

" Q = ||b]|2ef

and Q¥ BQ is upper Hessenberg. Then the equivalent
decomposition
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Krylov decompositions

AU = A(UQ) = (TUQ)(Q"BQ) +u(b" Q) = UB + ||b||iie}
is a possibly reduced Arnoldi decomposition where
Ufg=Q"0"a=Q" R Hulg=o.
Reduction to Arnoldi form
Let
AU = UB + ub”

be the Krylov decomposition with B € C***. Let H, be a
Householder transformation such that

VI Hy = Bey,.
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Krylov decompositions

Reduce H{’ BH; to Hessenberg form as the following

illustration:

X X X X
X X X X

= B:=HIB-=

= B:=HB=

o4+ 4+ 4+ X XXX

O O ¥ *

X X X X

o+ + +

oD *x *

® ®
® ®
B:= BH, =
= 2= |l o ®
0 0
+ o+
+ o+
=B := BH; =
+ o+ 3
® X

®Q + * *
X 4+ % %

X X X X

oo DD
® + + +

X+ + +
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Krylov decompositions

Let
Q=HHy - -Hp_y.
Then Q¥ BQ is upper Hessenberg and
v1Q = (WP H)(Hy - Hy_y) = Bel (Hy--- Hy_1) = Bel.
Therefore, the Krylov decomposition
A(UQ) = (UQ)(Q"BQ) + Buey, (9)

is an Arnoldi decomposition.
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Computation of refined and Harmonic Ritz vectors

Assume that

AU = UB + ub”

is a n orthonormal Krylov decomposition.

Refined Ritz vectors

If u is a Ritz value, then the refined Ritz vector associated with
w is the right singular vector of (A — uI)U whose singular value
is smallest. From (9), we have

(A—phU = UB-—pl)+ub =[ U “][B;H“I}

= [U u}Bu

Since [U w] is orthonormal, the right singular vectors of

(A — uI)U are the same as the right singular vectors of Bu.
Thus the computation of a refined Ritz vector can be reduced to
computing the singular value decomposition of BM.



Krylov decompositions
oe

Computation of refined and Harmonic Ritz vectors

Harmonic Ritz vectors
Recall: (k + 9, Uw) is a harmonic Ritz pair if

UH(A - kD)H(A - kI)Uw = 6UH (A — kD)2 Uw.
Since
(A—kI)U =U(B — kI) +ub?,
we have
UH(A - k)" (A - kI)U = (B — kI)"(B — kI) + bb
and
UH(A - kD)PU = (B — kD).
It follows that
(B — &))" (B — kI) + bb" | w = 6(B — xI)"w

which is a small generalized eigenvalue problem,



Restarted Arnoldi method

Let
AUy = UpHy + Brugs1ef

be an Arnoldi decomposition.

@ In principle, we can keep expanding the Arnoldi
decomposition until the Ritz pairs have converged.

@ Unfortunately, it is limited by the amount of memory to
storage of Uy.

© Restarted the Arnoldi process once k becomes so large
that we cannot store Uy.
o Implicitly restarting method
e Krylov-Schur decomposition
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The implicitly restarted Arnoldi method

@ Choose a new starting vector for the underlying Krylov
sequence

@ A natural choice would be a linear combination of Ritz
vectors that we are interested in.

Filter polynomials
Assume A has a complete system of eigenpairs (\;, z;) and we
are interested in the first k£ of these eigenpairs. Expand u; in

the form

Z%ffw > i
i=k+1
If p is any polynomial, we have

k n
up = Z%‘p()\i)a?z + Z Yip(Ni)x;.
i=1

i=k+1
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The implicitly restarted Arnoldi method

@ Choose p so that the values p(\;) (i =k+1,...,n) are
small compared to the values p(\;) (i = 1,..., k).

@ Then p(A)u; is rich in the components of the z; that we
want and deficient in the ones that we do not want.

@ pis called a filter polynomial.

@ Suppose we have Ritz values p1, ...,y and pgi1, ..., fim
are not interesting. Then take

p(t) = (t = pa1) -+ (¢ — pim).
Implicitly restarted Arnoldi: Let
AU = U Hypy + Bty 162, (10)

be an Arnoldi decomposition with order m. Choose a filter
polynomial p of degree m — k and use the implicit restarting
process to reduce the decomposition to a decomposition

AUy, = UpHj, + Briigr1ef
of order k with starting vector p(A)u;.
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The implicitly restarted Arnoldi method

Let k1, ..., Ky be eigenvalues of H,, and suppose that
K1,--.,km_t Correspond to the part of the spectrum we are not
interested in. Then take

p(t) = (t = Ka)(t = K2) -+ (t — Fn)-
The starting vector p(A)u; is equal to
p(Au; = (A—kpmil) - (A—kol)(A— k1w
(A = Empd) [+ [(A = K2]) [(A = K1l )ur]]] .

In the first, we construct an Arnoldi decomposition with starting
vector (A — k11)u;. From (10), we have

(A—r U, = Um(Hm—lﬂf)-l-ﬁmUmH@% (11)
= UnQiB1 + Brntimirel,
where
Hyy — kil = Q1R
is the QR factorization of H,,, — k11. Postmultiplying by Q1,
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The implicitly restarted Arnoldi method

we get
(A ﬁlf)(Ule) _ (Ule)(RlQl) + ﬁmum+1(€%Q1).
It implies that
AU,(,%) — Uéll)H,%) + 5mum+1b$7}b)fl[7
where

UV =U,Q1, HY =RiQ+ril, bg)ﬁ = € Q1.

(Hf,%) : one step of single shifted QR algorithm)
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The implicitly restarted Arnoldi method

Let H,, be an unreduced Hessenberg matrix. Then 7Y has
the form

O — va%) hia
m 0 K1 ’

where H'" is unreduced.

Proof: Let
H,, — kil =0Q1R;
be the QR factorization of H,,, — x11 with
Q1 =G(1,2,61)---G(m —1,m,0,,—1)

where G(i,i+ 1,0;) fori =1,...,m — 1 are Given rotations.
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The implicitly restarted Arnoldi method

Since H,, is unreduced upper Hessenberg, i.e., the
subdiagonal elements of H,,, are nonzero, we get

0; 20 fori=1,...,m—1 (12)
and
(Rl)ii?éo for ’izl,...,m—l. (13)

Since k4 is an eigenvalue of H,,, we have that H,,, — k11 is
singular and then

(R1)mm = 0. (14)
Using the results of (12), (13) and (14), we get
HY = RiQi+ sl =RiG(1,2,00)- - Gm—1,m,0,,_1)+ k1l
Y i ]
0 k1 |’

where E(nl) is unreduced. ]
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The implicitly restarted Arnoldi method

o Ur(nl) is orthonormal.

@ Since H,, is upper Hessenberg and Q) is the Q-factor of
the QR factorization of H,, — k11, it implies that Q1 and

H,(,P are also upper Hessenberg.

o The vector b\ = eI Q, has the form

(1)

1)H
b() 0 0 qr(;),Lm qmm |3

m+1 —

i.e., only the last two components of b(l)+1 are nonzero.

m
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The implicitly restarted Arnoldi method

@ For on postmultiplying (11) by e, we get

(A — k1D)uy = (A — k1) (Uper) = UV Riey = Tgll)ugl).

Since H,, is unreduced, rﬁ) is nonzero. Therefore, the first
column of UV is a multiple of (A — k11)uy.
@ By the definition of H,(r}), we get

QLHV Q! = Q1(R1Q1 + mi)QM = Q1R + 1] = H,y,.

Therefore, k1, k2, .. ., Ky are also eigenvalues of Hr(r}).
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The implicitly restarted Arnoldi method

Similarly,
(A= roD)UD = UDHEDY = kol) + Bt 16D (15)
= UWMQuR, + ﬁmumﬂbfi)ﬁ,
where

Hr(,%) — kol = Q2Ro

is the QR factorization of oy - kol with upper Hessenberg
matrix @)o. Postmultiplying by Q-, we get

(A — kD) (U Q) = (UD Qo) (RaQ2) + ﬁmum+1(bquzrh1r@2).
It implies that
AUP) =y a® 4 5mum+1bg)+hlr7
where
U7(,12) = U,(nl)Q2

is orthonormal,



Restarted Arnoldi method
000000000 e0000

The implicitly restarted Arnoldi method

HW?ZQ ‘ x %
(2) = RoQ2 + kol = Ko Ok
K1
is upper Hessenberg with unreduced matrix Jiss )2 and
bgl-hlr = b(ll_}{Q2 - qm) 1,m m 1Q2 + qmm %QQ

= [0 - 0 x x x].
For on postmultiplying (15) by e, we get
(A— mzf)u(l) =(A- ngf)(U(l)el) = Ug)Rgel = r§1)ug2).

Since H( )i is unreduced, r ) is nonzero. Therefore, the first
column of U2 is a multiple of

(A= roDulY =17V (A = koI)(A = k1D
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The implicitly restarted Arnoldi method

Repeating this process with xs, ...,k _, the result will be a
Krylov decomposition

m m m

AU k) — gr(m—Fk) prm—Fk) 5mum+lb7(77zn+_1k)H

with the following properties

@ U™ " is orthonormal.

Qo H,(nm*k) is upper Hessenberg.

(m—k)

H
mil . are zero.

© The first £ — 1 components of b

© The first column of U™ is a multiple of
(A=kriD) (A= EpmiD)uy.
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The implicitly restarted Arnoldi method

Corollary

Letkq,...,kn be eigenvalues of H,,. If the implicitly restarted
QR step is performed with shifts k1, . .., km_k, then the matrix

H ) has the form

m—k m—k
H(m=Fk) — ngk ) ng,m—k):
" 0 T(m=k) |’

where T(™=*) js an upper triangular matrix with Ritz value
K1,---,Kkm_k ON its diagonal.
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The implicitly restarted Arnoldi method

For k =3 and m = 6,

A[u U u‘u U u]

X X X|X X X

O O OO X X
O O Ol X X X
O O X | X X X
o X X|X X X
X X X|X X X

—I—U[O 0 q‘q q q].
Therefore, the first £ columns of the decomposition can be
written in the form
AU;Em_k) = Uém_k)Hlizl_k) + hk+1,ku,(:j1_k)€£ + BrGmktm+1€},

where U™ consists of the first & columns of U\, B

is the leading principal submatrix of order k of H,Slm*k), and qxm,
is from the matrix Q@ = Q1 - - - Qp_k-

(m—k)
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The implicitly restarted Arnoldi method

Hence if we set

o, = u™™
H = HY,
Be = ||hk+1,kugz;k)+ﬂkquum+1H2,
Upr1 = B;;l(hkﬂ,kul(:ﬂk)+ﬁkquum+1),

then
AUk = Ukﬁk + Bkak-«-l@{

is an Arnoldi decomposition whose starting vector is
proportional to (A — k11) -+ (A — Kyp—iD)uq.

@ Avoid any matrix-vector multiplications in forming the new

starting vector.
@ Get its Arnoldi decomposition of order & for free.
@ For large n the major cost will be in computing UQ.
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Krylov-Schur restarting

If a Krylov decomposition can be partitioned in the form

Bi1 Bia

Alv w)=lu w)| g

}+u[b{1’ Wi

then
AU, = U By + ubf?

is also a Krylov decomposition.
The process of Krylov-Schur restarting:

@ Compute the Schur decomposition of the Rayleigh quotient
@ Move the desired eigenvalues to the beginning
@ Throw away the rest of the decomposition
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Krylov-Schur restarting

Exchanging eigenvalues and eigenblocks
e Move an eigenvalue from one place to another.
Let a triangular matrix be partitioned in the form

A B C
R=|0 S D |,
0 0 FE
where
| s11 s12
s_[ ' ]

Suppose that @ is a unitary matrix such that

| s22 S12
QR7SQ = [ 0 } ;

S11
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Krylov-Schur restarting

then the eigenvalues s11 and sq2 in the matrix

A BQ C
diag(I QY I)Rdiag(I Q I)=1|0 Q"SQ QD
0 0 E

will have traded places.
e How to find such unitary matrix Q?

Let
| St Sie
s=| % a2,

where S;; is of order n; (i = 1,2). Therefore are four cases to
consider.

o ny = 1, ng — 1

e ny = 2, ng = 1

e ny = 1, ng = 2.

o ny = 2, nNg = 2.
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Krylov-Schur restarting

@ For the firsttwo cases (ny =1, ng =10rny =2, no = 1):
Let

| St osi2
=% u )

where S;; is of order one or two. Let z be a normalized
eigenvector corresponding to so2 and let Q = [z Y] be
orthogonal. Then

T T T T
Tan | T | xSz 2t SY | | s22 Sy
QSQ‘[YT]S[xY]_[YTSm YTSY]_[O SH}'

Note that S;; and S;; have the same eigenvalues.
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Krylov-Schur restarting

@ For the third case (ny =1, ny = 2):

Let

T
_ | S11 S12
=% 5]

where Sy, is of order two. Let y be a normalized left eigenvector
corresponding to s;; and let @ = [X y] be orthogonal. Then

xT xTsx x7Ts Sy 8
T _ _ y | _ 22 12
Q SQ_[ yT :|S[X y]_[ yTSX yTSy :| |: 0 811:|.
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Krylov-Schur restarting

@ For the last case (ny = 2, ny = 2):
Let

| St Si2
s_[ i 522}

Let (S22, X) be an orthonormal eigenpair, i.e.,
SX = X (USpU™)
for some nonsingular U, and let Q = [X Y] be orthogonal. Then

0TSO — XTsx XTsy 1 [ XTXUS»pU—' XTSy
- YTSX YTSY |~ | YIXUS»U Y YTISY

_ USoU~ 8y

- 0 S|
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Krylov-Schur restarting

How to compute the orthonormal eigenbasis X ?

Let the eigenbasis be [ 1; } , where P is to be determined.

Then
S11 Sz P | P g
0 Sy I |1 |°*®

Hence P can be solved from the Sylvester equation

S11P — PSy2 = —S12.

The orthonormal eigenbasis X can be computed by the QR
factorization
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Krylov-Schur restarting

The Krylov-Schur cycle
Assume A € C™*™,

@ Write the corresponding Krylov decomposition in the form
AU = Up T + Bty 16k,
© Compute the Schur decomposition of 7;,,,
Sm = Q"T,Q

where S, is upper triangular.
© Transform the decomposition to the form

AU,y = UnnSm + g 1b2 .

© Select m — k Ritz values and move them to the end of S,,,
accumulating the transformations in Q.
© Truncate the decomposition, i.e.,

Sk = Sm[l: k,1: K], bf = b Q1[:,1: k], Uy := UnQ1[:, 1 k).

m
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Krylov-Schur restarting

Deflation
We say a Krylov decomposition has been deflated if it can be
partitioned in the form

Bu B
AUy b ]=[U Uﬂ{ o B;z]Jru[o i .

It implies that
AUy = Uy B11,

so that Uy; spans an eigenspace of A.
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Krylov-Schur restarting

Criterion of Deflation:

Let
AU = UB + ub®

be an orthonormal Krylov decomposition, and let
[M,U] = [M,UW] be an orthonormal pair. Let [W, W] be
unitary, and set

= wH ] [ Bii B ]
B = B\W W = ~ ~
[ wi [ + } By1 B

and
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Krylov-Schur restarting

Then
|AT — UM% = || Bar||% + |b1]|% + | B — M |3 |
Proof: Let
(U U ]=U[W W_].
Then

AU —UM = UBW +ub'W —UWM
ot ([ oo w[3]-[2])

+ub™ [ W WL][I}

0
By — M

I;H
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Krylov-Schur restarting
Since v U = 0, we have
U U] =WU W W] =0.
It implies that [, U , u] is an orthonormal matrix. Therefore,
By — M
By [z
by!

1Bar|lF + 1o + | Bi — M][%

1AU - UM =

Suppose that AU — UM is small. Transform the Krylov
decomposition to the form
5 5 Bi1 By H T
A0 0] =[O O] g g rul e o]
TR Bi1 DBis = ~ ~p
= [U UJ_]|: 0 322:|+u[0 bg]‘i‘(UJ_BQl—FUbl).
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Krylov-Schur restarting

From Theorem 16, we have
B
H [ 2 ] e < AT — TM]p.

with equality if and only if M = WHBW. Therefore, if the
residual norm ||AU — UM || is sufficiently small, we may set
By and by to zero to get the approximate decomposition

ALT O ~[0 UL][BO“ gz]ﬂ[o 78l

Rational Krylov transformations

@ Shift-and-invert transformations in Arnoldi’'s method is to
focus the algorithm on the eigenvalues near the shift .
@ How to do when it needs to use more than one shift?
o Restart with a new shift and a new vector

e Change a Krylov decomposition from one in (A — x11)~! to
onein (A — kol)™!
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Krylov-Schur restarting

Suppose we have a Krylov sequence
u, (A — k1I) 7Y, (A — kD)2, - (A = kD) P,

Set v = (A — k1) *u, then the sequence with its terms in
reverse order is

v, (A =k Dv, -, (A — kD)o,
so that
Kr[(A — k1 I) 7 u) = Kp[A — k11, 0],
By the shift invariance of a Krylov sequence
KilA — k11,v] = Ki[A — koI, v].
Set
w = (A — kol)F 1o,
we have
Kr[A — kol v] = Kp[(A — koD) 71 w).
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Krylov-Schur restarting

It follows that

Kil(A = k1) u) = Kp[(A — koI)7H w].

That is the Krylov subspace in (A — x1I)~! with starting vector
u is exactly the same as the Krylov subspace in (A — rol)~!
with a different starting vector w.

Let

(A-m D) 'U=UH
be an orthonormal Arnoldi decomposition. Then
U= (A—rkI)UH = (A— ko )\UH — (k1 — k2)UH.
Hence
(A — roD)~'0 [i ¥ (k1 — Rz)f[} —UH,
where
i=[10]".
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Krylov-Schur restarting

Let
I+ (k1 —k2)H = QUR)
be a QR factorization of I + (k1 — k2)H. Then
(A= ko)™ (UQI) =UHR™ = (UQ)(Q"HR™).
Set
V=UQ,V=VI and B=Q"HR™",
then
(A— kD)WW =VB.

This is a Krylov decomposition.



The Lanczos Algorithm

If Ais symmetric and
AUy, = UpTy, + Bruksi1er,
is an Arnoldi decomposition, then Ty, is a tridiagonal matrix of

the form
[ a1 B 1
B1 az o
T, = B2 ?13 .53

Br—2 ar-1 Br-1
i Brk—1 g
It implies that u; can be generated by a three-term recurrence

Bjujpr = Auj — aju; — Bj1uj-1,
where

a; = u]TAuj, ﬂj = HAuj — QU — ﬁjfluj,lﬂz.



The Lanczos Algorithm

@ Mathematically, u; must be orthogonal.
@ In practice, they can lose orthogonality.

v

Reorthogonalize the vectors at each step and restart when it
becomes impossible to store {u;} in main memory.
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