Krylov sequence methods

Tsung-Ming Huang

Department of Mathematics National Taiwan Normal University, Taiwan

March 22, 2009

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Outline

Krylov decompositions

- Householder transformation
- Arnoldi decompositions
- Lanczos decompositions
- Krylov decompositions
- Computation of refined and Harmonic Ritz vectors
- 2 Restarted Arnoldi method
 - The implicitly restarted Arnoldi method
 - Krylov-Schur restarting

(日)

Householder transformation

Definition

A Householder transformation or elementary reflector is a matrix of

$$H = I - uu^*$$

where $||u||_2 = \sqrt{2}$.

Note that H is Hermitian and unitary.

Theorem

Let x be a vector such that $||x||_2 = 1$ and x_1 is real and nonnegative. Let

$$u = (x + e_1)/\sqrt{1 + x_1}.$$

Then

$$Hx = (I - uu^*)x = -e_1.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Householder transformation

Proof:

$$I - uu^*x = x - (u^*x)u = x - \frac{x^*x + x_1}{\sqrt{1 + x_1}} \cdot \frac{x + e_1}{\sqrt{1 + x_1}}$$
$$= x - (x + e_1) = -e_1$$

Theorem

Let x be a vector with $x_1 \neq 0$. Let

$$u = \frac{\rho \frac{x}{\|x\|_2} + e_1}{\sqrt{1 + \rho \frac{x_1}{\|x\|_2}}},$$

where $\rho = \bar{x}_1/|x_1|$. Then

$$Hx = -\bar{\rho} \|x\|_2 e_1.$$

Householder transformation

Proof: Since

$$\begin{aligned} & [\bar{\rho}x^*/\|x\|_2 + e_1^T][\rho x/\|x\|_2 + e_1] \\ &= \bar{\rho}\rho + \rho x_1/\|x\|_2 + \bar{\rho}\bar{x}_1/\|x\|_2 + 1 \\ &= 2[1 + \rho x_1/\|x\|_2], \end{aligned}$$

it follows that

$$u^*u = 2 \quad \Rightarrow \quad \|u\|_2 = \sqrt{2}$$

and

$$u^*x = \frac{\bar{\rho}||x||_2 + x_1}{\sqrt{1 + \rho\frac{x_1}{||x||_2}}}.$$

・ロト ・聞ト ・ヨト ・ヨト

Householder transformation

Hence,

$$\begin{aligned} Hx &= x - (u^*x)u = x - \frac{\bar{\rho} \|x\|_2 + x_1}{\sqrt{1 + \rho \frac{x_1}{\|x\|_2}}} \frac{\rho \frac{x}{\|x\|_2} + e_1}{\sqrt{1 + \rho \frac{x_1}{\|x\|_2}}} \\ &= \left[1 - \frac{(\bar{\rho} \|x\|_2 + x_1) \frac{\rho}{\|x\|_2}}{1 + \rho \frac{x_1}{\|x\|_2}} \right] x - \frac{\bar{\rho} \|x\|_2 + x_1}{1 + \rho \frac{x_1}{\|x\|_2}} e_1 \\ &= -\frac{\bar{\rho} \|x\|_2 + x_1}{1 + \rho \frac{x_1}{\|x\|_2}} e_1 \\ &= -\bar{\rho} \|x\|_2 e_1. \end{aligned}$$

ヘロト ヘロト ヘビト ヘビト

Householder transformation

Definition

A complex $m \times n$ -matrix $R = [r_{ij}]$ is called an upper (lower) triangular matrix, if $r_{ij} = 0$ for i > j (i < j).

Definition

Given $A \in \mathbb{C}^{m \times n}$, $Q \in \mathbb{C}^{m \times m}$ unitary and $R \in \mathbb{C}^{m \times n}$ upper triangular such that A = QR. Then the product is called a QR-factorization of A.

Theorem

Any complex $m \times n$ matrix A can be factorized by the product A = QR, where Q is $m \times m$ -unitary. R is $m \times n$ upper triangular.

Krylov decompositions

Restarted Arnoldi method

The Lanczos Algorithm

Householder transformation

$$\begin{array}{l} \textit{Proof: Let } A^{(0)} = A = [a_1^{(0)} | a_2^{(0)} | \cdots | a_n^{(0)}]. \textit{ Find} \\ Q_1 = (I - 2w_1 w_1^*) \textit{ such that } Q_1 a_1^{(0)} = ce_1. \textit{ Then} \\ A^{(1)} = Q_1 A^{(0)} = [Q_1 a_1^{(0)}, Q_1 a_2^{(0)}, \cdots, Q_1 a_n^{(0)}] \\ = \left[\begin{array}{c|c} c_1 & \ast & \cdots & \ast \\ \hline 0 & & & \\ \hline 0 & & & \\ \vdots & a_2^{(1)} & \cdots & a_n^{(1)} \\ \hline 0 & & & \\ \hline \end{array} \right] \textit{such that } (I - 2w_2 w_2^*) a_2^{(1)} = c_2 e_1. \end{aligned}$$

$$\begin{array}{c} \textit{find } Q_2 = \left[\begin{array}{c|c} 1 & 0 \\ \hline 0 & I - w_2 w_2^* \\ \hline 0 & I - w_2 w_2^* \end{array} \right] \textit{such that } (I - 2w_2 w_2^*) a_2^{(1)} = c_2 e_1. \end{aligned}$$

$$\begin{array}{c} \textit{find } Q_2 = \left[\begin{array}{c|c} 1 & 0 \\ \hline 0 & I - w_2 w_2^* \\ \hline 0 & 0 \\ \hline \vdots & \vdots & a_3^{(2)} & \cdots & a_n^{(2)} \\ \hline 0 & 0 \\ \hline \vdots & \vdots & a_3^{(2)} & \cdots & a_n^{(2)} \\ \hline 0 & 0 \\ \hline \end{array} \right] . \tag{1}$$

We continue this process. Then after $l = \min(m, n)$ steps $A^{(l)}$ is an upper triangular matrix satisfying

$$A^{(l-1)} = R = Q_{l-1} \cdots Q_1 A.$$

Then A = QR, where $Q = Q_1^* \cdots Q_{l-1}^*$.

Theorem

Let *A* be a nonsingular $n \times n$ matrix. Then the *QR*-factorization is essentially unique. That is, if $A = Q_1R_1 = Q_2R_2$, then there is a unitary diagonal matrix $D = diag(d_i)$ with $|d_i| = 1$ such that $Q_1 = Q_2D$ and $DR_1 = R_2$.

Proof: Let $A = Q_1R_1 = Q_2R_2$. Then $Q_2^*Q_1 = R_2R_1^{-1} = D$ must be a diagonal unitary matrix.

Suppose that the columns of K_{k+1} are linearly independent and let

$$K_{k+1} = U_{k+1}R_{k+1}$$

be the QR factorization of K_{k+1} . Then the columns of U_{k+1} are results of successively orthogonalizing the columns of K_{k+1} .

Theorem

Let $||u_1||_2 = 1$ and the columns of $K_{k+1}(A, u_1)$ be linearly independent. Let $U_{k+1} = [u_1 \cdots u_{k+1}]$ be the *Q*-factor of K_{k+1} . Then there is a $(k+1) \times k$ unreduced upper Hessenberg matrix \hat{H}_k such that

$$AU_k = U_{k+1}\hat{H}_k.$$
 (2)

Conversely, if U_{k+1} is orthonormal and satisfies (2), where \hat{H}_k is a $(k+1) \times k$ unreduced upper Hessenberg matrix, then U_{k+1} is the *Q*-factor of $K_{k+1}(A, u_1)$.

The Lanczos Algorithm

Arnoldi decompositions

Proof: ("
$$\Rightarrow$$
") Let $K_k = U_k R_k$ be the QR factorization and $S_k = R_k^{-1}$. Then

$$AU_{k} = AK_{k}S_{k} = K_{k+1} \begin{bmatrix} 0\\S_{k} \end{bmatrix} = U_{k+1}R_{k+1} \begin{bmatrix} 0\\S_{k} \end{bmatrix} = U_{k+1}\hat{H}_{k},$$

where

$$\hat{H}_k = R_{k+1} \left[\begin{array}{c} 0\\ S_k \end{array} \right].$$

It implies that \hat{H}_k is a $(k+1) \times k$ Hessenberg matrix and

$$h_{i+1,i} = r_{i+1,i+1}s_{ii} = \frac{r_{i+1,i+1}}{r_{ii}}.$$

Thus by the nonsingularity of R_k , \hat{H}_k is unreduced. (" \Leftarrow ") If k = 1, then

$$Au_1 = h_{11}u_1 + h_{21}u_2 \quad \Rightarrow \quad u_2 = \frac{-h_{11}}{h_{21}}u_1 + \frac{1}{h_{21}}Au_1.$$

A D > A P > A D > A D >

Since $\begin{bmatrix} u_1 & u_2 \end{bmatrix}$ is orthonormal and u_2 is a linear combination of u_1 and Au_1 , $\begin{bmatrix} u_1 & u_2 \end{bmatrix}$ is the *Q*-factor of K_2 . Assume U_k is the *Q*-factor of K_k . If we partition

$$\hat{H}_k = \left[\begin{array}{cc} \hat{H}_{k-1} & h_k \\ 0 & h_{k+1,k} \end{array} \right],$$

then from (2)

$$Au_k = U_k h_k + h_{k+1,k} u_{k+1}.$$

Thus u_{k+1} is a linear combination of Au_k and the columns of U_k . Hence U_{k+1} is the *Q*-factor of K_{k+1} .

Definition

Let $U_{k+1} \in \mathbb{C}^{n \times (k+1)}$ be orthonormal. If there is a $(k+1) \times k$ unreduced upper Hessenberg matrix \hat{H}_k such that

$$AU_k = U_{k+1}\hat{H}_k,\tag{3}$$

then (3) is called an Arnoldi decomposition of order k. If \hat{H}_k is reduced, we say the Arnoldi decomposition is reduced.

Partition

$$\hat{H}_k = \left[\begin{array}{c} H_k \\ h_{k+1,k} e_k^T \end{array} \right],$$

and set

$$\beta_k = h_{k+1,k}.$$

Then (3) is equivalent to

$$AU_k = U_k H_k + \beta_k u_{k+1} e_k^T.$$

Theorem

Suppose the Krylov sequence $K_{k+1}(A, u_1)$ does not terminate at k + 1. Then up to scaling of the columns of U_{k+1} , the Arnoldi decomposition of K_{k+1} is unique.

Proof: Since the Krylov sequence $K_{k+1}(A, u_1)$ does not terminate at k + 1, the columns of $K_{k+1}(A, u_1)$ are linearly independent. By Theorem 8, there is an unreduced matrix H_k and $\beta_k \neq 0$ such that

$$AU_k = U_k H_k + \beta_k u_{k+1} e_k^T, \tag{4}$$

where $U_{k+1} = [U_k \ u_{k+1}]$ is an orthonormal basis for $\mathcal{K}_{k+1}(A, u_1)$. Suppose there is another orthonormal basis $\tilde{U}_{k+1} = [\tilde{U}_k \ \tilde{u}_{k+1}]$ for $\mathcal{K}_{k+1}(A, u_1)$, unreduced matrix \tilde{H}_k and $\tilde{\beta}_k \neq 0$ such that

$$A\tilde{U}_k = \tilde{U}_k\tilde{H}_k + \tilde{\beta}_k\tilde{u}_{k+1}e_k^T.$$

Then we claim that

$$\tilde{U}_k^H u_{k+1} = 0.$$

For otherwise there is a column \tilde{u}_j of \tilde{U}_k such that

$$\tilde{u}_j = \alpha u_{k+1} + U_k a, \quad \alpha \neq 0.$$

Hence

$$A\tilde{u}_j = \alpha A u_{k+1} + A U_k a$$

which implies that $A\tilde{u}_j$ contains a component along $A^{k+1}u_1$. Since the Krylov sequence $K_{k+1}(A, u_1)$ does not terminate at k + 1, we have

$$\mathcal{K}_{k+2}(A, u_1) \neq \mathcal{K}_{k+1}(A, u_1).$$

Therefore, $A\tilde{u}_j$ lies in $\mathcal{K}_{k+2}(A, u_1)$ but not in $\mathcal{K}_{k+1}(A, u_1)$ which is a contradiction.

Since U_{k+1} and \tilde{U}_{k+1} are orthonormal bases for $\mathcal{K}_{k+1}(A, u_1)$ and $\tilde{U}_k^H u_{k+1} = 0$, it follows that

4

Restarted Arnoldi method

Arnoldi decompositions

$$\mathcal{R}(U_k) = \mathcal{R}(\tilde{U}_k)$$
 and $U_k^H \tilde{u}_{k+1} = 0$,

that is

$$U_k = \tilde{U}_k Q$$

for some unitary matrix Q. Hence

$$A(\tilde{U}_k Q) = (\tilde{U}_k Q)(Q^H \tilde{H}_k Q) + \tilde{\beta}_k \tilde{u}_{k+1}(e_k^T Q),$$

or

$$AU_k = U_k(Q^H \tilde{H}_k Q) + \tilde{\beta}_k \tilde{u}_{k+1} e_k^T Q.$$
(5)

On premultiplying (4) and (5) by U_k^H , we obtain

$$H_k = U_k^H A U_k = Q^H \tilde{H}_k Q.$$

Similarly, premultiplying by u_{k+1}^H , we obtain

$$\beta_k e_k^T = u_{k+1}^H A U_k = \tilde{\beta}_k (u_{k+1}^H \tilde{u}_{k+1}) e_k^T Q.$$

It follows that the last row of Q is $\omega_k e_k^T$, where $|\omega_k| = 1$. Since the norm of the last column of Q is one, the last column of Q is $\omega_k e_k$. Since H_k is unreduced, it follows from the implicit Qtheorem that

$$Q = \operatorname{diag}(\omega_1, \cdots, \omega_k), \quad |\omega_j| = 1, \ j = 1, \ldots, k.$$

Thus up to column scaling $U_k = \tilde{U}_k Q$ is the same as \tilde{U}_k . Subtracting (5) from (4), we find that

$$\beta_k u_{k+1} = \omega_k \tilde{\beta}_k \tilde{u}_{k+1}$$

so that up to scaling u_{k+1} and \tilde{u}_{k+1} are the same.

(日)

Theorem

Let the orthonormal matrix U_{k+1} satisfy

$$AU_k = U_{k+1}\hat{H}_k,$$

where \hat{H}_k is Hessenberg. Then \hat{H}_k is reduced if and only if $\mathcal{R}(U_k)$ contains an eigenspace of *A*.

Proof: (" \Rightarrow ") Suppose that \hat{H}_k is reduced, say that $h_{j+1,j} = 0$. Partition

$$\hat{H}_k = \begin{bmatrix} H_{11} & H_{12} \\ 0 & H_{22} \end{bmatrix}$$
 and $U_k = \begin{bmatrix} U_{11} & U_{12} \end{bmatrix}$,

where H_{11} is an $j \times j$ matrix and U_{11} is consisted the first j columns of U_{k+1} . Then

$$A[U_{11} \ U_{12}] = [U_{11} \ U_{12} \ u_{k+1}] \begin{bmatrix} H_{11} \ H_{12} \\ 0 \ H_{22} \end{bmatrix}.$$

It implies that

$$AU_{11} = U_{11}H_{11}$$

so that U_{11} is an eigenbasis of A.

(" \Leftarrow ") Suppose that *A* has an eigenspace that is a subset of $\mathcal{R}(U_k)$ and \hat{H}_k is unreduced. Let $(\lambda, U_k w)$ for some *w* be an eigenpair of *A*. Then

$$0 = (A - \lambda I)U_k w = (U_{k+1}\hat{H}_k - \lambda U_k)w$$
$$= \left(U_{k+1}\hat{H}_k - \lambda U_{k+1}\begin{bmatrix}I\\0\end{bmatrix}\right)w = U_{k+1}\hat{H}_\lambda w,$$

where

$$\hat{H}_{\lambda} = \left[\begin{array}{c} H_k - \lambda I \\ h_{k+1,k} e_k^T \end{array} \right].$$

Since \hat{H}_{λ} is unreduced, the matrix $U_{k+1}\hat{H}_{\lambda}$ is of full column rank. It follows that w = 0 which is a contradiction of the second state of the secon

The Lanczos Algorithm

Arnoldi decompositions

Write the *k*-th column of the Arnoldi decomposition

$$AU_k = U_k H_k + \beta_k u_{k+1} e_k^T,$$

in the form

$$Au_k = U_k h_k + \beta_k u_{k+1}.$$

Then from the orthonormality of U_{k+1} , we have

$$h_k = U_k^H A u_k.$$

Since

$$\beta_k u_{k+1} = A u_k - U_k h_k$$

and $||u_{k+1}||_2 = 1$, we must have

$$\beta_k = \|Au_k - U_k h_k\|_2$$

and

$$u_{k+1} = \beta_k^{-1} (Au_k - U_k h_k).$$

									25	
•	Þ	< 🗗	•	•	÷ 1	•	ъ	•	э.	990

Algorithm (Arnoldi process)

1. for
$$k = 1, 2, ...$$

2. $h_k = U_k^H A u_k$
3. $v = A u_k - U_k h_k$
4. $\beta_k = h_{k+1,k} = ||v||_2$
5. $u_{k+1} = v/\beta_k$
6. $\hat{H}_k = \begin{bmatrix} \hat{H}_{k-1} & h_k \\ 0 & h_{k+1,k} \end{bmatrix}$
7. end for k

- The computation of u_{k+1} is actually a form of the well-known Gram-Schmidt algorithm.
- In the presence of inexact arithmetic cancelation in statement 3 can cause it to fail to produce orthogonal vectors.
- The cure is process called reorthogonalization.

Arnoldi decompositions

Algorithm (Reorthogonalized Arnoldi process)

for
$$k = 1, 2, ...$$

 $h_k = U_k^H A u_k$
 $v = A u_k - U_k h_k$
 $w = U_k^H v$
 $h_k = h_k + w$
 $v = v - U_k w$
 $\beta_k = h_{k+1,k} = ||v||_2$
 $u_{k+1} = v/\beta_k$
 $\hat{H}_k = \begin{bmatrix} \hat{H}_{k-1} & h_k \\ 0 & h_{k+1,k} \end{bmatrix}$
end for k

・ロト ・聞ト ・ヨト ・ヨト

Lanczos decompositions

Let *A* be Hermitian and let

$$AU_k = U_k T_k + \beta_k u_{k+1} e_k^T \tag{6}$$

be an Arnoldi decomposition. Since T_k is upper Hessenberg and $T_k = U_k^H A U_k$ is Hermitian, it follows that T_k is tridiagonal and can be written in the form

$$T_{k} = \begin{bmatrix} \alpha_{1} & \bar{\beta}_{1} & & & \\ \beta_{1} & \alpha_{2} & \bar{\beta}_{2} & & & \\ & \beta_{2} & \alpha_{3} & \bar{\beta}_{3} & & \\ & \ddots & \ddots & \ddots & \\ & & & \beta_{k-2} & \alpha_{k-1} & \bar{\beta}_{k-1} \\ & & & & & \beta_{k-1} & \alpha_{k} \end{bmatrix}$$

Equation (6) is called a Lanczos decomposition. The first column of (6) is

$$Au_1 = \alpha_1 u_1 + \beta_1 u_2,$$

A D > A P > A D > A D >

Lanczos decompositions

or

$$u_2 = \frac{Au_1 - \alpha_1 u_1}{\beta_1}.$$

From the orthonormality of u_1 and u_2 , it follows that

$$\alpha_1 = u_1^H A u_1$$

and

$$\beta_1 = \|Au_1 - \alpha_1 u_1\|_2.$$

More generality, from the j-th column of (6) we get the relation

$$u_{j+1} = \frac{Au_j - \alpha_j u_j - \bar{\beta}_{j-1} u_{j-1}}{\beta_j}$$

where

$$\alpha_j = u_j^H A u_j$$
 and $\beta_j = \|A u_j - \alpha_j u_j - \overline{\beta}_{j-1} u_{j-1}\|_2.$

This is the Lanczos three-term recurrence.

Lanczos decompositions

Algorithm (Lanczos recurrence)

Let u_1 be given. This algorithm generates the Lanczos decomposition

$$AU_k = U_k T_k + \beta_k u_{k+1} e_k^T$$

where T_k is Hermitian tridiagonal.

1.
$$u_0 = 0; \beta_0 = 0;$$

2. for $j = 1$ to k
3. $u_{j+1} = Au_j$
4. $\alpha_j = u_j^H u_{j+1}$
5. $v = u_{j+1} - \alpha_j u_j - \beta_{j-1} u_{j-1}$
6. $\beta_j = \|v\|_2$
7. $u_{j+1} = v/\beta_j$
8. end for j

Krylov decompositions

Definition

Let $u_1, u_2, \ldots, u_{k+1}$ be linearly independent and let $U_k = [u_1 \cdots u_k].$

$$AU_k = U_k B_k + u_{k+1} b_{k+1}^H$$

is called a Krylov decomposition of order k. $\mathcal{R}(U_{k+1})$ is called the space spanned by the decomposition. Two Krylov decompositions spanning the same spaces are said to be equivalent.

Let $[V v]^H$ be any left inverse for U_{k+1} . Then it follows that

$$B_k = V^H A U_k$$
 and $b_{k+1}^H = v^H A U_k$.

In particular, B_k is a Rayleigh quotient of A.

A D > A P > A D > A D >

Krylov decompositions

Let

$$AU_k = U_k B_k + u_{k+1} b_{k+1}^H$$

be a Krylov decomposition and Q be nonsingular. That is

$$AU_k = U_{k+1}\hat{B}_k$$
 with $\hat{B}_k = \begin{bmatrix} B_k \\ b_{k+1}^H \end{bmatrix}$. (7)

Then we get an equivalent Krylov decomposition of (7) in the form

$$A(U_kQ) = \begin{pmatrix} U_{k+1} \begin{bmatrix} Q & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} Q & 0 \\ 0 & 1 \end{bmatrix}^{-1} \hat{B}_kQ \\ = \begin{bmatrix} U_kQ & u_{k+1} \end{bmatrix} \begin{bmatrix} Q^{-1}B_kQ \\ b^H_{k+1}Q \end{bmatrix} \\ = (U_kQ)(Q^{-1}BQ) + u_{k+1}(b^H_{k+1}Q).$$

The two Krylov decompositions (7) and (8) are said to be similar.

Krylov decompositions

Let

$$\gamma \tilde{u}_{k+1} = u_{k+1} - U_k a.$$

Since $u_1, \ldots, u_k, u_{k+1}$ are linearly independent, we have $\gamma \neq 0$. Then it follows that

$$AU_k = U_k(B_k + ab_{k+1}^H) + \tilde{u}_{k+1}(\gamma b_{k+1}^H).$$

Since $\mathcal{R}([U_k \ u_{k+1}]) = \mathcal{R}([U_k \ \tilde{u}_{k+1}])$, this Krylov decomposition is equivalent to (7).

Theorem

Every Krylov decomposition is equivalent to a (possibly reduced) Arnoldi decomposition.

Proof: Let

$$AU = UB + ub^H$$

be a Krylov decomposition and let

(日)

$$U = \tilde{U}R$$

be the QR factorization of U. Then

 $A\tilde{U} = A(UR^{-1}) = (UR^{-1})(RBR^{-1}) + u(b^{H}R^{-1}) \equiv \tilde{U}\tilde{B} + u\tilde{b}^{H}$

is an equivalent decomposition. Let

$$\tilde{u} = \gamma^{-1}(u - Ua)$$

be a vector with $\|\tilde{u}\|_2 = 1$ such that $U^H \tilde{u} = 0$. Then

$$A\tilde{U} = \tilde{U}(\tilde{B} + a\tilde{b}^H) + \tilde{u}(\gamma\tilde{b}^H) \equiv \tilde{U}\hat{B} + \tilde{u}\hat{b}^H$$

is an equivalent orthonormal Krylov decomposition. Let Q be a unitary matrix such that

$$\hat{b}^H Q = \|\hat{b}\|_2 e_k^T$$

and $Q^H \hat{B} Q$ is upper Hessenberg. Then the equivalent decomposition

Krylov decompositions

$$A\hat{U} \equiv A(\tilde{U}Q) = (\tilde{U}Q)(Q^H\hat{B}Q) + \tilde{u}(\hat{b}^HQ) \equiv \hat{U}\bar{B} + \|\hat{b}\|_2\hat{u}e_k^T$$

is a possibly reduced Arnoldi decomposition where

$$\hat{U}^H \hat{u} = Q^H \tilde{U}^H \tilde{u} = Q^H R^{-H} U^H \tilde{u} = 0.$$

Reduction to Arnoldi form Let

$$AU = UB + ub^H$$

be the Krylov decomposition with $B \in \mathbb{C}^{k \times k}$. Let H_1 be a Householder transformation such that

$$b^H H_1 = \beta e_k.$$

(日)

・ロン・1日と・1日と

Reduce $H_1^H B H_1$ to Hessenberg form as the following illustration:

Krylov decompositions

Let

$$Q = H_1 H_2 \cdots H_{k-1}.$$

Then $Q^H B Q$ is upper Hessenberg and

$$b^{H}Q = (b^{H}H_{1})(H_{2}\cdots H_{k-1}) = \beta e_{k}^{T}(H_{2}\cdots H_{k-1}) = \beta e_{k}^{T}.$$

Therefore, the Krylov decomposition

$$A(UQ) = (UQ)(Q^H BQ) + \beta u e_k^T$$
(9)

A D > A B > A B > A B >

is an Arnoldi decomposition.

Computation of refined and Harmonic Ritz vectors

Assume that

$$AU = UB + ub^H$$

is a n orthonormal Krylov decomposition.

Refined Ritz vectors

If μ is a Ritz value, then the refined Ritz vector associated with μ is the right singular vector of $(A - \mu I)U$ whose singular value is smallest. From (9), we have

$$(A - \mu I)U = U(B - \mu I) + ub^{H} = \begin{bmatrix} U & u \end{bmatrix} \begin{bmatrix} B - \mu I \\ b^{H} \end{bmatrix}$$
$$\equiv \begin{bmatrix} U & u \end{bmatrix} \hat{B}_{\mu}.$$

Since $[U \ u]$ is orthonormal, the right singular vectors of $(A - \mu I)U$ are the same as the right singular vectors of \hat{B}_{μ} . Thus the computation of a refined Ritz vector can be reduced to computing the singular value decomposition of \hat{B}_{μ} .

Computation of refined and Harmonic Ritz vectors

Harmonic Ritz vectors Recall: $(\kappa + \delta, Uw)$ is a harmonic Ritz pair if

$$U^{H}(A - \kappa I)^{H}(A - \kappa I)Uw = \delta U^{H}(A - \kappa I)^{H}Uw.$$

Since

$$(A - \kappa I)U = U(B - \kappa I) + ub^H,$$

we have

$$U^{H}(A - \kappa I)^{H}(A - \kappa I)U = (B - \kappa I)^{H}(B - \kappa I) + bb^{H}$$

and

$$U^H (A - \kappa I)^H U = (B - \kappa I)^H.$$

It follows that

$$\left[(B - \kappa I)^{H} (B - \kappa I) + bb^{H} \right] w = \delta (B - \kappa I)^{H} w$$

which is a small generalized eigenvalue problem,

4.3.5

Let

$$AU_k = U_k H_k + \beta_k u_{k+1} e_k^T$$

be an Arnoldi decomposition.

- In principle, we can keep expanding the Arnoldi decomposition until the Ritz pairs have converged.
- 2 Unfortunately, it is limited by the amount of memory to storage of U_k .
- Solution Restarted the Arnoldi process once k becomes so large that we cannot store U_k .
 - Implicitly restarting method
 - Krylov-Schur decomposition

(日)

- Choose a new starting vector for the underlying Krylov sequence
- A natural choice would be a linear combination of Ritz vectors that we are interested in.

Filter polynomials

Assume A has a complete system of eigenpairs (λ_i, x_i) and we are interested in the first k of these eigenpairs. Expand u_1 in the form

$$u_1 = \sum_{i=1}^k \gamma_i x_i + \sum_{i=k+1}^n \gamma_i x_i.$$

If p is any polynomial, we have

$$p(A)u_1 = \sum_{i=1}^k \gamma_i p(\lambda_i) x_i + \sum_{i=k+1}^n \gamma_i p(\lambda_i) x_i.$$

(日)

- Choose p so that the values p(λ_i) (i = k + 1,...,n) are small compared to the values p(λ_i) (i = 1,...,k).
- Then $p(A)u_1$ is rich in the components of the x_i that we want and deficient in the ones that we do not want.
- *p* is called a filter polynomial.
- Suppose we have Ritz values μ_1, \ldots, μ_m and μ_{k+1}, \ldots, μ_m are not interesting. Then take

$$p(t) = (t - \mu_{k+1}) \cdots (t - \mu_m).$$

Implicitly restarted Arnoldi: Let

$$AU_m = U_m H_m + \beta_m u_{m+1} e_m^T \tag{10}$$

be an Arnoldi decomposition with order m. Choose a filter polynomial p of degree m - k and use the implicit restarting process to reduce the decomposition to a decomposition

$$A\tilde{U}_k = \tilde{U}_k\tilde{H}_k + \tilde{\beta}_k\tilde{u}_{k+1}e_k^T$$

of order k with starting vector $p(A)u_1$.

A D > A P > A D > A D >

Let $\kappa_1, \ldots, \kappa_m$ be eigenvalues of H_m and suppose that $\kappa_1, \ldots, \kappa_{m-k}$ correspond to the part of the spectrum we are not interested in. Then take

$$p(t) = (t - \kappa_1)(t - \kappa_2) \cdots (t - \kappa_{m-k}).$$

The starting vector $p(A)u_1$ is equal to

$$p(A)u_1 = (A - \kappa_{m-k}I) \cdots (A - \kappa_2I)(A - \kappa_1I)u_1$$

= $(A - \kappa_{m-k}I) [\cdots [(A - \kappa_2I) [(A - \kappa_1I)u_1]]].$

In the first, we construct an Arnoldi decomposition with starting vector $(A - \kappa_1 I)u_1$. From (10), we have

$$(A - \kappa_1 I) U_m = U_m (H_m - \kappa_1 I) + \beta_m u_{m+1} e_m^T$$
(11)
= $U_m Q_1 R_1 + \beta_m u_{m+1} e_m^T,$

where

$$H_m - \kappa_1 I = Q_1 R_1$$

is the QR factorization of $H_m - \kappa_1 I$. Postmultiplying by Q_{1_2}

we get

$$(A - \kappa_1 I)(U_m Q_1) = (U_m Q_1)(R_1 Q_1) + \beta_m u_{m+1}(e_m^T Q_1).$$

It implies that

$$AU_m^{(1)} = U_m^{(1)}H_m^{(1)} + \beta_m u_{m+1}b_{m+1}^{(1)H},$$

where

$$U_m^{(1)} = U_m Q_1, \quad H_m^{(1)} = R_1 Q_1 + \kappa_1 I, \quad b_{m+1}^{(1)H} = e_m^T Q_1.$$

 $(H_m^{(1)}$: one step of single shifted QR algorithm)

Theorem

Let H_m be an unreduced Hessenberg matrix. Then $H_m^{(1)}$ has the form

$$H_m^{(1)} = \left[\begin{array}{cc} \hat{H}_m^{(1)} & \hat{h}_{12} \\ 0 & \kappa_1 \end{array} \right],$$

where $\hat{H}_m^{(1)}$ is unreduced.

Proof: Let

$$H_m - \kappa_1 I = Q_1 R_1$$

be the QR factorization of $H_m - \kappa_1 I$ with

$$Q_1 = G(1, 2, \theta_1) \cdots G(m - 1, m, \theta_{m-1})$$

where $G(i, i + 1, \theta_i)$ for i = 1, ..., m - 1 are Given rotations.

The implicitly restarted Arnoldi method

Since H_m is unreduced upper Hessenberg, i.e., the subdiagonal elements of H_m are nonzero, we get

$$\theta_i \neq 0$$
 for $i = 1, ..., m - 1$ (12)

and

$$(R_1)_{ii} \neq 0$$
 for $i = 1, \dots, m-1$. (13)

Since κ_1 is an eigenvalue of H_m , we have that $H_m - \kappa_1 I$ is singular and then

$$(R_1)_{mm} = 0. (14)$$

A D > A P > A D > A D >

Using the results of (12), (13) and (14), we get

$$\begin{aligned} H_m^{(1)} &= R_1 Q_1 + \kappa_1 I = R_1 G(1, 2, \theta_1) \cdots G(m - 1, m, \theta_{m-1}) + \kappa_1 I \\ &= \begin{bmatrix} \hat{H}_m^{(1)} & \hat{h}_{12} \\ 0 & \kappa_1 \end{bmatrix}, \end{aligned}$$

where $\hat{H}_m^{(1)}$ is unreduced.

A D > A P > A D > A D >

The implicitly restarted Arnoldi method

Remark

- $U_m^{(1)}$ is orthonormal.
- Since H_m is upper Hessenberg and Q_1 is the Q-factor of the QR factorization of $H_m \kappa_1 I$, it implies that Q_1 and $H_m^{(1)}$ are also upper Hessenberg.
- The vector $b_{m+1}^{(1)H} = e_m^T Q_1$ has the form

$$b_{m+1}^{(1)H} = \begin{bmatrix} 0 & \cdots & 0 & q_{m-1,m}^{(1)} & q_{m,m}^{(1)} \end{bmatrix};$$

i.e., only the last two components of $b_{m+1}^{(1)}$ are nonzero.

A D > A P > A D > A D >

• For on postmultiplying (11) by e_1 , we get

$$(A - \kappa_1 I)u_1 = (A - \kappa_1 I)(U_m e_1) = U_m^{(1)} R_1 e_1 = r_{11}^{(1)} u_1^{(1)}.$$

Since H_m is unreduced, $r_{11}^{(1)}$ is nonzero. Therefore, the first column of $U_m^{(1)}$ is a multiple of $(A - \kappa_1 I)u_1$.

• By the definition of $H_m^{(1)}$, we get

$$Q_1 H_m^{(1)} Q_1^H = Q_1 (R_1 Q_1 + \kappa_1 I) Q_1^H = Q_1 R_1 + \kappa_1 I = H_m.$$

Therefore, $\kappa_1, \kappa_2, \ldots, \kappa_m$ are also eigenvalues of $H_m^{(1)}$.

The implicitly restarted Arnoldi method

Similarly,

$$(A - \kappa_2 I)U_m^{(1)} = U_m^{(1)}(H_m^{(1)} - \kappa_2 I) + \beta_m u_{m+1} b_{m+1}^{(1)H}$$
(15)
= $U_m^{(1)}Q_2R_2 + \beta_m u_{m+1} b_{m+1}^{(1)H},$

where

$$H_m^{(1)} - \kappa_2 I = Q_2 R_2$$

is the QR factorization of $H_m^{(1)} - \kappa_2 I$ with upper Hessenberg matrix Q_2 . Postmultiplying by Q_2 , we get

$$(A - \kappa_2 I)(U_m^{(1)}Q_2) = (U_m^{(1)}Q_2)(R_2Q_2) + \beta_m u_{m+1}(b_{m+1}^{(1)H}Q_2).$$

It implies that

$$AU_m^{(2)} = U_m^{(2)}H_m^{(2)} + \beta_m u_{m+1}b_{m+1}^{(2)H},$$

where

$$U_m^{(2)} \equiv U_m^{(1)} Q_2$$

is orthonormal,

A D > A P > A D > A D >

The implicitly restarted Arnoldi method

$$H_m^{(2)} \equiv R_2 Q_2 + \kappa_2 I = \begin{bmatrix} H_{m-2}^{(2)} & * & * \\ & \kappa_2 & * \\ & & \kappa_1 \end{bmatrix}$$

is upper Hessenberg with unreduced matrix $H_{m-2}^{(2)}$ and

$$b_{m+1}^{(2)H} \equiv b_{m+1}^{(1)H}Q_2 = q_{m-1,m}^{(1)}e_{m-1}^HQ_2 + q_{m,m}^{(1)}e_m^TQ_2$$

= $\begin{bmatrix} 0 & \cdots & 0 & \times & \times \end{bmatrix}$.

For on postmultiplying (15) by e_1 , we get

$$(A - \kappa_2 I)u_1^{(1)} = (A - \kappa_2 I)(U_m^{(1)}e_1) = U_m^{(2)}R_2e_1 = r_{11}^{(2)}u_1^{(2)}.$$

Since $H_m^{(1)}$ is unreduced, $r_{11}^{(2)}$ is nonzero. Therefore, the first column of $U_m^{(2)}$ is a multiple of

$$(A - \kappa_2 I)u_1^{(1)} = 1/r_{11}^{(1)}(A - \kappa_2 I)(A - \kappa_1 I)u_1.$$

Repeating this process with $\kappa_3, \ldots, \kappa_{m-k}$, the result will be a Krylov decomposition

$$AU_m^{(m-k)} = U_m^{(m-k)}H_m^{(m-k)} + \beta_m u_{m+1}b_{m+1}^{(m-k)H}$$

with the following properties

- $U_m^{(m-k)}$ is orthonormal.
- 2 $H_m^{(m-k)}$ is upper Hessenberg.
- **(3)** The first k 1 components of $b_{m+1}^{(m-k)H}$ are zero.
- The first column of $U_m^{(m-k)}$ is a multiple of $(A \kappa_1 I) \cdots (A \kappa_{m-k} I) u_1$.

A D > A P > A D > A D >

Corollary

Let $\kappa_1, \ldots, \kappa_m$ be eigenvalues of H_m . If the implicitly restarted QR step is performed with shifts $\kappa_1, \ldots, \kappa_{m-k}$, then the matrix $H_m^{(m-k)}$ has the form

$$H_m^{(m-k)} = \begin{bmatrix} H_{kk}^{(m-k)} & H_{k,m-k}^{(m-k)} \\ 0 & T^{(m-k)} \end{bmatrix},$$

where $T^{(m-k)}$ is an upper triangular matrix with Ritz value $\kappa_1, \ldots, \kappa_{m-k}$ on its diagonal.

Therefore, the first k columns of the decomposition can be written in the form

 $AU_k^{(m-k)} = U_k^{(m-k)}H_{kk}^{(m-k)} + h_{k+1,k}u_{k+1}^{(m-k)}e_k^T + \beta_k q_{mk}u_{m+1}e_k^T,$ where $U_k^{(m-k)}$ consists of the first k columns of $U_m^{(m-k)}$, $H_{kk}^{(m-k)}$ is the leading principal submatrix of order k of $H_m^{(m-k)}$, and q_{km} is from the matrix $Q = Q_1 \cdots Q_{m-k}$.

Hence if we set

then

$$A\tilde{U}_k = \tilde{U}_k\tilde{H}_k + \tilde{\beta}_k\tilde{u}_{k+1}e_k^T$$

is an Arnoldi decomposition whose starting vector is proportional to $(A - \kappa_1 I) \cdots (A - \kappa_{m-k} I)u_1$.

- Avoid any matrix-vector multiplications in forming the new starting vector.
- Get its Arnoldi decomposition of order *k* for free.
- For large n the major cost will be in computing UQ.

If a Krylov decomposition can be partitioned in the form

$$A\begin{bmatrix} U_1 & U_2 \end{bmatrix} = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ 0 & B_{22} \end{bmatrix} + u\begin{bmatrix} b_1^H & b_2^H \end{bmatrix},$$

then

$$AU_1 = U_1 B_{11} + u b_1^H$$

is also a Krylov decomposition.

The process of Krylov-Schur restarting:

- Compute the Schur decomposition of the Rayleigh quotient
- Move the desired eigenvalues to the beginning
- Throw away the rest of the decomposition

A D > A P > A D > A D >

Krylov-Schur restarting

Exchanging eigenvalues and eigenblocks

• Move an eigenvalue from one place to another.

Let a triangular matrix be partitioned in the form

$$R \equiv \left[\begin{array}{ccc} A & B & C \\ 0 & S & D \\ 0 & 0 & E \end{array} \right],$$

where

$$S = \left[\begin{array}{cc} s_{11} & s_{12} \\ 0 & s_{22} \end{array} \right].$$

Suppose that Q is a unitary matrix such that

$$Q^H S Q = \left[\begin{array}{cc} s_{22} & \hat{s}_{12} \\ 0 & s_{11} \end{array} \right],$$

A D > A P > A D > A D >

Krylov-Schur restarting

then the eigenvalues s_{11} and s_{22} in the matrix

$$\operatorname{diag}\left(\begin{array}{ccc}I & Q^{H} & I\end{array}\right) R \operatorname{diag}\left(\begin{array}{ccc}I & Q & I\end{array}\right) = \left[\begin{array}{ccc}A & BQ & C\\0 & Q^{H}SQ & Q^{H}D\\0 & 0 & E\end{array}\right]$$

will have traded places.

• How to find such unitary matrix *Q*? Let

$$S = \left[\begin{array}{cc} S_{11} & S_{12} \\ 0 & S_{22} \end{array} \right],$$

where S_{ii} is of order n_i (i = 1, 2). Therefore are four cases to consider.

<ロト < 回 > < 回 > < 回 > < 回 >

• For the first two cases $(n_1 = 1, n_2 = 1 \text{ or } n_1 = 2, n_2 = 1)$: Let

$$S = \left[\begin{array}{cc} S_{11} & s_{12} \\ 0 & s_{22} \end{array} \right],$$

where S_{11} is of order one or two. Let x be a normalized eigenvector corresponding to s_{22} and let $Q = [x \ Y]$ be orthogonal. Then

$$Q^{T}SQ = \begin{bmatrix} x^{T} \\ Y^{T} \end{bmatrix} S \begin{bmatrix} x & Y \end{bmatrix} = \begin{bmatrix} x^{T}Sx & x^{T}SY \\ Y^{T}Sx & Y^{T}SY \end{bmatrix} = \begin{bmatrix} s_{22} & \hat{s}_{12}^{T} \\ 0 & \hat{S}_{11} \end{bmatrix}$$

Note that \hat{S}_{11} and S_{11} have the same eigenvalues.

Krylov-Schur restarting

• For the third case
$$(n_1 = 1, n_2 = 2)$$
:

Let

$$S = \left[\begin{array}{cc} s_{11} & s_{12}^T \\ 0 & S_{22} \end{array} \right],$$

where S_{22} is of order two. Let y be a normalized left eigenvector corresponding to s_{11} and let $Q = [X \ y]$ be orthogonal. Then

$$Q^{T}SQ = \begin{bmatrix} X^{T} \\ y^{T} \end{bmatrix} S \begin{bmatrix} X & y \end{bmatrix} = \begin{bmatrix} X^{T}SX & X^{T}Sy \\ y^{T}SX & y^{T}Sy \end{bmatrix} = \begin{bmatrix} \hat{S}_{22} & \hat{s}_{12} \\ 0 & s_{11} \end{bmatrix}$$

(日)

Krylov-Schur restarting

• For the last case $(n_1 = 2, n_2 = 2)$:

Let

$$S = \left[\begin{array}{cc} S_{11} & S_{12} \\ 0 & S_{22} \end{array} \right].$$

Let (S_{22}, X) be an orthonormal eigenpair, i.e.,

$$SX = X\left(US_{22}U^{-1}\right)$$

for some nonsingular U, and let Q = [X Y] be orthogonal. Then

$$Q^{T}SQ = \begin{bmatrix} X^{T}SX & X^{T}SY \\ Y^{T}SX & Y^{T}SY \end{bmatrix} = \begin{bmatrix} X^{T}XUS_{22}U^{-1} & X^{T}SY \\ Y^{T}XUS_{22}U^{-1} & Y^{T}SY \end{bmatrix}$$
$$= \begin{bmatrix} US_{22}U^{-1} & \hat{S}_{12} \\ 0 & \hat{S}_{11} \end{bmatrix}.$$

Krylov-Schur restarting

Question

How to compute the orthonormal eigenbasis *X*?

Let the eigenbasis be
$$\begin{bmatrix} P \\ I \end{bmatrix}$$
, where *P* is to be determined.
Then

$$\begin{bmatrix} S_{11} & S_{12} \\ 0 & S_{22} \end{bmatrix} \begin{bmatrix} P \\ I \end{bmatrix} = \begin{bmatrix} P \\ I \end{bmatrix} S_{22}.$$

Hence *P* can be solved from the Sylvester equation

$$S_{11}P - PS_{22} = -S_{12}.$$

The orthonormal eigenbasis \boldsymbol{X} can be computed by the $\boldsymbol{Q}\boldsymbol{R}$ factorization

$$\left[\begin{array}{c}P\\I\end{array}\right] = \left[\begin{array}{c}X&Y\end{array}\right] \left[\begin{array}{c}R\\0\end{array}\right].$$

Krylov-Schur restarting

The Krylov-Schur cycle Assume $A \in \mathbb{C}^{n \times n}$.

Write the corresponding Krylov decomposition in the form

$$AU_m = U_m T_m + \beta_m u_{m+1} e_m^T.$$

2 Compute the Schur decomposition of T_m ,

$$S_m = Q^H T_m Q$$

where S_m is upper triangular.

Transform the decomposition to the form

$$A\hat{U}_m = \hat{U}_m S_m + u_{m+1} b_{m+1}^H.$$

- Select m k Ritz values and move them to the end of S_m , accumulating the transformations in Q_1 .
- Truncate the decomposition, i.e.,

$$S_k := S_m[1:k,1:k], \ b_k^H := b_{m+1}^H Q_1[:,1:k], \ U_k := \hat{U}_m Q_1[:,V_k].$$

(日)

Deflation

Krylov-Schur restarting

We say a Krylov decomposition has been deflated if it can be partitioned in the form

$$A\begin{bmatrix} U_1 & U_2 \end{bmatrix} = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ 0 & B_{22} \end{bmatrix} + u\begin{bmatrix} 0 & b_2^H \end{bmatrix}.$$

It implies that

$$AU_1 = U_1 B_{11},$$

so that U_{11} spans an eigenspace of A.

Krylov-Schur restarting

Criterion of Deflation:

Theorem

Let

$$AU = UB + ub^H$$

be an orthonormal Krylov decomposition, and let $[M, \tilde{U}] = [M, UW]$ be an orthonormal pair. Let $[W, W_{\perp}]$ be unitary, and set

$$\tilde{B} = \begin{bmatrix} W^H \\ W^H_{\perp} \end{bmatrix} B \begin{bmatrix} W & W_{\perp} \end{bmatrix} \equiv \begin{bmatrix} \tilde{B}_{11} & \tilde{B}_{12} \\ \tilde{B}_{21} & \tilde{B}_{22} \end{bmatrix}$$

and

$$\tilde{b}^{H} = b^{H} \begin{bmatrix} W & W_{\perp} \end{bmatrix} = \begin{bmatrix} \tilde{b}_{1}^{H} & \tilde{b}_{2}^{H} \end{bmatrix}.$$

Krylov-Schur restarting

Then

$$\|A\tilde{U} - \tilde{U}M\|_F^2 = \|\tilde{B}_{21}\|_F^2 + \|\tilde{b}_1\|_F^2 + \|\tilde{B}_{11} - M\|_F^2.$$

Proof: Let

$$\left[\begin{array}{cc} \tilde{U} & \tilde{U}_{\perp} \end{array} \right] = U \left[\begin{array}{cc} W & W_{\perp} \end{array} \right].$$

Then

$$\begin{split} & A\tilde{U} - \tilde{U}M = UBW + ub^{H}W - UWM \\ = & U \begin{bmatrix} W & W_{\perp} \end{bmatrix} \left(\begin{bmatrix} W^{H} \\ W_{\perp}^{H} \end{bmatrix} B \begin{bmatrix} W & W_{\perp} \end{bmatrix} \begin{bmatrix} I \\ 0 \end{bmatrix} - \begin{bmatrix} I \\ 0 \end{bmatrix} M \right) \\ & + ub^{H} \begin{bmatrix} W & W_{\perp} \end{bmatrix} \begin{bmatrix} I \\ 0 \end{bmatrix} \\ = & \begin{bmatrix} \tilde{U} & \tilde{U}_{\perp} \end{bmatrix} \begin{bmatrix} \tilde{B}_{11} - M \\ \tilde{B}_{21} \end{bmatrix} + u\tilde{b}_{1}^{H} = \begin{bmatrix} \tilde{U} & \tilde{U}_{\perp} & u \end{bmatrix} \begin{bmatrix} \tilde{B}_{11} - M \\ \tilde{B}_{21} \\ \tilde{b}_{1}^{H} \end{bmatrix} . \end{split}$$

Krylov-Schur restarting

Since $u^H U = 0$, we have

$$u^H \begin{bmatrix} \tilde{U} & \tilde{U}_{\perp} \end{bmatrix} = u^H U \begin{bmatrix} W & W_{\perp} \end{bmatrix} = 0.$$

It implies that $[\tilde{U}, \tilde{U}_{\perp}, u]$ is an orthonormal matrix. Therefore,

$$\|A\tilde{U} - \tilde{U}M\|_{F}^{2} = \|\begin{bmatrix} \tilde{B}_{11} - M \\ \tilde{B}_{21} \\ \tilde{b}_{1}^{H} \end{bmatrix}\|_{F}^{2}$$
$$= \|\tilde{B}_{21}\|_{F}^{2} + \|\tilde{b}_{1}\|_{F}^{2} + \|\tilde{B}_{11} - M\|_{F}^{2}.$$

Suppose that $A\tilde{U} - \tilde{U}M$ is small. Transform the Krylov decomposition to the form

$$A\begin{bmatrix} \tilde{U} & \tilde{U}_{\perp} \end{bmatrix} = \begin{bmatrix} \tilde{U} & \tilde{U}_{\perp} \end{bmatrix} \begin{bmatrix} \tilde{B}_{11} & \tilde{B}_{12} \\ \tilde{B}_{21} & \tilde{B}_{22} \end{bmatrix} + u\begin{bmatrix} \tilde{b}_{1}^{H} & \tilde{b}_{2}^{H} \end{bmatrix}$$
$$= \begin{bmatrix} \tilde{U} & \tilde{U}_{\perp} \end{bmatrix} \begin{bmatrix} \tilde{B}_{11} & \tilde{B}_{12} \\ 0 & \tilde{B}_{22} \end{bmatrix} + u\begin{bmatrix} 0 & \tilde{b}_{2}^{H} \end{bmatrix} + \left(\tilde{U}_{\perp} \tilde{B}_{21} + u \tilde{b}_{1}^{H} \right)$$

Krylov-Schur restarting

From Theorem 16, we have

$$\| \begin{bmatrix} \tilde{B}_{21} \\ \tilde{b}_1^H \end{bmatrix} \|_F \le \| A \tilde{U} - \tilde{U} M \|_F,$$

with equality if and only if $M = W^H B W$. Therefore, if the residual norm $||A\tilde{U} - \tilde{U}M||_F$ is sufficiently small, we may set \tilde{B}_{21} and \tilde{b}_1 to zero to get the approximate decomposition

$$A \begin{bmatrix} \tilde{U} & \tilde{U}_{\perp} \end{bmatrix} \approx \begin{bmatrix} \tilde{U} & \tilde{U}_{\perp} \end{bmatrix} \begin{bmatrix} \tilde{B}_{11} & \tilde{B}_{12} \\ 0 & \tilde{B}_{22} \end{bmatrix} + u \begin{bmatrix} 0 & \tilde{b}_2^H \end{bmatrix}.$$

Rational Krylov transformations

- Shift-and-invert transformations in Arnoldi's method is to focus the algorithm on the eigenvalues near the shift κ.
- How to do when it needs to use more than one shift?
 - Restart with a new shift and a new vector
 - Change a Krylov decomposition from one in $(A \kappa_1 I)^{-1}$ to one in $(A \kappa_2 I)^{-1}$.

Krylov-Schur restarting

Suppose we have a Krylov sequence

$$u, (A - \kappa_1 I)^{-1} u, (A - \kappa_1 I)^{-2} u, \cdots, (A - \kappa_1 I)^{1-k} u.$$

Set $v = (A - \kappa_1 I)^{1-k} u$, then the sequence with its terms in reverse order is

$$v, (A - \kappa_1 I)v, \cdots, (A - \kappa_1 I)^{k-1}v,$$

so that

$$\mathcal{K}_k[(A - \kappa_1 I)^{-1}, u] = \mathcal{K}_k[A - \kappa_1 I, v].$$

By the shift invariance of a Krylov sequence

$$\mathcal{K}_k[A - \kappa_1 I, v] = \mathcal{K}_k[A - \kappa_2 I, v].$$

Set

$$w = (A - \kappa_2 I)^{k-1} v,$$

we have

$$\mathcal{K}_k[A - \kappa_2 I, v] = \mathcal{K}_k[(A - \kappa_2 I)^{-1}, w].$$

Krylov-Schur restarting

It follows that

$$\mathcal{K}_k[(A - \kappa_1 I)^{-1}, u] = \mathcal{K}_k[(A - \kappa_2 I)^{-1}, w].$$

That is the Krylov subspace in $(A - \kappa_1 I)^{-1}$ with starting vector u is exactly the same as the Krylov subspace in $(A - \kappa_2 I)^{-1}$ with a different starting vector w.

Let

$$(A - \kappa_1 I)^{-1} U = \hat{U}\hat{H}$$

be an orthonormal Arnoldi decomposition. Then

$$U = (A - \kappa_1 I)\hat{U}\hat{H} = (A - \kappa_2 I)\hat{U}\hat{H} - (\kappa_1 - \kappa_2)\hat{U}\hat{H}.$$

Hence

$$(A - \kappa_2 I)^{-1} \hat{U} \left[\hat{I} + (\kappa_1 - \kappa_2) \hat{H} \right] = \hat{U} \hat{H},$$

where

$$\hat{I} = \begin{bmatrix} I & 0 \end{bmatrix}^T$$

A D > A P > A D > A D >

Krylov-Schur restarting

Let

$$\hat{I} + (\kappa_1 - \kappa_2)\hat{H} = Q(\hat{I}R)$$

be a QR factorization of $\hat{I} + (\kappa_1 - \kappa_2)\hat{H}$. Then

$$(A - \kappa_2 I)^{-1} (\hat{U}Q\hat{I}) = \hat{U}\hat{H}R^{-1} = (\hat{U}Q)(Q^H\hat{H}R^{-1}).$$

Set

$$\hat{V} = \hat{U}Q, \ V = \hat{V}\hat{I} \ \text{ and } \ \hat{B} = Q^H\hat{H}R^{-1},$$

then

$$(A - \kappa_2 I)^{-1} V = \hat{V}\hat{B}.$$

This is a Krylov decomposition.

ヘロト ヘロト ヘビト ヘビト

If A is symmetric and

$$AU_k = U_k T_k + \beta_k u_{k+1} e_k^T$$

is an Arnoldi decomposition, then ${\cal T}_k$ is a tridiagonal matrix of the form

$$T_{k} = \begin{bmatrix} \alpha_{1} & \beta_{1} & & & \\ \beta_{1} & \alpha_{2} & \beta_{2} & & & \\ & \beta_{2} & \alpha_{3} & \beta_{3} & & \\ & \ddots & \ddots & \ddots & \\ & & & \beta_{k-2} & \alpha_{k-1} & \beta_{k-1} \\ & & & & & \beta_{k-1} & \alpha_{k} \end{bmatrix}$$

It implies that u_k can be generated by a three-term recurrence

$$\beta_j u_{j+1} = A u_j - \alpha_j u_j - \beta_{j-1} u_{j-1},$$

where

$$\alpha_j = u_j^T A u_j, \quad \beta_j = \|A u_j - \alpha_j u_j - \beta_{j-1} u_{j-1}\|_2.$$

(日)

Problem

- Mathematically, u_j must be orthogonal.
- In practice, they can lose orthogonality.

Solutions

Reorthogonalize the vectors at each step and restart when it becomes impossible to store $\{u_i\}$ in main memory.