Krylov sequence methods

Tsung-Ming Huang

Department of Mathematics
National Taiwan Normal University, Taiwan

March 22, 2009

Outline

(1) Krylov decompositions

- Householder transformation
- Arnoldi decompositions
- Lanczos decompositions
- Krylov decompositions
- Computation of refined and Harmonic Ritz vectors
(2) Restarted Arnoldi method
- The implicitly restarted Arnoldi method
- Krylov-Schur restarting
(3) The Lanczos Algorithm

Definition

A Householder transformation or elementary reflector is a matrix of

$$
H=I-u u^{*}
$$

where $\|u\|_{2}=\sqrt{2}$.
Note that H is Hermitian and unitary.

Theorem

Let x be a vector such that $\|x\|_{2}=1$ and x_{1} is real and nonnegative. Let

$$
u=\left(x+e_{1}\right) / \sqrt{1+x_{1}} .
$$

Then

$$
H x=\left(I-u u^{*}\right) x=-e_{1} .
$$

Proof:

$$
\begin{aligned}
I-u u^{*} x & =x-\left(u^{*} x\right) u=x-\frac{x^{*} x+x_{1}}{\sqrt{1+x_{1}}} \cdot \frac{x+e_{1}}{\sqrt{1+x_{1}}} \\
& =x-\left(x+e_{1}\right)=-e_{1}
\end{aligned}
$$

Theorem

Let x be a vector with $x_{1} \neq 0$. Let

$$
u=\frac{\rho \frac{x}{\|x\|_{2}}+e_{1}}{\sqrt{1+\rho \frac{x_{1}}{\|x\|_{2}}}}
$$

where $\rho=\bar{x}_{1} /\left|x_{1}\right|$. Then

$$
H x=-\bar{\rho}\|x\|_{2} e_{1} .
$$

Proof: Since

$$
\begin{aligned}
& {\left[\bar{\rho} x^{*} /\|x\|_{2}+e_{1}^{T}\right]\left[\rho x /\|x\|_{2}+e_{1}\right] } \\
= & \bar{\rho} \rho+\rho x_{1} /\|x\|_{2}+\bar{\rho} \bar{x}_{1} /\|x\|_{2}+1 \\
= & 2\left[1+\rho x_{1} /\|x\|_{2}\right],
\end{aligned}
$$

it follows that

$$
u^{*} u=2 \quad \Rightarrow \quad\|u\|_{2}=\sqrt{2}
$$

and

$$
u^{*} x=\frac{\bar{\rho}\|x\|_{2}+x_{1}}{\sqrt{1+\rho \frac{x_{1}}{\|x\|_{2}}}}
$$

Householder transformation

Hence,

$$
\begin{aligned}
H x & =x-\left(u^{*} x\right) u=x-\frac{\bar{\rho}\|x\|_{2}+x_{1}}{\sqrt{1+\rho \frac{x_{1}}{\|x\|_{2}}}} \frac{\rho \frac{x}{\|x\|_{2}}+e_{1}}{\sqrt{1+\rho \frac{x_{1}}{\|x\|_{2}}}} \\
& =\left[1-\frac{\left(\bar{\rho}\|x\|_{2}+x_{1}\right) \frac{\rho}{\|x\|_{2}}}{1+\rho \frac{x_{1}}{\|x\|_{2}}}\right] x-\frac{\bar{\rho}\|x\|_{2}+x_{1}}{1+\rho \frac{x_{1}}{\|x\|_{2}}} e_{1} \\
& =-\frac{\bar{\rho}\|x\|_{2}+x_{1}}{1+\rho \frac{x_{1}}{\|x\|_{2}}} e_{1} \\
& =-\bar{\rho}\|x\|_{2} e_{1} .
\end{aligned}
$$

Definition

A complex $m \times n$-matrix $R=\left[r_{i j}\right]$ is called an upper (lower) triangular matrix, if $r_{i j}=0$ for $i>j(i<j)$.

Definition

Given $A \in \mathbb{C}^{m \times n}, Q \in \mathbb{C}^{m \times m}$ unitary and $R \in \mathbb{C}^{m \times n}$ upper triangular such that $A=Q R$. Then the product is called a $Q R$-factorization of A.

Theorem

Any complex $m \times n$ matrix A can be factorized by the product $A=Q R$, where Q is $m \times m$-unitary. R is $m \times n$ upper triangular.

Proof: Let $A^{(0)}=A=\left[a_{1}^{(0)}\left|a_{2}^{(0)}\right| \cdots \mid a_{n}^{(0)}\right]$. Find $Q_{1}=\left(I-2 w_{1} w_{1}^{*}\right)$ such that $Q_{1} a_{1}^{(0)}=c e_{1}$. Then

$$
\begin{align*}
A^{(1)} & =Q_{1} A^{(0)}=\left[Q_{1} a_{1}^{(0)}, Q_{1} a_{2}^{(0)}, \cdots, Q_{1} a_{n}^{(0)}\right] \\
& =\left[\begin{array}{c|c|c|c|}
c_{1} & * & \cdots & * \\
\hline 0 & & & \\
\vdots & a_{2}^{(1)} & \cdots & a_{n}^{(1)} \\
0 & & &
\end{array}\right] . \tag{1}
\end{align*}
$$

Find $Q_{2}=\left[\begin{array}{c|c}1 & 0 \\ \hline 0 & I-w_{2} w_{2}^{*}\end{array}\right]$ such that $\left(I-2 w_{2} w_{2}^{*}\right) a_{2}^{(1)}=c_{2} e_{1}$.
Then

$$
A^{(2)}=Q_{2} A^{(1)}=\left[\begin{array}{cc|ccc}
c_{1} & * & * & \cdots & * \\
0 & c_{2} & * & \cdots & * \\
\hline 0 & 0 & & & \\
\vdots & \vdots & a_{3}^{(2)} & \cdots & a_{n}^{(2)} \\
0 & 0 & &
\end{array}\right] \text {. }
$$

We continue this process. Then after $l=\min (m, n)$ steps $A^{(l)}$ is an upper triangular matrix satisfying

$$
A^{(l-1)}=R=Q_{l-1} \cdots Q_{1} A
$$

Then $A=Q R$, where $Q=Q_{1}^{*} \cdots Q_{l-1}^{*}$.

Theorem

Let A be a nonsingular $n \times n$ matrix. Then the $Q R$-factorization is essentially unique. That is, if $A=Q_{1} R_{1}=Q_{2} R_{2}$, then there is a unitary diagonal matrix $D=\operatorname{diag}\left(d_{i}\right)$ with $\left|d_{i}\right|=1$ such that $Q_{1}=Q_{2} D$ and $D R_{1}=R_{2}$.

Proof: Let $A=Q_{1} R_{1}=Q_{2} R_{2}$. Then $Q_{2}^{*} Q_{1}=R_{2} R_{1}^{-1}=D$ must be a diagonal unitary matrix.

Suppose that the columns of K_{k+1} are linearly independent and let

$$
K_{k+1}=U_{k+1} R_{k+1}
$$

be the $Q R$ factorization of K_{k+1}. Then the columns of U_{k+1} are results of successively orthogonalizing the columns of K_{k+1}.

Theorem

Let $\left\|u_{1}\right\|_{2}=1$ and the columns of $K_{k+1}\left(A, u_{1}\right)$ be linearly independent. Let $U_{k+1}=\left[\begin{array}{lll}u_{1} & \cdots & u_{k+1}\end{array}\right]$ be the Q-factor of K_{k+1}. Then there is a $(k+1) \times k$ unreduced upper Hessenberg matrix \hat{H}_{k} such that

$$
\begin{equation*}
A U_{k}=U_{k+1} \hat{H}_{k} . \tag{2}
\end{equation*}
$$

Conversely, if U_{k+1} is orthonormal and satisfies (2), where \hat{H}_{k} is a $(k+1) \times k$ unreduced upper Hessenberg matrix, then U_{k+1} is the Q-factor of $K_{k+1}\left(A, u_{1}\right)$.

Proof: (" \Rightarrow ") Let $K_{k}=U_{k} R_{k}$ be the $Q R$ factorization and $S_{k}=R_{k}^{-1}$. Then

$$
A U_{k}=A K_{k} S_{k}=K_{k+1}\left[\begin{array}{c}
0 \\
S_{k}
\end{array}\right]=U_{k+1} R_{k+1}\left[\begin{array}{c}
0 \\
S_{k}
\end{array}\right]=U_{k+1} \hat{H}_{k}
$$

where

$$
\hat{H}_{k}=R_{k+1}\left[\begin{array}{c}
0 \\
S_{k}
\end{array}\right] .
$$

It implies that \hat{H}_{k} is a $(k+1) \times k$ Hessenberg matrix and

$$
h_{i+1, i}=r_{i+1, i+1} s_{i i}=\frac{r_{i+1, i+1}}{r_{i i}} .
$$

Thus by the nonsingularity of R_{k}, \hat{H}_{k} is unreduced. (" \Leftarrow ") If $k=1$, then

$$
A u_{1}=h_{11} u_{1}+h_{21} u_{2} \quad \Rightarrow \quad u_{2}=\frac{-h_{11}}{h_{21}} u_{1}+\frac{1}{h_{21}} A u_{1} .
$$

Since [$\left.\begin{array}{ll}u_{1} & u_{2}\end{array}\right]$ is orthonormal and u_{2} is a linear combination of u_{1} and $A u_{1},\left[\begin{array}{ll}u_{1} & u_{2}\end{array}\right]$ is the Q-factor of K_{2}. Assume U_{k} is the Q-factor of K_{k}. If we partition

$$
\hat{H}_{k}=\left[\begin{array}{cc}
\hat{H}_{k-1} & h_{k} \\
0 & h_{k+1, k}
\end{array}\right],
$$

then from (2)

$$
A u_{k}=U_{k} h_{k}+h_{k+1, k} u_{k+1} .
$$

Thus u_{k+1} is a linear combination of $A u_{k}$ and the columns of U_{k}. Hence U_{k+1} is the Q-factor of K_{k+1}.

Definition

Let $U_{k+1} \in \mathbb{C}^{n \times(k+1)}$ be orthonormal. If there is a $(k+1) \times k$ unreduced upper Hessenberg matrix \hat{H}_{k} such that

$$
\begin{equation*}
A U_{k}=U_{k+1} \hat{H}_{k} \tag{3}
\end{equation*}
$$

then (3) is called an Arnoldi decomposition of order k. If \hat{H}_{k} is reduced, we say the Arnoldi decomposition is reduced.

Partition

$$
\hat{H}_{k}=\left[\begin{array}{c}
H_{k} \\
h_{k+1, k} e_{k}^{T}
\end{array}\right],
$$

and set

$$
\beta_{k}=h_{k+1, k}
$$

Then (3) is equivalent to

$$
A U_{k}=U_{k} H_{k}+\beta_{k} u_{k+1} e_{k}^{T}
$$

Theorem

Suppose the Krylov sequence $K_{k+1}\left(A, u_{1}\right)$ does not terminate at $k+1$. Then up to scaling of the columns of U_{k+1}, the Arnoldi decomposition of K_{k+1} is unique.

Proof: Since the Krylov sequence $K_{k+1}\left(A, u_{1}\right)$ does not terminate at $k+1$, the columns of $K_{k+1}\left(A, u_{1}\right)$ are linearly independent. By Theorem 8, there is an unreduced matrix H_{k} and $\beta_{k} \neq 0$ such that

$$
\begin{equation*}
A U_{k}=U_{k} H_{k}+\beta_{k} u_{k+1} e_{k}^{T} \tag{4}
\end{equation*}
$$

where $U_{k+1}=\left[U_{k} u_{k+1}\right]$ is an orthonormal basis for $\mathcal{K}_{k+1}\left(A, u_{1}\right)$. Suppose there is another orthonormal basis $\tilde{U}_{k+1}=\left[\tilde{U}_{k} \tilde{u}_{k+1}\right]$ for $\mathcal{K}_{k+1}\left(A, u_{1}\right)$, unreduced matrix \tilde{H}_{k} and $\tilde{\beta}_{k} \neq 0$ such that

$$
A \tilde{U}_{k}=\tilde{U}_{k} \tilde{H}_{k}+\tilde{\beta}_{k} \tilde{u}_{k+1} e_{k}^{T}
$$

Then we claim that

$$
\tilde{U}_{k}^{H} u_{k+1}=0
$$

For otherwise there is a column \tilde{u}_{j} of \tilde{U}_{k} such that

$$
\tilde{u}_{j}=\alpha u_{k+1}+U_{k} a, \quad \alpha \neq 0 .
$$

Hence

$$
A \tilde{u}_{j}=\alpha A u_{k+1}+A U_{k} a
$$

which implies that $A \tilde{u}_{j}$ contains a component along $A^{k+1} u_{1}$. Since the Krylov sequence $K_{k+1}\left(A, u_{1}\right)$ does not terminate at $k+1$, we have

$$
\mathcal{K}_{k+2}\left(A, u_{1}\right) \neq \mathcal{K}_{k+1}\left(A, u_{1}\right)
$$

Therefore, $A \tilde{u}_{j}$ lies in $\mathcal{K}_{k+2}\left(A, u_{1}\right)$ but not in $\mathcal{K}_{k+1}\left(A, u_{1}\right)$ which is a contradiction.
Since U_{k+1} and \tilde{U}_{k+1} are orthonormal bases for $\mathcal{K}_{k+1}\left(A, u_{1}\right)$ and $\tilde{U}_{k}^{H} u_{k+1}=0$, it follows that

$$
\mathcal{R}\left(U_{k}\right)=\mathcal{R}\left(\tilde{U}_{k}\right) \quad \text { and } \quad U_{k}^{H} \tilde{u}_{k+1}=0
$$

that is

$$
U_{k}=\tilde{U}_{k} Q
$$

for some unitary matrix Q. Hence

$$
A\left(\tilde{U}_{k} Q\right)=\left(\tilde{U}_{k} Q\right)\left(Q^{H} \tilde{H}_{k} Q\right)+\tilde{\beta}_{k} \tilde{u}_{k+1}\left(e_{k}^{T} Q\right),
$$

or

$$
\begin{equation*}
A U_{k}=U_{k}\left(Q^{H} \tilde{H}_{k} Q\right)+\tilde{\beta}_{k} \tilde{u}_{k+1} e_{k}^{T} Q \tag{5}
\end{equation*}
$$

On premultiplying (4) and (5) by U_{k}^{H}, we obtain

$$
H_{k}=U_{k}^{H} A U_{k}=Q^{H} \tilde{H}_{k} Q
$$

Similarly, premultiplying by u_{k+1}^{H}, we obtain

$$
\beta_{k} e_{k}^{T}=u_{k+1}^{H} A U_{k}=\tilde{\beta}_{k}\left(u_{k+1}^{H} \tilde{u}_{k+1}\right) e_{k}^{T} Q
$$

It follows that the last row of Q is $\omega_{k} e_{k}^{T}$, where $\left|\omega_{k}\right|=1$. Since the norm of the last column of Q is one, the last column of Q is $\omega_{k} e_{k}$. Since H_{k} is unreduced, it follows from the implicit Q theorem that

$$
Q=\operatorname{diag}\left(\omega_{1}, \cdots, \omega_{k}\right), \quad\left|\omega_{j}\right|=1, j=1, \ldots, k .
$$

Thus up to column scaling $U_{k}=\tilde{U}_{k} Q$ is the same as \tilde{U}_{k}. Subtracting (5) from (4), we find that

$$
\beta_{k} u_{k+1}=\omega_{k} \tilde{\beta}_{k} \tilde{u}_{k+1}
$$

so that up to scaling u_{k+1} and \tilde{u}_{k+1} are the same.

Theorem

Let the orthonormal matrix U_{k+1} satisfy

$$
A U_{k}=U_{k+1} \hat{H}_{k}
$$

where \hat{H}_{k} is Hessenberg. Then \hat{H}_{k} is reduced if and only if $\mathcal{R}\left(U_{k}\right)$ contains an eigenspace of A.

Proof: (" \Rightarrow ") Suppose that \hat{H}_{k} is reduced, say that $h_{j+1, j}=0$. Partition

$$
\hat{H}_{k}=\left[\begin{array}{cc}
H_{11} & H_{12} \\
0 & H_{22}
\end{array}\right] \quad \text { and } \quad U_{k}=\left[\begin{array}{ll}
U_{11} & U_{12}
\end{array}\right]
$$

where H_{11} is an $j \times j$ matrix and U_{11} is consisted the first j columns of U_{k+1}. Then

$$
A\left[\begin{array}{ll}
U_{11} & U_{12}
\end{array}\right]=\left[\begin{array}{lll}
U_{11} & U_{12} & u_{k+1}
\end{array}\right]\left[\begin{array}{cc}
H_{11} & H_{12} \\
0 & H_{22}
\end{array}\right] .
$$

It implies that

$$
A U_{11}=U_{11} H_{11}
$$

so that U_{11} is an eigenbasis of A.
(" \Leftarrow ") Suppose that A has an eigenspace that is a subset of $\mathcal{R}\left(U_{k}\right)$ and \hat{H}_{k} is unreduced. Let $\left(\lambda, U_{k} w\right)$ for some w be an eigenpair of A. Then

$$
\begin{aligned}
0 & =(A-\lambda I) U_{k} w=\left(U_{k+1} \hat{H}_{k}-\lambda U_{k}\right) w \\
& =\left(U_{k+1} \hat{H}_{k}-\lambda U_{k+1}\left[\begin{array}{l}
I \\
0
\end{array}\right]\right) w=U_{k+1} \hat{H}_{\lambda} w,
\end{aligned}
$$

where

$$
\hat{H}_{\lambda}=\left[\begin{array}{c}
H_{k}-\lambda I \\
h_{k+1, k} e_{k}^{T}
\end{array}\right] .
$$

Since \hat{H}_{λ} is unreduced, the matrix $U_{k+1} \hat{H}_{\lambda}$ is of full column rank. It follows that $w=0$ which is a contradiction.

Write the k-th column of the Arnoldi decomposition

$$
A U_{k}=U_{k} H_{k}+\beta_{k} u_{k+1} e_{k}^{T}
$$

in the form

$$
A u_{k}=U_{k} h_{k}+\beta_{k} u_{k+1} .
$$

Then from the orthonormality of U_{k+1}, we have

$$
h_{k}=U_{k}^{H} A u_{k} .
$$

Since

$$
\beta_{k} u_{k+1}=A u_{k}-U_{k} h_{k}
$$

and $\left\|u_{k+1}\right\|_{2}=1$, we must have

$$
\beta_{k}=\left\|A u_{k}-U_{k} h_{k}\right\|_{2}
$$

and

$$
u_{k+1}=\beta_{k}^{-1}\left(A u_{k}-U_{k} h_{k}\right)
$$

Algorithm (Arnoldi process)

1. f for $k=1,2, \ldots$
2. $h_{k}=U_{k}^{H} A u_{k}$
3. $v=A u_{k}-U_{k} h_{k}$
4. $\beta_{k}=h_{k+1, k}=\|v\|_{2}$
5. $u_{k+1}=v / \beta_{k}$
6. $\quad \hat{H}_{k}=\left[\begin{array}{cc}\hat{H}_{k-1} & h_{k} \\ 0 & h_{k+1, k}\end{array}\right]$
7. end for k

- The computation of u_{k+1} is actually a form of the well-known Gram-Schmidt algorithm.
- In the presence of inexact arithmetic cancelation in statement 3 can cause it to fail to produce orthogonal vectors.
- The cure is process called reorthogonalization.

Algorithm (Reorthogonalized Arnoldi process)

$$
\begin{aligned}
& \text { for } k=1,2, \ldots \\
& \quad h_{k}=U_{k}^{H} A u_{k} \\
& v=A u_{k}-U_{k} h_{k} \\
& w=U_{k}^{H} v \\
& h_{k}=h_{k}+w \\
& v=v-U_{k} w \\
& \beta_{k}=h_{k+1, k}=\|v\|_{2} \\
& u_{k+1}=v / \beta_{k} \\
& \hat{H}_{k}=\left[\begin{array}{cc}
\hat{H}_{k-1} & h_{k} \\
0 & h_{k+1, k}
\end{array}\right]
\end{aligned}
$$

$$
\text { end for } k
$$

Let A be Hermitian and let

$$
\begin{equation*}
A U_{k}=U_{k} T_{k}+\beta_{k} u_{k+1} e_{k}^{T} \tag{6}
\end{equation*}
$$

be an Arnoldi decomposition. Since T_{k} is upper Hessenberg and $T_{k}=U_{k}^{H} A U_{k}$ is Hermitian, it follows that T_{k} is tridiagonal and can be written in the form

$$
T_{k}=\left[\begin{array}{cccccc}
\alpha_{1} & \bar{\beta}_{1} & & & & \\
\beta_{1} & \alpha_{2} & \bar{\beta}_{2} & & & \\
& \beta_{2} & \alpha_{3} & \bar{\beta}_{3} & & \\
& & \ddots & \ddots & \ddots & \\
& & & \beta_{k-2} & \alpha_{k-1} & \bar{\beta}_{k-1} \\
& & & & \beta_{k-1} & \alpha_{k}
\end{array}\right]
$$

Equation (6) is called a Lanczos decomposition. The first column of (6) is

$$
A u_{1}=\alpha_{1} u_{1}+\beta_{1} u_{2}
$$

or

$$
u_{2}=\frac{A u_{1}-\alpha_{1} u_{1}}{\beta_{1}}
$$

From the orthonormality of u_{1} and u_{2}, it follows that

$$
\alpha_{1}=u_{1}^{H} A u_{1}
$$

and

$$
\beta_{1}=\left\|A u_{1}-\alpha_{1} u_{1}\right\|_{2}
$$

More generality, from the j-th column of (6) we get the relation

$$
u_{j+1}=\frac{A u_{j}-\alpha_{j} u_{j}-\bar{\beta}_{j-1} u_{j-1}}{\beta_{j}}
$$

where

$$
\alpha_{j}=u_{j}^{H} A u_{j} \quad \text { and } \quad \beta_{j}=\left\|A u_{j}-\alpha_{j} u_{j}-\bar{\beta}_{j-1} u_{j-1}\right\|_{2}
$$

This is the Lanczos three-term recurrence.

Algorithm (Lanczos recurrence)

Let u_{1} be given. This algorithm generates the Lanczos decomposition

$$
A U_{k}=U_{k} T_{k}+\beta_{k} u_{k+1} e_{k}^{T}
$$

where T_{k} is Hermitian tridiagonal.

1. $u_{0}=0 ; \beta_{0}=0$;
2. for $j=1$ to k
3. $u_{j+1}=A u_{j}$
4. $\alpha_{j}=u_{j}^{H} u_{j+1}$
5. $\quad v=u_{j+1}-\alpha_{j} u_{j}-\beta_{j-1} u_{j-1}$
6. $\quad \beta_{j}=\|v\|_{2}$
7. $u_{j+1}=v / \beta_{j}$
8. end for j

Definition

Let $u_{1}, u_{2}, \ldots, u_{k+1}$ be linearly independent and let $U_{k}=\left[u_{1} \cdots u_{k}\right]$.

$$
A U_{k}=U_{k} B_{k}+u_{k+1} b_{k+1}^{H}
$$

is called a Krylov decomposition of order $k . \mathcal{R}\left(U_{k+1}\right)$ is called the space spanned by the decomposition. Two Krylov decompositions spanning the same spaces are said to be equivalent.

Let $[V v]^{H}$ be any left inverse for U_{k+1}. Then it follows that

$$
B_{k}=V^{H} A U_{k} \quad \text { and } \quad b_{k+1}^{H}=v^{H} A U_{k}
$$

In particular, B_{k} is a Rayleigh quotient of A.

Let

$$
A U_{k}=U_{k} B_{k}+u_{k+1} b_{k+1}^{H}
$$

be a Krylov decomposition and Q be nonsingular. That is

$$
A U_{k}=U_{k+1} \hat{B}_{k} \quad \text { with } \quad \hat{B}_{k}=\left[\begin{array}{c}
B_{k} \tag{7}\\
b_{k+1}^{H}
\end{array}\right] .
$$

Then we get an equivalent Krylov decomposition of (7) in the form

$$
\begin{align*}
A\left(U_{k} Q\right) & =\left(U_{k+1}\left[\begin{array}{cc}
Q & 0 \\
0 & 1
\end{array}\right]\right)\left(\left[\begin{array}{cc}
Q & 0 \\
0 & 1
\end{array}\right]^{-1} \hat{B}_{k} Q\right) \\
& =\left[\begin{array}{ll}
U_{k} Q & u_{k+1}
\end{array}\right]\left[\begin{array}{c}
Q^{-1} B_{k} Q \\
b_{k+1}^{H} Q
\end{array}\right] \\
& =\left(U_{k} Q\right)\left(Q^{-1} B Q\right)+u_{k+1}\left(b_{k+1}^{H} Q\right) \tag{8}
\end{align*}
$$

The two Krylov decompositions (7) and (8) are said to be similar.

Let

$$
\gamma \tilde{u}_{k+1}=u_{k+1}-U_{k} a .
$$

Since $u_{1}, \ldots, u_{k}, u_{k+1}$ are linearly independent, we have $\gamma \neq 0$. Then it follows that

$$
A U_{k}=U_{k}\left(B_{k}+a b_{k+1}^{H}\right)+\tilde{u}_{k+1}\left(\gamma b_{k+1}^{H}\right) .
$$

Since $\mathcal{R}\left(\left[U_{k} u_{k+1}\right]\right)=\mathcal{R}\left(\left[U_{k} \tilde{u}_{k+1}\right]\right)$, this Krylov decomposition is equivalent to (7).

Theorem

Every Krylov decomposition is equivalent to a (possibly reduced) Arnoldi decomposition.

Proof: Let

$$
A U=U B+u b^{H}
$$

be a Krylov decomposition and let

$$
U=\tilde{U} R
$$

be the $Q R$ factorization of U. Then
$A \tilde{U}=A\left(U R^{-1}\right)=\left(U R^{-1}\right)\left(R B R^{-1}\right)+u\left(b^{H} R^{-1}\right) \equiv \tilde{U} \tilde{B}+u \tilde{b}^{H}$
is an equivalent decomposition. Let

$$
\tilde{u}=\gamma^{-1}(u-U a)
$$

be a vector with $\|\tilde{u}\|_{2}=1$ such that $U^{H} \tilde{u}=0$. Then

$$
A \tilde{U}=\tilde{U}\left(\tilde{B}+a \tilde{b}^{H}\right)+\tilde{u}\left(\gamma \tilde{b}^{H}\right) \equiv \tilde{U} \hat{B}+\tilde{u} \hat{b}^{H}
$$

is an equivalent orthonormal Krylov decomposition. Let Q be a unitary matrix such that

$$
\hat{b}^{H} Q=\|\hat{b}\|_{2} e_{k}^{T}
$$

and $Q^{H} \hat{B} Q$ is upper Hessenberg. Then the equivalent decomposition

$$
A \hat{U} \equiv A(\tilde{U} Q)=(\tilde{U} Q)\left(Q^{H} \hat{B} Q\right)+\tilde{u}\left(\hat{b^{H}} Q\right) \equiv \hat{U} \bar{B}+\|\hat{b}\|_{2} \hat{u} e_{k}^{T}
$$

is a possibly reduced Arnoldi decomposition where

$$
\hat{U}^{H} \hat{u}=Q^{H} \tilde{U}^{H} \tilde{u}=Q^{H} R^{-H} U^{H} \tilde{u}=0 .
$$

Reduction to Arnoldi form
Let

$$
A U=U B+u b^{H}
$$

be the Krylov decomposition with $B \in \mathbb{C}^{k \times k}$. Let H_{1} be a Householder transformation such that

$$
b^{H} H_{1}=\beta e_{k} .
$$

Reduce $H_{1}^{H} B H_{1}$ to Hessenberg form as the following illustration:

$$
\begin{aligned}
& B:=\left[\begin{array}{llll}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times
\end{array}\right] \Rightarrow B:=B H_{2}=\left[\begin{array}{llll}
\otimes & \otimes & \otimes & \times \\
\otimes & \otimes & \otimes & \times \\
\otimes & \otimes & \otimes & \times \\
0 & 0 & \otimes & \times
\end{array}\right] \\
& \Rightarrow B:=H_{2}^{H} B=\left[\begin{array}{llll}
+ & + & + & + \\
+ & + & + & + \\
+ & + & + & + \\
0 & 0 & \otimes & \times
\end{array}\right] \Rightarrow B:=B H_{3}=\left[\begin{array}{ccc}
\oplus & \oplus & + \\
\oplus & \oplus & + \\
0 & + \\
0 & \oplus & + \\
0 & 0 & \otimes \\
\hline
\end{array}\right] \\
& \Rightarrow B:=H_{3}^{H} B=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
0 & \oplus & + & + \\
0 & 0 & \otimes & \times
\end{array}\right]
\end{aligned}
$$

Let

$$
Q=H_{1} H_{2} \cdots H_{k-1} .
$$

Then $Q^{H} B Q$ is upper Hessenberg and

$$
b^{H} Q=\left(b^{H} H_{1}\right)\left(H_{2} \cdots H_{k-1}\right)=\beta e_{k}^{T}\left(H_{2} \cdots H_{k-1}\right)=\beta e_{k}^{T} .
$$

Therefore, the Krylov decomposition

$$
\begin{equation*}
A(U Q)=(U Q)\left(Q^{H} B Q\right)+\beta u e_{k}^{T} \tag{9}
\end{equation*}
$$

is an Arnoldi decomposition.

Assume that

$$
A U=U B+u b^{H}
$$

is a n orthonormal Krylov decomposition.
Refined Ritz vectors
If μ is a Ritz value, then the refined Ritz vector associated with μ is the right singular vector of $(A-\mu I) U$ whose singular value is smallest. From (9), we have

$$
\begin{aligned}
(A-\mu I) U & =U(B-\mu I)+u b^{H}=\left[\begin{array}{ll}
U & u
\end{array}\right]\left[\begin{array}{c}
B-\mu I \\
b^{H}
\end{array}\right] \\
& \equiv\left[\begin{array}{ll}
U & u
\end{array}\right] \hat{B}_{\mu} .
\end{aligned}
$$

Since $[U u]$ is orthonormal, the right singular vectors of $(A-\mu I) U$ are the same as the right singular vectors of \hat{B}_{μ}. Thus the computation of a refined Ritz vector can be reduced to computing the singular value decomposition of \hat{B}_{μ}.

Computation of refined and Harmonic Ritz vectors

Harmonic Ritz vectors

Recall: $(\kappa+\delta, U w)$ is a harmonic Ritz pair if

$$
U^{H}(A-\kappa I)^{H}(A-\kappa I) U w=\delta U^{H}(A-\kappa I)^{H} U w
$$

Since

$$
(A-\kappa I) U=U(B-\kappa I)+u b^{H}
$$

we have

$$
U^{H}(A-\kappa I)^{H}(A-\kappa I) U=(B-\kappa I)^{H}(B-\kappa I)+b b^{H}
$$

and

$$
U^{H}(A-\kappa I)^{H} U=(B-\kappa I)^{H} .
$$

It follows that

$$
\left[(B-\kappa I)^{H}(B-\kappa I)+b b^{H}\right] w=\delta(B-\kappa I)^{H} w
$$

which is a small generalized eigenvalue problem.

Let

$$
A U_{k}=U_{k} H_{k}+\beta_{k} u_{k+1} e_{k}^{T}
$$

be an Arnoldi decomposition.
(1) In principle, we can keep expanding the Arnoldi decomposition until the Ritz pairs have converged.
(2) Unfortunately, it is limited by the amount of memory to storage of U_{k}.
(3) Restarted the Arnoldi process once k becomes so large that we cannot store U_{k}.

- Implicitly restarting method
- Krylov-Schur decomposition
- Choose a new starting vector for the underlying Krylov sequence
- A natural choice would be a linear combination of Ritz vectors that we are interested in.
Filter polynomials
Assume A has a complete system of eigenpairs $\left(\lambda_{i}, x_{i}\right)$ and we are interested in the first k of these eigenpairs. Expand u_{1} in the form

$$
u_{1}=\sum_{i=1}^{k} \gamma_{i} x_{i}+\sum_{i=k+1}^{n} \gamma_{i} x_{i} .
$$

If p is any polynomial, we have

$$
p(A) u_{1}=\sum_{i=1}^{k} \gamma_{i} p\left(\lambda_{i}\right) x_{i}+\sum_{i=k+1}^{n} \gamma_{i} p\left(\lambda_{i}\right) x_{i}
$$

- Choose p so that the values $p\left(\lambda_{i}\right)(i=k+1, \ldots, n)$ are small compared to the values $p\left(\lambda_{i}\right)(i=1, \ldots, k)$.
- Then $p(A) u_{1}$ is rich in the components of the x_{i} that we want and deficient in the ones that we do not want.
- p is called a filter polynomial.
- Suppose we have Ritz values μ_{1}, \ldots, μ_{m} and $\mu_{k+1}, \ldots, \mu_{m}$ are not interesting. Then take

$$
p(t)=\left(t-\mu_{k+1}\right) \cdots\left(t-\mu_{m}\right)
$$

Implicitly restarted Arnoldi: Let

$$
\begin{equation*}
A U_{m}=U_{m} H_{m}+\beta_{m} u_{m+1} e_{m}^{T} \tag{10}
\end{equation*}
$$

be an Arnoldi decomposition with order m. Choose a filter polynomial p of degree $m-k$ and use the implicit restarting process to reduce the decomposition to a decomposition

$$
A \tilde{U}_{k}=\tilde{U}_{k} \tilde{H}_{k}+\tilde{\beta}_{k} \tilde{u}_{k+1} e_{k}^{T}
$$

of order k with starting vector $p(A) u_{1}$.

Let $\kappa_{1}, \ldots, \kappa_{m}$ be eigenvalues of H_{m} and suppose that $\kappa_{1}, \ldots, \kappa_{m-k}$ correspond to the part of the spectrum we are not interested in. Then take

$$
p(t)=\left(t-\kappa_{1}\right)\left(t-\kappa_{2}\right) \cdots\left(t-\kappa_{m-k}\right) .
$$

The starting vector $p(A) u_{1}$ is equal to

$$
\begin{aligned}
p(A) u_{1} & =\left(A-\kappa_{m-k} I\right) \cdots\left(A-\kappa_{2} I\right)\left(A-\kappa_{1} I\right) u_{1} \\
& =\left(A-\kappa_{m-k} I\right)\left[\cdots\left[\left(A-\kappa_{2} I\right)\left[\left(A-\kappa_{1} I\right) u_{1}\right]\right]\right] .
\end{aligned}
$$

In the first, we construct an Arnoldi decomposition with starting vector $\left(A-\kappa_{1} I\right) u_{1}$. From (10), we have

$$
\begin{align*}
\left(A-\kappa_{1} I\right) U_{m} & =U_{m}\left(H_{m}-\kappa_{1} I\right)+\beta_{m} u_{m+1} e_{m}^{T} \tag{11}\\
& =U_{m} Q_{1} R_{1}+\beta_{m} u_{m+1} e_{m}^{T}
\end{align*}
$$

where

$$
H_{m}-\kappa_{1} I=Q_{1} R_{1}
$$

is the $Q R$ factorization of $H_{m}-\kappa_{1} I$. Postmultiplying by Q_{1},
we get

$$
\left(A-\kappa_{1} I\right)\left(U_{m} Q_{1}\right)=\left(U_{m} Q_{1}\right)\left(R_{1} Q_{1}\right)+\beta_{m} u_{m+1}\left(e_{m}^{T} Q_{1}\right)
$$

It implies that

$$
A U_{m}^{(1)}=U_{m}^{(1)} H_{m}^{(1)}+\beta_{m} u_{m+1} b_{m+1}^{(1) H},
$$

where

$$
U_{m}^{(1)}=U_{m} Q_{1}, \quad H_{m}^{(1)}=R_{1} Q_{1}+\kappa_{1} I, \quad b_{m+1}^{(1) H}=e_{m}^{T} Q_{1}
$$

($H_{m}^{(1)}$: one step of single shifted $Q R$ algorithm)

Theorem

Let H_{m} be an unreduced Hessenberg matrix. Then $H_{m}^{(1)}$ has the form

$$
H_{m}^{(1)}=\left[\begin{array}{cc}
\hat{H}_{m}^{(1)} & \hat{h}_{12} \\
0 & \kappa_{1}
\end{array}\right]
$$

where $\hat{H}_{m}^{(1)}$ is unreduced.
Proof: Let

$$
H_{m}-\kappa_{1} I=Q_{1} R_{1}
$$

be the $Q R$ factorization of $H_{m}-\kappa_{1} I$ with

$$
Q_{1}=G\left(1,2, \theta_{1}\right) \cdots G\left(m-1, m, \theta_{m-1}\right)
$$

where $G\left(i, i+1, \theta_{i}\right)$ for $i=1, \ldots, m-1$ are Given rotations.

Since H_{m} is unreduced upper Hessenberg, i.e., the subdiagonal elements of H_{m} are nonzero, we get

$$
\begin{equation*}
\theta_{i} \neq 0 \quad \text { for } \quad i=1, \ldots, m-1 \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(R_{1}\right)_{i i} \neq 0 \quad \text { for } \quad i=1, \ldots, m-1 \tag{13}
\end{equation*}
$$

Since κ_{1} is an eigenvalue of H_{m}, we have that $H_{m}-\kappa_{1} I$ is singular and then

$$
\begin{equation*}
\left(R_{1}\right)_{m m}=0 \tag{14}
\end{equation*}
$$

Using the results of (12), (13) and (14), we get

$$
\begin{aligned}
H_{m}^{(1)} & =R_{1} Q_{1}+\kappa_{1} I=R_{1} G\left(1,2, \theta_{1}\right) \cdots G\left(m-1, m, \theta_{m-1}\right)+\kappa_{1} I \\
& =\left[\begin{array}{cc}
\hat{H}_{m}^{(1)} & \hat{h}_{12} \\
0 & \kappa_{1}
\end{array}\right]
\end{aligned}
$$

where $\hat{H}_{m}^{(1)}$ is unreduced.

Remark

- $U_{m}^{(1)}$ is orthonormal.
- Since H_{m} is upper Hessenberg and Q_{1} is the Q-factor of the $Q R$ factorization of $H_{m}-\kappa_{1} I$, it implies that Q_{1} and $H_{m}^{(1)}$ are also upper Hessenberg.
- The vector $b_{m+1}^{(1) H}=e_{m}^{T} Q_{1}$ has the form

$$
b_{m+1}^{(1) H}=\left[\begin{array}{lllll}
0 & \cdots & 0 & q_{m-1, m}^{(1)} & q_{m, m}^{(1)}
\end{array}\right] ;
$$

i.e., only the last two components of $b_{m+1}^{(1)}$ are nonzero.

- For on postmultiplying (11) by e_{1}, we get

$$
\left(A-\kappa_{1} I\right) u_{1}=\left(A-\kappa_{1} I\right)\left(U_{m} e_{1}\right)=U_{m}^{(1)} R_{1} e_{1}=r_{11}^{(1)} u_{1}^{(1)} .
$$

Since H_{m} is unreduced, $r_{11}^{(1)}$ is nonzero. Therefore, the first column of $U_{m}^{(1)}$ is a multiple of $\left(A-\kappa_{1} I\right) u_{1}$.

- By the definition of $H_{m}^{(1)}$, we get

$$
Q_{1} H_{m}^{(1)} Q_{1}^{H}=Q_{1}\left(R_{1} Q_{1}+\kappa_{1} I\right) Q_{1}^{H}=Q_{1} R_{1}+\kappa_{1} I=H_{m}
$$

Therefore, $\kappa_{1}, \kappa_{2}, \ldots, \kappa_{m}$ are also eigenvalues of $H_{m}^{(1)}$.

Similarly,

$$
\begin{align*}
\left(A-\kappa_{2} I\right) U_{m}^{(1)} & =U_{m}^{(1)}\left(H_{m}^{(1)}-\kappa_{2} I\right)+\beta_{m} u_{m+1} b_{m+1}^{(1) H} \tag{15}\\
& =U_{m}^{(1)} Q_{2} R_{2}+\beta_{m} u_{m+1} b_{m+1}^{(1) H}
\end{align*}
$$

where

$$
H_{m}^{(1)}-\kappa_{2} I=Q_{2} R_{2}
$$

is the $Q R$ factorization of $H_{m}^{(1)}-\kappa_{2} I$ with upper Hessenberg matrix Q_{2}. Postmultiplying by Q_{2}, we get

$$
\left(A-\kappa_{2} I\right)\left(U_{m}^{(1)} Q_{2}\right)=\left(U_{m}^{(1)} Q_{2}\right)\left(R_{2} Q_{2}\right)+\beta_{m} u_{m+1}\left(b_{m+1}^{(1) H} Q_{2}\right)
$$

It implies that

$$
A U_{m}^{(2)}=U_{m}^{(2)} H_{m}^{(2)}+\beta_{m} u_{m+1} b_{m+1}^{(2) H}
$$

where

$$
U_{m}^{(2)} \equiv U_{m}^{(1)} Q_{2}
$$

is orthonormal,

$$
H_{m}^{(2)} \equiv R_{2} Q_{2}+\kappa_{2} I=\left[\begin{array}{c|cc}
H_{m-2}^{(2)} & * & * \\
\hline & \kappa_{2} & * \\
& & \kappa_{1}
\end{array}\right]
$$

is upper Hessenberg with unreduced matrix $H_{m-2}^{(2)}$ and

$$
\begin{aligned}
b_{m+1}^{(2) H} & \equiv b_{m+1}^{(1) H} Q_{2}=q_{m-1, m}^{(1)} e_{m-1}^{H} Q_{2}+q_{m, m}^{(1)} e_{m}^{T} Q_{2} \\
& =\left[\begin{array}{lllll}
0 & \cdots & 0 & \times & \times
\end{array}\right] .
\end{aligned}
$$

For on postmultiplying (15) by e_{1}, we get

$$
\left(A-\kappa_{2} I\right) u_{1}^{(1)}=\left(A-\kappa_{2} I\right)\left(U_{m}^{(1)} e_{1}\right)=U_{m}^{(2)} R_{2} e_{1}=r_{11}^{(2)} u_{1}^{(2)}
$$

Since $H_{m}^{(1)}$ is unreduced, $r_{11}^{(2)}$ is nonzero. Therefore, the first column of $U_{m}^{(2)}$ is a multiple of

$$
\left(A-\kappa_{2} I\right) u_{1}^{(1)}=1 / r_{11}^{(1)}\left(A-\kappa_{2} I\right)\left(A-\kappa_{1} I\right) u_{1}
$$

Repeating this process with $\kappa_{3}, \ldots, \kappa_{m-k}$, the result will be a Krylov decomposition

$$
A U_{m}^{(m-k)}=U_{m}^{(m-k)} H_{m}^{(m-k)}+\beta_{m} u_{m+1} b_{m+1}^{(m-k) H}
$$

with the following properties
(1) $U_{m}^{(m-k)}$ is orthonormal.
(2) $H_{m}^{(m-k)}$ is upper Hessenberg.
(3) The first $k-1$ components of $b_{m+1}^{(m-k) H}$ are zero.
(4) The first column of $U_{m}^{(m-k)}$ is a multiple of $\left(A-\kappa_{1} I\right) \cdots\left(A-\kappa_{m-k} I\right) u_{1}$.

Corollary

Let $\kappa_{1}, \ldots, \kappa_{m}$ be eigenvalues of H_{m}. If the implicitly restarted $Q R$ step is performed with shifts $\kappa_{1}, \ldots, \kappa_{m-k}$, then the matrix $H_{m}^{(m-k)}$ has the form

$$
H_{m}^{(m-k)}=\left[\begin{array}{cc}
H_{k k}^{(m-k)} & H_{k, m-k}^{(m-k)} \\
0 & T^{(m-k)}
\end{array}\right],
$$

where $T^{(m-k)}$ is an upper triangular matrix with Ritz value $\kappa_{1}, \ldots, \kappa_{m-k}$ on its diagonal.

The implicitly restarted Arnoldi method

For $k=3$ and $m=6$,

$$
\begin{aligned}
& A\left[\begin{array}{lll|lll}
u & u & u & u & u & u
\end{array}\right] \\
= & {\left[\begin{array}{lll|lll}
u & u & u & u & u & u
\end{array}\right]\left[\begin{array}{ccc|ccc}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times \\
\hline 0 & 0 & \times & \times & \times & \times \\
0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times
\end{array}\right] } \\
& +u\left[\begin{array}{llll|lll}
0 & 0 & q & q & q & q
\end{array}\right] .
\end{aligned}
$$

Therefore, the first k columns of the decomposition can be written in the form
$A U_{k}^{(m-k)}=U_{k}^{(m-k)} H_{k k}^{(m-k)}+h_{k+1, k} u_{k+1}^{(m-k)} e_{k}^{T}+\beta_{k} q_{m k} u_{m+1} e_{k}^{T}$,
where $U_{k}^{(m-k)}$ consists of the first k columns of $U_{m}^{(m-k)}, H_{k k}^{(m-k)}$ is the leading principal submatrix of order k of $H_{m}^{(m-k)}$, and $q_{k m}$ is from the matrix $Q=Q_{1} \cdots Q_{m-k}$.

Hence if we set

$$
\begin{aligned}
\tilde{U}_{k} & =U_{k}^{(m-k)} \\
\tilde{H}_{k} & =H_{k k}^{(m-k)} \\
\tilde{\beta}_{k} & =\left\|h_{k+1, k} u_{k+1}^{(m-k)}+\beta_{k} q_{m k} u_{m+1}\right\|_{2} \\
\tilde{u}_{k+1} & =\tilde{\beta}_{k}^{-1}\left(h_{k+1, k} u_{k+1}^{(m-k)}+\beta_{k} q_{m k} u_{m+1}\right)
\end{aligned}
$$

then

$$
A \tilde{U}_{k}=\tilde{U}_{k} \tilde{H}_{k}+\tilde{\beta}_{k} \tilde{u}_{k+1} e_{k}^{T}
$$

is an Arnoldi decomposition whose starting vector is proportional to $\left(A-\kappa_{1} I\right) \cdots\left(A-\kappa_{m-k} I\right) u_{1}$.

- Avoid any matrix-vector multiplications in forming the new starting vector.
- Get its Arnoldi decomposition of order k for free.
- For large n the major cost will be in computing $U Q$.

If a Krylov decomposition can be partitioned in the form

$$
A\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right]=\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right]\left[\begin{array}{cc}
B_{11} & B_{12} \\
0 & B_{22}
\end{array}\right]+u\left[\begin{array}{ll}
b_{1}^{H} & b_{2}^{H}
\end{array}\right],
$$

then

$$
A U_{1}=U_{1} B_{11}+u b_{1}^{H}
$$

is also a Krylov decomposition.
The process of Krylov-Schur restarting:

- Compute the Schur decomposition of the Rayleigh quotient
- Move the desired eigenvalues to the beginning
- Throw away the rest of the decomposition

Exchanging eigenvalues and eigenblocks

- Move an eigenvalue from one place to another. Let a triangular matrix be partitioned in the form

$$
R \equiv\left[\begin{array}{ccc}
A & B & C \\
0 & S & D \\
0 & 0 & E
\end{array}\right],
$$

where

$$
S=\left[\begin{array}{cc}
s_{11} & s_{12} \\
0 & s_{22}
\end{array}\right]
$$

Suppose that Q is a unitary matrix such that

$$
Q^{H} S Q=\left[\begin{array}{cc}
s_{22} & \hat{s}_{12} \\
0 & s_{11}
\end{array}\right]
$$

Krylov-Schur restarting

then the eigenvalues s_{11} and s_{22} in the matrix
$\operatorname{diag}\left(\begin{array}{lll}I & Q^{H} & I\end{array}\right) R \operatorname{diag}\left(\begin{array}{lll}I & Q & I\end{array}\right)=\left[\begin{array}{ccc}A & B Q & C \\ 0 & Q^{H} S Q & Q^{H} D \\ 0 & 0 & E\end{array}\right]$
will have traded places.

- How to find such unitary matrix Q ?

Let

$$
S=\left[\begin{array}{cc}
S_{11} & S_{12} \\
0 & S_{22}
\end{array}\right],
$$

where $S_{i i}$ is of order $n_{i}(i=1,2)$. Therefore are four cases to consider.
(1) $n_{1}=1, n_{2}=1$.
(2) $n_{1}=2, n_{2}=1$.
(3) $n_{1}=1, n_{2}=2$.
(1) $n_{1}=2, n_{2}=2$.

- For the first two cases $\left(n_{1}=1, n_{2}=1\right.$ or $\left.n_{1}=2, n_{2}=1\right)$: Let

$$
S=\left[\begin{array}{cl}
S_{11} & s_{12} \\
0 & s_{22}
\end{array}\right]
$$

where S_{11} is of order one or two. Let x be a normalized eigenvector corresponding to s_{22} and let $Q=[x Y]$ be orthogonal. Then
$Q^{T} S Q=\left[\begin{array}{c}x^{T} \\ Y^{T}\end{array}\right] S\left[\begin{array}{ll}x & Y\end{array}\right]=\left[\begin{array}{cc}x^{T} S x & x^{T} S Y \\ Y^{T} S x & Y^{T} S Y\end{array}\right]=\left[\begin{array}{cc}s_{22} & \hat{s}_{12}^{T} \\ 0 & \hat{S}_{11}\end{array}\right]$.
Note that \hat{S}_{11} and S_{11} have the same eigenvalues.

- For the third case $\left(n_{1}=1, n_{2}=2\right)$:

Let

$$
S=\left[\begin{array}{cc}
s_{11} & s_{12}^{T} \\
0 & S_{22}
\end{array}\right]
$$

where S_{22} is of order two. Let y be a normalized left eigenvector corresponding to s_{11} and let $Q=\left[\begin{array}{ll}X & y\end{array}\right]$ be orthogonal. Then

$$
Q^{T} S Q=\left[\begin{array}{c}
X^{T} \\
y^{T}
\end{array}\right] S\left[\begin{array}{ll}
X & y
\end{array}\right]=\left[\begin{array}{cc}
X^{T} S X & X^{T} S y \\
y^{T} S X & y^{T} S y
\end{array}\right]=\left[\begin{array}{cc}
\hat{S}_{22} & \hat{s}_{12} \\
0 & s_{11}
\end{array}\right]
$$

- For the last case ($n_{1}=2, n_{2}=2$):

Let

$$
S=\left[\begin{array}{cc}
S_{11} & S_{12} \\
0 & S_{22}
\end{array}\right]
$$

Let $\left(S_{22}, X\right)$ be an orthonormal eigenpair, i.e.,

$$
S X=X\left(U S_{22} U^{-1}\right)
$$

for some nonsingular U, and let $Q=[X Y]$ be orthogonal. Then

$$
\begin{aligned}
Q^{T} S Q & =\left[\begin{array}{cc}
X^{T} S X & X^{T} S Y \\
Y^{T} S X & Y^{T} S Y
\end{array}\right]=\left[\begin{array}{cc}
X^{T} X U S_{22} U^{-1} & X^{T} S Y \\
Y^{T} X U S_{22} U^{-1} & Y^{T} S Y
\end{array}\right] \\
& =\left[\begin{array}{cc}
U S_{22} U^{-1} & \hat{S}_{12} \\
0 & \hat{S}_{11}
\end{array}\right]
\end{aligned}
$$

Question

How to compute the orthonormal eigenbasis X ?
Let the eigenbasis be $\left[\begin{array}{c}P \\ I\end{array}\right]$, where P is to be determined.
Then

$$
\left[\begin{array}{cc}
S_{11} & S_{12} \\
0 & S_{22}
\end{array}\right]\left[\begin{array}{c}
P \\
I
\end{array}\right]=\left[\begin{array}{c}
P \\
I
\end{array}\right] S_{22}
$$

Hence P can be solved from the Sylvester equation

$$
S_{11} P-P S_{22}=-S_{12}
$$

The orthonormal eigenbasis X can be computed by the $Q R$ factorization

$$
\left[\begin{array}{c}
P \\
I
\end{array}\right]=\left[\begin{array}{ll}
X & Y
\end{array}\right]\left[\begin{array}{c}
R \\
0
\end{array}\right]
$$

The Krylov-Schur cycle Assume $A \in \mathbb{C}^{n \times n}$.
(1) Write the corresponding Krylov decomposition in the form

$$
A U_{m}=U_{m} T_{m}+\beta_{m} u_{m+1} e_{m}^{T}
$$

(2) Compute the Schur decomposition of T_{m},

$$
S_{m}=Q^{H} T_{m} Q
$$

where S_{m} is upper triangular.
(3) Transform the decomposition to the form

$$
A \hat{U}_{m}=\hat{U}_{m} S_{m}+u_{m+1} b_{m+1}^{H}
$$

(4) Select $m-k$ Ritz values and move them to the end of S_{m}, accumulating the transformations in Q_{1}.
(5) Truncate the decomposition, i.e.,

$$
\left.S_{k}:=S_{m}[1: k, 1: k], b_{k}^{H}:=b_{m+1}^{H} Q_{1}[:, 1: k], U_{k}:=\hat{U}_{m} Q_{1}[:, 1): k\right] .
$$

Deflation

We say a Krylov decomposition has been deflated if it can be partitioned in the form

$$
A\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right]=\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right]\left[\begin{array}{cc}
B_{11} & B_{12} \\
0 & B_{22}
\end{array}\right]+u\left[\begin{array}{cc}
0 & b_{2}^{H}
\end{array}\right] .
$$

It implies that

$$
A U_{1}=U_{1} B_{11}
$$

so that U_{11} spans an eigenspace of A.

Criterion of Deflation:

Theorem

Let

$$
A U=U B+u b^{H}
$$

be an orthonormal Krylov decomposition, and let $[M, \tilde{U}]=[M, U W]$ be an orthonormal pair. Let $\left[W, W_{\perp}\right]$ be unitary, and set

$$
\tilde{B}=\left[\begin{array}{c}
W^{H} \\
W_{\perp}^{H}
\end{array}\right] B\left[\begin{array}{ll}
W & W_{\perp}
\end{array}\right] \equiv\left[\begin{array}{ll}
\tilde{B}_{11} & \tilde{B}_{12} \\
\tilde{B}_{21} & \tilde{B}_{22}
\end{array}\right]
$$

and

$$
\tilde{b}^{H}=b^{H}\left[\begin{array}{ll}
W & W_{\perp}
\end{array}\right]=\left[\begin{array}{cc}
\tilde{b}_{1}^{H} & \tilde{b}_{2}^{H}
\end{array}\right] .
$$

Then

$$
\|A \tilde{U}-\tilde{U} M\|_{F}^{2}=\left\|\tilde{B}_{21}\right\|_{F}^{2}+\left\|\tilde{b}_{1}\right\|_{F}^{2}+\left\|\tilde{B}_{11}-M\right\|_{F}^{2} .
$$

Proof: Let

$$
\left[\begin{array}{cc}
\tilde{U} & \tilde{U}_{\perp}
\end{array}\right]=U\left[\begin{array}{ll}
W & W_{\perp}
\end{array}\right] .
$$

Then

$$
\begin{aligned}
& A \tilde{U}-\tilde{U} M=U B W+u b^{H} W-U W M \\
= & U\left[\begin{array}{ll}
W & W_{\perp}
\end{array}\right]\left(\left[\begin{array}{c}
W^{H} \\
W_{\perp}^{H}
\end{array}\right] B\left[\begin{array}{ll}
W & W_{\perp}
\end{array}\right]\left[\begin{array}{l}
I \\
0
\end{array}\right]-\left[\begin{array}{l}
I \\
0
\end{array}\right] M\right) \\
& +u b^{H}\left[\begin{array}{ll}
W & W_{\perp}
\end{array}\right]\left[\begin{array}{c}
I \\
0
\end{array}\right] \\
= & {\left[\begin{array}{ll}
\tilde{U} & \tilde{U}_{\perp}
\end{array}\right]\left[\begin{array}{c}
\tilde{B}_{11}-M \\
\tilde{B}_{21}
\end{array}\right]+u \tilde{b}_{1}^{H}=\left[\begin{array}{lll}
\tilde{U} & \tilde{U}_{\perp} & u
\end{array}\right]\left[\begin{array}{c}
\tilde{B}_{11}-M \\
\tilde{B}_{21} \\
\tilde{b}_{1}^{H} \\
\Delta
\end{array}\right] . }
\end{aligned}
$$

Krylov-Schur restarting

Since $u^{H} U=0$, we have

$$
u^{H}\left[\begin{array}{cc}
\tilde{U} & \tilde{U}_{\perp}
\end{array}\right]=u^{H} U\left[\begin{array}{ll}
W & W_{\perp}
\end{array}\right]=0 .
$$

It implies that $\left[\tilde{U}, \tilde{U}_{\perp}, u\right]$ is an orthonormal matrix. Therefore,

$$
\begin{aligned}
\|A \tilde{U}-\tilde{U} M\|_{F}^{2} & =\left\|\left[\begin{array}{c}
\tilde{B}_{11}-M \\
\tilde{B}_{21} \\
\tilde{b}_{1}^{H}
\end{array}\right]\right\|_{F}^{2} \\
& =\left\|\tilde{B}_{21}\right\|_{F}^{2}+\left\|\tilde{b}_{1}\right\|_{F}^{2}+\left\|\tilde{B}_{11}-M\right\|_{F}^{2}
\end{aligned}
$$

Suppose that $A \tilde{U}-\tilde{U} M$ is small. Transform the Krylov decomposition to the form

$$
\begin{aligned}
& A\left[\begin{array}{cc}
\tilde{U} & \tilde{U}_{\perp}
\end{array}\right]=\left[\begin{array}{cc}
\tilde{U} & \tilde{U}_{\perp}
\end{array}\right]\left[\begin{array}{cc}
\tilde{B}_{11} & \tilde{B}_{12} \\
\tilde{B}_{21} & \tilde{B}_{22}
\end{array}\right]+u\left[\begin{array}{cc}
\tilde{b}_{1}^{H} & \tilde{b}_{2}^{H}
\end{array}\right] \\
= & {\left[\begin{array}{cc}
\tilde{U} & \tilde{U}_{\perp}
\end{array}\right]\left[\begin{array}{cc}
\tilde{B}_{11} & \tilde{B}_{12} \\
0 & \tilde{B}_{22}
\end{array}\right]+u\left[\begin{array}{cc}
0 & \tilde{b}_{2}^{H}
\end{array}\right]+\left(\tilde{U}_{\perp} \tilde{B}_{21}+u \tilde{b}_{1}^{H}\right) . }
\end{aligned}
$$

From Theorem 16, we have

$$
\left\|\left[\begin{array}{c}
\tilde{B}_{21} \\
\tilde{b}_{1}^{H}
\end{array}\right]\right\|_{F} \leq\|A \tilde{U}-\tilde{U} M\|_{F},
$$

with equality if and only if $M=W^{H} B W$. Therefore, if the residual norm $\|A \tilde{U}-\tilde{U} M\|_{F}$ is sufficiently small, we may set \tilde{B}_{21} and \tilde{b}_{1} to zero to get the approximate decomposition

$$
A\left[\begin{array}{cc}
\tilde{U} & \tilde{U}_{\perp}
\end{array}\right] \approx\left[\begin{array}{cc}
\tilde{U} & \tilde{U}_{\perp}
\end{array}\right]\left[\begin{array}{cc}
\tilde{B}_{11} & \tilde{B}_{12} \\
0 & \tilde{B}_{22}
\end{array}\right]+u\left[\begin{array}{cc}
0 & \tilde{b}_{2}^{H}
\end{array}\right] .
$$

Rational Krylov transformations

- Shift-and-invert transformations in Arnoldi's method is to focus the algorithm on the eigenvalues near the shift κ.
- How to do when it needs to use more than one shift?
- Restart with a new shift and a new vector
- Change a Krylov decomposition from one in $\left(A-\kappa_{1} I\right)^{-1}$ to one in $\left(A-\kappa_{2} I\right)^{-1}$.

Suppose we have a Krylov sequence

$$
u,\left(A-\kappa_{1} I\right)^{-1} u,\left(A-\kappa_{1} I\right)^{-2} u, \cdots,\left(A-\kappa_{1} I\right)^{1-k} u .
$$

Set $v=\left(A-\kappa_{1} I\right)^{1-k} u$, then the sequence with its terms in reverse order is

$$
v,\left(A-\kappa_{1} I\right) v, \cdots,\left(A-\kappa_{1} I\right)^{k-1} v,
$$

so that

$$
\mathcal{K}_{k}\left[\left(A-\kappa_{1} I\right)^{-1}, u\right]=\mathcal{K}_{k}\left[A-\kappa_{1} I, v\right] .
$$

By the shift invariance of a Krylov sequence

$$
\mathcal{K}_{k}\left[A-\kappa_{1} I, v\right]=\mathcal{K}_{k}\left[A-\kappa_{2} I, v\right] .
$$

Set

$$
w=\left(A-\kappa_{2} I\right)^{k-1} v,
$$

we have

$$
\mathcal{K}_{k}\left[A-\kappa_{2} I, v\right]=\mathcal{K}_{k}\left[\left(A-\kappa_{2} I\right)^{-1}, w\right] .
$$

Krylov-Schur restarting

It follows that

$$
\mathcal{K}_{k}\left[\left(A-\kappa_{1} I\right)^{-1}, u\right]=\mathcal{K}_{k}\left[\left(A-\kappa_{2} I\right)^{-1}, w\right] .
$$

That is the Krylov subspace in $\left(A-\kappa_{1} I\right)^{-1}$ with starting vector u is exactly the same as the Krylov subspace in $\left(A-\kappa_{2} I\right)^{-1}$ with a different starting vector w.
Let

$$
\left(A-\kappa_{1} I\right)^{-1} U=\hat{U} \hat{H}
$$

be an orthonormal Arnoldi decomposition. Then

$$
U=\left(A-\kappa_{1} I\right) \hat{U} \hat{H}=\left(A-\kappa_{2} I\right) \hat{U} \hat{H}-\left(\kappa_{1}-\kappa_{2}\right) \hat{U} \hat{H}
$$

Hence

$$
\left(A-\kappa_{2} I\right)^{-1} \hat{U}\left[\hat{I}+\left(\kappa_{1}-\kappa_{2}\right) \hat{H}\right]=\hat{U} \hat{H}
$$

where

$$
\hat{I}=\left[\begin{array}{ll}
I & 0
\end{array}\right]^{T} .
$$

Let

$$
\hat{I}+\left(\kappa_{1}-\kappa_{2}\right) \hat{H}=Q(\hat{I} R)
$$

be a $Q R$ factorization of $\hat{I}+\left(\kappa_{1}-\kappa_{2}\right) \hat{H}$. Then

$$
\left(A-\kappa_{2} I\right)^{-1}(\hat{U} Q \hat{I})=\hat{U} \hat{H} R^{-1}=(\hat{U} Q)\left(Q^{H} \hat{H} R^{-1}\right)
$$

Set

$$
\hat{V}=\hat{U} Q, V=\hat{V} \hat{I} \text { and } \hat{B}=Q^{H} \hat{H} R^{-1}
$$

then

$$
\left(A-\kappa_{2} I\right)^{-1} V=\hat{V} \hat{B}
$$

This is a Krylov decomposition.

If A is symmetric and

$$
A U_{k}=U_{k} T_{k}+\beta_{k} u_{k+1} e_{k}^{T}
$$

is an Arnoldi decomposition, then T_{k} is a tridiagonal matrix of the form

$$
T_{k}=\left[\begin{array}{cccccc}
\alpha_{1} & \beta_{1} & & & & \\
\beta_{1} & \alpha_{2} & \beta_{2} & & & \\
& \beta_{2} & \alpha_{3} & \beta_{3} & & \\
& & \ddots & \ddots & \ddots & \\
& & & \beta_{k-2} & \alpha_{k-1} & \beta_{k-1} \\
& & & & \beta_{k-1} & \alpha_{k}
\end{array}\right]
$$

It implies that u_{k} can be generated by a three-term recurrence

$$
\beta_{j} u_{j+1}=A u_{j}-\alpha_{j} u_{j}-\beta_{j-1} u_{j-1},
$$

where

$$
\alpha_{j}=u_{j}^{T} A u_{j}, \quad \beta_{j}=\left\|A u_{j}-\alpha_{j} u_{j}-\beta_{j-1} u_{j-1}\right\|_{2}
$$

Problem

- Mathematically, u_{j} must be orthogonal.
- In practice, they can lose orthogonality.

Solutions

Reorthogonalize the vectors at each step and restart when it becomes impossible to store $\left\{u_{i}\right\}$ in main memory.

