Krylov Subspace Methods for Large/Sparse Eigenvalue Problems

Tsung-Ming Huang

Department of Mathematics
National Taiwan Normal University, Taiwan
April 17, 2012

Outline

(1) Lanczos decomposition

- Householder transformation
(2) Implicitly restarted Lanczos method
(3) Arnoldi method
(4) Generalized eigenvalue problem
- Krylov-Schur restarting

Theorem 1
Let \mathcal{V} be an eigenspace of A and let V be an orthonormal basis for \mathcal{V}. Then there is a unique matrix H such that

$$
A V=V H .
$$

The matrix H is given by

$$
H=V^{*} A V .
$$

If (λ, x) is an eigenpair of A with $x \in \mathcal{V}$, then $\left(\lambda, V^{*} x\right)$ is an eigenpair of H. Conversely, if (λ, s) is an eigenpair of H, then $(\lambda, V s)$ is an eigenpair of A.

Theorem 2 (Optimal residuals)
Let $\left[V V_{\perp}\right]$ be unitary. Let

$$
R=A V-V H \quad \text { and } \quad S^{*}=V^{*} A-H V^{*}
$$

Then $\|R\|$ and $\|S\|$ are minimized when

$$
H=V^{*} A V
$$

in which case

$$
\begin{array}{ll}
(a) & \|R\|=\left\|V_{\perp}^{*} A V\right\| \\
(b) & \|S\|=\left\|V^{*} A V_{\perp}\right\| \\
(c) & V^{*} R=0
\end{array}
$$

Definition 3

Let V be orthonormal. Then $V^{*} A V$ is a Rayleigh quotient of A.
Theorem 4
Let V be orthonormal, A be Hermitian and

$$
R=A V-V H .
$$

If $\theta_{1}, \ldots, \theta_{k}$ are the eigenvalues of H, then there are eigenvalues $\lambda_{j_{1}}, \ldots, \lambda_{j_{k}}$ of A such that

$$
\left|\theta_{i}-\lambda_{j_{i}}\right| \leq\|R\|_{2} \quad \text { and } \quad \sqrt{\sum_{i=1}^{k}\left(\theta_{i}-\lambda_{j_{i}}\right)^{2}} \leq \sqrt{2}\|R\|_{F} .
$$

Suppose the eigenvalue with maximum module is wanted.

Power method

Compute the dominant eigenpair

Disadvantage

At each step it considers only the single vector $A^{k} u$, which throws away the information contained in the previously generated vectors $u, A u, A^{2} u, \ldots, A^{k-1} u$.

Definition 5

Let A be of order n and let $u \neq 0$ be an n vector. Then

$$
\left\{u, A u, A^{2} u, A^{3} u, \ldots\right\}
$$

is a Krylov sequence based on A and u. We call the matrix

$$
K_{k}(A, u)=\left[\begin{array}{lllll}
u & A u & A^{2} u & \cdots & A^{k-1} u
\end{array}\right]
$$

the k th Krylov matrix. The space

$$
\mathcal{K}_{k}(A, u)=\mathcal{R}\left[K_{k}(A, u)\right]
$$

is called the k th Krylov subspace.

By the definition of $\mathcal{K}_{k}(A, u)$, for any vector $v \in \mathcal{K}_{k}(A, u)$ can be written in the form

$$
v=\gamma_{1} u+\gamma_{2} A u+\cdots+\gamma_{k} A^{k-1} u \equiv p(A) u
$$

where

$$
p(A)=\gamma_{1} I+\gamma_{2} A+\gamma_{3} A^{2}+\cdots+\gamma_{k} A^{k-1}
$$

Assume that $A^{\top}=A$ and $A x_{i}=\lambda_{i} x_{i}$ for $i=1, \ldots, n$. Write u in the form

$$
u=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{n} x_{n}
$$

Since $p(A) x_{i}=p\left(\lambda_{i}\right) x_{i}$, we have

$$
\begin{equation*}
p(A) u=\alpha_{1} p\left(\lambda_{1}\right) x_{1}+\alpha_{2} p\left(\lambda_{2}\right) x_{2}+\cdots+\alpha_{n} p\left(\lambda_{n}\right) x_{n} . \tag{1}
\end{equation*}
$$

If $p\left(\lambda_{i}\right)$ is large compared with $p\left(\lambda_{j}\right)$ for $j \neq i$, then $p(A) u$ is a good approximation to x_{i}.

Theorem 6

If $x_{i}^{H} u \neq 0$ and $p\left(\lambda_{i}\right) \neq 0$, then

$$
\tan \angle\left(p(A) u, x_{i}\right) \leq \max _{j \neq i} \frac{\left|p\left(\lambda_{j}\right)\right|}{\left|p\left(\lambda_{i}\right)\right|} \tan \angle\left(u, x_{i}\right) .
$$

Proof. From (1), we have

$$
\cos \angle\left(p(A) u, x_{i}\right)=\frac{\left|x_{i}^{H} p(A) u\right|}{\|p(A) u\|_{2}\left\|x_{i}\right\|_{2}}=\frac{\left|\alpha_{i} p\left(\lambda_{i}\right)\right|}{\sqrt{\sum_{j=1}^{n}\left|\alpha_{j} p\left(\lambda_{j}\right)\right|^{2}}}
$$

and

$$
\sin \angle\left(p(A) u, x_{i}\right)=\frac{\sqrt{\sum_{j \neq i}\left|\alpha_{j} p\left(\lambda_{j}\right)\right|^{2}}}{\sqrt{\sum_{j=1}^{n}\left|\alpha_{j} p\left(\lambda_{j}\right)\right|^{2}}}
$$

Hence

$$
\begin{aligned}
\tan ^{2} \angle\left(p(A) u, x_{i}\right) & =\sum_{j \neq i} \frac{\left|\alpha_{j} p\left(\lambda_{j}\right)\right|^{2}}{\left|\alpha_{i} p\left(\lambda_{i}\right)\right|^{2}} \\
& \leq \max _{j \neq i} \frac{\left|p\left(\lambda_{j}\right)\right|^{2}}{\left|p\left(\lambda_{i}\right)\right|^{2}} \sum_{j \neq i} \frac{\left|\alpha_{j}\right|^{2}}{\left|\alpha_{i}\right|^{2}} \\
& =\max _{j \neq i} \frac{\left|p\left(\lambda_{j}\right)\right|^{2}}{\left|p\left(\lambda_{i}\right)\right|^{2}} \tan ^{2} \angle\left(u, x_{i}\right)
\end{aligned}
$$

Assume that $p\left(\lambda_{i}\right)=1$, then

$$
\tan \angle\left(p(A) u, x_{i}\right) \leq \max _{j \neq i, p\left(\lambda_{i}\right)=1}\left|p\left(\lambda_{j}\right)\right| \tan \angle\left(u, x_{i}\right) \quad \forall \quad p(A) u \in \mathcal{K}_{k}
$$

Hence

$$
\tan \angle\left(x_{i}, \mathcal{K}_{k}\right) \leq \min _{\operatorname{deg}(p) \leq k-1, p\left(\lambda_{i}\right)=1} \max _{j \neq i}\left|p\left(\lambda_{j}\right)\right| \tan \angle\left(u, x_{i}\right) .
$$

Assume that

$$
\lambda_{1}>\lambda_{2} \geq \cdots \geq \lambda_{n}
$$

and that our interest is in the eigenvector x_{1}. Then

$$
\tan \angle\left(x_{1}, \mathcal{K}_{k}\right) \leq \min _{\operatorname{deg}(p) \leq k-1, p\left(\lambda_{1}\right)=1} \max _{\lambda \in\left[\lambda_{n}, \lambda_{2}\right]}|p(\lambda)| \tan \angle\left(u, x_{1}\right) .
$$

Question

How to compute

$$
\min _{\operatorname{deg}(p) \leq k-1, p\left(\lambda_{1}\right)=1} \max _{\lambda \in\left[\lambda_{n}, \lambda_{2}\right]}|p(\lambda)| ?
$$

Definition 7

The Chebyshev polynomials are defined by

$$
c_{k}(t)= \begin{cases}\cos \left(k \cos ^{-1} t\right), & |t| \leq 1 \\ \cosh \left(k \cosh ^{-1} t\right), & |t| \geq 1\end{cases}
$$

Theorem 8

(i) $c_{0}(t)=1, c_{1}(t)=t$ and

$$
c_{k+1}(t)=2 c_{k}(t)-c_{k-1}(t), \quad k=1,2, \ldots
$$

(ii) For $|t|>1, c_{k}(t)=\left(1+\sqrt{t^{2}-1}\right)^{k}+\left(1+\sqrt{t^{2}-1}\right)^{-k}$.
(iii) For $t \in[-1,1], \quad\left|c_{k}(t)\right| \leq 1$. Moreover, if

$$
t_{i k}=\cos \frac{(k-i) \pi}{k}, \quad i=0,1, \ldots, k
$$

then

$$
c_{k}\left(t_{i k}\right)=(-1)^{k-i} .
$$

(iv) For $s>1$,

$$
\begin{equation*}
\min _{\operatorname{deg}(p) \leq k, p(s)=1} \max _{t \in[0,1]}|p(t)|=\frac{1}{c_{k}(s)}, \tag{2}
\end{equation*}
$$

and the minimum is obtained only for $p(t)=c_{k}(t) / c_{k}(s)$.

For applying (2), we define

$$
\lambda=\lambda_{2}+(\mu-1)\left(\lambda_{2}-\lambda_{n}\right)
$$

to transform interval $\left[\lambda_{n}, \lambda_{2}\right]$ to $[0,1]$. Then the value of μ at λ_{1} is

$$
\mu_{1}=1+\frac{\lambda_{1}-\lambda_{2}}{\lambda_{2}-\lambda_{n}}
$$

and

$$
\begin{aligned}
& \min _{\operatorname{deg}(p) \leq k-1, p\left(\lambda_{1}\right)=1} \max _{\lambda \in\left[\lambda_{n}, \lambda_{2}\right]}|p(\lambda)| \\
= & \min _{\operatorname{deg}(p) \leq k-1, p\left(\mu_{1}\right)=1} \max _{\mu \in[0,1]}|p(\mu)|=\frac{1}{c_{k-1}\left(\mu_{1}\right)}
\end{aligned}
$$

Theorem 9

Let $A^{\top}=A$ and $A x_{i}=\lambda_{i} x_{i}, i=1, \cdots, n$ with $\lambda_{1}>\lambda_{2} \geq \cdots \geq \lambda_{n}$. Let $\eta=\frac{\lambda_{1}-\lambda_{2}}{\lambda_{2}-\lambda_{n}}$. Then

$$
\begin{aligned}
\tan \angle\left[x_{1}, \mathcal{K}_{k}(A, u)\right] & \leq \frac{\tan \angle\left(x_{1}, u\right)}{c_{k-1}(1+\eta)} \\
& =\frac{\tan \angle\left(x_{1}, u\right)}{\left(1+\sqrt{2 \eta+\eta^{2}}\right)^{k-1}+\left(1+\sqrt{2 \eta+\eta^{2}}\right)^{1-k}}
\end{aligned}
$$

- For k large and if η is small, then the bound becomes

$$
\tan \angle\left[x_{1}, \mathcal{K}_{k}(A, u)\right] \lesssim \frac{\tan \angle\left(x_{1}, u\right)}{(1+\sqrt{2 \eta})^{k-1}}
$$

- Compare it with power method: If $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{n}\right|$, then the conv. rate is $\left|\lambda_{2} / \lambda_{1}\right|^{k}$.
- For example, let $\lambda_{1}=1, \lambda_{2}=0.95, \lambda_{3}=0.95^{2}, \cdots, \lambda_{100}=0.95^{99}$ be the Ews of $A \in \mathbb{R}^{100 \times 100}$. Then $\eta=0.0530$ and the bound on the conv. rate is $1 /(1+\sqrt{2 \eta})=0.7544$. Thus the square root effect gives a great improvement over the rate of 0.95 for the power method.

Definition 10

A Householder transformation or elementary reflector is a matrix of

$$
H=I-u u^{*}
$$

where $\|u\|_{2}=\sqrt{2}$.
Note that H is Hermitian and unitary.
Theorem 11
Let x be a vector with $x_{1} \neq 0$. Let

$$
u=\frac{\rho \frac{x}{\|x\|_{2}}+e_{1}}{\sqrt{1+\rho \frac{x_{1}}{\|x\|_{2}}}}
$$

where $\rho=\bar{x}_{1} /\left|x_{1}\right|$. Then

$$
H x=-\bar{\rho}\|x\|_{2} e_{1} .
$$

Proof: Since

$$
\begin{aligned}
& {\left[\bar{\rho} x^{*} /\|x\|_{2}+e_{1}^{\top}\right]\left[\rho x /\|x\|_{2}+e_{1}\right] } \\
= & \bar{\rho} \rho+\rho x_{1} /\|x\|_{2}+\bar{\rho} \bar{x}_{1} /\|x\|_{2}+1 \\
= & 2\left[1+\rho x_{1} /\|x\|_{2}\right],
\end{aligned}
$$

it follows that

$$
u^{*} u=2 \quad \Rightarrow \quad\|u\|_{2}=\sqrt{2}
$$

and

$$
u^{*} x=\frac{\bar{\rho}\|x\|_{2}+x_{1}}{\sqrt{1+\rho_{\frac{x_{1}}{}}^{\|x\|_{2}}}} .
$$

Hence,

$$
\begin{aligned}
H x & =x-\left(u^{*} x\right) u=x-\frac{\bar{\rho}\|x\|_{2}+x_{1}}{\sqrt{1+\rho \frac{x_{1}}{\|x\|_{2}}}} \frac{\rho \frac{x}{\|x\|_{2}}+e_{1}}{\sqrt{1+\rho \frac{x_{1}}{\|x\|_{2}}}} \\
& =\left[1-\frac{\left(\bar{\rho}\|x\|_{2}+x_{1}\right) \frac{\rho}{\|x\|_{2}}}{1+\rho \frac{x_{1}}{\|x\|_{2}}}\right] x-\frac{\bar{\rho}\|x\|_{2}+x_{1}}{1+\rho \frac{x_{1}}{\|x\|_{2}}} e_{1} \\
& =-\frac{\bar{\rho}\|x\|_{2}+x_{1}}{1+\rho \frac{x_{1}}{\|x\|_{2}}} e_{1} \\
& =-\bar{\rho}\|x\|_{2} e_{1} .
\end{aligned}
$$

Definition 12

A complex $m \times n$-matrix $R=\left[r_{i j}\right]$ is called an upper (lower) triangular matrix, if $r_{i j}=0$ for $i>j(i<j)$.

Definition 13

Given $A \in \mathbb{C}^{m \times n}, Q \in \mathbb{C}^{m \times m}$ unitary and $R \in \mathbb{C}^{m \times n}$ upper triangular such that $A=Q R$. Then the product is called a $Q R$-factorization of A.

Theorem 14

Any complex $m \times n$ matrix A can be factorized by the product $A=Q R$, where Q is $m \times m$-unitary and R is $m \times n$ upper triangular.

Proof: Let $A^{(0)}=A=\left[a_{1}^{(0)}\left|a_{2}^{(0)}\right| \cdots \mid a_{n}^{(0)}\right]$. Find $Q_{1}=\left(I-2 w_{1} w_{1}^{*}\right)$ such that $Q_{1} a_{1}^{(0)}=c e_{1}$. Then

$$
\begin{align*}
A^{(1)} & =Q_{1} A^{(0)}=\left[Q_{1} a_{1}^{(0)}, Q_{1} a_{2}^{(0)}, \cdots, Q_{1} a_{n}^{(0)}\right] \\
& =\left[\begin{array}{c|c|c|c}
c_{1} & * & \cdots & * \\
\hline 0 & & & \\
\vdots & a_{2}^{(1)} & \cdots & a_{n}^{(1)} \\
0 & & &
\end{array}\right] . \tag{3}
\end{align*}
$$

Find $Q_{2}=\left[\begin{array}{c|c}1 & 0 \\ \hline 0 & I-w_{2} w_{2}^{*}\end{array}\right]$ such that $\left(I-2 w_{2} w_{2}^{*}\right) a_{2}^{(1)}=c_{2} e_{1}$. Then

$$
A^{(2)}=Q_{2} A^{(1)}=\left[\begin{array}{cc|ccc}
c_{1} & * & * & \cdots & * \\
0 & c_{2} & * & \cdots & * \\
\hline 0 & 0 & & & \\
\vdots & \vdots & a_{3}^{(2)} & \cdots & a_{n}^{(2)} \\
0 & 0 & & &
\end{array}\right]
$$

We continue this process. Then after $l=\min (m, n)$ steps $A^{(l)}$ is an upper triangular matrix satisfying

$$
A^{(l-1)}=R=Q_{l-1} \cdots Q_{1} A .
$$

Then $A=Q R$, where $Q=Q_{1}^{*} \cdots Q_{l-1}^{*}$.
Suppose that the columns of K_{k+1} are linearly independent and let

$$
K_{k+1}=U_{k+1} R_{k+1}
$$

be the $Q R$ factorization of K_{k+1}. Then the columns of U_{k+1} are results of successively orthogonalizing the columns of K_{k+1}.

Theorem 15

Let $\left\|u_{1}\right\|_{2}=1$ and the columns of $K_{k+1}\left(A, u_{1}\right)$ be linearly indep. Let $U_{k+1}=\left[u_{1} \cdots u_{k+1}\right]$ be the Q-factor of K_{k+1}. Then there is a $(k+1) \times k$ unreduced upper Hessenberg matrix

$$
\hat{H}_{k} \equiv\left[\begin{array}{cccc}
\hat{h}_{11} & \cdots & \cdots & \hat{h}_{1 k} \\
\hat{h}_{21} & \hat{h}_{22} & \cdots & \hat{h}_{2 k} \\
& \ddots & \ddots & \vdots
\end{array}\right] \quad \text { with } \quad \hat{h}_{i+1, i} \neq 0
$$

such that

$$
\begin{equation*}
A U_{k}=U_{k+1} \hat{H}_{k} .(\text { Arnoldi decomp.) } \tag{5}
\end{equation*}
$$

Conversely, if U_{k+1} is orthonormal and satisfies (5), where \hat{H}_{k} is defined in (4), then U_{k+1} is the Q-factor of $K_{k+1}\left(A, u_{1}\right)$.

Proof. (" \Rightarrow ") Let $K_{k}=U_{k} R_{k}$ be the $Q R$ factorization and $S_{k}=R_{k}^{-1}$. Then

$$
A U_{k}=A K_{k} S_{k}=K_{k+1}\left[\begin{array}{c}
0 \\
S_{k}
\end{array}\right]=U_{k+1} R_{k+1}\left[\begin{array}{c}
0 \\
S_{k}
\end{array}\right]=U_{k+1} \hat{H}_{k},
$$

where

$$
\hat{H}_{k}=R_{k+1}\left[\begin{array}{c}
0 \\
S_{k}
\end{array}\right] .
$$

It implies that \hat{H}_{k} is a $(k+1) \times k$ Hessenberg matrix and

$$
h_{i+1, i}=r_{i+1, i+1} s_{i i}=\frac{r_{i+1, i+1}}{r_{i i}} .
$$

Thus by the nonsingularity of R_{k}, \hat{H}_{k} is unreduced.
(" \Leftarrow ") If $k=1$, then

$$
A u_{1}=h_{11} u_{1}+h_{21} u_{2}=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]\left[\begin{array}{l}
h_{11} \\
h_{21}
\end{array}\right]
$$

which implies that

$$
K_{2}=\left[\begin{array}{ll}
u_{1} & A u_{1}
\end{array}\right]=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]\left[\begin{array}{ll}
1 & h_{11} \\
0 & h_{21}
\end{array}\right] .
$$

Since [$\begin{array}{ll}u_{1} & u_{2}\end{array}$] is orthonormal, [$\left.\begin{array}{ll}u_{1} & u_{2}\end{array}\right]$ is the Q-factor of K_{2}. Assume U_{k} is the Q-factor of K_{k}, i.e., $K_{k}=U_{k} R_{k}$. By the definition of the Krylov matrix, we have

$$
\begin{aligned}
K_{k+1} & =\left[\begin{array}{cc}
u_{1} & A K_{k}
\end{array}\right]=\left[\begin{array}{ll}
u_{1} & A U_{k} R_{k}
\end{array}\right]=\left[\begin{array}{ll}
u_{1} & U_{k+1} \hat{H}_{k} R_{k}
\end{array}\right] \\
& =U_{k+1}\left[\begin{array}{ll}
e_{1} & \hat{H}_{k} R_{k}
\end{array}\right]
\end{aligned}
$$

Hence U_{k+1} is the Q-factor of K_{k+1}.

- The uniqueness of Hessenberg reduction

Definition 16

Let H be upper Hessenberg of order n. Then H is unreduced if $h_{i+1, i} \neq 0$ for $i=1, \cdots, n-1$.

Theorem 17 (Implicit Q theorem)

Suppose $Q=\left(\begin{array}{lll}q_{1} & \cdots & q_{n}\end{array}\right)$ and $V=\left(\begin{array}{lll}v_{1} & \cdots & v_{n}\end{array}\right)$ are unitary matrices with

$$
Q^{*} A Q=H \quad \text { and } \quad V^{*} A V=G
$$

being upper Hessenberg. Let k denote the smallest positive integer for which $h_{k+1, k}=0$, with the convection that $k=n$ if H is unreduced. If $v_{1}=q_{1}$, then $v_{i}= \pm q_{i}$ and $\left|h_{i, i-1}\right|=\left|g_{i, i-1}\right|$ for $i=2, \cdots, k$. Moreover, if $k<n$, then $g_{k+1, k}=0$.

Definition 18

Let $U_{k+1} \in \mathbb{C}^{n \times(k+1)}$ be orthonormal. If there is a $(k+1) \times k$ unreduced upper Hessenberg matrix \hat{H}_{k} such that

$$
\begin{equation*}
A U_{k}=U_{k+1} \hat{H}_{k}, \tag{6}
\end{equation*}
$$

then (6) is called an Arnoldi decomposition of order k. If \hat{H}_{k} is reduced, we say the Arnoldi decomposition is reduced.

Partition

$$
\hat{H}_{k}=\left[\begin{array}{c}
H_{k} \\
h_{k+1, k} e_{k}^{T}
\end{array}\right],
$$

and set

$$
\beta_{k}=h_{k+1, k} .
$$

Then (6) is equivalent to

$$
A U_{k}=U_{k} H_{k}+\beta_{k} u_{k+1} e_{k}^{T}
$$

Theorem 19

Suppose the Krylov sequence $K_{k+1}\left(A, u_{1}\right)$ does not terminate at $k+1$. Then up to scaling of the columns of U_{k+1}, the Arnoldi decomposition of K_{k+1} is unique.

Proof. Since the Krylov sequence $K_{k+1}\left(A, u_{1}\right)$ does not terminate at $k+1$, the columns of $K_{k+1}\left(A, u_{1}\right)$ are linearly independent. By Theorem 15, there is an unreduced matrix H_{k} and $\beta_{k} \neq 0$ such that

$$
\begin{equation*}
A U_{k}=U_{k} H_{k}+\beta_{k} u_{k+1} e_{k}^{T}, \tag{7}
\end{equation*}
$$

where $U_{k+1}=\left[U_{k} u_{k+1}\right]$ is an orthonormal basis for $\mathcal{K}_{k+1}\left(A, u_{1}\right)$. Suppose there is another orthonormal basis $\tilde{U}_{k+1}=\left[\tilde{U}_{k} \tilde{u}_{k+1}\right]$ for $\mathcal{K}_{k+1}\left(A, u_{1}\right)$, unreduced matrix \tilde{H}_{k} and $\tilde{\beta}_{k} \neq 0$ such that

$$
A \tilde{U}_{k}=\tilde{U}_{k} \tilde{H}_{k}+\tilde{\beta}_{k} \tilde{u}_{k+1} e_{k}^{T} .
$$

Then we claim that

$$
\tilde{U}_{k}^{H} u_{k+1}=0
$$

For otherwise there is a column \tilde{u}_{j} of \tilde{U}_{k} such that

$$
\tilde{u}_{j}=\alpha u_{k+1}+U_{k} a, \quad \alpha \neq 0 .
$$

Hence

$$
A \tilde{u}_{j}=\alpha A u_{k+1}+A U_{k} a
$$

which implies that $A \tilde{u}_{j}$ contains a component along $A^{k+1} u_{1}$. Since the Krylov sequence $K_{k+1}\left(A, u_{1}\right)$ does not terminate at $k+1$, we have

$$
\mathcal{K}_{k+2}\left(A, u_{1}\right) \neq \mathcal{K}_{k+1}\left(A, u_{1}\right) .
$$

Therefore, $A \tilde{u}_{j}$ lies in $\mathcal{K}_{k+2}\left(A, u_{1}\right)$ but not in $\mathcal{K}_{k+1}\left(A, u_{1}\right)$ which is a contradiction.

Since U_{k+1} and \tilde{U}_{k+1} are orthonormal bases for $\mathcal{K}_{k+1}\left(A, u_{1}\right)$ and $\tilde{U}_{k}^{H} u_{k+1}=0$, it follows that

$$
\mathcal{R}\left(U_{k}\right)=\mathcal{R}\left(\tilde{U}_{k}\right) \quad \text { and } \quad U_{k}^{H} \tilde{u}_{k+1}=0
$$

that is

$$
U_{k}=\tilde{U}_{k} Q
$$

for some unitary matrix Q. Hence

$$
A\left(\tilde{U}_{k} Q\right)=\left(\tilde{U}_{k} Q\right)\left(Q^{H} \tilde{H}_{k} Q\right)+\tilde{\beta}_{k} \tilde{u}_{k+1}\left(e_{k}^{T} Q\right)
$$

or

$$
\begin{equation*}
A U_{k}=U_{k}\left(Q^{H} \tilde{H}_{k} Q\right)+\tilde{\beta}_{k} \tilde{u}_{k+1} e_{k}^{T} Q \tag{8}
\end{equation*}
$$

On premultiplying (7) and (8) by U_{k}^{H}, we obtain

$$
H_{k}=U_{k}^{H} A U_{k}=Q^{H} \tilde{H}_{k} Q
$$

Similarly, premultiplying by u_{k+1}^{H}, we obtain

$$
\beta_{k} e_{k}^{T}=u_{k+1}^{H} A U_{k}=\tilde{\beta}_{k}\left(u_{k+1}^{H} \tilde{u}_{k+1}\right) e_{k}^{T} Q .
$$

It follows that the last row of Q is $\omega_{k} e_{k}^{T}$, where $\left|\omega_{k}\right|=1$. Since the norm of the last column of Q is one, the last column of Q is $\omega_{k} e_{k}$. Since H_{k} is unreduced, it follows from the implicit Q theorem that

$$
Q=\operatorname{diag}\left(\omega_{1}, \cdots, \omega_{k}\right), \quad\left|\omega_{j}\right|=1, j=1, \ldots, k .
$$

Thus up to column scaling $U_{k}=\tilde{U}_{k} Q$ is the same as \tilde{U}_{k}. Subtracting (8) from (7), we find that

$$
\beta_{k} u_{k+1}=\omega_{k} \tilde{\beta}_{k} \tilde{u}_{k+1}
$$

so that up to scaling u_{k+1} and \tilde{u}_{k+1} are the same.

Let A be Hermitian and let

$$
\begin{equation*}
A U_{k}=U_{k} T_{k}+\beta_{k} u_{k+1} e_{k}^{\top} \tag{9}
\end{equation*}
$$

be an Arnoldi decomposition. Since T_{k} is upper Hessenberg and $T_{k}=U_{k}^{H} A U_{k}$ is Hermitian, it follows that T_{k} is tridiagonal and can be written in the form

$$
T_{k}=\left[\begin{array}{cccccc}
\alpha_{1} & \beta_{1} & & & & \\
\beta_{1} & \alpha_{2} & \beta_{2} & & & \\
& \beta_{2} & \alpha_{3} & \beta_{3} & & \\
& & \ddots & \ddots & \ddots & \\
& & & \beta_{k-2} & \alpha_{k-1} & \beta_{k-1} \\
& & & & \beta_{k-1} & \alpha_{k}
\end{array}\right]
$$

Equation (9) is called a Lanczos decomposition.

The first column of (9) is

$$
A u_{1}=\alpha_{1} u_{1}+\beta_{1} u_{2} \quad \text { or } \quad u_{2}=\frac{A u_{1}-\alpha_{1} u_{1}}{\beta_{1}}
$$

From the orthonormality of u_{1} and u_{2}, it follows that

$$
\alpha_{1}=u_{1}^{*} A u_{1}
$$

and

$$
\beta_{1}=\left\|A u_{1}-\alpha_{1} u_{1}\right\|_{2} .
$$

More generality, from the j-th column of (9) we get the relation

$$
u_{j+1}=\frac{A u_{j}-\alpha_{j} u_{j}-\beta_{j-1} u_{j-1}}{\beta_{j}}
$$

where

$$
\alpha_{j}=u_{j}^{*} A u_{j} \quad \text { and } \quad \beta_{j}=\left\|A u_{j}-\alpha_{j} u_{j}-\beta_{j-1} u_{j-1}\right\|_{2}
$$

This is the Lanczos three-term recurrence.

Algorithm 1 (Lanczos recurrence)

Let u_{1} be given. This algorithm generates the Lanczos decomposition

$$
A U_{k}=U_{k} T_{k}+\beta_{k} u_{k+1} e_{k}^{\top}
$$

where T_{k} is symmetric tridiagonal.

1. $u_{0}=0 ; \beta_{0}=0$;
2. for $j=1$ to k
3. $u_{j+1}=A u_{j}$
4. $\alpha_{j}=u_{j}^{*} u_{j+1}$
5. $\quad v=u_{j+1}-\alpha_{j} u_{j}-\beta_{j-1} u_{j-1}$
6. $\quad \beta_{j}=\|v\|_{2}$
7. $u_{j+1}=v / \beta_{j}$
8. end for j

Reorthogonalization

Let

$$
\tilde{u}_{j+1}=A u_{j}-\alpha_{j} u_{j}-\beta_{j-1} u_{j-1}
$$

with $\alpha_{j}=u_{j}^{*} A u_{j}$. Re-orthogonalize \tilde{u}_{j+1} against U_{j}, i.e.,

$$
\begin{aligned}
\tilde{u}_{j+1} & :=\tilde{u}_{j+1}-\sum_{i=1}^{j}\left(u_{i}^{*} \tilde{u}_{j+1}\right) u_{i} \\
& =A u_{j}-\left(\alpha_{j}+u_{j}^{*} \tilde{u}_{j+1}\right) u_{j}-\beta_{j-1} u_{j-1}-\sum_{i=1}^{j-1}\left(u_{i}^{*} \tilde{u}_{j+1}\right) u_{i}
\end{aligned}
$$

Take

$$
\beta_{j}=\left\|\tilde{u}_{j+1}\right\|_{2}, \quad u_{j+1}=\tilde{u}_{j+1} / \beta_{j}
$$

Theorem 20 (Stop criterion)

Suppose that j steps of the Lanczos algorithm have been performed and that

$$
S_{j}^{H} T_{j} S_{j}=\operatorname{diag}\left(\theta_{1}, \cdots, \theta_{j}\right)
$$

is the Schur decomposition of the tridiagonal matrix T_{j}, if $Y_{j} \in \mathbb{C}^{n \times j}$ is defined by

$$
Y_{j} \equiv\left[\begin{array}{lll}
y_{1} & \cdots & y_{j}
\end{array}\right]=U_{j} S_{j}
$$

then for $i=1, \cdots, j$ we have

$$
\left\|A y_{i}-\theta_{i} y_{i}\right\|_{2}=\left|\beta_{j} \| s_{j i}\right|
$$

where $S_{j}=\left[s_{p q}\right]$.

Proof: Post-multiplying

$$
A U_{j}=U_{j} T_{j}+\beta_{j} u_{j+1} e_{j}^{\top}
$$

by S_{j} gives

$$
A Y_{j}=Y_{j} \operatorname{diag}\left(\theta_{1}, \cdots, \theta_{j}\right)+\beta_{j} u_{j+1} e_{j}^{\top} S_{j}
$$

i.e.,

$$
A y_{i}=\theta_{i} y_{i}+\beta_{j} u_{j+1}\left(e_{j}^{\top} S_{j} e_{i}\right), \quad i=1, \cdots, j
$$

The proof is complete by taking norms.

Remark 1

- Stop criterion $=\left|\beta_{j} \| s_{j i}\right|$. Do not need to compute $\left\|A y_{i}-\theta_{i} y_{i}\right\|_{2}$.
- In general, $\left|\beta_{j}\right|$ is not small. It is possible that $\left|\beta_{j}\right|\left|s_{j i}\right|$ is small.

Theorem 21

Let A be $n \times n$ symmetric matrix with eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$ and corresponding orthonormal eigenvectors z_{1}, \cdots, z_{n}. If $\theta_{1} \geq \cdots \geq \theta_{j}$ are the eigenvalues of T_{j} obtained after j steps of the Lanczos iteration, then

$$
\lambda_{1} \geq \theta_{1} \geq \lambda_{1}-\frac{\left(\lambda_{1}-\lambda_{n}\right)\left(\tan \phi_{1}\right)^{2}}{\left[c_{j-1}\left(1+2 \rho_{1}\right)\right]^{2}}
$$

where $\cos \phi_{1}=\left|u_{1}^{\top} z_{1}\right|, c_{j-1}$ is a Chebychev polynomal of degree $j-1$ and

$$
\rho_{1}=\frac{\lambda_{1}-\lambda_{2}}{\lambda_{2}-\lambda_{n}}
$$

Proof: From Courant-Fischer theorem we have

$$
\theta_{1}=\max _{y \neq 0} \frac{y^{\top} T_{j} y}{y^{\top} y}=\max _{y \neq 0} \frac{\left(U_{j} y\right)^{\top} A\left(U_{j} y\right)}{\left(U_{j} y\right)^{\top}\left(U_{j} y\right)}=\max _{0 \neq w \in \mathcal{K}_{j}\left(u_{1}, A\right)} \frac{w^{\top} A w}{w^{\top} w} .
$$

Since λ_{1} is the maximum of $w^{\top} A w / w^{\top} w$ over all nonzero w, it follows that $\lambda_{1} \geq \theta_{1}$. To obtain the lower bound for θ_{1}, note that

$$
\theta_{1}=\max _{p \in P_{j-1}} \frac{u_{1}^{\top} p(A) A p(A) u_{1}}{u_{1}^{\top} p(A)^{2} u_{1}}
$$

where P_{j-1} is the set of all $j-1$ degree polynomials. If $u_{1}=\sum_{i=1}^{n} d_{i} z_{i}$, then

$$
\begin{aligned}
\frac{u_{1}^{\top} p(A) A p(A) u_{1}}{u_{1}^{\top} p(A)^{2} u_{1}} & =\frac{\sum_{i=1}^{n} d_{i}^{2} p\left(\lambda_{i}\right)^{2} \lambda_{i}}{\sum_{i=1}^{n} d_{i}^{2} p\left(\lambda_{i}\right)^{2}} \\
& \geq \lambda_{1}-\left(\lambda_{1}-\lambda_{n}\right) \frac{\sum_{i=2}^{n} d_{i}^{2} p\left(\lambda_{i}\right)^{2}}{d_{1}^{2} p\left(\lambda_{1}\right)^{2}+\sum_{i=2}^{n} d_{i}^{2} p\left(\lambda_{i}\right)^{2}}
\end{aligned}
$$

We can make the lower bound tight by selecting a polynomial $p(\alpha)$ that is large at $\alpha=\lambda_{1}$ in comparison to its value at the remaining eigenvalues. Set

$$
p(\alpha)=c_{j-1}\left(-1+2 \frac{\alpha-\lambda_{n}}{\lambda_{2}-\lambda_{n}}\right),
$$

where $c_{j-1}(z)$ is the $(j-1)$-th Chebychev polynomial generated by

$$
c_{j}(z)=2 z c_{j-1}(z)-c_{j-2}(z), \quad c_{0}=1, c_{1}=z .
$$

These polynomials are bounded by unity on $[-1,1]$. It follows that $\left|p\left(\lambda_{i}\right)\right|$ is bounded by unity for $i=2, \cdots, n$ while $p\left(\lambda_{1}\right)=c_{j-1}\left(1+2 \rho_{1}\right)$. Thus,

$$
\theta_{1} \geq \lambda_{1}-\left(\lambda_{1}-\lambda_{n}\right) \frac{\left(1-d_{1}^{2}\right)}{d_{1}^{2}} \frac{1}{c_{j-1}^{2}\left(1+2 \rho_{1}\right)} .
$$

The desired lower bound is obtained by noting that $\tan \left(\phi_{1}\right)^{2}=\left(1-d_{1}^{2}\right) / d_{1}^{2}$.

Theorem 22
Using the same notation as Theorem 21,

$$
\lambda_{n} \leq \theta_{j} \leq \lambda_{n}+\frac{\left(\lambda_{1}-\lambda_{n}\right) \tan ^{2} \varphi_{n}}{\left[c_{j-1}\left(1+2 \rho_{n}\right)\right]^{2}}
$$

where

$$
\rho_{n}=\frac{\lambda_{n-1}-\lambda_{n}}{\lambda_{1}-\lambda_{n-1}}, \quad \cos \varphi_{n}=\left|u_{1}^{\top} z_{n}\right| .
$$

Proof: Apply Theorem 21 with A replaced by $-A$.

Restarted Lanczos method

Let

$$
A U_{m}=U_{m} T_{m}+\beta_{m} u_{m+1} e_{m}^{T}
$$

be a Lanczos decomposition.
(1) In principle, we can keep expanding the Lanczos decomposition until the Ritz pairs have converged.
(2) Unfortunately, it is limited by the amount of memory to storage of U_{m}.
(3) Restarted the Lanczos process once m becomes so large that we cannot store U_{m}.

- Implicitly restarting method
- Krylov-Schur decomposition

Implicitly restarted Lanczos method

- Choose a new starting vector for the underlying Krylov sequence
- A natural choice would be a linear combination of Ritz vectors that we are interested in.

Filter polynomials
Assume A has a complete system of eigenpairs $\left(\lambda_{i}, x_{i}\right)$ and we are interested in the first k of these eigenpairs. Expand u_{1} in the form

$$
u_{1}=\sum_{i=1}^{k} \gamma_{i} x_{i}+\sum_{i=k+1}^{n} \gamma_{i} x_{i} .
$$

If p is any polynomial, we have

$$
p(A) u_{1}=\sum_{i=1}^{k} \gamma_{i} p\left(\lambda_{i}\right) x_{i}+\sum_{i=k+1}^{n} \gamma_{i} p\left(\lambda_{i}\right) x_{i} .
$$

- Choose p so that the values $p\left(\lambda_{i}\right)(i=k+1, \ldots, n)$ are small compared to the values $p\left(\lambda_{i}\right)(i=1, \ldots, k)$.
- Then $p(A) u_{1}$ is rich in the components of the x_{i} that we want and deficient in the ones that we do not want.
- p is called a filter polynomial.
- Suppose we have Ritz values $\theta_{1}, \ldots, \theta_{m}$ and $\theta_{1}, \ldots, \theta_{m-k}$ are not interesting. Then take

$$
p(t)=\left(t-\theta_{1}\right) \cdots\left(t-\theta_{m-k}\right)
$$

Implicitly restarted Lanczos: Let

$$
\begin{equation*}
A U_{m}=U_{m} T_{m}+\beta_{m} u_{m+1} e_{m}^{\top} \tag{10}
\end{equation*}
$$

be a Lanczos decomposition with order m. Choose a filter polynomial p of degree $m-k$ and use the implicit restarting process to reduce the decomposition to a decomposition

$$
A \tilde{U}_{k}=\tilde{U}_{k} \tilde{T}_{k}+\tilde{\beta}_{k} \tilde{u}_{k+1} e_{k}^{\top}
$$

of order k with starting vector $p(A) u_{1}$.

Let $\theta_{1}, \ldots, \theta_{m}$ be eigenvalues of T_{m} and suppose that $\theta_{1}, \ldots, \theta_{m-k}$ correspond to the part of the spectrum we are not interested in. Then take

$$
p(t)=\left(t-\theta_{1}\right)\left(t-\theta_{2}\right) \cdots\left(t-\theta_{m-k}\right)
$$

The starting vector $p(A) u_{1}$ is equal to

$$
\begin{aligned}
p(A) u_{1} & =\left(A-\theta_{m-k} I\right) \cdots\left(A-\theta_{2} I\right)\left(A-\theta_{1} I\right) u_{1} \\
& =\left(A-\theta_{m-k} I\right)\left[\cdots\left[\left(A-\theta_{2} I\right)\left[\left(A-\theta_{1} I\right) u_{1}\right]\right]\right] .
\end{aligned}
$$

In the first, we construct a Lanczos decomposition with starting vector $\left(A-\theta_{1} I\right) u_{1}$. From (10), we have

$$
\begin{align*}
\left(A-\theta_{1} I\right) U_{m} & =U_{m}\left(T_{m}-\theta_{1} I\right)+\beta_{m} u_{m+1} e_{m}^{\top} \tag{11}\\
& =U_{m} Q_{1} R_{1}+\beta_{m} u_{m+1} e_{m}^{\top}
\end{align*}
$$

where

$$
T_{m}-\theta_{1} I=Q_{1} R_{1}
$$

is the $Q R$ factorization of $T_{m}-\theta_{1} I$.

Postmultiplying by Q_{1}, we get

$$
\left(A-\theta_{1} I\right)\left(U_{m} Q_{1}\right)=\left(U_{m} Q_{1}\right)\left(R_{1} Q_{1}\right)+\beta_{m} u_{m+1}\left(e_{m}^{\top} Q_{1}\right)
$$

It implies that

$$
A U_{m}^{(1)}=U_{m}^{(1)} T_{m}^{(1)}+\beta_{m} u_{m+1} b_{m+1}^{(1) H}
$$

where

$$
U_{m}^{(1)}=U_{m} Q_{1}, \quad T_{m}^{(1)}=R_{1} Q_{1}+\theta_{1} I, \quad b_{m+1}^{(1) H}=e_{m}^{\top} Q_{1} .
$$

$\left(T_{m}^{(1)}:\right.$ one step of single shifted $Q R$ algorithm)

Theorem 23

Let T_{m} be an unreduced tridiagonal. Then $T_{m}^{(1)}$ has the form

$$
T_{m}^{(1)}=\left[\begin{array}{cc}
\hat{T}_{m}^{(1)} & 0 \\
0 & \theta_{1}
\end{array}\right],
$$

where $\hat{T}_{m}^{(1)}$ is unreduced tridiagonal.
Proof: Let

$$
T_{m}-\theta_{1} I=Q_{1} R_{1}
$$

be the $Q R$ factorization of $T_{m}-\theta_{1} I$ with

$$
Q_{1}=G\left(1,2, \varphi_{1}\right) \cdots G\left(m-1, m, \varphi_{m-1}\right)
$$

where $G\left(i, i+1, \varphi_{i}\right)$ for $i=1, \ldots, m-1$ are Given rotations.

Since T_{m} is unreduced tridiagonal, i.e., the subdiagonal elements of T_{m} are nonzero, we get

$$
\begin{equation*}
\varphi_{i} \neq 0 \quad \text { for } i=1, \ldots, m-1 \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(R_{1}\right)_{i i} \neq 0 \quad \text { for } \quad i=1, \ldots, m-1 \tag{13}
\end{equation*}
$$

Since θ_{1} is an eigenvalue of T_{m}, we have that $T_{m}-\theta_{1} I$ is singular and then

$$
\begin{equation*}
\left(R_{1}\right)_{m m}=0 . \tag{14}
\end{equation*}
$$

Using the results of (12), (13) and (14), we get

$$
\begin{align*}
T_{m}^{(1)} & =R_{1} Q_{1}+\theta_{1} I=R_{1} G\left(1,2, \varphi_{1}\right) \cdots G\left(m-1, m, \varphi_{m-1}\right)+\theta_{1} I \\
& =\left[\begin{array}{cc}
\hat{H}_{m}^{(1)} & \hat{h}_{12} \\
0 & \theta_{1}
\end{array}\right] \tag{15}
\end{align*}
$$

where $\hat{H}_{m}^{(1)}$ is unreduced upper Hessenberg.

By the definition of $T_{m}^{(1)}$, we get

$$
Q_{1} T_{m}^{(1)} Q_{1}^{H}=Q_{1}\left(R_{1} Q_{1}+\theta_{1} I\right) Q_{1}^{H}=Q_{1} R_{1}+\theta_{1} I=T_{m}
$$

It implies that $T_{m}^{(1)}$ is tridiagonal and then, from (15), the result in (12) is obtained.

Remark 2

- $U_{m}^{(1)}$ is orthonormal.
- The vector $b_{m+1}^{(1) H}=e_{m}^{\top} Q_{1}$ has the form

$$
b_{m+1}^{(1) H}=\left[\begin{array}{lllll}
0 & \cdots & 0 & q_{m-1, m}^{(1)} & q_{m, m}^{(1)}
\end{array}\right]
$$

i.e., only the last two components of $b_{m+1}^{(1)}$ are nonzero.

- For on postmultiplying (11) by e_{1}, we get

$$
\left(A-\theta_{1} I\right) u_{1}=\left(A-\theta_{1} I\right)\left(U_{m} e_{1}\right)=U_{m}^{(1)} R_{1} e_{1}=r_{11}^{(1)} u_{1}^{(1)}
$$

Since T_{m} is unreduced, $r_{11}^{(1)}$ is nonzero. Therefore, the first column of $U_{m}^{(1)}$ is a multiple of $\left(A-\theta_{1} I\right) u_{1}$.

- By the definition of $T_{m}^{(1)}$, we get

$$
Q_{1} T_{m}^{(1)} Q_{1}^{H}=Q_{1}\left(R_{1} Q_{1}+\theta_{1} I\right) Q_{1}^{H}=Q_{1} R_{1}+\theta_{1} I=T_{m}
$$

Therefore, $\theta_{1}, \theta_{2}, \ldots, \theta_{m}$ are also eigenvalues of $T_{m}^{(1)}$.

Similarly,

$$
\begin{align*}
\left(A-\theta_{2} I\right) U_{m}^{(1)} & =U_{m}^{(1)}\left(T_{m}^{(1)}-\theta_{2} I\right)+\beta_{m} u_{m+1} b_{m+1}^{(1) H} \tag{16}\\
& =U_{m}^{(1)} Q_{2} R_{2}+\beta_{m} u_{m+1} b_{m+1}^{(1) H},
\end{align*}
$$

where

$$
T_{m}^{(1)}-\theta_{2} I=Q_{2} R_{2}
$$

is the $Q R$ factorization of $T_{m}^{(1)}-\theta_{2} I$. Postmultiplying by Q_{2}, we get

$$
\left(A-\theta_{2} I\right)\left(U_{m}^{(1)} Q_{2}\right)=\left(U_{m}^{(1)} Q_{2}\right)\left(R_{2} Q_{2}\right)+\beta_{m} u_{m+1}\left(b_{m+1}^{(1) H} Q_{2}\right)
$$

It implies that

$$
A U_{m}^{(2)}=U_{m}^{(2)} T_{m}^{(2)}+\beta_{m} u_{m+1} b_{m+1}^{(2) H}
$$

where

$$
U_{m}^{(2)} \equiv U_{m}^{(1)} Q_{2}
$$

is orthonormal,

$$
T_{m}^{(2)} \equiv R_{2} Q_{2}+\theta_{2} I=\left[\begin{array}{c|cc}
T_{m-2}^{(2)} & 0 & 0 \\
\hline & \theta_{2} & 0 \\
& & \theta_{1}
\end{array}\right]
$$

is tridiagonal with unreduced matrix $T_{m-2}^{(2)}$ and

$$
\begin{aligned}
b_{m+1}^{(2) H} & \equiv b_{m+1}^{(1) H} Q_{2}=q_{m-1, m}^{(1)} e_{m-1}^{H} Q_{2}+q_{m, m}^{(1)} e_{m}^{\top} Q_{2} \\
& =\left[\begin{array}{lllll}
0 & \cdots & 0 & \times & \times
\end{array}\right] .
\end{aligned}
$$

For on postmultiplying (16) by e_{1}, we get

$$
\left(A-\theta_{2} I\right) u_{1}^{(1)}=\left(A-\theta_{2} I\right)\left(U_{m}^{(1)} e_{1}\right)=U_{m}^{(2)} R_{2} e_{1}=r_{11}^{(2)} u_{1}^{(2)} .
$$

Since $H_{m}^{(1)}$ is unreduced, $r_{11}^{(2)}$ is nonzero. Therefore, the first column of $U_{m}^{(2)}$ is a multiple of

$$
\left(A-\theta_{2} I\right) u_{1}^{(1)}=1 / r_{11}^{(1)}\left(A-\theta_{2} I\right)\left(A-\theta_{1} I\right) u_{1} .
$$

Repeating this process with $\theta_{3}, \ldots, \theta_{m-k}$, the result will be a Krylov decomposition

$$
A U_{m}^{(m-k)}=U_{m}^{(m-k)} T_{m}^{(m-k)}+\beta_{m} u_{m+1} b_{m+1}^{(m-k) H}
$$

with the following properties
(1) $U_{m}^{(m-k)}$ is orthonormal.
(2) $T_{m}^{(m-k)}$ is tridiagonal.
(3) The first $k-1$ components of $b_{m+1}^{(m-k) H}$ are zero.
(4) The first column of $U_{m}^{(m-k)}$ is a multiple of

$$
\left(A-\theta_{1} I\right) \cdots\left(A-\theta_{m-k} I\right) u_{1}
$$

Corollary 24

Let $\theta_{1}, \ldots, \theta_{m}$ be eigenvalues of T_{m}. If the implicitly restarted $Q R$ step is performed with shifts $\theta_{1}, \ldots, \theta_{m-k}$, then the matrix $T_{m}^{(m-k)}$ has the form

$$
T_{m}^{(m-k)}=\left[\begin{array}{cc}
T_{k k}^{(m-k)} & 0 \\
0 & D^{(m-k)}
\end{array}\right],
$$

where $D^{(m-k)}$ is an digonal matrix with Ritz value $\theta_{1}, \ldots, \theta_{m-k}$ on its diagonal.

For $k=3$ and $m=6$,

$$
\begin{aligned}
& A\left[\begin{array}{lll|lll}
u & u & u & u & u & u
\end{array}\right] \\
= & {\left[\begin{array}{lll|lll}
u & u & u & u & u & u
\end{array}\right]\left[\begin{array}{ccc|ccc}
\times & \times & 0 & 0 & 0 & 0 \\
\times & \times & \times & 0 & 0 & 0 \\
0 & \times & \times & \times & 0 & 0 \\
\hline 0 & 0 & \times & \times & 0 & 0 \\
0 & 0 & 0 & 0 & \times & 0 \\
0 & 0 & 0 & 0 & 0 & \times
\end{array}\right] } \\
& +u\left[\begin{array}{lllllll}
0 & 0 & q & q & q & q
\end{array}\right] .
\end{aligned}
$$

Therefore, the first k columns of the decomposition can be written in the form

$$
A U_{k}^{(m-k)}=U_{k}^{(m-k)} T_{k k}^{(m-k)}+t_{k+1, k} u_{k+1}^{(m-k)} e_{k}^{\top}+\beta_{m} q_{m k} u_{m+1} e_{k}^{\top}
$$

where $U_{k}^{(m-k)}$ consists of the first k columns of $U_{m}^{(m-k)}, T_{k k}^{(m-k)}$ is the leading principal submatrix of order k of $T_{m}^{(m-k)}$, and $q_{m k}$ is from the matrix $Q=Q_{1} \cdots Q_{m-k}$.

Hence if we set

$$
\begin{aligned}
\tilde{U}_{k} & =U_{k}^{(m-k)} \\
\tilde{T}_{k} & =T_{k k}^{(m-k)} \\
\tilde{\beta}_{k} & =\left\|t_{k+1, k} u_{k+1}^{(m-k)}+\beta_{m} q_{m k} u_{m+1}\right\|_{2} \\
\tilde{u}_{k+1} & =\tilde{\beta}_{k}^{-1}\left(t_{k+1, k} u_{k+1}^{(m-k)}+\beta_{m} q_{m k} u_{m+1}\right)
\end{aligned}
$$

then

$$
A \tilde{U}_{k}=\tilde{U}_{k} \tilde{T}_{k}+\tilde{\beta}_{k} \tilde{u}_{k+1} e_{k}^{\top}
$$

is a Lanczos decomposition whose starting vector is proportional to $\left(A-\theta_{1} I\right) \cdots\left(A-\theta_{m-k} I\right) u_{1}$.

- Avoid any matrix-vector multiplications in forming the new starting vector.
- Get its Lanczos decomposition of order k for free.
- For large n the major cost will be in computing $U Q$.

Practical Implementation

Restarted Lanczos method

Input: Given Lanczos decomp. $A U_{m}=U_{m} T_{m}+\beta_{m} u_{m+1} e_{m}^{\top}$
Output: new Lanczos decomp. $A U_{k}=U_{k} T_{k}+\beta_{k} u_{k+1} e_{k}^{\top}$
1: Compute the eigenvalues $\theta_{1}, \ldots, \theta_{m}$ of T_{m}.
2: Determine shifts, said $\theta_{1}, \ldots, \theta_{m-k}$, and set $b_{m}=e_{m}^{\top}$.
3: for $j=1, \ldots, m-k$ do
4: \quad Compute QR factorization: $T_{m}-\theta_{j} I=Q_{m} R_{m}$.
5: Update $T_{m}:=R_{m} Q_{m}+\theta_{j} I, U_{m}:=U_{m} Q_{m}, b_{m}:=Q_{m}^{\top} b_{m}$.
6: end for
7: Compute $v=\beta_{k} u_{k+1}+\beta_{m} b_{m}(k) u_{m+1}$.
8: Set $U_{k}:=U_{m}(:, 1: k), \beta_{k}=\|v\|_{2}, u_{k+1}=v / \beta_{k}$, and $T_{k}:=T_{m}(1: k, 1: k)$,

Question

Can we implicitly compute Q_{m} and get new tridiagonal matrix T_{m} ?

General algorithm

(1) Determine the first column c_{1} of $T_{m}-\theta_{j} I$.
(2) Let \widehat{Q} be a Householder transformation such that $\widehat{Q}^{\top} c_{1}=\sigma e_{1}$.
(3) Set $T=\widehat{Q}^{\top} T_{m} \widehat{Q}$.
(9) Use Householder transformation \widetilde{Q} to reduce T to a new tridiagonal form $\widehat{T} \equiv \widetilde{Q}^{\top} T \widetilde{Q}$.
(Set $Q_{m}=\widehat{Q} \widetilde{Q}$.

Question

General algorithm = one step of single shift QR algorithm ?

Answer:

(I) Let

$$
T_{m}-\theta_{j} I=\left[\begin{array}{ll}
c_{1} & C_{*}
\end{array}\right]=Q_{m} R_{m}=\left[\begin{array}{ll}
q & Q_{m *}
\end{array}\right]\left[\begin{array}{cc}
\rho & r_{*} \\
0 & R_{*}
\end{array}\right]
$$

be the QR factorization of $T_{m}-\theta_{j} I$. Then $c_{1}=\rho q$. Partition $\widehat{Q} \equiv\left[\begin{array}{ll}\hat{q} & \widehat{Q}_{*}\end{array}\right]$, then $c_{1}=\sigma \widehat{Q} e_{1}=\sigma \hat{q}$ which implies that q and \hat{q} are proportional to c_{1}.
(II) Since $\widehat{T}=\widetilde{Q}^{\top} T \widetilde{Q}$ is tridiagonal, we have

$$
\widetilde{Q} e_{1}=e_{1}
$$

Hence,

$$
(\widehat{Q} \widetilde{Q}) e_{1}=\widehat{Q} e_{1}=\hat{q}
$$

which implies that the first column of $\widehat{Q} \widetilde{Q}$ is proportional to q.
(III) Since $(\widehat{Q} \widetilde{Q})^{\top} T_{m}(\widehat{Q} \widetilde{Q})$ is tridiagonal and the first column of $\widehat{Q} \widetilde{Q}$ is proportional to q, by the implicit Q Theorem, if \widehat{T} is unreduced, then $\widehat{Q}=Q_{0} Q_{1}$ and $\widehat{T}=(\widehat{Q} \widetilde{Q})^{\top} T_{m}(\widehat{Q} \widetilde{Q})$.

Definition 25 (Givens rotation)

A plane rotation (also called a Givens rotation) is a matrix of the form

$$
G=\left[\begin{array}{cc}
c & s \\
-\bar{s} & c
\end{array}\right]
$$

where $|c|^{2}+|s|^{2}=1$.
Given $a \neq 0$ and b, set

$$
v=\sqrt{|a|^{2}+|b|^{2}}, c=|a| / v \text { and } s=\frac{a}{|a|} \cdot \frac{\bar{b}}{v},
$$

then

$$
\left[\begin{array}{cc}
c & s \\
-\bar{s} & c
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
v \frac{a}{|a|} \\
0
\end{array}\right] .
$$

Let

$$
G_{i j}=\left(\begin{array}{ccccc}
I_{i-1} & & & & \\
& c & & s & \\
& & I_{j-i-1} & & \\
& -\bar{s} & & c & \\
& & & & I_{n-j}
\end{array}\right) .
$$

(I) Compute the first column $t_{1} \equiv\left[\begin{array}{c}\alpha_{1}-\theta_{j} \\ \beta_{1} \\ 0\end{array}\right]$ of $T_{m}-\theta_{j} I$ and determine Givens rotation G_{12} such that $G_{12} t_{1}=\gamma e_{1}$.
(II) Set $T_{m}:=G_{12} T_{m} G_{12}^{\top}$.

$$
T_{m}:=G_{12}\left[\begin{array}{ccccc}
\times & \times & 0 & 0 & 0 \\
\times & \times & \times & 0 & 0 \\
0 & \times & \times & \times & 0 \\
0 & 0 & \times & \times & \times \\
0 & 0 & 0 & \times & \times
\end{array}\right] G_{12}^{\top}=\left[\begin{array}{ccccc}
\times & \times & + & 0 & 0 \\
\times & \times & \times & 0 & 0 \\
+ & \times & \times & \times & 0 \\
0 & 0 & \times & \times & \times \\
0 & 0 & 0 & \times & \times
\end{array}\right]
$$

(III) Construct orthonormal Q such that $T_{m}:=Q T_{m} Q^{\top}$ is tridiagonal:

$$
\begin{aligned}
& T_{m}:=G_{23}\left[\begin{array}{ccccc}
\times & \times & + & 0 & 0 \\
\times & \times & \times & 0 & 0 \\
+ & \times & \times & \times & 0 \\
0 & 0 & \times & \times & \times \\
0 & 0 & 0 & \times & \times
\end{array}\right] G_{23}^{\top}=\left[\begin{array}{ccccc}
\times & \times & 0 & 0 & 0 \\
\times & \times & \times & + & 0 \\
0 & \times & \times & \times & 0 \\
0 & + & \times & \times & \times \\
0 & 0 & 0 & \times & \times
\end{array}\right] \\
& T_{m}:=G_{34}\left[\begin{array}{ccccc}
\times & \times & 0 & 0 & 0 \\
\times & \times & \times & + & 0 \\
0 & \times & \times & \times & 0 \\
0 & + & \times & \times & \times \\
0 & 0 & 0 & \times & \times
\end{array}\right] G_{34}^{\top}=\left[\begin{array}{ccccc}
\times & \times & 0 & 0 & 0 \\
\times & \times & \times & 0 & 0 \\
0 & \times & \times & \times & + \\
0 & 0 & \times & \times & \times \\
0 & 0 & + & \times & \times
\end{array}\right] \\
& T_{m}:=G_{45}\left[\begin{array}{ccccc}
\times & \times & 0 & 0 & 0 \\
\times & \times & \times & 0 & 0 \\
0 & \times & \times & \times & + \\
0 & 0 & \times & \times & \times \\
0 & 0 & + & \times & \times
\end{array}\right] G_{45}^{\top}=\left[\begin{array}{ccccc}
\times & \times & 0 & 0 & 0 \\
\times & \times & \times & 0 & 0 \\
0 & \times & \times & \times & 0 \\
0 & 0 & \times & \times & \times \\
0 & 0 & 0 & \times & \times
\end{array}\right]
\end{aligned}
$$

Implicit Restarting for Lanczos method

Input: Given Lanczos decomp. $A U_{m}=U_{m} T_{m}+\beta_{m} u_{m+1} e_{m}^{\top}$
Output: new Lanczos decomp. $A U_{k}=U_{k} T_{k}+\beta_{k} u_{k+1} e_{k}^{\top}$
1: Compute the eigenvalues $\theta_{1}, \ldots, \theta_{m}$ of T_{m}.
2: Determine shifts, said $\theta_{1}, \ldots, \theta_{m-k}$, and set $b_{m}=e_{m}^{\top}$.
3: $\mathbf{f o r} j=1, \ldots, m-k$ do
4: Compute Givens rotation G_{12} such that $G_{12}\left[\begin{array}{c}\alpha_{1}-\theta_{j} \\ \beta_{1} \\ 0\end{array}\right]=\gamma e_{1}$.
5: Update $T_{m}:=G_{12} T_{m} G_{12}^{\top}, U_{m}:=U_{m} G_{12}^{\top}, b_{m}:=G_{12} b_{m}$.
6: Compute Givens rotations $G_{23}, \ldots, G_{m-1, m}$ such that $T_{m}:=G_{m-1, m} \cdots G_{23} T_{m} G_{23}^{\top} \cdots G_{m-1, m}^{\top}$ is tridiagonal.
7: Update $U_{m}:=U_{m} G_{23}^{\top} \cdots G_{m-1, m}^{\top}$ and $b_{m}:=G_{m-1, m} \cdots G_{23} b_{m}$.
8: end for
9: Compute $v=\beta_{k} u_{k+1}+\beta_{m} b_{m}(k) u_{m+1}$.
10: Set $U_{k}:=U_{m}(:, 1: k), \beta_{k}=\|v\|_{2}, u_{k+1}=v / \beta_{k}$, and $T_{k}:=T_{m}(1: k, 1: k)$,

Problem

- Mathematically, u_{j} must be orthogonal.
- In practice, they can lose orthogonality.

Solutions

Reorthogonalize the vectors at each step.
j-th step of Lanczos process
Input: Given β_{j-1} and orthonormal matrix $U_{j}=\left[u_{1}, \ldots, u_{j}\right]$.
Output: α_{j}, β_{j} and unit vector u_{j+1} with $u_{j+1}^{\top} U_{j}=0$ and

$$
A u_{j}=\alpha_{j} u_{j}+\beta_{j-1} u_{j-1}+\beta_{j} u_{j+1} .
$$

1: Compute $u_{j+1}=A u_{j}-\beta_{j-1} u_{j-1}$ and $\alpha_{j}=u_{j}^{\top} u_{j+1}$;
2: Update $u_{j+1}:=u_{j+1}-\alpha_{j} u_{j}$;
3: for $i=1, \ldots, j$ do
4: \quad Compute $\gamma_{i}=u_{i}^{\top} u_{j+1}$ and update $u_{j+1}:=u_{j+1}-\gamma_{i} u_{i}$;
5: end for
6: Update $\alpha_{j}:=\alpha_{j}+\gamma_{j}$ and compute $\beta_{j}=\left\|u_{j+1}\right\|_{2}$ and

$$
u_{j+1}:=u_{j+1} / \beta_{j}
$$

Lanczos algorithm with implicit restarting

Input: Given initial unit vector u_{1}, number k of desired eigenpairs, restarting number m and stopping tolerance ε.
Output: desired eigenpairs $\left(\theta_{i}, x_{i}\right)$ for $i=1, \ldots, k$.
1: Compute Lanczos decomposition with order k :

$$
A U_{k}=U_{k} T_{k}+\beta_{k} u_{k+1} e_{k}^{\top}
$$

2: repeat
3: Extend the Lanczos decomposition from order k to order m :

$$
A U_{m}=U_{m} T_{m}+\beta_{m} u_{m+1} e_{m}^{\top}
$$

4: Use implicitly restarting scheme to reform a new Lanczos decomposition with order k;
5: Compute the eigenpairs $\left(\theta_{i}, s_{i}\right), i=1, \ldots, k$, of T_{k};
6: until $\left(\left|\beta_{k}\right|\left|s_{i, k}\right|<\varepsilon\right.$ for $\left.i=1, \ldots, k\right)$
7: Compute eigenvector $x_{i}=U_{k} s_{i}$ for $i=1, \ldots, k$.

Arnoldi method

Recall: Arnoldi decomposition of unsymmetric A :

$$
\begin{equation*}
A U_{k}=U_{k} H_{k}+h_{k+1, k} u_{k+1} e_{k}^{\top}, \tag{17}
\end{equation*}
$$

where H_{k} is unreduced upper Hessenberg.
Write (17) in the form

$$
A u_{k}=U_{k} h_{k}+h_{k+1, k} u_{k+1}
$$

Then from the orthogonality of U_{k+1}, we have

$$
h_{k}=U_{k}^{H} A u_{k}
$$

Since $h_{k+1, k} u_{k+1}=A u_{k}-U_{k} h_{k}$ and $\left\|u_{k+1}\right\|_{2}=1$, we must have

$$
h_{k+1, k}=\left\|A u_{k}-U_{k} h_{k}\right\|_{2}, \quad u_{k+1}=h_{k+1, k}^{-1}\left(A u_{k}-U_{k} h_{k}\right) .
$$

Arnoldi process

1: for $k=1,2, \ldots$ do
2: $\quad h_{k}=U_{k}^{H} A u_{k}$;
3: $\quad v=A u_{k}-U_{k} h_{k}$;
4: $\quad h_{k+1, k}=\|v\|_{2}$;
5: $\quad u_{k+1}=v / h_{k+1, k}$;
6: $\quad \hat{H}_{k}=\left[\begin{array}{cc}\hat{H}_{k-1} & h_{k} \\ 0 & h_{k+1, k}\end{array}\right]$;
7: end for

- The computation of u_{k+1} is actually a form of the well-known Gram-Schmidt algorithm.
- In the presence of inexact arithmetic cancelation in statement 3 can cause it to fail to produce orthogonal vectors.
- The cure is process called reorthogonalization.

Reorthogonalized Arnoldi process
1: for $k=1,2, \ldots$ do
2: $\quad h_{k}=U_{k}^{H} A u_{k}$;
3: $\quad v=A u_{k}-U_{k} h_{k}$;
4: $\quad w=U_{k}^{H} v$;
5: $\quad h_{k}=h_{k}+w$;
6: $\quad v=v-U_{k} w$;
7: $\quad h_{k+1, k}=\|v\|_{2}$;
8: $\quad u_{k+1}=v / h_{k+1, k}$;
9: $\quad \hat{H}_{k}=\left[\begin{array}{cc}\hat{H}_{k-1} & h_{k} \\ 0 & h_{k+1, k}\end{array}\right]$;
10: end for

Let $y_{i}^{(k)}$ be an eigenvector of H_{k} associated with the eigenvalue $\lambda_{i}^{(k)}$ and $x_{i}^{(k)}=U_{k} y_{i}^{(k)}$ the Ritz approximate eigenvector.

Theorem 26

$$
\left(A-\lambda_{i}^{(k)} I\right) x_{i}^{(k)}=h_{k+1, k} e_{k}^{\top} y_{i}^{(k)} u_{k+1} .
$$

and therefore,

$$
\left\|\left(A-\lambda_{i}^{(k)} I\right) x_{i}^{(k)}\right\|_{2}=\left|h_{k+1, k}\right|\left|e_{k}^{\top} y_{i}^{(k)}\right| .
$$

Generalized eigenvalue problem

Consider the generalized eigenvalue problem

$$
A x=\lambda B x
$$

where B is nonsingular. Let

$$
C=B^{-1} A
$$

Applying Arnoldi process to matrix C, we get

$$
C U_{k}=U_{k} H_{k}+h_{k+1, k} u_{k+1} e_{k}^{\top}
$$

or

$$
\begin{equation*}
A U_{k}=B U_{k} H_{k}+h_{k+1, k} B u_{k+1} e_{k}^{\top} \tag{18}
\end{equation*}
$$

Write the k-th column of (18) in the form

$$
\begin{equation*}
A u_{k}=B U_{k} h_{k}+h_{k+1, k} B u_{k+1} . \tag{19}
\end{equation*}
$$

Let U_{k} satisfy that

$$
U_{k}^{\top} U_{k}=I_{k}
$$

Then

$$
h_{k}=U_{k}^{\top} B^{-1} A u_{k}
$$

and

$$
h_{k+1, k} u_{k+1}=B^{-1} A u_{k}-U_{k} h_{k} \equiv t_{k}
$$

which implies that

$$
h_{k+1, k}=\left\|t_{k}\right\|, \quad u_{k+1}=h_{k+1, k}^{-1} t_{k}
$$

Shift-and-invert Lanczos for GEP

Consider the generalized eigenvalue problem

$$
\begin{equation*}
A x=\lambda B x \tag{20}
\end{equation*}
$$

where A is symmetric and B is symmetric positive definite.

Shift-and-invert

- Compute the eigenvalues which are closest to a given shift value σ.
- Transform (20) into

$$
\begin{equation*}
(A-\sigma B)^{-1} B x=(\lambda-\sigma)^{-1} x \tag{21}
\end{equation*}
$$

The basic recursion for applying Lanczos method to (21) is

$$
\begin{equation*}
(A-\sigma B)^{-1} B U_{j}=U_{j} T_{j}+\beta_{j} u_{j+1} e_{j}^{\top} \tag{22}
\end{equation*}
$$

where the basis U_{j} is B-orthogonal and T_{j} is a real symmetric tridiagonal matrix defined by

$$
T_{j}=\left[\begin{array}{cccc}
\alpha_{1} & \beta_{1} & & \\
\beta_{1} & \alpha_{2} & \ddots & \\
& \ddots & \ddots & \beta_{j-1} \\
& & \beta_{j-1} & \alpha_{j}
\end{array}\right]
$$

or equivalent to

$$
(A-\sigma B)^{-1} B u_{j}=\alpha_{j} u_{j}+\beta_{j-1} u_{j-1}+\beta_{j} u_{j+1}
$$

By the condition $U_{j}^{*} B U_{j}=I_{j}$, it holds that

$$
\alpha_{j}=u_{j}^{*} B(A-\sigma B)^{-1} B u_{j}, \quad \beta_{j}^{2}=t_{j}^{*} B t_{j}
$$

where

$$
t_{j} \equiv(A-\sigma B)^{-1} B u_{j}-\alpha_{j} u_{j}-\beta_{j-1} u_{j-1}=\beta_{j} u_{j+1}
$$

An eigenpair $\left(\theta_{i}, s_{i}\right)$ of T_{j} is used to get an approximate eigenpair $\left(\lambda_{i}, x_{i}\right)$ of (A, B) by

$$
\lambda_{i}=\sigma+\frac{1}{\theta_{i}}, \quad x_{i}=U_{j} s_{i}
$$

The corresponding residual is

$$
\begin{aligned}
r_{i} & =A U_{j} s_{i}-\lambda_{i} B U_{j} s_{i}=(A-\sigma B) U_{j} s_{i}-\theta_{i}^{-1} B U_{j} s_{i} \\
& =-\theta_{i}^{-1}\left[B U_{j}-(A-\sigma B) U_{j} T_{j}\right] s_{i} \\
& =-\theta_{i}^{-1}(A-\sigma B)\left[(A-\sigma B)^{-1} B U_{j}-U_{j} T_{j}\right] s_{i} \\
& =-\theta_{i}^{-1} \beta_{j}\left(e_{j}^{\top} s_{i}\right)(A-\sigma B) u_{j+1}
\end{aligned}
$$

which implies $\left\|r_{i}\right\|$ is small whenever $\left|\beta_{j}\left(e_{j}^{\top} s_{i}\right) / \theta_{i}\right|$ is small.

Shift-and-invert Lanczos method for symmetric GEP

1: Given starting vector t, compute $q=B t$ and $\beta_{0}=\sqrt{\left|q^{*} t\right|}$.
2: for $j=1,2, \ldots$, do
3: \quad Compute $w_{j}=q / \beta_{j-1}$ and $u_{j}=t / \beta_{j-1}$.
4: \quad Solve linear system $(A-\sigma B) t=w_{j}$.
5: \quad Set $t:=t-\beta_{j-1} u_{j-1}$; compute $\alpha_{j}=w_{j}^{*} t$ and reset $t:=t-\alpha_{j} u_{j}$.
6: B-reorthogonalize t to u_{1}, \ldots, u_{j} if necessary.
7: \quad Compute $q=B t$ and $\beta_{j}=\sqrt{\left|q^{*} t\right|}$.
8: \quad Compute approximate eigenvalues $T_{j}=S_{j} \Theta_{j} S_{j}^{*}$.
9: Test for convergence.
10: end for
11: Compute approximate eigenvectors $X=U_{j} S_{j}$.

Krylov-Schur restarting method (Locking and Purging)

Theorem 27 (Schur decomposition)
Let $A \in \mathbb{C}^{n \times n}$. Then there is a unitary matrix V such that

$$
A=V T V^{H},
$$

where T is upper triangular.
The process of Krylov-Schur restarting:

- Compute the Schur decomposition of the Rayleigh quotient
- Move the desired eigenvalues to the beginning
- Throw away the rest of the decomposition

Use Lanczos process to generate the Lanczos decomposition of order $m \equiv k+p$

$$
\begin{equation*}
(A-\sigma B)^{-1} B U_{k+p}=U_{k+p} T_{k+p}+\beta_{k+p} u_{k+p+1} e_{k+p}^{\top} \tag{23}
\end{equation*}
$$

Let

$$
T_{k+p}=V_{k+p} D_{k+p} V_{k+p}^{\top} \equiv\left[\begin{array}{ll}
V_{k} & V_{p}
\end{array}\right] \operatorname{diag}\left(D_{k}, D_{p}\right)\left[\begin{array}{c}
V_{k}^{\top} \tag{24}\\
V_{p}^{\top}
\end{array}\right]
$$

be a Schur decomposition of T_{k+p}. The diagonal elements of D_{k} and D_{p} contain the k wanted and p unwanted Ritz values, respectively.

Substituting (24) into (23), it holds that

$$
\begin{aligned}
& (A-\sigma B)^{-1} B\left(U_{k+p} V_{k+p}\right) \\
= & \left(U_{k+p} V_{k+p}\right)\left(V_{k+p}^{\top} T_{k+p} V_{k+p}\right)+\beta_{k+p} u_{k+p+1}\left(e_{k+p}^{\top} V_{k+p}\right),
\end{aligned}
$$

which implies that

$$
(A-\sigma B)^{-1} B \tilde{U}_{k}=\tilde{U}_{k} D_{k}+u_{k+p+1} t_{k}^{\top}=\left[\begin{array}{ll}
\tilde{U}_{k} & \tilde{u}_{k+1}
\end{array}\right]\left[\begin{array}{c}
D_{k} \\
t_{k}^{\top}
\end{array}\right]
$$

is a Krylov decomposition of order k where $\tilde{U}_{k} \equiv U_{k+p} V_{k}$, $\tilde{u}_{k+1}=u_{k+p+1}$ and $\left[t_{k}^{\top}, t_{p}^{\top}\right] \equiv \beta_{k+p} e_{k+p}^{\top} V_{k+p}$. The new vectors $\tilde{u}_{k+2}, \ldots, \tilde{u}_{k+p+1}$ are computed sequentially starting from \tilde{u}_{j+2} with

$$
(A-\sigma B)^{-1} B \tilde{U}_{k+1}=\left[\begin{array}{ll}
\tilde{U}_{k+1} & \tilde{u}_{k+2}
\end{array}\right]\left[\begin{array}{cc}
D_{k} & t_{k} \\
t_{k}^{\top} & \tilde{\alpha}_{k+1} \\
0 & \tilde{\beta}_{k+1}
\end{array}\right],
$$

or equivalently

$$
(A-\sigma B)^{-1} B \tilde{u}_{k+1}=\tilde{U}_{k} t_{k}+\tilde{\alpha}_{k+1} \tilde{u}_{k+1}+\tilde{\beta}_{k+1} \tilde{u}_{k+2},
$$

for

$$
\tilde{\alpha}_{k+1}=\tilde{u}_{k+1}^{*} B(A-\sigma B)^{-1} B \tilde{u}_{k+1} .
$$

Consequently a new Krylov decomposition of order $k+p$ can be generated by

$$
\begin{equation*}
(A-\sigma B)^{-1} B \tilde{U}_{k+p}=\tilde{U}_{k+p} \tilde{T}_{k+p}+\tilde{\beta}_{k+p} \tilde{u}_{k+p+1} e_{k+p}^{\top} \tag{25}
\end{equation*}
$$

where

$$
\tilde{T}_{k+p}=\left[\begin{array}{ccccc}
D_{k} & t_{k} & & & \tag{26}\\
t_{k}^{\top} & \tilde{\alpha}_{k+1} & \tilde{\beta}_{k+1} & & \\
& \tilde{\beta}_{k+1} & \tilde{\alpha}_{k+2} & \ddots & \\
& & \ddots & \ddots & \tilde{\beta}_{k+p-1} \\
& & & \tilde{\beta}_{k+p-1} & \tilde{\alpha}_{k+p}
\end{array}\right]
$$

Shift-and-invert Krylov-Schur method for solving $A x=\lambda B x$

Build an initial Lanczos decomposition of order $k+p$:

$$
(A-\sigma B)^{-1} B U_{k+p}=U_{k+p} T_{k+p}+\beta_{k+p} u_{k+p+1} e_{k+p}^{\top} .
$$

repeat

Compute Schur decomposition $T_{k+p}=\left[\begin{array}{cc}V_{k} & V_{p}\end{array}\right] \operatorname{diag}\left(D_{k}, D_{p}\right)\left[\begin{array}{cc}V_{k} & V_{p}\end{array}\right]^{\top}$.
Set $U_{k}:=U_{k+p} V_{k}, u_{k+1}:=u_{k+p+1}$ and $t_{k}^{\top}:=\beta_{k+p} e_{k+p}^{\top} V_{k}$ to get

$$
(A-\sigma B)^{-1} B U_{k}=U_{k} D_{k}+u_{k+1} t_{k}^{\top} .
$$

for $j=k+1, \ldots, k+p$ do
Solve linear system $(A-\sigma B) q=B u_{j}$.
if $j=k+1$ then
Set $q:=q-U_{k} t_{k}$.
else
Set $q:=q-\beta_{j-1} u_{j-1}$.
end if
Compute $\alpha_{j}=u_{j}^{*} B q$ and reset $q:=q-\alpha_{j} u_{j}$.
B-reorthogonalize q to u_{1}, \ldots, u_{j-1} if necessary.
Compute $\beta_{j}=\sqrt{q^{*} B q}$ and $u_{j+1}=q / \beta_{j}$.
end for
Decompose $T_{k+p}=S_{k+p} \Theta_{k+p} S_{k+p}^{*}$ to get the approximate eigenvalues.
Test for convergence.
until all the k wanted eigenpairs are convergent

