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Theorem 1
Let V be an eigenspace of A and let V be an orthonormal basis for V.
Then there is a unique matrix H such that

AV = V H.

The matrix H is given by

H = V ∗AV.

If (λ, x) is an eigenpair of A with x ∈ V, then (λ, V ∗x) is an eigenpair of
H. Conversely, if (λ, s) is an eigenpair of H, then (λ, V s) is an
eigenpair of A.
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Theorem 2 (Optimal residuals)
Let [V V⊥] be unitary. Let

R = AV − V H and S∗ = V ∗A−HV ∗.

Then ‖R‖ and ‖S‖ are minimized when

H = V ∗AV,

in which case

(a) ‖R‖ = ‖V ∗⊥AV ‖,
(b) ‖S‖ = ‖V ∗AV⊥‖,
(c) V ∗R = 0.
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Definition 3
Let V be orthonormal. Then V ∗AV is a Rayleigh quotient of A.

Theorem 4
Let V be orthonormal, A be Hermitian and

R = AV − V H.

If θ1, . . . , θk are the eigenvalues of H, then there are eigenvalues
λj1 , . . . , λjk of A such that

|θi − λji | ≤ ‖R‖2 and

√√√√ k∑
i=1

(θi − λji)2 ≤
√

2‖R‖F .
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Suppose the eigenvalue with maximum module is wanted.

Power method
Compute the dominant eigenpair

Disadvantage

At each step it considers only the single vector Aku, which throws
away the information contained in the previously generated vectors
u,Au,A2u, . . . , Ak−1u.
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Definition 5
Let A be of order n and let u 6= 0 be an n vector. Then

{u,Au,A2u,A3u, . . .}

is a Krylov sequence based on A and u. We call the matrix

Kk(A, u) =
[
u Au A2u · · · Ak−1u

]
the kth Krylov matrix. The space

Kk(A, u) = R[Kk(A, u)]

is called the kth Krylov subspace.

T.-M. Huang (Taiwan Normal University) Krylov Subspace Methods for Large/Sparse Eigenvalue ProblemsApril 17, 2012 7 / 80



師
大

By the definition of Kk(A, u), for any vector v ∈ Kk(A, u) can be written
in the form

v = γ1u+ γ2Au+ · · ·+ γkA
k−1u ≡ p(A)u,

where

p(A) = γ1I + γ2A+ γ3A
2 + · · ·+ γkA

k−1.

Assume that A> = A and Axi = λixi for i = 1, . . . , n. Write u in the
form

u = α1x1 + α2x2 + · · ·+ αnxn.

Since p(A)xi = p(λi)xi, we have

p(A)u = α1p(λ1)x1 + α2p(λ2)x2 + · · ·+ αnp(λn)xn. (1)

If p(λi) is large compared with p(λj) for j 6= i, then p(A)u is a good
approximation to xi.
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Theorem 6
If xHi u 6= 0 and p(λi) 6= 0, then

tan∠(p(A)u, xi) ≤ max
j 6=i

|p(λj)|
|p(λi)|

tan∠(u, xi).

Proof: From (1), we have

cos∠(p(A)u, xi) =
|xHi p(A)u|
‖p(A)u‖2‖xi‖2

=
|αip(λi)|√∑n
j=1 |αjp(λj)|2

and

sin∠(p(A)u, xi) =

√∑
j 6=i |αjp(λj)|2√∑n
j=1 |αjp(λj)|2
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Hence

tan2∠(p(A)u, xi) =
∑
j 6=i

|αjp(λj)|2

|αip(λi)|2

≤ max
j 6=i

|p(λj)|2

|p(λi)|2
∑
j 6=i

|αj |2

|αi|2

= max
j 6=i

|p(λj)|2

|p(λi)|2
tan2∠(u, xi).

Assume that p(λi) = 1, then

tan∠(p(A)u, xi) ≤ max
j 6=i,p(λi)=1

|p(λj)| tan∠(u, xi) ∀ p(A)u ∈ Kk.

Hence

tan∠(xi,Kk) ≤ min
deg(p)≤k−1,p(λi)=1

max
j 6=i
|p(λj)| tan∠(u, xi).
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Assume that

λ1 > λ2 ≥ · · · ≥ λn

and that our interest is in the eigenvector x1. Then

tan∠(x1,Kk) ≤ min
deg(p)≤k−1,p(λ1)=1

max
λ∈[λn,λ2]

|p(λ)| tan∠(u, x1).

Question
How to compute

min
deg(p)≤k−1,p(λ1)=1

max
λ∈[λn,λ2]

|p(λ)|?

Definition 7
The Chebyshev polynomials are defined by

ck(t) =

{
cos(k cos−1 t), |t| ≤ 1,
cosh(k cosh−1 t), |t| ≥ 1.
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Theorem 8

(i) c0(t) = 1, c1(t) = t and

ck+1(t) = 2ck(t)− ck−1(t), k = 1, 2, . . . .

(ii) For |t| > 1, ck(t) = (1 +
√
t2 − 1)k + (1 +

√
t2 − 1)−k.

(iii) For t ∈ [−1, 1], |ck(t)| ≤ 1. Moreover, if

tik = cos
(k − i)π

k
, i = 0, 1, . . . , k,

then ck(tik) = (−1)k−i.
(iv) For s > 1,

min
deg(p)≤k,p(s)=1

max
t∈[0,1]

|p(t)| = 1

ck(s)
, (2)

and the minimum is obtained only for p(t) = ck(t)/ck(s).
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For applying (2), we define

λ = λ2 + (µ− 1)(λ2 − λn)

to transform interval [λn, λ2] to [0, 1]. Then the value of µ at λ1 is

µ1 = 1 +
λ1 − λ2
λ2 − λn

and

min
deg(p)≤k−1,p(λ1)=1

max
λ∈[λn,λ2]

|p(λ)|

= min
deg(p)≤k−1,p(µ1)=1

max
µ∈[0,1]

|p(µ)| = 1

ck−1(µ1)
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Theorem 9
Let A> = A and Axi = λixi, i = 1, · · · , n with λ1 > λ2 ≥ · · · ≥ λn. Let
η = λ1−λ2

λ2−λn . Then

tan∠[x1,Kk(A, u)] ≤ tan∠(x1, u)

ck−1(1 + η)

=
tan∠(x1, u)

(1 +
√

2η + η2)k−1 + (1 +
√

2η + η2)1−k
.
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For k large and if η is small, then the bound becomes

tan∠[x1,Kk(A, u)] .
tan∠(x1, u)

(1 +
√

2η)k−1
.

Compare it with power method: If |λ1| > |λ2| ≥ · · · ≥ |λn|, then the
conv. rate is |λ2/λ1|k.
For example, let λ1 = 1, λ2 = 0.95, λ3 = 0.952, · · · , λ100 = 0.9599

be the Ews of A ∈ R100×100. Then η = 0.0530 and the bound on
the conv. rate is 1/(1 +

√
2η) = 0.7544. Thus the square root effect

gives a great improvement over the rate of 0.95 for the power
method.
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Definition 10
A Householder transformation or elementary reflector is a matrix of

H = I − uu∗

where ‖u‖2 =
√

2.

Note that H is Hermitian and unitary.

Theorem 11
Let x be a vector with x1 6= 0. Let

u =
ρ x
‖x‖2 + e1√
1 + ρ x1

‖x‖2

,

where ρ = x̄1/|x1|. Then

Hx = −ρ̄‖x‖2e1.
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Proof: Since

[ρ̄x∗/‖x‖2 + e>1 ][ρx/‖x‖2 + e1]

= ρ̄ρ+ ρx1/‖x‖2 + ρ̄x̄1/‖x‖2 + 1

= 2[1 + ρx1/‖x‖2],

it follows that
u∗u = 2 ⇒ ‖u‖2 =

√
2

and

u∗x =
ρ̄‖x‖2 + x1√

1 + ρ x1
‖x‖2

.
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Hence,

Hx = x− (u∗x)u = x− ρ̄‖x‖2 + x1√
1 + ρ x1

‖x‖2

ρ x
‖x‖2 + e1√
1 + ρ x1

‖x‖2

=

[
1−

(ρ̄‖x‖2 + x1)
ρ
‖x‖2

1 + ρ x1
‖x‖2

]
x− ρ̄‖x‖2 + x1

1 + ρ x1
‖x‖2

e1

= − ρ̄‖x‖2 + x1
1 + ρ x1

‖x‖2
e1

= −ρ̄‖x‖2e1.
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Definition 12
A complex m× n-matrix R = [rij ] is called an upper (lower) triangular
matrix, if rij = 0 for i > j (i < j).

Definition 13
Given A ∈ Cm×n, Q ∈ Cm×m unitary and R ∈ Cm×n upper triangular
such that A = QR. Then the product is called a QR-factorization of A.

Theorem 14

Any complex m× n matrix A can be factorized by the product A = QR,
where Q is m×m-unitary and R is m× n upper triangular.
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Proof: Let A(0) = A = [a
(0)
1 |a

(0)
2 | · · · |a

(0)
n ]. Find Q1 = (I − 2w1w

∗
1) such

that Q1a
(0)
1 = ce1. Then

A(1) = Q1A
(0) = [Q1a

(0)
1 , Q1a

(0)
2 , · · · , Q1a

(0)
n ]

=


c1 ∗ · · · ∗
0
... a

(1)
2 · · · a

(1)
n

0

 . (3)

Find Q2 =

[
1 0

0 I − w2w
∗
2

]
such that (I − 2w2w

∗
2)a

(1)
2 = c2e1. Then

A(2) = Q2A
(1) =


c1 ∗ ∗ · · · ∗
0 c2 ∗ · · · ∗
0 0
...

... a
(2)
3 · · · a

(2)
n

0 0

 .
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We continue this process. Then after l = min(m,n) steps A(l) is an
upper triangular matrix satisfying

A(l−1) = R = Ql−1 · · ·Q1A.

Then A = QR, where Q = Q∗1 · · ·Q∗l−1.
Suppose that the columns of Kk+1 are linearly independent and let

Kk+1 = Uk+1Rk+1

be the QR factorization of Kk+1. Then the columns of Uk+1 are results
of successively orthogonalizing the columns of Kk+1.
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Theorem 15

Let ‖u1‖2 = 1 and the columns of Kk+1(A, u1) be linearly indep. Let
Uk+1 = [u1 · · · uk+1] be the Q-factor of Kk+1. Then there is a
(k + 1)× k unreduced upper Hessenberg matrix

Ĥk ≡


ĥ11 · · · · · · ĥ1k
ĥ21 ĥ22 · · · ĥ2k

. . . . . .
...

ĥk,k−1 ĥkk
ĥk+1,k

 with ĥi+1,i 6= 0 (4)

such that

AUk = Uk+1Ĥk. (Arnoldi decomp.) (5)

Conversely, if Uk+1 is orthonormal and satisfies (5), where Ĥk is
defined in (4), then Uk+1 is the Q-factor of Kk+1(A, u1).
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Proof: (“⇒”) Let Kk = UkRk be the QR factorization and Sk = R−1k .
Then

AUk = AKkSk = Kk+1

[
0
Sk

]
= Uk+1Rk+1

[
0
Sk

]
= Uk+1Ĥk,

where

Ĥk = Rk+1

[
0
Sk

]
.

It implies that Ĥk is a (k + 1)× k Hessenberg matrix and

hi+1,i = ri+1,i+1sii =
ri+1,i+1

rii
.

Thus by the nonsingularity of Rk, Ĥk is unreduced.
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(“⇐”) If k = 1, then

Au1 = h11u1 + h21u2 =
[
u1 u2

] [ h11
h21

]
which implies that

K2 =
[
u1 Au1

]
=
[
u1 u2

] [ 1 h11
0 h21

]
.

Since [ u1 u2 ] is orthonormal, [ u1 u2 ] is the Q-factor of K2.
Assume Uk is the Q-factor of Kk, i.e., Kk = UkRk. By the definition of
the Krylov matrix, we have

Kk+1 =
[
u1 AKk

]
=
[
u1 AUkRk

]
=
[
u1 Uk+1ĤkRk

]
= Uk+1

[
e1 ĤkRk

]
Hence Uk+1 is the Q-factor of Kk+1.
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• The uniqueness of Hessenberg reduction

Definition 16
Let H be upper Hessenberg of order n. Then H is unreduced if
hi+1,i 6= 0 for i = 1, · · · , n− 1.

Theorem 17 (Implicit Q theorem)
Suppose Q =

(
q1 · · · qn

)
and V =

(
v1 · · · vn

)
are unitary

matrices with
Q∗AQ = H and V ∗AV = G

being upper Hessenberg. Let k denote the smallest positive integer for
which hk+1,k = 0, with the convection that k = n if H is unreduced. If
v1 = q1, then vi = ±qi and |hi,i−1| = |gi,i−1| for i = 2, · · · , k. Moreover,
if k < n, then gk+1,k = 0.
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Definition 18
Let Uk+1 ∈ Cn×(k+1) be orthonormal. If there is a (k + 1)× k
unreduced upper Hessenberg matrix Ĥk such that

AUk = Uk+1Ĥk, (6)

then (6) is called an Arnoldi decomposition of order k. If Ĥk is reduced,
we say the Arnoldi decomposition is reduced.

Partition

Ĥk =

[
Hk

hk+1,ke
T
k

]
,

and set

βk = hk+1,k.

Then (6) is equivalent to

AUk = UkHk + βkuk+1e
T
k .
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Theorem 19
Suppose the Krylov sequence Kk+1(A, u1) does not terminate at k+ 1.
Then up to scaling of the columns of Uk+1, the Arnoldi decomposition
of Kk+1 is unique.

Proof: Since the Krylov sequence Kk+1(A, u1) does not terminate at
k + 1, the columns of Kk+1(A, u1) are linearly independent. By
Theorem 15, there is an unreduced matrix Hk and βk 6= 0 such that

AUk = UkHk + βkuk+1e
T
k , (7)

where Uk+1 = [Uk uk+1] is an orthonormal basis for Kk+1(A, u1).
Suppose there is another orthonormal basis Ũk+1 = [Ũk ũk+1] for
Kk+1(A, u1), unreduced matrix H̃k and β̃k 6= 0 such that

AŨk = ŨkH̃k + β̃kũk+1e
T
k .
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Then we claim that

ŨHk uk+1 = 0.

For otherwise there is a column ũj of Ũk such that

ũj = αuk+1 + Uka, α 6= 0.

Hence

Aũj = αAuk+1 +AUka

which implies that Aũj contains a component along Ak+1u1. Since the
Krylov sequence Kk+1(A, u1) does not terminate at k + 1, we have

Kk+2(A, u1) 6= Kk+1(A, u1).

Therefore, Aũj lies in Kk+2(A, u1) but not in Kk+1(A, u1) which is a
contradiction.
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Since Uk+1 and Ũk+1 are orthonormal bases for Kk+1(A, u1) and
ŨHk uk+1 = 0, it follows that

R(Uk) = R(Ũk) and UHk ũk+1 = 0,

that is

Uk = ŨkQ

for some unitary matrix Q. Hence

A(ŨkQ) = (ŨkQ)(QHH̃kQ) + β̃kũk+1(e
T
kQ),

or

AUk = Uk(Q
HH̃kQ) + β̃kũk+1e

T
kQ. (8)

On premultiplying (7) and (8) by UHk , we obtain

Hk = UHk AUk = QHH̃kQ.

Similarly, premultiplying by uHk+1, we obtain

βke
T
k = uHk+1AUk = β̃k(u

H
k+1ũk+1)e

T
kQ.
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It follows that the last row of Q is ωkeTk , where |ωk| = 1. Since the norm
of the last column of Q is one, the last column of Q is ωkek. Since Hk is
unreduced, it follows from the implicit Q theorem that

Q = diag(ω1, · · · , ωk), |ωj | = 1, j = 1, . . . , k.

Thus up to column scaling Uk = ŨkQ is the same as Ũk. Subtracting
(8) from (7), we find that

βkuk+1 = ωkβ̃kũk+1

so that up to scaling uk+1 and ũk+1 are the same.
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Let A be Hermitian and let

AUk = UkTk + βkuk+1e
>
k (9)

be an Arnoldi decomposition. Since Tk is upper Hessenberg and
Tk = UHk AUk is Hermitian, it follows that Tk is tridiagonal and can be
written in the form

Tk =



α1 β1
β1 α2 β2

β2 α3 β3
. . . . . . . . .

βk−2 αk−1 βk−1
βk−1 αk


.

Equation (9) is called a Lanczos decomposition.
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The first column of (9) is

Au1 = α1u1 + β1u2 or u2 =
Au1 − α1u1

β1
.

From the orthonormality of u1 and u2, it follows that

α1 = u∗1Au1

and

β1 = ‖Au1 − α1u1‖2.

More generality, from the j-th column of (9) we get the relation

uj+1 =
Auj − αjuj − βj−1uj−1

βj

where

αj = u∗jAuj and βj = ‖Auj − αjuj − βj−1uj−1‖2.

This is the Lanczos three-term recurrence.
T.-M. Huang (Taiwan Normal University) Krylov Subspace Methods for Large/Sparse Eigenvalue ProblemsApril 17, 2012 32 / 80



師
大

Algorithm 1 (Lanczos recurrence)

Let u1 be given. This algorithm generates the Lanczos
decomposition

AUk = UkTk + βkuk+1e
>
k

where Tk is symmetric tridiagonal.
1. u0 = 0;β0 = 0;
2. for j = 1 to k
3. uj+1 = Auj
4. αj = u∗juj+1

5. v = uj+1 − αjuj − βj−1uj−1
6. βj = ‖v‖2
7. uj+1 = v/βj
8. end for j
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Reorthogonalization

Let

ũj+1 = Auj − αjuj − βj−1uj−1

with αj = u∗jAuj . Re-orthogonalize ũj+1 against Uj , i.e.,

ũj+1 := ũj+1 −
j∑
i=1

(u∗i ũj+1)ui

= Auj −
(
αj + u∗j ũj+1

)
uj − βj−1uj−1 −

j−1∑
i=1

(u∗i ũj+1)ui

Take

βj = ‖ũj+1‖2, uj+1 = ũj+1/βj .
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Theorem 20 (Stop criterion)

Suppose that j steps of the Lanczos algorithm have been performed
and that

SHj TjSj = diag(θ1, · · · , θj)

is the Schur decomposition of the tridiagonal matrix Tj , if Yj ∈ Cn×j is
defined by

Yj ≡
[
y1 · · · yj

]
= UjSj

then for i = 1, · · · , j we have

‖Ayi − θiyi‖2 = |βj ||sji|

where Sj = [spq].
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Proof : Post-multiplying

AUj = UjTj + βjuj+1e
>
j

by Sj gives

AYj = Yjdiag(θ1, · · · , θj) + βjuj+1e
>
j Sj ,

i.e.,

Ayi = θiyi + βjuj+1(e
>
j Sjei) , i = 1, · · · , j.

The proof is complete by taking norms.

Remark 1

Stop criterion = |βj ||sji|. Do not need to compute ‖Ayi − θiyi‖2.
In general, |βj | is not small. It is possible that |βj ||sji| is small.
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Theorem 21

Let A be n× n symmetric matrix with eigenvalues λ1 ≥ · · · ≥ λn and
corresponding orthonormal eigenvectors z1, · · · , zn. If θ1 ≥ · · · ≥ θj are
the eigenvalues of Tj obtained after j steps of the Lanczos iteration,
then

λ1 ≥ θ1 ≥ λ1 −
(λ1 − λn)(tanφ1)

2

[cj−1(1 + 2ρ1)]2
,

where cosφ1 = |u>1 z1|, cj−1 is a Chebychev polynomal of degree j − 1
and

ρ1 =
λ1 − λ2
λ2 − λn

.
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Proof: From Courant-Fischer theorem we have

θ1 = max
y 6=0

y>Tjy

y>y
= max

y 6=0

(Ujy)>A(Ujy)

(Ujy)>(Ujy)
= max

06=w∈Kj(u1,A)

w>Aw

w>w
.

Since λ1 is the maximum of w>Aw/w>w over all nonzero w, it follows
that λ1 ≥ θ1. To obtain the lower bound for θ1, note that

θ1 = max
p∈Pj−1

u>1 p(A)Ap(A)u1

u>1 p(A)2u1
,

where Pj−1 is the set of all j − 1 degree polynomials. If u1 =
∑n

i=1 dizi,
then

u>1 p(A)Ap(A)u1

u>1 p(A)2u1
=

∑n
i=1 d

2
i p(λi)

2λi∑n
i=1 d

2
i p(λi)

2

≥ λ1 − (λ1 − λn)

∑n
i=2 d

2
i p(λi)

2

d21p(λ1)
2 +

∑n
i=2 d

2
i p(λi)

2
.
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We can make the lower bound tight by selecting a polynomial p(α) that
is large at α = λ1 in comparison to its value at the remaining
eigenvalues. Set

p(α) = cj−1

(
−1 + 2

α− λn
λ2 − λn

)
,

where cj−1(z) is the (j − 1)-th Chebychev polynomial generated by

cj(z) = 2zcj−1(z)− cj−2(z), c0 = 1, c1 = z.

These polynomials are bounded by unity on [-1,1]. It follows that |p(λi)|
is bounded by unity for i = 2, · · · , n while p(λ1) = cj−1(1 + 2ρ1). Thus,

θ1 ≥ λ1 − (λ1 − λn)
(1− d21)
d21

1

c2j−1(1 + 2ρ1)
.

The desired lower bound is obtained by noting that
tan (φ1)

2 = (1− d21)/d21.
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Theorem 22
Using the same notation as Theorem 21,

λn ≤ θj ≤ λn +
(λ1 − λn) tan2 ϕn
[cj−1(1 + 2ρn)]2

,

where

ρn =
λn−1 − λn
λ1 − λn−1

, cosϕn = |u>1 zn|.

Proof : Apply Theorem 21 with A replaced by −A.
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Restarted Lanczos method

Let

AUm = UmTm + βmum+1e
T
m

be a Lanczos decomposition.
1 In principle, we can keep expanding the Lanczos decomposition

until the Ritz pairs have converged.
2 Unfortunately, it is limited by the amount of memory to storage of
Um.

3 Restarted the Lanczos process once m becomes so large that we
cannot store Um.

I Implicitly restarting method
I Krylov-Schur decomposition
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Implicitly restarted Lanczos method

Choose a new starting vector for the underlying Krylov sequence
A natural choice would be a linear combination of Ritz vectors that
we are interested in.

Filter polynomials
Assume A has a complete system of eigenpairs (λi, xi) and we are
interested in the first k of these eigenpairs. Expand u1 in the form

u1 =

k∑
i=1

γixi +

n∑
i=k+1

γixi.

If p is any polynomial, we have

p(A)u1 =

k∑
i=1

γip(λi)xi +

n∑
i=k+1

γip(λi)xi.
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Choose p so that the values p(λi) (i = k + 1, . . . , n) are small
compared to the values p(λi) (i = 1, . . . , k).
Then p(A)u1 is rich in the components of the xi that we want and
deficient in the ones that we do not want.
p is called a filter polynomial.
Suppose we have Ritz values θ1, . . . , θm and θ1, . . . , θm−k are not
interesting. Then take

p(t) = (t− θ1) · · · (t− θm−k).

Implicitly restarted Lanczos: Let

AUm = UmTm + βmum+1e
>
m (10)

be a Lanczos decomposition with order m. Choose a filter polynomial
p of degree m− k and use the implicit restarting process to reduce the
decomposition to a decomposition

AŨk = ŨkT̃k + β̃kũk+1e
>
k

of order k with starting vector p(A)u1.
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Let θ1, . . . , θm be eigenvalues of Tm and suppose that θ1, . . . , θm−k
correspond to the part of the spectrum we are not interested in. Then
take

p(t) = (t− θ1)(t− θ2) · · · (t− θm−k).

The starting vector p(A)u1 is equal to

p(A)u1 = (A− θm−kI) · · · (A− θ2I)(A− θ1I)u1

= (A− θm−kI) [· · · [(A− θ2I) [(A− θ1I)u1]]] .

In the first, we construct a Lanczos decomposition with starting vector
(A− θ1I)u1. From (10), we have

(A− θ1I)Um = Um(Tm − θ1I) + βmum+1e
>
m (11)

= UmQ1R1 + βmum+1e
>
m,

where

Tm − θ1I = Q1R1

is the QR factorization of Tm − θ1I.
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Postmultiplying by Q1, we get

(A− θ1I)(UmQ1) = (UmQ1)(R1Q1) + βmum+1(e
>
mQ1).

It implies that

AU (1)
m = U (1)

m T (1)
m + βmum+1b

(1)H
m+1,

where

U (1)
m = UmQ1, T (1)

m = R1Q1 + θ1I, b
(1)H
m+1 = e>mQ1.

(T (1)
m : one step of single shifted QR algorithm)
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Theorem 23

Let Tm be an unreduced tridiagonal. Then T (1)
m has the form

T (1)
m =

[
T̂
(1)
m 0
0 θ1

]
,

where T̂ (1)
m is unreduced tridiagonal.

Proof: Let

Tm − θ1I = Q1R1

be the QR factorization of Tm − θ1I with

Q1 = G(1, 2, ϕ1) · · ·G(m− 1,m, ϕm−1)

where G(i, i+ 1, ϕi) for i = 1, . . . ,m− 1 are Given rotations.
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Since Tm is unreduced tridiagonal, i.e., the subdiagonal elements of
Tm are nonzero, we get

ϕi 6= 0 for i = 1, . . . ,m− 1 (12)

and

(R1)ii 6= 0 for i = 1, . . . ,m− 1. (13)

Since θ1 is an eigenvalue of Tm, we have that Tm − θ1I is singular and
then

(R1)mm = 0. (14)

Using the results of (12), (13) and (14), we get

T (1)
m = R1Q1 + θ1I = R1G(1, 2, ϕ1) · · ·G(m− 1,m, ϕm−1) + θ1I

=

[
Ĥ

(1)
m ĥ12
0 θ1

]
, (15)

where Ĥ(1)
m is unreduced upper Hessenberg.
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By the definition of T (1)
m , we get

Q1T
(1)
m QH1 = Q1(R1Q1 + θ1I)QH1 = Q1R1 + θ1I = Tm.

It implies that T (1)
m is tridiagonal and then, from (15), the result in (12) is

obtained.

Remark 2

U
(1)
m is orthonormal.

The vector b(1)Hm+1 = e>mQ1 has the form

b
(1)H
m+1 =

[
0 · · · 0 q

(1)
m−1,m q

(1)
m,m

]
;

i.e., only the last two components of b(1)m+1 are nonzero.
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For on postmultiplying (11) by e1, we get

(A− θ1I)u1 = (A− θ1I)(Ume1) = U (1)
m R1e1 = r

(1)
11 u

(1)
1 .

Since Tm is unreduced, r(1)11 is nonzero. Therefore, the first column
of U (1)

m is a multiple of (A− θ1I)u1.

By the definition of T (1)
m , we get

Q1T
(1)
m QH1 = Q1(R1Q1 + θ1I)QH1 = Q1R1 + θ1I = Tm.

Therefore, θ1, θ2, . . . , θm are also eigenvalues of T (1)
m .
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Similarly,

(A− θ2I)U (1)
m = U (1)

m (T (1)
m − θ2I) + βmum+1b

(1)H
m+1 (16)

= U (1)
m Q2R2 + βmum+1b

(1)H
m+1,

where

T (1)
m − θ2I = Q2R2

is the QR factorization of T (1)
m − θ2I. Postmultiplying by Q2, we get

(A− θ2I)(U (1)
m Q2) = (U (1)

m Q2)(R2Q2) + βmum+1(b
(1)H
m+1Q2).

It implies that

AU (2)
m = U (2)

m T (2)
m + βmum+1b

(2)H
m+1,

where

U (2)
m ≡ U (1)

m Q2

is orthonormal,
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T (2)
m ≡ R2Q2 + θ2I =

 T
(2)
m−2 0 0

θ2 0
θ1


is tridiagonal with unreduced matrix T (2)

m−2 and

b
(2)H
m+1 ≡ b

(1)H
m+1Q2 = q

(1)
m−1,me

H
m−1Q2 + q(1)m,me

>
mQ2

=
[

0 · · · 0 × × ×
]
.

For on postmultiplying (16) by e1, we get

(A− θ2I)u
(1)
1 = (A− θ2I)(U (1)

m e1) = U (2)
m R2e1 = r

(2)
11 u

(2)
1 .

Since H(1)
m is unreduced, r(2)11 is nonzero. Therefore, the first column of

U
(2)
m is a multiple of

(A− θ2I)u
(1)
1 = 1/r

(1)
11 (A− θ2I)(A− θ1I)u1.
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Repeating this process with θ3, . . . , θm−k, the result will be a Krylov
decomposition

AU (m−k)
m = U (m−k)

m T (m−k)
m + βmum+1b

(m−k)H
m+1

with the following properties
1 U

(m−k)
m is orthonormal.

2 T
(m−k)
m is tridiagonal.

3 The first k − 1 components of b(m−k)Hm+1 are zero.

4 The first column of U (m−k)
m is a multiple of

(A− θ1I) · · · (A− θm−kI)u1.
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Corollary 24
Let θ1, . . . , θm be eigenvalues of Tm. If the implicitly restarted QR step
is performed with shifts θ1, . . . , θm−k, then the matrix T (m−k)

m has the
form

T (m−k)
m =

[
T
(m−k)
kk 0

0 D(m−k)

]
,

where D(m−k) is an digonal matrix with Ritz value θ1, . . . , θm−k on its
diagonal.
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For k = 3 and m = 6,

A
[
u u u u u u

]

=
[
u u u u u u

]


× × 0 0 0 0
× × × 0 0 0
0 × × × 0 0

0 0 × × 0 0
0 0 0 0 × 0
0 0 0 0 0 ×


+u
[

0 0 q q q q
]
.

Therefore, the first k columns of the decomposition can be written in
the form

AU
(m−k)
k = U

(m−k)
k T

(m−k)
kk + tk+1,ku

(m−k)
k+1 e>k + βmqmkum+1e

>
k ,

where U (m−k)
k consists of the first k columns of U (m−k)

m , T (m−k)
kk is the

leading principal submatrix of order k of T (m−k)
m , and qmk is from the

matrix Q = Q1 · · ·Qm−k.
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Hence if we set

Ũk = U
(m−k)
k ,

T̃k = T
(m−k)
kk ,

β̃k = ‖tk+1,ku
(m−k)
k+1 + βmqmkum+1‖2,

ũk+1 = β̃−1k (tk+1,ku
(m−k)
k+1 + βmqmkum+1),

then

AŨk = ŨkT̃k + β̃kũk+1e
>
k

is a Lanczos decomposition whose starting vector is proportional to
(A− θ1I) · · · (A− θm−kI)u1.

Avoid any matrix-vector multiplications in forming the new starting
vector.
Get its Lanczos decomposition of order k for free.
For large n the major cost will be in computing UQ.
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Practical Implementation

Restarted Lanczos method
Input: Given Lanczos decomp. AUm = UmTm + βmum+1e

>
m

Output: new Lanczos decomp. AUk = UkTk + βkuk+1e
>
k

1: Compute the eigenvalues θ1, . . . , θm of Tm.
2: Determine shifts, said θ1, . . . , θm−k, and set bm = e>m.
3: for j = 1, . . . ,m− k do
4: Compute QR factorization: Tm − θjI = QmRm.
5: Update Tm := RmQm + θjI, Um := UmQm, bm := Q>mbm.
6: end for
7: Compute v = βkuk+1 + βmbm(k)um+1.
8: Set Uk := Um(:, 1 : k), βk = ‖v‖2, uk+1 = v/βk, and
Tk := Tm(1 : k, 1 : k),
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Question
Can we implicitly compute Qm and get new tridiagonal matrix Tm?

General algorithm
1 Determine the first column c1 of Tm − θjI.
2 Let Q̂ be a Householder transformation such that Q̂>c1 = σe1.
3 Set T = Q̂>TmQ̂.
4 Use Householder transformation Q̃ to reduce T to a new

tridiagonal form T̂ ≡ Q̃>TQ̃.
5 Set Qm = Q̂Q̃.

Question
General algorithm = one step of single shift QR algorithm ?
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Answer:

(I) Let

Tm − θjI =
[
c1 C∗

]
= QmRm =

[
q Qm∗

] [ ρ r∗
0 R∗

]
be the QR factorization of Tm − θjI. Then c1 = ρq. Partition
Q̂ ≡

[
q̂ Q̂∗

]
, then c1 = σQ̂e1 = σq̂ which implies that q and q̂

are proportional to c1.
(II) Since T̂ = Q̃>TQ̃ is tridiagonal, we have

Q̃e1 = e1.

Hence,
(Q̂Q̃)e1 = Q̂e1 = q̂

which implies that the first column of Q̂Q̃ is proportional to q.
(III) Since (Q̂Q̃)>Tm(Q̂Q̃) is tridiagonal and the first column of Q̂Q̃ is

proportional to q, by the implicit Q Theorem, if T̂ is unreduced,
then Q̂ = Q0Q1 and T̂ = (Q̂Q̃)>Tm(Q̂Q̃).

T.-M. Huang (Taiwan Normal University) Krylov Subspace Methods for Large/Sparse Eigenvalue ProblemsApril 17, 2012 58 / 80



師
大

Definition 25 (Givens rotation)
A plane rotation (also called a Givens rotation) is a matrix of the form

G =

[
c s
−s̄ c

]
where |c|2 + |s|2 = 1.

Given a 6= 0 and b, set

v =
√
|a|2 + |b|2, c = |a|/v and s =

a

|a|
· b̄
v
,

then [
c s
−s̄ c

] [
a
b

]
=

[
v
a

|a|
0

]
.
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Let

Gij =


Ii−1

c s
Ij−i−1

−s̄ c
In−j

 .

(I) Compute the first column t1 ≡

 α1 − θj
β1
0

 of Tm − θjI and

determine Givens rotation G12 such that G12t1 = γe1.
(II) Set Tm := G12TmG

>
12.

Tm := G12


× × 0 0 0
× × × 0 0
0 × × × 0
0 0 × × ×
0 0 0 × ×

G>12 =


× × + 0 0
× × × 0 0
+ × × × 0
0 0 × × ×
0 0 0 × ×
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(III) Construct orthonormal Q such that Tm := QTmQ
> is tridiagonal:

Tm := G23


× × + 0 0
× × × 0 0
+ × × × 0
0 0 × × ×
0 0 0 × ×

G>23 =


× × 0 0 0
× × × + 0
0 × × × 0
0 + × × ×
0 0 0 × ×



Tm := G34


× × 0 0 0
× × × + 0
0 × × × 0
0 + × × ×
0 0 0 × ×

G>34 =


× × 0 0 0
× × × 0 0
0 × × × +
0 0 × × ×
0 0 + × ×



Tm := G45


× × 0 0 0
× × × 0 0
0 × × × +
0 0 × × ×
0 0 + × ×

G>45 =


× × 0 0 0
× × × 0 0
0 × × × 0
0 0 × × ×
0 0 0 × ×
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Implicit Restarting for Lanczos method

Input: Given Lanczos decomp. AUm = UmTm + βmum+1e
>
m

Output: new Lanczos decomp. AUk = UkTk + βkuk+1e
>
k

1: Compute the eigenvalues θ1, . . . , θm of Tm.
2: Determine shifts, said θ1, . . . , θm−k, and set bm = e>m.
3: for j = 1, . . . ,m− k do

4: Compute Givens rotation G12 such that G12

 α1 − θj
β1
0

 = γe1.

5: Update Tm := G12TmG
>
12, Um := UmG

>
12, bm := G12bm.

6: Compute Givens rotations G23, . . . , Gm−1,m such that
Tm := Gm−1,m · · ·G23TmG

>
23 · · ·G>m−1,m is tridiagonal.

7: Update Um := UmG
>
23 · · ·G>m−1,m and bm := Gm−1,m · · ·G23bm.

8: end for
9: Compute v = βkuk+1 + βmbm(k)um+1.

10: Set Uk := Um(:, 1 : k), βk = ‖v‖2, uk+1 = v/βk, and
Tk := Tm(1 : k, 1 : k),
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Problem
Mathematically, uj must be orthogonal.
In practice, they can lose orthogonality.

Solutions
Reorthogonalize the vectors at each step.

j-th step of Lanczos process
Input: Given βj−1 and orthonormal matrix Uj = [u1, . . . , uj ].
Output: αj , βj and unit vector uj+1 with u>j+1Uj = 0 and

Auj = αjuj + βj−1uj−1 + βjuj+1.
1: Compute uj+1 = Auj − βj−1uj−1 and αj = u>j uj+1;
2: Update uj+1 := uj+1 − αjuj ;
3: for i = 1, . . . , j do
4: Compute γi = u>i uj+1 and update uj+1 := uj+1 − γiui;
5: end for
6: Update αj := αj + γj and compute βj = ‖uj+1‖2 and
uj+1 := uj+1/βj .
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Lanczos algorithm with implicit restarting
Input: Given initial unit vector u1, number k of desired eigenpairs,

restarting number m and stopping tolerance ε.
Output: desired eigenpairs (θi, xi) for i = 1, . . . , k.

1: Compute Lanczos decomposition with order k:
AUk = UkTk + βkuk+1e

>
k ;

2: repeat
3: Extend the Lanczos decomposition from order k to order m:

AUm = UmTm + βmum+1e
>
m;

4: Use implicitly restarting scheme to reform a new Lanczos
decomposition with order k;

5: Compute the eigenpairs (θi, si), i = 1, . . . , k, of Tk;
6: until (|βk||si,k| < ε for i = 1, . . . , k)
7: Compute eigenvector xi = Uksi for i = 1, . . . , k.
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Arnoldi method

Recall: Arnoldi decomposition of unsymmetric A:

AUk = UkHk + hk+1,kuk+1e
>
k , (17)

where Hk is unreduced upper Hessenberg.
Write (17) in the form

Auk = Ukhk + hk+1,kuk+1.

Then from the orthogonality of Uk+1, we have

hk = UHk Auk.

Since hk+1,kuk+1 = Auk − Ukhk and ‖uk+1‖2 = 1, we must have

hk+1,k = ‖Auk − Ukhk‖2, uk+1 = h−1k+1,k(Auk − Ukhk).
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Arnoldi process
1: for k = 1, 2, . . . do
2: hk = UHk Auk;
3: v = Auk − Ukhk;
4: hk+1,k = ‖v‖2;
5: uk+1 = v/hk+1,k;

6: Ĥk =

[
Ĥk−1 hk

0 hk+1,k

]
;

7: end for

The computation of uk+1 is actually a form of the well-known
Gram-Schmidt algorithm.
In the presence of inexact arithmetic cancelation in statement 3
can cause it to fail to produce orthogonal vectors.
The cure is process called reorthogonalization.
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Reorthogonalized Arnoldi process
1: for k = 1, 2, . . . do
2: hk = UHk Auk;
3: v = Auk − Ukhk;
4: w = UHk v;
5: hk = hk + w;
6: v = v − Ukw;
7: hk+1,k = ‖v‖2;
8: uk+1 = v/hk+1,k;

9: Ĥk =

[
Ĥk−1 hk

0 hk+1,k

]
;

10: end for
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Let y(k)i be an eigenvector of Hk associated with the eigenvalue λ(k)i
and x(k)i = Uky

(k)
i the Ritz approximate eigenvector.

Theorem 26

(A− λ(k)i I)x
(k)
i = hk+1,ke

>
k y

(k)
i uk+1.

and therefore,

‖(A− λ(k)i I)x
(k)
i ‖2 = |hk+1,k|| e>k y

(k)
i |.
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師
大

Generalized eigenvalue problem

Consider the generalized eigenvalue problem

Ax = λBx,

where B is nonsingular. Let

C = B−1A.

Applying Arnoldi process to matrix C, we get

CUk = UkHk + hk+1,kuk+1e
>
k ,

or

AUk = BUkHk + hk+1,kBuk+1e
>
k . (18)
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師
大

Write the k-th column of (18) in the form

Auk = BUkhk + hk+1,kBuk+1. (19)

Let Uk satisfy that

U>k Uk = Ik.

Then

hk = U>k B
−1Auk

and

hk+1,kuk+1 = B−1Auk − Ukhk ≡ tk

which implies that

hk+1,k = ‖tk‖, uk+1 = h−1k+1,ktk.
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師
大

Shift-and-invert Lanczos for GEP

Consider the generalized eigenvalue problem

Ax = λBx, (20)

where A is symmetric and B is symmetric positive definite.

Shift-and-invert
Compute the eigenvalues which are closest to a given shift value
σ.
Transform (20) into

(A− σB)−1Bx = (λ− σ)−1x. (21)
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師
大

The basic recursion for applying Lanczos method to (21) is

(A− σB)−1BUj = UjTj + βjuj+1e
>
j , (22)

where the basis Uj is B-orthogonal and Tj is a real symmetric
tridiagonal matrix defined by

Tj =


α1 β1

β1 α2
. . .

. . . . . . βj−1
βj−1 αj


or equivalent to

(A− σB)−1Buj = αjuj + βj−1uj−1 + βjuj+1.
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師
大

By the condition U∗j BUj = Ij , it holds that

αj = u∗jB(A− σB)−1Buj , β2j = t∗jBtj ,

where

tj ≡ (A− σB)−1Buj − αjuj − βj−1uj−1 = βjuj+1.

An eigenpair (θi, si) of Tj is used to get an approximate eigenpair
(λi, xi) of (A,B) by

λi = σ +
1

θi
, xi = Ujsi.

The corresponding residual is

ri = AUjsi − λiBUjsi = (A− σB)Ujsi − θ−1i BUjsi

= −θ−1i [BUj − (A− σB)UjTj ] si

= −θ−1i (A− σB)
[
(A− σB)−1BUj − UjTj

]
si

= −θ−1i βj(e
>
j si)(A− σB)uj+1

which implies ‖ri‖ is small whenever |βj(e>j si)/θi| is small.
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師
大

Shift-and-invert Lanczos method for symmetric GEP

1: Given starting vector t, compute q = Bt and β0 =
√
|q∗t|.

2: for j = 1, 2, . . . , do
3: Compute wj = q/βj−1 and uj = t/βj−1.
4: Solve linear system (A− σB)t = wj .
5: Set t := t− βj−1uj−1; compute αj = w∗j t and reset t := t− αjuj .
6: B-reorthogonalize t to u1, . . . , uj if necessary.
7: Compute q = Bt and βj =

√
|q∗t|.

8: Compute approximate eigenvalues Tj = SjΘjS
∗
j .

9: Test for convergence.
10: end for
11: Compute approximate eigenvectors X = UjSj .
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師
大

Krylov-Schur restarting method (Locking and Purging)

Theorem 27 (Schur decomposition)
Let A ∈ Cn×n. Then there is a unitary matrix V such that

A = V TV H ,

where T is upper triangular.

The process of Krylov-Schur restarting:
Compute the Schur decomposition of the Rayleigh quotient
Move the desired eigenvalues to the beginning
Throw away the rest of the decomposition
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師
大

Use Lanczos process to generate the Lanczos decomposition of order
m ≡ k + p

(A− σB)−1BUk+p = Uk+pTk+p + βk+puk+p+1e
>
k+p. (23)

Let

Tk+p = Vk+pDk+pV
>
k+p ≡

[
Vk Vp

]
diag (Dk, Dp)

[
V >k
V >p

]
(24)

be a Schur decomposition of Tk+p. The diagonal elements of Dk and
Dp contain the k wanted and p unwanted Ritz values, respectively.
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師
大

Substituting (24) into (23), it holds that

(A− σB)−1B(Uk+pVk+p)

= (Uk+pVk+p)(V
>
k+pTk+pVk+p) + βk+puk+p+1(e

>
k+pVk+p),

which implies that

(A− σB)−1BŨk = ŨkDk + uk+p+1t
>
k =

[
Ũk ũk+1

] [ Dk

t>k

]
is a Krylov decomposition of order k where Ũk ≡ Uk+pVk,
ũk+1 = uk+p+1 and

[
t>k , t

>
p

]
≡ βk+pe>k+pVk+p. The new vectors

ũk+2, . . . , ũk+p+1 are computed sequentially starting from ũj+2 with

(A− σB)−1BŨk+1 =
[
Ũk+1 ũk+2

]  Dk tk
t>k α̃k+1

0 β̃k+1

 ,
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師
大

or equivalently

(A− σB)−1Bũk+1 = Ũktk + α̃k+1ũk+1 + β̃k+1ũk+2,

for
α̃k+1 = ũ∗k+1B(A− σB)−1Bũk+1.

Consequently a new Krylov decomposition of order k + p can be
generated by

(A− σB)−1BŨk+p = Ũk+pT̃k+p + β̃k+pũk+p+1e
>
k+p, (25)

where

T̃k+p =


Dk tk
t>k α̃k+1 β̃k+1

β̃k+1 α̃k+2
. . .

. . . . . . β̃k+p−1
β̃k+p−1 α̃k+p

 . (26)
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師
大

Shift-and-invert Krylov-Schur method for solving Ax = λBx
Build an initial Lanczos decomposition of order k + p:

(A− σB)
−1
BUk+p = Uk+pTk+p + βk+puk+p+1e

>
k+p.

repeat
Compute Schur decomposition Tk+p =

[
Vk Vp

]
diag

(
Dk, Dp

) [
Vk Vp

]> .

Set Uk := Uk+pVk , uk+1 := uk+p+1 and t>k := βk+pe
>
k+pVk to get

(A− σB)
−1
BUk = UkDk + uk+1t

>
k .

for j = k + 1, . . . , k + p do
Solve linear system (A− σB)q = Buj .
if j = k + 1 then

Set q := q − Uktk .
else

Set q := q − βj−1uj−1 .
end if
Compute αj = u∗jBq and reset q := q − αjuj .
B-reorthogonalize q to u1, . . . , uj−1 if necessary.
Compute βj =

√
q∗Bq and uj+1 = q/βj .

end for
Decompose Tk+p = Sk+pΘk+pS

∗
k+p to get the approximate eigenvalues.

Test for convergence.
until all the k wanted eigenpairs are convergent
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