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Theorem 1

LetV be an eigenspace of A and let V' be an orthonormal basis for V.
Then there is a unique matrix H such that

AV =VH.
The matrix H is given by
H=V*AV.
If (A, z) is an eigenpair of A with x € V, then (\,V*z) is an eigenpair of

H. Conversely, if (A, s) is an eigenpair of H, then (\,V's) is an
eigenpair of A.
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Theorem 2 (Optimal residuals)
Let [V V] be unitary. Let

R=AV-VH and S*=V*A—-HV".
Then ||R|| and || S|| are minimized when
H=V*AY,

in which case

(@) IRl =ViAV],
) Sl =IV*AVL],
(© V*R=o0.
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Definition 3
Let V' be orthonormal. Then V*AV is a Rayleigh quotient of A.

Theorem 4
LetV be orthonormal, A be Hermitian and

R=AV -VH.

Ifoy,...,0; are the eigenvalues of H, then there are eigenvalues
Ajs- -+, Aj, Of A such that

k
0: =Xl <IIRllz and | D (6: = X;)* < V2|Rllr.

=1
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Suppose the eigenvalue with maximum module is wanted.

Power method
Compute the dominant eigenpair

Disadvantage

At each step it considers only the single vector A*u, which throws
away the information contained in the previously generated vectors
u, Au, A%u,. .., A1y,
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Definition 5
Let A be of order n and let u £ 0 be an n vector. Then

{u, Au, A*u, A3u, ...}
is a Krylov sequence based on A and u. We call the matrix
Kp(Au) =[u Au A%uw - A1y ]
the kth Krylov matrix. The space

Ki(A,u) = R[Ki(A, u)]

is called the kth Krylov subspace.
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By the definition of Ky (A, ), for any vector v € K (A, u) can be written
in the form

v =mu+yAu+ -+ A u = p(A)u,
where
p(A) = I+ A+ A2+ AL

Assume that AT = A and Az; = \z; fori =1,...,n. Write u in the
form

U= Qa1T1 + a2 + -+ WpTy.
Since p(A)x; = p(\;)z;, we have
p(A)u = a1p(M)r1 + aop(A2)z2 + - - + anp(An)Tp. (1)

If p();) is large compared with p();) for j # 4, then p(A)u is a good
approximation to x;.
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Theorem 6
IfzHw £ 0 and p(\;) # 0, then

tan Z(p(A)u, z;) < mgzx |‘ZE>\ ;|| tan Z(u, x;).

Proof. From (1), we have

cos vy = (A lip(\)]
A = el ~ S lapOg P

and

/S lagp )2
Vi lagp(3) 2

sin Z(p(A)u, x;) =
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Hence

tan® Z(p(A)u,z;) = Z%

Assume that p(\;) = 1, then

tan Z(p(A)u, ;) <  max [p(\;)|tan ZL(u,x;) YV p(A)u € K.

Hence

tan Z(x;, Ky) < max |p(A;)| tan Z(u, x;).

< min 143
deg(p)<k—1,p(A;)=1 j#i
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Assume that
AL > A > 2 Ay
and that our interest is in the eigenvector x;. Then

tan Z(z1, Kp) < min m

N tan Z(u, x1).
deg(p)<k—1,p(A1)=1 /\e[,\?;ﬂ Ip(A)] tan Z(u, z1)

Question
How to compute

min max |p(A)|?
deg(p)<k—1,p(A1)=1 AE[An,A2]

Definition 7
The Chebyshev polynomials are defined by

ca(t) = cos(kcos™1 ), lt] <1,
Y7\ cosh(kcosh™8), ¢ > 1.

v
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Theorem 8
(I) Co(t) = 1, Cl(t) =t and
Ck+1(t) = 2Ck(t) — Ck_l(t), l = 1, 2, e

(i) Forlt|>1,cx(t) = (1 + V2 —1)F+ (1+ V2 -1)7F.

(i) Fort e [-1,1], |ck(t)| < 1. Moreover, if

b
tik = cos kz)w7 1=0,1,...,k,

then ci(tix) = (—1)F7,
(iv) Fors>1,

1
min max |p(t)| = 2
deg(p)<k,p(s)=11t€[0,1] p(®) cr(s)’ &)
and the minimum is obtained only for p(t) = c(t)/ck(s).
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For applying (2), we define
A=X+ (p—1)(A2 = Ap)

to transform interval [\, \2] to [0, 1]. Then the value of p at A; is

Al — Ao
=1
251 + N —
and
min max |p(A)]
deg(p)<k—1,p(A1)=1 A€[An,A2]
min max_|p(p)] !
= X = ———
deg(p)<k—1,p(p1)=1 p€l0,1] s Ccr—1(p1)
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Theorem 9

LetAT AandAi‘i:)\i:Ei, t=1,---,n with Ay > g > - -- > A Let
77_/\2 . Then

tan Z(x1,u)

tan Z[z1, K (A, u)] ck—1(1+1n)

IN

tan Z(z1, u)

(1++/2n+ 02k 1+ (1 ++/2n+n?)'-F
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@ For £ large and if n is small, then the bound becomes

tan Z(x1,u)
tan £[z1, Ki(A < — 0
an [xlv k( ,’LL)] ~ (1 + m)k_l

@ Compare it with power method: If [A;| > [\2| > --- > |\,|, then the
conv. rate is [Aa/A1|*.

@ For example, let A\; = 1, Ay = 0.95, A3 = 0.95%, - - -, Aigp = 0.95%
be the Ews of A € R109%100 Then 5 = 0.0530 and the bound on
the conv. rate is 1/(1 + v/2n) = 0.7544. Thus the square root effect
gives a great improvement over the rate of 0.95 for the power
method.

T.-M. Huang (Taiwan Normal University) April 17,2012 15/80



Definition 10
A Householder transformation or elementary reflector is a matrix of

H=1—w"

where ||luls = v/2.

Note that H is Hermitian and unitary.

Theorem 11
Let x be a vector with 1 # 0. Let

_T
_ PR T

bl

T
l—i—pm

where p = z1/|x1|. Then

Hr = —pllz2e1.
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Proof: Since

[pz*/||z|l2 + €] |[px/ ||z |2 + e1]
pp + pzi/||zll2 + pZ1/||zll2 + 1
= 2[1+ pz1/|lxll2],
it follows that
wu=2 = |ulla=v2

and

w _ Pllalla + 21

X
Jl—i—pW

u x
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Hence,

_ llallz +21 PRp &

¢1+WM2J1+MMh

Hx = z— (u'z)u=

B [1 @llzlz +2)ER | sl + o
_ |- i _
L+ oty 1+ prafr;
e+
1+ praf;
= —p|lz|2e1.
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Definition 12
A complex m x n-matrix R = [r;;] is called an upper (lower) triangular
matrix, if r;; = 0 for i > j (i < j).

Definition 13

Given A € C™*" @ € C™*™ unitary and R € C™*" upper triangular
such that A = QR. Then the product is called a @ R-factorization of A.

Theorem 14

Any complex m x n matrix A can be factorized by the product A = QR,
where Q) is m x m-unitary and R is m x n upper triangular.

v
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Proof: Let A© = A = [a\?|a{”]- - |a{Y]. Find Q1 = (I — 2wyw?) such
that Qlago) = ce;. Then

A(l) — QIA(O) = [Qlago), Qlag)); o 7Q1a£10)]

C1 ‘ * ‘ ‘ *
X (3)
= @] e
0
. 1 0 %y, (1)
Find Q2 = 0T T = such that (I — 2wow3)as ’ = coe1. Then
— wow}
P o -
0 C2
A®D =Q,AW =1 0 0
: a:(f) coa @
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We continue this process. Then after | = min(m, n) steps A% is an
upper triangular matrix satisfying

A-D — p— Qi1 Q1A.

Then A = QR, where Q = Q7 ---Qj_;. [
Suppose that the columns of K, are linearly independent and let

Kit1 = U1 R

be the QR factorization of K. Then the columns of Uy, are results
of successively orthogonalizing the columns of Ky ;.
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Theorem 15

Let||ui||2 = 1 and the columns of Ky 1(A, uy) be linearly indep. Let
Ukt1 = [u1 -+ uky1] be the Q-factor of Ki 1. Then there is a
(k+ 1) x k unreduced upper Hessenberg matrix

[ f:m = ;}lk
ho1 hoy  --- hoy,
H, = : with  hit1,; #0 (4)
flk,kq iy
i Pit1k |
such that
AU}, = Uy 41 Hy,. (Arnoldi decomp.) (5)

Conversely, if Uy 1 is orthonormal and satisfies (5), where Hy is
defined in (4), then Uy, is the Q-factor of Kj1(A,uy).
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Proof. (“=") Let K; = Ui Ry be the QR factorization and Sy, = R,;l.
Then

0 0 R
AU, = AKp S = Kiq1 [ g ] = Up+1Rr+1 [ g ] = Uky1H,
k k
where
- 0
Hy = R [ S, }
It implies that Hj, is a (k + 1) x k Hessenberg matrix and

Ti4+1,i+1

hit1: = riv1,i+186 =
Tii

Thus by the nonsingularity of Ry, H, is unreduced.
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(“<=") If k=1, then
h
Aug = hiquq + horug = [ up U2 ] [ . ]

which implies that

1 hll]

KQZ[Ul Aul]:[ul UQ][O h21

Since [ u1 wug |isorthonormal, [ u; ws ] is the Q-factor of K.
Assume Uy is the Q-factor of Ky, i.e., K = Ui Ry. By the definition of
the Krylov matrix, we have

Kk+1 = [ ul AKk ] = [ Ul AUkRk ] = [ ul Uk+1I:IkRk ]
= Upy1| e1 HyRy |

Hence Uy is the Q-factor of K. [ |
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e The unigueness of Hessenberg reduction

Definition 16

Let H be upper Hessenberg of order n. Then H is unreduced if
hi+1,i #Ofori: 1,--- ., n—1.

Theorem 17 (Implicit Q theorem)

Suppose Q= (q1 -+ gqn )andV = (v --- v, ) areunitary
matrices with
Q*"AQ=H and V*AV =(G

being upper Hessenberg. Let k denote the smallest positive integer for
which hiy1 1, = 0, with the convection that k = n if H is unreduced. If
v1 = q1, thenv; = £¢q; and |h; ;—1| = |gii—1| fori =2,--- , k. Moreover,
ifk <n, then gyi1 1 = 0.
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Definition 18

Let Uy41 € C™*(*1) be orthonormal. If there is a (k + 1) x k
unreduced upper Hessenberg matrix Hj such that

AUy, = Up11 Hy, (6)

then (6) is called an Arnoldi decomposition of order k. If Hj, is reduced,
we say the Arnoldi decomposition is reduced.

v

Partition
R H,
H, =
g [ hiy1ke} ]
and set
Br = hgt1 k-

Then (6) is equivalent to
AUy, = UpHy, + Brugtiet -
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Theorem 19

Suppose the Krylov sequence K. 1(A,u1) does not terminate at k + 1.
Then up to scaling of the columns of Uy, the Arnoldi decomposition
of Ky Is unique.

Proof. Since the Krylov sequence Kj.1(A,u1) does not terminate at
k + 1, the columns of K 1(A,u;) are linearly independent. By
Theorem 15, there is an unreduced matrix H; and 5, # 0 such that

AUy = U Hy, + Brugi1et (7)

where Uy1 = [Uy, ug11] is an orthonormal basis for KCx1(A, u1).
Suppose there is another orthonormal basis U1 = [Uy tx+1] for
Kr+1(A, u1), unreduced matrix Hy and 5; # 0 such that

AUy, = U Hy, + Briigtrer -
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Then we claim that
ﬁkH’U/k+1 = 0.
For otherwise there is a column ; of Uy, such that
U = augs1 + Ura, o #0.
Hence
Aty = aAupy1 + AUga

which implies that Au; contains a component along AF+1ly, . Since the
Krylov sequence K. 1(A, u;) does not terminate at k£ + 1, we have

Kit2(4,u1) # Kry1(A4, ur).

Therefore, Au; lies in Kp12(A, u1) but notin ICpy1 (A, u1) which is a
contradiction.
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Since U1 and U1 are orthonormal bases for K, (A, u;) and
UH g1 = 0, it follows that

R(U) =R(U;) and Ufag =0,

that is
Uy = UxQ
for some unitary matrix Q). Hence
AUxQ) = (UxQ)(Q" HrQ) + Britr41(ef Q)
or
AU, = Up(Q" HyQ) + Britk+1€i Q. (8)
On premultiplying (7) and (8) by U, we obtain
H, =UF AU, = Q7 H,.Q.

Similarly, premultiplying by u,’jH, we obtain

Brer = ufy AU = Bk(ul’fﬂﬂm)eZQ'
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It follows that the last row of @ is wyel, where |wi| = 1. Since the norm
of the last column of ) is one, the last column of Q) is we,. Since Hy, is
unreduced, it follows from the implicit @) theorem that

Q =diag(wi, - ,wk), |wil=1,7=1,...,k.

Thus up to column scaling U, = U;Q is the same as Uy,. Subtracting
(8) from (7), we find that

Bruk+1 = wrBrig41

so that up to scaling ux1 and 4y are the same. [ |
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Let A be Hermitian and let
AUy = UpTy, + Brusiiel 9)

be an Arnoldi decomposition. Since T}, is upper Hessenberg and
T, = U,f’AUk is Hermitian, it follows that T, is tridiagonal and can be

written in the form

ar By
f1 az Bo
B2 az B3

Br—2 ar—1 Br-1
Br—1 g

Equation (9) is called a Lanczos decomposition.
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The first column of (9) is

Au1 — X1U1
Aup = aqug + Biug  OF  ug = T
1

From the orthonormality of u; and wuo, it follows that
a1 = ujAug
and
B1 = [|Aug — aqugl|o.
More generality, from the j-th column of (9) we get the relation

Wil = AUj — ozjuj — ﬁj,1Uj,1
j =
Bj

where
o = u;Auj and ﬂj = ”A’U,j — QU — Bj_luj_ng.

This is the Lanczos three-term recurrence.
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Algorithm 1 (Lanczos recurrence)

Letuy be given. This algorithm generates the Lanczos

decomposition

AUy, = UpTy, + Brugsre),

where T}, is symmetric tridiagonal.

1. up = 0; 6o = 0;

2. forj=1tok

3 uj-l-l = AUj

4 Q5 = u;'uﬂ_l

5. v = Uj+1 - iju]' — ,8]'_1Uj_1

6 Bj = lvll2

7. ujp =v/p;

8. end forj
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Reorthogonalization
Let
Ujp1 = Auj — ajuj — fij1uj

with a;; = u} Au;. Re-orthogonalize ;, against U, i.e.,

J
Ujp1 = Ujpl — Z (u;tj41) ug
=1
g=1
= AUj = (aj + u;ﬂj+1) Uj — ﬁj_luj_l = Z (u;"&j+1) Uy
=1

Take

Bi = lltjtillz,  uj+1 = G541/0;-
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Theorem 20 (Stop criterion)

Suppose that j steps of the Lanczos algorithm have been performed
and that

SIT;S; = diag(6y,--- ,0;)

is the Schur decomposition of the tridiagonal matrix T;, if Y; € C"*J s
defined by

Vi=[wp -y |=U;8;
thenfori=1,---,j we have
| Ay; — Oiyillz = |B;llsj4l

where S; = [spq].

T.-M. Huang (Taiwan Normal University) April 17,2012 35/80



Proof : Post-multiplying
AUj = UjTj aF ﬁju]q_le;
by S; gives

AY; = Yidiag(61,--- ,0;) + Bjujrie] S5,

Ay; = Oy + Bijujia(ef Sjei) , i=1,---,].
The proof is complete by taking norms. [
Remark 1

@ Stop criterion = |[3;||s;;|. Do not need to compute || Ay; — 0;y;||2.
@ Ingeneral, |3;| is not small. It is possible that |3;||s;;| is small.
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Theorem 21

Let A be n x n symmetric matrix with eigenvalues A\ > --- > \,, and
corresponding orthonormal eigenvectors zy,-- - , z,. If61 > --- > 6; are

the eigenvalues of T; obtained after j steps of the Lanczos iteration,
then

— 2
A >0 > N — (A1 )\n)(tangf);) .
[ej—1(1+ 2p1)]

where cos ¢1 = |u{ 21|, ¢;—1 is @ Chebychev polynomal of degree j — 1
and

AN
_)\2_/\n

P1
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Proof: From Courant-Fischer theorem we have

YTy (Uy)TAU) w' Aw
th = max ——"= =max - ———"= = max =
yZ0 y'y y#0 (ij) (ij) 0Awek;(u1,A) W W

Since \; is the maximum of w " Aw/w " w over all nonzero w, it follows
that A\; > 6,. To obtain the lower bound for 6;, note that

uj p(A)Ap(A)uy
pePi1 u{ p(A)2u;

where P;_; is the set of all j — 1 degree polynomials. If u; = > | d;zi,
then

uj p(A)Ap(A)w _ Sy BEp(N)* i
ui p(A)*u Sy 2p(N)?
> A — (A1) >ia dip(Ni)®

dip(M)? + 3oy dip(Ai)?
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We can make the lower bound tight by selecting a polynomial p(«) that
is large at a = A1 in comparison to its value at the remaining
eigenvalues. Set

a— A\,
pla) = cj—1 <—1 1 2)\2 — )\n> ,
where c;_1(z) is the (j — 1)-th Chebychev polynomial generated by
cj(z) = 2z¢j—1(2) — ¢j—2(2), c=1,¢c1 =z

These polynomials are bounded by unity on [-1,1]. It follows that |p()\;)|
is bounded by unity fori = 2,--- ,n while p(A1) = ¢;j—1(1 + 2p1). Thus,

1—d?) 1

di & (1+2p1)

912)\1—()\1—)\n)(

The desired lower bound is obtained by noting that
tan (¢1)2 = (1 — d2)/d?. .
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Theorem 22
Using the same notation as Theorem 21,

(A1 — M) tan? oy,
>\n S 0; § )\n + )
! [ijl(l + QPn)P

where

- )\n—l - )\n
A = Aot

o oS pn, = |u] 2.

Proof : Apply Theorem 21 with A replaced by — A.
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Restarted Lanczos method

Let
AUm = Wz Xizn A /Bmum—kle%

be a Lanczos decomposition.

@ In principle, we can keep expanding the Lanczos decomposition
until the Ritz pairs have converged.

© Unfortunately, it is limited by the amount of memory to storage of
Ui

© Restarted the Lanczos process once m becomes so large that we
cannot store Uy,.

» Implicitly restarting method
» Krylov-Schur decomposition
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Implicitly restarted Lanczos method

@ Choose a new starting vector for the underlying Krylov sequence

@ A natural choice would be a linear combination of Ritz vectors that
we are interested in.

Filter polynomials

Assume A has a complete system of eigenpairs (\;, z;) and we are
interested in the first k& of these eigenpairs. Expand u; in the form

Z f}/lxl + Z '71«7:2

i=k+1

If p is any polynomial, we have

k n
ur =Y ypA)zi+ Y vip(Ao)z
=1

i=k+1
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@ Choose p so that the values p()\;) (i =k +1,...,n) are small
compared to the values p(\;) (1 =1,..., k).

@ Then p(A)u; is rich in the components of the z; that we want and
deficient in the ones that we do not want.

@ pis called a filter polynomial.

@ Suppose we have Ritz values 64, ...,6,, and 64, ...,6,,_ are not
interesting. Then take

p(t) = (t—01) -+ (t = Op).
Implicitly restarted Lanczos: Let
Al = W s 4 Bmum—i-le;l; (1 O)

be a Lanczos decomposition with order m. Choose a filter polynomial
p of degree m — k and use the implicit restarting process to reduce the
decomposition to a decomposition

AUy, = Uy Ty, + Briips16h

of order k with starting vector p(A)u;.
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Let 64,...,0,, be eigenvalues of T;,, and suppose that 61, ...,60,, &
correspond to the part of the spectrum we are not interested in. Then
take

p(t) =@t —01)(t—62) - (t —Omk)
The starting vector p(A)u, is equal to
p(A)u1 = (A — Qm,k[) 000 (A — 92[)(/1 — 91[)’11,1
= (A=Onil) [+ [(A=020) [(A=OLD)u]]].

In the first, we construct a Lanczos decomposition with starting vector
(A —611)u;. From (10), we have

(A=0D)Up, = Un(Ton — 011) + Brmtimare, (11)
= UleRl + Bmum+le:m
where
Ty — 6011 =Q1 R

is the QR factorization of T,,, — 6:1.



Postmultiplying by @1, we get
(A= 01D (UnQ1) = (UnQ1)(R1Q1) + Brntims1(€,,Q1)-
It implies that
AUY = UDTE + Bt
where

UY =UnQ1, T =RiQi+6011, o0 =€l Qr.

(T,%l) : one step of single shifted QR algorithm)
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Theorem 23

LetT,, be an unreduced tridiagonal. Then TTQ) has the form

70 g
0 6; |’

where TV is unreduced tridiagonal.

Proof. Let
T — 011 = Q1 Ry
be the QR factorization of T;,, — 611 with
Q1 =G(1,2,¢1)---G(m —1,m,onm_1)

where G(i,i+ 1,p;) fori =1,...,m — 1 are Given rotations.
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Since T,, is unreduced tridiagonal, i.e., the subdiagonal elements of
T, are nonzero, we get

w; 0 fori=1,....,m—1 (12)
and
(Rl)ii?éo for 1=1,...,m—1. (13)

Since 6, is an eigenvalue of T,,,, we have that T,,, — 6,1 is singular and
then

(R1)mm = 0. (14)
Using the results of (12), (13) and (14), we get
T = RiQ1+ 6011 =RiG(1,2,¢1) - G(m — 1,m, om_1) + 011

ﬁg) iLlQ (15)
0 0, |’

where ﬁﬁ) is unreduced upper Hessenberg.
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By the definition of 7.\, we get

It implies that TS) is tridiagonal and then, from (15), the result in (12) is

obtained.
Remark 2

o U,(r}) is orthonormal.
o The vector b\ = ] Q) has the form

DH
bap1 = | 0+ 0 a\ Ly, dom |

i.e., only the last two components of bﬁ,ll)ﬂ are nonzero.
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@ For on postmultiplying (11) by e;, we get
(A— 01T us = (A — 0.1)(Umer) = UPRyey = rDulV.

Since T, is unreduced, rﬁ) is nonzero. Therefore, the first column
of U is a multiple of (A — 0,1)u.
@ By the definition of 7.\, we get

QT = Q(R1Q1 + 0:1)QY = Q1Ry + 6,1 =Ty,

Therefore, 601,60, ..., 0,, are also eigenvalues of Té}).
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Similarly,
(A= 0,0UD = UD@D = 050) + B b (16)
= UDQ2Ry + frtmboss,
where
T — 9,7 = QR
is the QR factorization of T&l) — 021. Postmultiplying by @2, we get
(A= 01UV Q2) = (UL Qa) (RaQ) + Bmum+1(b£ilﬁQ2).
It implies that
AUR = UDTD + Brytim 4163,
where

U = U Qs

is orthonormal,

T.-M. Huang (Taiwan Normal University) Krylov Subspace Methods for Large/Spars April 17,2012 50/80



T,/ 0 o
T2 = RyQa + 021 =

6, 0

is tridiagonal with unreduced matrix T )2 and
bﬁ?f{ = b(1+1Q = qﬁn) 1,m€ mo1Q2 ~|—qmm @2
= [0 -+ 0 x x x].
For on postmultiplying (16) by e;, we get
(A—0,D)ulY = (A — 0.1 (UWer) = UD Ryey = rPul?.

Since Hy is unreduced, rﬁ) is nonzero. Therefore, the first column of
U isa multiple of

(A= 0,0)ulY = 1/rD (4 - 0,1)(A — 0.y
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Repeating this process with 03, . .., 6, &, the result will be a Krylov
decomposition

with the following properties
@ UM is orthonormal.
Q 7" ¥ is tridiagonal.
© The first kK — 1 components of bf,ﬁ’lk)H are zero.

Q The first column of U™~ is a multiple of
(A - 91[) ce (A - Gm_kI)ul.
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Corollary 24

Letb,,...,0,, be eigenvalues of T,,. If the implicitly restarted QR step

is performed with shifts 0+, . . ., 0,,_, then the matrix T,Slm_k ) has the
form

m—k
(m—k) _ e o
" 0 D=k |7
where D'"~¥) js an digonal matrix with Ritz value 0, ..., 0,,_; on its
diagonal.
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For k =3 and m = 6,

A[u U u‘u U u]

O O OO X X
O O O X X X
S O X | X X O
O O X | X © O
S X OoOflo © O
X © OO O O

+u[0 0 q‘q q q].
Therefore, the first £ columns of the decomposition can be written in
the form

K —k -k —k
AUIE’” ) — Uém )Té;” ) + tk+17kul(£1 )e; + BQOkuerlel—lc—a

where U™ consists of the first & columns of U™, T\ ™% is the
leading principal submatrix of order k of T&m*k), and ¢, is from the
matrix Q = Q1 - - Qp—k-
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Hence if we set

O, = U™,

T, = T,

3 (m—k)

B = IItk+1htpyr  + Bmlmitmill2,
_ - —k
Ugy1 = ﬁkl(tk—&-l,kugil )+/3QOkum+1)a

then

AUy = U Ty, + Briiirrep,
is a Lanczos decomposition whose starting vector is proportional to
(A - 91]) s (A - Hm_kf)ul.

@ Avoid any matrix-vector multiplications in forming the new starting
vector.

@ Get its Lanczos decomposition of order & for free.

@ For large n the major cost will be in computing UQ.
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Practical Implementation

Restarted Lanczos method

Input: Given Lanczos decomp. AU, = U, Ty + Bmtmo1e,,
Output: new Lanczos decomp. AUy, = UT}, + Brukiie),
: Compute the eigenvalues 61, ..., 0,, of T),.
. Determine shifts, said 61, ...,6,,_, and set b,, = e, .
cforj=1,..., m—kdo
Compute QR factorization: T, — 0;1 = QuR,.
Update T,,, := RpQum + 0;1, Uy, := UpnQmy b := Q.1 b
: end for
: CompUte U= /Bkuk—l-l + ,mem(k)um+l-
: Set Uy, .= Um(:, 1: k), Br = H’U“Q, Uky1 = Q}/,Bk, and

Ty :=Tp(1:k,1: k),
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Question
Can we implicitly compute @,,, and get new tridiagonal matrix 7,,,?

General algorithm
@ Determine the first column ¢; of T, — 6;1.
Q Let @ be a Householder transformation such that @Tcl = gey.
Q SetT=Q'T,0Q.

Q Use Householder transformation C~2 to reduce T to a new
tridiagonal form 7' = Q ' TQ.

Q SetQ,, = QQ.

Question
General algorithm = one step of single shift QR algorithm ?
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Answer:
(I) Let

Tm_ng:[cl C*]:QmRm:[q Qm*][g ]7;:(:|

be the QR factorization of 7}, — 0;1. Then ¢; = pq. Partition
@ = [ q @* } then ¢; = a@el = og which implies that ¢ and ¢
are proportional to c;.

(Il) Since T = QTTQ is tridiagonal, we have

@61 =e1.
Hence, . R
(QQ)er = Qe1 = ¢
which implies that the first column of @@ is proportional to q.

(Ill) Since (QQ)TT:,(QQ) is tridiagonal and the first column of QQ is
proportional to g, by the implicit Q Theorem, if T is unreduced,

thenQ Qo1 and T = (QQ)TT (QQ)



Definition 25 (Givens rotation)
A plane rotation (also called a Givens rotation) is a matrix of the form

o= 5]

where [c|? + |s|> = 1.

Given a # 0 and b, set

v=1/]a]?2 + |b?, ¢ =la|/v and s:ﬁ-
a

S| o

then
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Let

I; 4

C S
Gij = I]—z—l

—S c

In—j
a1 — 0]'
(I) Compute the first column t; = B1 of T,,, — 0;I and

0

determine Givens rotation G5 such that G12t1 = vey.
(”) Set Ih = G12TmG1rQ.

X X
X X
0 x
0 O
0 O

Tm = G12 GIQ =

O X X X ©
X X X © O
X X © O O
oo+ X X
o o X X X
o X X X +
X X X oo
X X © O O
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(1) Construct orthonormal @ such that 7, := QT,,Q" is tridiagonal:

x x + 0 0 x x 0 0 0
X x x 0 0 X X x + 0
Ty =G| + x x x 0 G;rg: 0 x x x 0
0 0 x Xx X 0 + x x X

L 0 0 0 x x | L0 0 0 x x|

[x x 0 0 0] [x x 0 0 0]
X X x + 0 Xx x x 0 0
Ty =Gas| 0 x x x 0 G;L: 0 x x x +
0 + x x X 0 0 x x X

1L 0 0 0 x x | L 0 0 + x x|

[x x 0 0 0] [x x 0 0 0]
X x x 0 0 X x x 0 0
Tm=Gs | 0 x X X -+ GIE,: 0 x x x 0
0 0 x x X 0 0 x x X

L 0 0 + x x| L0 0 0 x x|
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Implicit Restarting for Lanczos method

Input: Given Lanczos decomp. AU, = U, T, + ﬁmumHe;
Output: new Lanczos decomp. AUy, = UT}, + Bruki1e),

: Compute the eigenvalues 61, ..., 0,, of T),.

2: Determine shifts, said 6y, ...,6,,_, and set b,, = ¢, .

3: forj=1,...,m —kdo

—_

a1 — 0]'
4:  Compute Givens rotation G5 such that G- B = 7yey.

5: Update e = G12TmG1rQ, Ui, 3= UmGB, by = G12b,,.
6: Compute Givens rotations Gas, . . . , Gi—1,m Such that

Ty = G 1m"'G23T Gas - -G;_Lm is tridiagonal.
7: Update U,, UmGZT GT and b,, :== Gm—l,m - Gosgby,.
8: end for
9: Compute v = Srugs1 + Bmbm (k) tm1-
10: Set Uy, := Uy (5,1 : k), Br = ||v||2, ug+1 = v/ Bk, and

Ty :=Tn(l:k,1:k),

m—1,m
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Problem
@ Mathematically, v; must be orthogonal.
@ In practice, they can lose orthogonality.

Solutions
Reorthogonalize the vectors at each step.

j-th step of Lanczos process

Input: Given j3;_; and orthonormal matrix U; = [u, ..., u;].
Output: «;, ; and unit vector u; 1 with u,,U; = 0 and
Auj = aju; + ﬁjflujfl T ﬁjujH.
Compute Ujt+1 = AUj = Bj_luj_l and Q= u;rujH;
Update Uj+1 = Ujt1 — QU ;
fori=1,...,5do

Compute v; = u, uj+1 and update w41 := wjp1 — Yiui;
end for
Update o := o + v; and compute 5; = |Ju;+1/2 and
Ujt1 = Ujy1/ B
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Lanczos algorithm with implicit restarting

Input: Given initial unit vector u;, number k of desired eigenpairs,
restarting number m and stopping tolerance e.
Output: desired eigenpairs (0;,z;) fori =1,... k.
: Compute Lanczos decomposition with order k:
AU = UTy, + Bruksiey ;

—_

2: repeat

3: Extend the Lanczos decomposition from order & to order m:
AUp, = Up/Tin + /Bmum—i-le;;

4:  Use implicitly restarting scheme to reform a new Lanczos
decomposition with order k;

5.  Compute the eigenpairs (6;,s;), i =1,...,k, of Tk;

6: until (|5x||sik| <efori=1,...,k)

7: Compute eigenvector z; = Ugs; fori=1,... k.
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Arnoldi method

Recall: Arnoldi decomposition of unsymmetric A:
AU].C = Uka + hk+1,kuk+1e,1—, (17)

where H; is unreduced upper Hessenberg.
Write (17) in the form

Aug = Ughg + hgq1 g1
Then from the orthogonality of Uy, 1, we have
hy = U,fIAuk.
Since hyy1 pukt1 = Aup — Ughy, and |lug1]|2 = 1, we must have

i1k = [|Aug — Uhille, urgr = hity ,(Aug, — Ughg).
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Arnoldi process
1: fork=1,2,...do
2: hy, = UlflAuk,
3: v = Auy — Uphyg;
4 gk = [loll2;
5 Uppl = Ulthrl,k;
> Hi_1  hy } )
6: H = 3
F [ 0 hryik
7: end for

@ The computation of ug; is actually a form of the well-known
Gram-Schmidt algorithm.

@ In the presence of inexact arithmetic cancelation in statement 3
can cause it to fail to produce orthogonal vectors.

@ The cure is process called reorthogonalization.
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Reorthogonalized Arnoldi process
1: fork=1,2,...do

hy = U,fIAuk,
V= Auk — Uhg;
w = U,fv;

hi = hp + w;

v=1v— Upw;
hiet1,e = [|v]l2;
Uk y1 = U/ k;

3 Hp_y  hy
. Hp = ;
° F [ 0 ke |

e R

10: end for
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Let y§k> be an eigenvector of H; associated with the eigenvalue Agk)
and a:z(-k) = Uky(k) the Ritz approximate eigenvector.

i

Theorem 26

(A= 2IDe® = hyrred yPupsa.

and therefore,

k k k
1A = 2P Dl = [l ef v ).

April 17,2012 68/80

T.-M. Huang (Taiwan Normal University) Krylov Subspace Methods for Large/Spars



Generalized eigenvalue problem

Consider the generalized eigenvalue problem
Axr = \Bzx,
where B is nonsingular. Let
C=DB"'A
Applying Arnoldi process to matrix C, we get

CUy = UpHy, + hiot1 kuk+1€4 »

or

AUy = BUyHy, + hji1 1 Bugyiep - (18)

T.-M. Huang (Taiwan Normal University) Krylov Subspace Methods for Large/Spars April 17,2012 69/80



Write the k-th column of (18) in the form
Aup = BUphg + hgy1 x Bug1. (19)
Let Uy, satisfy that
Ul U = I.
Then
hy = U B~ Auy,
and
hit1 kU1 = B Aug — Uphy, = t,
which implies that

Py = ltell,  ugy1 = hEithk-
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Shift-and-invert Lanczos for GEP

Consider the generalized eigenvalue problem
Az = ABz, (20)
where A is symmetric and B is symmetric positive definite.

Shift-and-invert

@ Compute the eigenvalues which are closest to a given shift value
ag.

@ Transform (20) into

(A—oB) 'Bxr=(\—-0)" . (21)
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The basic recursion for applying Lanczos method to (21) is
(A = O'B)_IBUJ' = U]TB + ﬁjUj+1€;-r, (22)

where the basis U; is B-orthogonal and 7} is a real symmetric
tridiagonal matrix defined by

ar P

T = fr o

Bi-1

Bi-1  aj
or equivalent to

(A —0B)™' Bu; = aju; + fj-1uj-1 + Bjtiji1.
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By the condition U; BU; = I;, it holds that

aj =u;B(A—o0B)'Bu;, B;=t;Bt,

where

tj = (A — UB)leUj — QU — 5]'_171]'_1 = BjUj+1.

An eigenpair (0;, s;) of T} is used to get an approximate eigenpair
(Ais x;) of (4, B) by

1
Ni=0+ —, xi:Ujsi.
0;

The corresponding residual is

r, =

AU;s; — \iBU;s; = (A — 0B)U;s; — 6,1 BU;s;
~0;* [BU; — (A~ o B)U;T;] 5

—0;'(A—0B) [(A—oB)"'BU; — U;T}] s;
—0;"Bj(e] si)(A — o B)ujp

which implies ||r;|| is small whenever |ﬁj(esti)/9i| is small.
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Shift-and-invert Lanczos method for symmetric GEP

1: Given starting vector ¢, compute ¢ = Bt and 8y = /|q*t|.
2. forj=1,2,...,do
3: Compute wj; = q/ﬁj,1 and U; = t/ﬁjfl.
Solve linear system (A — o0 B)t = w.
Sett:=1t— Bj_1u;—1; compute a; = wjt and reset t :=t — aju;.
B-reorthogonalize t to g, . .., u; if necessary.
Compute ¢ = Bt and 3; = /|q*t|.
Compute approximate eigenvalues T; = 50,57
9:  Test for convergence.
10: end for
11: Compute approximate eigenvectors X = U;S;.

e N @ @
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Krylov-Schur restarting method (Locking and Purging)

Theorem 27 (Schur decomposition)
Let A € C™*™. Then there is a unitary matrix V' such that

A=vTVH,

where T is upper triangular.

The process of Krylov-Schur restarting:
@ Compute the Schur decomposition of the Rayleigh quotient
@ Move the desired eigenvalues to the beginning
@ Throw away the rest of the decomposition
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Use Lanczos process to generate the Lanczos decomposition of order
m=k+p

(A= 0B) "' BUktp = UtpTitp + BripUhipt1€hsp (23)

Let
T . VkT
Thtp = Vk‘+pDk+ka+p = [ Vi Vp ]dlag (DkaDp) v (24)
p

be a Schur decomposition of 7},,,,. The diagonal elements of D;, and
D, contain the k& wanted and p unwanted Ritz values, respectively.
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Substituting (24) into (23), it holds that
(A - 0B) "' B(Up4pVitp)
= (Uk-ﬁ-ka-&-p)(Vk——I—kakﬂ-kaﬂ-p) + Bk+puk+p+1(e;—+ka+p),
which implies that

PP - D
(A—0oB)"'BU), = Uy Dy, + tupiprity = [ Ux  iksr | [ 5 ]

-+
bk
is a Krylov decomposition of order k where U}, = UkpVis

U1 = Uktp1 @nd [t 8] ] = Briper,,Virp- The new vectors

U2, - - -, Up+p+1 Are computed sequentially starting from ;o with
) Dyt
(A—oB) 'BUpt1=[ Upp1r Gipg2 | | B8 Grr1 |,
0 Brr1
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or equivalently

(A — 0B) ' Biigy1 = Upty + Gpy1ins1 + Brs1lihi,

for

841 = Gj B(A — 0B) ' Bligy1.

Consequently a new Krylov decomposition of order k£ + p can be

generated by

(A—0B) " BUktp = Uk 1pThip + Brtplikipt1€hip:

where

Dy,
h
by

Thyp =

tg
Okt1 Prtt
Br+1  Okt2

/Bkerfl

Br+p—1
Qtp
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Shift-and-invert Krylov-Schur method for solving Ax = ABz

Build an initial Lanczos decomposition of order k& + p:
_1 —
(A=0B)" "BUktp = UktpThtp + BrtpUhtp+iChip-

repeat
Compute Schur decomposition Ty, = [ Vi Vp |diag (Dy, Dp) [ Vi Vp }T.

Set Uy, i= UpppVie, W g1 i= Uppq1 AN ] = By pel, Vi toget
=i T
(A—0oB) 'BU = Uy Dy, + upy1ty -

fory=k+1,...,k+pdo
Solve linear system (A — 0 B)g = Buj.
if j =k + 1then
Setq :=q — Ugtg.

else
Setq:=q—Bj_1u;_1.
end if
Compute oj = u;-‘Bq andreset g := g — aju; .
B-reorthogonalize g to uy, . . ., u; 1 if necessary.
Compute B = /g*Bgand u; 1 = q/B;.
end for

Decompose Ty, = Sk4pOkip S,’;+p to get the approximate eigenvalues.

Test for convergence.
until all the £ wanted eigenpairs are convergent
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