Krylov Subspace Methods for Large/Sparse Eigenvalue Problems

Tsung-Ming Huang

Department of Mathematics National Taiwan Normal University, Taiwan

April 17, 2012

T.-M. Huang (Taiwan Normal University) Krylov Subspace Methods for Large/Spars

- ₹ ₹ >

A (10) < A (10)</p>

Outline

Lanczos decomposition

- Householder transformation
- 2 Implicitly restarted Lanczos method

3 Arnoldi method

Generalized eigenvalue problemKrylov-Schur restarting

Theorem 1

Let \mathcal{V} be an eigenspace of A and let V be an orthonormal basis for \mathcal{V} . Then there is a unique matrix H such that

$$AV = VH.$$

The matrix H is given by

$$H = V^* A V.$$

If (λ, x) is an eigenpair of A with $x \in \mathcal{V}$, then (λ, V^*x) is an eigenpair of H. Conversely, if (λ, s) is an eigenpair of H, then (λ, Vs) is an eigenpair of A.

3 / 80

April 17, 2012

Theorem 2 (Optimal residuals) Let $[V V_1]$ be unitary. Let

R = AV - VH and $S^* = V^*A - HV^*$.

Then ||R|| and ||S|| are minimized when

 $H = V^* A V,$

in which case

(a)
$$||R|| = ||V_{\perp}^*AV||,$$

(b) $||S|| = ||V^*AV_{\perp}||,$
(c) $V^*R = 0.$

T.-M. Huang (Taiwan Normal University) Krylov Subspace Methods for Large/Spars

- ₹ ∃ →

Definition 3

Let V be orthonormal. Then V^*AV is a Rayleigh quotient of A.

Theorem 4 Let V be orthonormal, A be Hermitian and

R = AV - VH.

If $\theta_1, \ldots, \theta_k$ are the eigenvalues of H, then there are eigenvalues $\lambda_{j_1}, \ldots, \lambda_{j_k}$ of A such that

$$| heta_i - \lambda_{j_i}| \le \|R\|_2$$
 and $\sqrt{\sum_{i=1}^k (heta_i - \lambda_{j_i})^2} \le \sqrt{2} \|R\|_F.$

A D > A D > A D >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Suppose the eigenvalue with maximum module is wanted.

Power method

Compute the dominant eigenpair

Disadvantage

At each step it considers only the single vector $A^k u$, which throws away the information contained in the previously generated vectors $u, Au, A^2u, \ldots, A^{k-1}u$.

Definition 5

Let A be of order n and let $u \neq 0$ be an n vector. Then

$$\{u, Au, A^2u, A^3u, \ldots\}$$

is a Krylov sequence based on A and u. We call the matrix

$$K_k(A, u) = \begin{bmatrix} u & Au & A^2u & \cdots & A^{k-1}u \end{bmatrix}$$

the kth Krylov matrix. The space

$$\mathcal{K}_k(A, u) = \mathcal{R}[K_k(A, u)]$$

is called the kth Krylov subspace.

By the definition of $\mathcal{K}_k(A, u)$, for any vector $v \in \mathcal{K}_k(A, u)$ can be written in the form

$$v = \gamma_1 u + \gamma_2 A u + \dots + \gamma_k A^{k-1} u \equiv p(A)u,$$

where

$$p(A) = \gamma_1 I + \gamma_2 A + \gamma_3 A^2 + \dots + \gamma_k A^{k-1}.$$

Assume that $A^{\top} = A$ and $Ax_i = \lambda_i x_i$ for i = 1, ..., n. Write u in the form

$$u = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n.$$

Since $p(A)x_i = p(\lambda_i)x_i$, we have

$$p(A)u = \alpha_1 p(\lambda_1) x_1 + \alpha_2 p(\lambda_2) x_2 + \dots + \alpha_n p(\lambda_n) x_n.$$
(1)

If $p(\lambda_i)$ is large compared with $p(\lambda_j)$ for $j \neq i$, then p(A)u is a good approximation to x_i .

Theorem 6

If $x_i^H u \neq 0$ and $p(\lambda_i) \neq 0$, then

$$\tan \angle (p(A)u, x_i) \le \max_{j \ne i} \frac{|p(\lambda_j)|}{|p(\lambda_i)|} \tan \angle (u, x_i).$$

Proof: From (1), we have

$$\cos \angle (p(A)u, x_i) = \frac{|x_i^H p(A)u|}{\|p(A)u\|_2 \|x_i\|_2} = \frac{|\alpha_i p(\lambda_i)|}{\sqrt{\sum_{j=1}^n |\alpha_j p(\lambda_j)|^2}}$$

and

$$\sin \angle (p(A)u, x_i) = \frac{\sqrt{\sum_{j \neq i} |\alpha_j p(\lambda_j)|^2}}{\sqrt{\sum_{j=1}^n |\alpha_j p(\lambda_j)|^2}}$$

<ロ> <同> <同> < 同> < 目> < 目>

Hence

$$\tan^{2} \angle (p(A)u, x_{i}) = \sum_{j \neq i} \frac{|\alpha_{j}p(\lambda_{j})|^{2}}{|\alpha_{i}p(\lambda_{i})|^{2}}$$

$$\leq \max_{j \neq i} \frac{|p(\lambda_{j})|^{2}}{|p(\lambda_{i})|^{2}} \sum_{j \neq i} \frac{|\alpha_{j}|^{2}}{|\alpha_{i}|^{2}}$$

$$= \max_{j \neq i} \frac{|p(\lambda_{j})|^{2}}{|p(\lambda_{i})|^{2}} \tan^{2} \angle (u, x_{i}).$$

Assume that $p(\lambda_i) = 1$, then

$$\tan \angle (p(A)u, x_i) \le \max_{j \ne i, p(\lambda_i) = 1} |p(\lambda_j)| \tan \angle (u, x_i) \quad \forall \quad p(A)u \in \mathcal{K}_k.$$

Hence

$$\tan \angle (x_i, \mathcal{K}_k) \le \min_{deg(p) \le k-1, p(\lambda_i) = 1} \max_{j \ne i} |p(\lambda_j)| \tan \angle (u, x_i).$$

T.-M. Huang (Taiwan Normal University) Krylov Subspace Methods for Large/Spars

æ

・ロン ・日 ・ ・ ヨ ・ ・ ヨ ・

Assume that

$$\lambda_1 > \lambda_2 \ge \cdots \ge \lambda_n$$

and that our interest is in the eigenvector x_1 . Then

$$\tan \angle (x_1, \mathcal{K}_k) \le \min_{deg(p) \le k-1, p(\lambda_1) = 1} \max_{\lambda \in [\lambda_n, \lambda_2]} |p(\lambda)| \tan \angle (u, x_1).$$

Question

How to compute

$$\min_{deg(p) \le k-1, p(\lambda_1)=1} \max_{\lambda \in [\lambda_n, \lambda_2]} |p(\lambda)|^{\frac{1}{2}}$$

Definition 7

The Chebyshev polynomials are defined by

$$c_k(t) = \begin{cases} \cos(k\cos^{-1}t), & |t| \le 1, \\ \cosh(k\cosh^{-1}t), & |t| \ge 1. \end{cases}$$

T.-M. Huang (Taiwan Normal University) Krylov Subspace Methods for Large/Spars

Theorem 8

(i)
$$c_0(t) = 1, c_1(t) = t$$
 and
 $c_{k+1}(t) = 2c_k(t) - c_{k-1}(t), \quad k = 1, 2, \dots$
(ii) For $|t| > 1, c_k(t) = (1 + \sqrt{t^2 - 1})^k + (1 + \sqrt{t^2 - 1})^{-k}$.
(iii) For $t \in [-1, 1], \quad |c_k(t)| \le 1$. Moreover, if
 $t_{ik} = \cos \frac{(k - i)\pi}{k}, \quad i = 0, 1, \dots, k$,
then $c_k(t_{ik}) = (-1)^{k-i}$.
(iv) For $s > 1$,
 $\min_{deg(p) \le k, p(s) = 1} \max_{t \in [0, 1]} |p(t)| = \frac{1}{c_k(s)}$,

and the minimum is obtained only for $p(t) = c_k(t)/c_k(s)$.

э

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

(2)

For applying (2), we define

$$\lambda = \lambda_2 + (\mu - 1)(\lambda_2 - \lambda_n)$$

to transform interval $[\lambda_n, \lambda_2]$ to [0, 1]. Then the value of μ at λ_1 is

$$\mu_1 = 1 + \frac{\lambda_1 - \lambda_2}{\lambda_2 - \lambda_n}$$

and

$$\min_{\substack{\deg(p) \le k-1, p(\lambda_1)=1 \ \lambda \in [\lambda_n, \lambda_2]}} \max_{\substack{\lambda \in [\lambda_n, \lambda_2]}} |p(\lambda)|$$

$$= \min_{\substack{\deg(p) \le k-1, p(\mu_1)=1 \ \mu \in [0,1]}} \max_{\mu \in [0,1]} |p(\mu)| = \frac{1}{c_{k-1}(\mu_1)}$$

T.-M. Huang (Taiwan Normal University) Krylov Subspace Methods for Large/Spars

< ∃⇒

Theorem 9

Let $A^{\top} = A$ and $Ax_i = \lambda_i x_i$, $i = 1, \dots, n$ with $\lambda_1 > \lambda_2 \ge \dots \ge \lambda_n$. Let $\eta = \frac{\lambda_1 - \lambda_2}{\lambda_2 - \lambda_n}$. Then

$$\tan \angle [x_1, \mathcal{K}_k(A, u)] \leq \frac{\tan \angle (x_1, u)}{c_{k-1}(1+\eta)} \\ = \frac{\tan \angle (x_1, u)}{(1+\sqrt{2\eta+\eta^2})^{k-1} + (1+\sqrt{2\eta+\eta^2})^{1-k}}.$$

T.-M. Huang (Taiwan Normal University) Krylov Subspace Methods for Large/Spars

April 17, 2012 14 / 80

For k large and if η is small, then the bound becomes

$$\tan \angle [x_1, \mathcal{K}_k(A, u)] \lesssim \frac{\tan \angle (x_1, u)}{(1 + \sqrt{2\eta})^{k-1}}.$$

- Compare it with power method: If $|\lambda_1| > |\lambda_2| \ge \cdots \ge |\lambda_n|$, then the conv. rate is $|\lambda_2/\lambda_1|^k$.
- For example, let $\lambda_1 = 1$, $\lambda_2 = 0.95$, $\lambda_3 = 0.95^2$, \cdots , $\lambda_{100} = 0.95^{99}$ be the Ews of $A \in \mathbb{R}^{100 \times 100}$. Then $\eta = 0.0530$ and the bound on the conv. rate is $1/(1 + \sqrt{2\eta}) = 0.7544$. Thus the square root effect gives a great improvement over the rate of 0.95 for the power method.

Definition 10

A Householder transformation or elementary reflector is a matrix of

$$H = I - uu^*$$

where $||u||_2 = \sqrt{2}$.

Note that H is Hermitian and unitary.

Theorem 11

Let x be a vector with $x_1 \neq 0$. Let

$$u = \frac{\rho \frac{x}{\|x\|_2} + e_1}{\sqrt{1 + \rho \frac{x_1}{\|x\|_2}}}$$

where $\rho = \bar{x}_1/|x_1|$. Then

$$Hx = -\bar{\rho} \|x\|_2 e_1.$$

T.-M. Huang (Taiwan Normal University) Krylov Subspace Methods for Large/Spars

・ロット (空)・ (正)・ (田)・ 田

Proof: Since

$$\begin{aligned} & [\bar{\rho}x^*/\|x\|_2 + e_1^\top][\rho x/\|x\|_2 + e_1] \\ &= \bar{\rho}\rho + \rho x_1/\|x\|_2 + \bar{\rho}\bar{x}_1/\|x\|_2 + 1 \\ &= 2[1 + \rho x_1/\|x\|_2], \end{aligned}$$

it follows that

$$u^*u = 2 \quad \Rightarrow \quad \|u\|_2 = \sqrt{2}$$

and

$$u^*x = \frac{\bar{\rho}||x||_2 + x_1}{\sqrt{1 + \rho\frac{x_1}{||x||_2}}}.$$

T.-M. Huang (Taiwan Normal University) Krylov Subspace Methods for Large/Spars

< 日 > < 回 > < 回 > < 回 > < 回 >

Hence,

$$\begin{aligned} Hx &= x - (u^*x)u = x - \frac{\bar{\rho} \|x\|_2 + x_1}{\sqrt{1 + \rho \frac{x_1}{\|x\|_2}}} \frac{\rho \frac{x}{\|x\|_2} + e_1}{\sqrt{1 + \rho \frac{x_1}{\|x\|_2}}} \\ &= \left[1 - \frac{(\bar{\rho} \|x\|_2 + x_1) \frac{\rho}{\|x\|_2}}{1 + \rho \frac{x_1}{\|x\|_2}} \right] x - \frac{\bar{\rho} \|x\|_2 + x_1}{1 + \rho \frac{x_1}{\|x\|_2}} e_1 \\ &= -\frac{\bar{\rho} \|x\|_2 + x_1}{1 + \rho \frac{x_1}{\|x\|_2}} e_1 \\ &= -\bar{\rho} \|x\|_2 e_1. \end{aligned}$$

T.-M. Huang (Taiwan Normal University) Krylov Subspace Methods for Large/Spars

< 日 > < 回 > < 回 > < 回 > < 回 >

Definition 12

A complex $m \times n$ -matrix $R = [r_{ij}]$ is called an upper (lower) triangular matrix, if $r_{ij} = 0$ for i > j (i < j).

Definition 13

Given $A \in \mathbb{C}^{m \times n}$, $Q \in \mathbb{C}^{m \times m}$ unitary and $R \in \mathbb{C}^{m \times n}$ upper triangular such that A = QR. Then the product is called a QR-factorization of A.

Theorem 14

Any complex $m \times n$ matrix A can be factorized by the product A = QR, where Q is $m \times m$ -unitary and R is $m \times n$ upper triangular.

< ロ > < 同 > < 三 > < 三 >

Proof: Let $A^{(0)} = A = [a_1^{(0)} | a_2^{(0)} | \cdots | a_n^{(0)}]$. Find $Q_1 = (I - 2w_1 w_1^*)$ such that $Q_1 a_1^{(0)} = ce_1$. Then

$$A^{(1)} = Q_1 A^{(0)} = [Q_1 a_1^{(0)}, Q_1 a_2^{(0)}, \cdots, Q_1 a_n^{(0)}]$$
$$= \begin{bmatrix} c_1 & * & \cdots & * \\ \hline 0 & & & \\ \vdots & a_2^{(1)} & \cdots & a_n^{(1)} \\ 0 & & & \end{bmatrix}.$$
(3)

Find
$$Q_2 = \begin{bmatrix} \frac{1}{0} & 0 \\ 0 & I - w_2 w_2^* \end{bmatrix}$$
 such that $(I - 2w_2 w_2^*) a_2^{(1)} = c_2 e_1$. Then
$$A^{(2)} = Q_2 A^{(1)} = \begin{bmatrix} c_1 & * & * & \cdots & * \\ 0 & c_2 & * & \cdots & * \\ \hline 0 & 0 & & & \\ \vdots & \vdots & a_3^{(2)} & \cdots & a_n^{(2)} \\ 0 & 0 & & & & \end{bmatrix}.$$

T.-M. Huang (Taiwan Normal University) Krylov Subspace Methods for Large/Spars

< 🗇 🕨

We continue this process. Then after $l = \min(m, n)$ steps $A^{(l)}$ is an upper triangular matrix satisfying

$$A^{(l-1)} = R = Q_{l-1} \cdots Q_1 A.$$

Then A = QR, where $Q = Q_1^* \cdots Q_{l-1}^*$. Suppose that the columns of K_{k+1} are linearly independent and let

$$K_{k+1} = U_{k+1}R_{k+1}$$

be the QR factorization of K_{k+1} . Then the columns of U_{k+1} are results of successively orthogonalizing the columns of K_{k+1} .

Theorem 15

Let $||u_1||_2 = 1$ and the columns of $K_{k+1}(A, u_1)$ be linearly indep. Let $U_{k+1} = [u_1 \cdots u_{k+1}]$ be the *Q*-factor of K_{k+1} . Then there is a $(k+1) \times k$ unreduced upper Hessenberg matrix

$$\hat{H}_{k} \equiv \begin{bmatrix} \hat{h}_{11} & \cdots & \cdots & \hat{h}_{1k} \\ \hat{h}_{21} & \hat{h}_{22} & \cdots & \hat{h}_{2k} \\ & \ddots & \ddots & \vdots \\ & & \hat{h}_{k,k-1} & \hat{h}_{kk} \\ \hline & & & & \hat{h}_{k+1,k} \end{bmatrix} \quad \text{with} \quad \hat{h}_{i+1,i} \neq 0$$
(4)

such that

$$AU_k = U_{k+1}\hat{H}_k.$$
 (Arnoldi decomp.) (5)

Conversely, if U_{k+1} is orthonormal and satisfies (5), where \hat{H}_k is defined in (4), then U_{k+1} is the *Q*-factor of $K_{k+1}(A, u_1)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proof: (" \Rightarrow ") Let $K_k = U_k R_k$ be the QR factorization and $S_k = R_k^{-1}$. Then

$$AU_{k} = AK_{k}S_{k} = K_{k+1} \begin{bmatrix} 0\\S_{k} \end{bmatrix} = U_{k+1}R_{k+1} \begin{bmatrix} 0\\S_{k} \end{bmatrix} = U_{k+1}\hat{H}_{k},$$

where

$$\hat{H}_k = R_{k+1} \left[\begin{array}{c} 0\\ S_k \end{array} \right]$$

It implies that \hat{H}_k is a $(k+1) \times k$ Hessenberg matrix and

$$h_{i+1,i} = r_{i+1,i+1}s_{ii} = \frac{r_{i+1,i+1}}{r_{ii}}.$$

Thus by the nonsingularity of R_k , \hat{H}_k is unreduced.

A (1) > (1) > (1) > (1)

(" \Leftarrow ") If k = 1, then

$$Au_1 = h_{11}u_1 + h_{21}u_2 = \begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} h_{11} \\ h_{21} \end{bmatrix}$$

which implies that

$$K_2 = \begin{bmatrix} u_1 & Au_1 \end{bmatrix} = \begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} 1 & h_{11} \\ 0 & h_{21} \end{bmatrix}.$$

Since $\begin{bmatrix} u_1 & u_2 \end{bmatrix}$ is orthonormal, $\begin{bmatrix} u_1 & u_2 \end{bmatrix}$ is the *Q*-factor of K_2 . Assume U_k is the *Q*-factor of K_k , i.e., $K_k = U_k R_k$. By the definition of the Krylov matrix, we have

$$K_{k+1} = \begin{bmatrix} u_1 & AK_k \end{bmatrix} = \begin{bmatrix} u_1 & AU_kR_k \end{bmatrix} = \begin{bmatrix} u_1 & U_{k+1}\hat{H}_kR_k \end{bmatrix}$$
$$= U_{k+1} \begin{bmatrix} e_1 & \hat{H}_kR_k \end{bmatrix}$$

Hence U_{k+1} is the *Q*-factor of K_{k+1} .

< ロ > < 同 > < 三 > < 三 >

• The uniqueness of Hessenberg reduction

Definition 16

Let *H* be upper Hessenberg of order *n*. Then *H* is unreduced if $h_{i+1,i} \neq 0$ for $i = 1, \dots, n-1$.

Theorem 17 (Implicit Q theorem)

Suppose $Q = (q_1 \cdots q_n)$ and $V = (v_1 \cdots v_n)$ are unitary matrices with

 $Q^*AQ = H$ and $V^*AV = G$

being upper Hessenberg. Let k denote the smallest positive integer for which $h_{k+1,k} = 0$, with the convection that k = n if H is unreduced. If $v_1 = q_1$, then $v_i = \pm q_i$ and $|h_{i,i-1}| = |g_{i,i-1}|$ for $i = 2, \dots, k$. Moreover, if k < n, then $g_{k+1,k} = 0$.

< 口 > < 同 > < 三 > < 三 >

Definition 18

Let $U_{k+1} \in \mathbb{C}^{n \times (k+1)}$ be orthonormal. If there is a $(k+1) \times k$ unreduced upper Hessenberg matrix \hat{H}_k such that

$$AU_k = U_{k+1}\hat{H}_k,\tag{6}$$

then (6) is called an Arnoldi decomposition of order k. If \hat{H}_k is reduced, we say the Arnoldi decomposition is reduced.

Partition

$$\hat{H}_k = \left[\begin{array}{c} H_k \\ h_{k+1,k} e_k^T \end{array} \right],$$

and set

$$\beta_k = h_{k+1,k}.$$

Then (6) is equivalent to

$$AU_k = U_k H_k + \beta_k u_{k+1} e_k^T.$$

T.-M. Huang (Taiwan Normal University) Krylov Subspace Methods for Large/Spars

Theorem 19

Suppose the Krylov sequence $K_{k+1}(A, u_1)$ does not terminate at k + 1. Then up to scaling of the columns of U_{k+1} , the Arnoldi decomposition of K_{k+1} is unique.

Proof: Since the Krylov sequence $K_{k+1}(A, u_1)$ does not terminate at k+1, the columns of $K_{k+1}(A, u_1)$ are linearly independent. By Theorem 15, there is an unreduced matrix H_k and $\beta_k \neq 0$ such that

$$AU_k = U_k H_k + \beta_k u_{k+1} e_k^T, \tag{7}$$

where $U_{k+1} = [U_k \ u_{k+1}]$ is an orthonormal basis for $\mathcal{K}_{k+1}(A, u_1)$. Suppose there is another orthonormal basis $\tilde{U}_{k+1} = [\tilde{U}_k \ \tilde{u}_{k+1}]$ for $\mathcal{K}_{k+1}(A, u_1)$, unreduced matrix \tilde{H}_k and $\tilde{\beta}_k \neq 0$ such that

$$A\tilde{U}_k = \tilde{U}_k\tilde{H}_k + \tilde{\beta}_k\tilde{u}_{k+1}e_k^T.$$

Then we claim that

$$\tilde{U}_k^H u_{k+1} = 0.$$

For otherwise there is a column \tilde{u}_j of \tilde{U}_k such that

$$\tilde{u}_j = \alpha u_{k+1} + U_k a, \quad \alpha \neq 0.$$

Hence

$$A\tilde{u}_j = \alpha A u_{k+1} + A U_k a$$

which implies that $A\tilde{u}_j$ contains a component along $A^{k+1}u_1$. Since the Krylov sequence $K_{k+1}(A, u_1)$ does not terminate at k + 1, we have

$$\mathcal{K}_{k+2}(A, u_1) \neq \mathcal{K}_{k+1}(A, u_1).$$

Therefore, $A\tilde{u}_j$ lies in $\mathcal{K}_{k+2}(A, u_1)$ but not in $\mathcal{K}_{k+1}(A, u_1)$ which is a contradiction.

Since U_{k+1} and \tilde{U}_{k+1} are orthonormal bases for $\mathcal{K}_{k+1}(A, u_1)$ and $\tilde{U}_k^H u_{k+1} = 0$, it follows that

$$\mathcal{R}(U_k) = \mathcal{R}(\tilde{U}_k) \quad \text{and} \quad U_k^H \tilde{u}_{k+1} = 0,$$

that is

$$U_k = \tilde{U}_k Q$$

for some unitary matrix Q. Hence

$$A(\tilde{U}_kQ) = (\tilde{U}_kQ)(Q^H\tilde{H}_kQ) + \tilde{\beta}_k\tilde{u}_{k+1}(e_k^TQ),$$

or

$$AU_k = U_k(Q^H \tilde{H}_k Q) + \tilde{\beta}_k \tilde{u}_{k+1} e_k^T Q.$$
(8)

On premultiplying (7) and (8) by U_k^H , we obtain

$$H_k = U_k^H A U_k = Q^H \tilde{H}_k Q.$$

Similarly, premultiplying by u_{k+1}^H , we obtain

$$\beta_k e_k^T = u_{k+1}^H A U_k = \tilde{\beta}_k (u_{k+1}^H \tilde{u}_{k+1}) e_k^T Q.$$

It follows that the last row of Q is $\omega_k e_k^T$, where $|\omega_k| = 1$. Since the norm of the last column of Q is one, the last column of Q is $\omega_k e_k$. Since H_k is unreduced, it follows from the implicit Q theorem that

$$Q = \operatorname{diag}(\omega_1, \cdots, \omega_k), \quad |\omega_j| = 1, \ j = 1, \ldots, k.$$

Thus up to column scaling $U_k = \tilde{U}_k Q$ is the same as \tilde{U}_k . Subtracting (8) from (7), we find that

$$\beta_k u_{k+1} = \omega_k \tilde{\beta}_k \tilde{u}_{k+1}$$

so that up to scaling u_{k+1} and \tilde{u}_{k+1} are the same.

Let A be Hermitian and let

$$AU_k = U_k T_k + \beta_k u_{k+1} e_k^\top \tag{9}$$

be an Arnoldi decomposition. Since T_k is upper Hessenberg and $T_k = U_k^H A U_k$ is Hermitian, it follows that T_k is tridiagonal and can be written in the form

$$T_{k} = \begin{bmatrix} \alpha_{1} & \beta_{1} & & & \\ \beta_{1} & \alpha_{2} & \beta_{2} & & \\ & \beta_{2} & \alpha_{3} & \beta_{3} & & \\ & \ddots & \ddots & \ddots & \\ & & & \beta_{k-2} & \alpha_{k-1} & \beta_{k-1} & \\ & & & & & \beta_{k-1} & \alpha_{k} \end{bmatrix}$$

Equation (9) is called a Lanczos decomposition.

The first column of (9) is

$$Au_1 = \alpha_1 u_1 + \beta_1 u_2$$
 or $u_2 = \frac{Au_1 - \alpha_1 u_1}{\beta_1}$.

From the orthonormality of u_1 and u_2 , it follows that

$$\alpha_1 = u_1^* A u_1$$

and

$$\beta_1 = \|Au_1 - \alpha_1 u_1\|_2.$$

More generality, from the j-th column of (9) we get the relation

$$u_{j+1} = \frac{Au_j - \alpha_j u_j - \beta_{j-1} u_{j-1}}{\beta_j}$$

where

$$\alpha_j = u_j^* A u_j$$
 and $\beta_j = \|A u_j - \alpha_j u_j - \beta_{j-1} u_{j-1}\|_2$.

This is the Lanczos three-term recurrence.

T.-M. Huang (Taiwan Normal University) Krylov Subspace Methods for Large/Spars

April 17, 2012 32 / 80

Algorithm 1 (Lanczos recurrence)

Let u_1 be given. This algorithm generates the Lanczos decomposition

$$AU_k = U_k T_k + \beta_k u_{k+1} e_k$$

where T_k is symmetric tridiagonal.

1.
$$u_0 = 0; \beta_0 = 0;$$

2. for $j = 1$ to k
3. $u_{j+1} = Au_j$
4. $\alpha_j = u_j^* u_{j+1}$
5. $v = u_{j+1} - \alpha_j u_j - \beta_{j-1} u_{j-1}$
6. $\beta_j = ||v||_2$
7. $u_{j+1} = v/\beta_j$
9. and for j

8. end for
$$j$$

Reorthogonalization

Let

$$\tilde{u}_{j+1} = Au_j - \alpha_j u_j - \beta_{j-1} u_{j-1}$$

with $\alpha_j = u_j^* A u_j$. Re-orthogonalize \tilde{u}_{j+1} against U_j , i.e.,

$$\tilde{u}_{j+1} := \tilde{u}_{j+1} - \sum_{i=1}^{j} (u_i^* \tilde{u}_{j+1}) u_i$$
$$= Au_j - (\alpha_j + u_j^* \tilde{u}_{j+1}) u_j - \beta_{j-1} u_{j-1} - \sum_{i=1}^{j-1} (u_i^* \tilde{u}_{j+1}) u_i$$

Take

$$\beta_j = \|\tilde{u}_{j+1}\|_2, \quad u_{j+1} = \tilde{u}_{j+1}/\beta_j.$$

Theorem 20 (Stop criterion)

Suppose that j steps of the Lanczos algorithm have been performed and that

$$S_j^H T_j S_j = diag(\theta_1, \cdots, \theta_j)$$

is the Schur decomposition of the tridiagonal matrix T_j , if $Y_j \in \mathbb{C}^{n \times j}$ is defined by

$$Y_j \equiv \left[\begin{array}{ccc} y_1 & \cdots & y_j \end{array} \right] = U_j S_j$$

then for $i = 1, \cdots, j$ we have

$$||Ay_i - \theta_i y_i||_2 = |\beta_j||s_{ji}|$$

where $S_j = [s_{pq}]$.

Proof : Post-multiplying

$$AU_j = U_j T_j + \beta_j u_{j+1} e_j^\top$$

by S_j gives

$$AY_j = Y_j diag(\theta_1, \cdots, \theta_j) + \beta_j u_{j+1} e_j^\top S_j,$$

i.e.,

$$Ay_i = \theta_i y_i + \beta_j u_{j+1}(e_j^\top S_j e_i) , \quad i = 1, \cdots, j.$$

The proof is complete by taking norms.

Remark 1

Stop criterion = |β_j||s_{ji}|. Do not need to compute ||Ay_i - θ_iy_i||₂.
In general, |β_i| is not small. It is possible that |β_j||s_{ji}| is small.

< 口 > < 同 > < 三 > < 三 >
Theorem 21

Let *A* be $n \times n$ symmetric matrix with eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n$ and corresponding orthonormal eigenvectors z_1, \cdots, z_n . If $\theta_1 \geq \cdots \geq \theta_j$ are the eigenvalues of T_j obtained after j steps of the Lanczos iteration, then

$$\lambda_1 \ge \theta_1 \ge \lambda_1 - \frac{(\lambda_1 - \lambda_n)(\tan \phi_1)^2}{[c_{j-1}(1+2\rho_1)]^2},$$

where $\cos \phi_1 = |u_1^\top z_1|$, c_{j-1} is a Chebychev polynomal of degree j-1and

$$\rho_1 = \frac{\lambda_1 - \lambda_2}{\lambda_2 - \lambda_n}$$

Proof: From Courant-Fischer theorem we have

$$\theta_1 = \max_{y \neq 0} \frac{y^\top T_j y}{y^\top y} = \max_{y \neq 0} \frac{(U_j y)^\top A(U_j y)}{(U_j y)^\top (U_j y)} = \max_{0 \neq w \in \mathcal{K}_j(u_1, A)} \frac{w^\top A w}{w^\top w}$$

Since λ_1 is the maximum of $w^{\top}Aw/w^{\top}w$ over all nonzero w, it follows that $\lambda_1 \ge \theta_1$. To obtain the lower bound for θ_1 , note that

$$\theta_1 = \max_{p \in P_{j-1}} \frac{u_1^\top p(A) A p(A) u_1}{u_1^\top p(A)^2 u_1},$$

where P_{j-1} is the set of all j-1 degree polynomials. If $u_1 = \sum_{i=1}^n d_i z_i$, then

$$\frac{u_{1}^{\top}p(A)Ap(A)u_{1}}{u_{1}^{\top}p(A)^{2}u_{1}} = \frac{\sum_{i=1}^{n} d_{i}^{2}p(\lambda_{i})^{2}\lambda_{i}}{\sum_{i=1}^{n} d_{i}^{2}p(\lambda_{i})^{2}}$$

$$\geq \lambda_{1} - (\lambda_{1} - \lambda_{n})\frac{\sum_{i=2}^{n} d_{i}^{2}p(\lambda_{i})^{2}}{d_{1}^{2}p(\lambda_{1})^{2} + \sum_{i=2}^{n} d_{i}^{2}p(\lambda_{i})^{2}}.$$

We can make the lower bound tight by selecting a polynomial $p(\alpha)$ that is large at $\alpha = \lambda_1$ in comparison to its value at the remaining eigenvalues. Set

$$p(\alpha) = c_{j-1} \left(-1 + 2 \frac{\alpha - \lambda_n}{\lambda_2 - \lambda_n} \right),$$

where $c_{j-1}(z)$ is the (j-1)-th Chebychev polynomial generated by

$$c_j(z) = 2zc_{j-1}(z) - c_{j-2}(z), \quad c_0 = 1, c_1 = z.$$

These polynomials are bounded by unity on [-1,1]. It follows that $|p(\lambda_i)|$ is bounded by unity for $i = 2, \dots, n$ while $p(\lambda_1) = c_{j-1}(1 + 2\rho_1)$. Thus,

$$\theta_1 \ge \lambda_1 - (\lambda_1 - \lambda_n) \frac{(1 - d_1^2)}{d_1^2} \frac{1}{c_{j-1}^2(1 + 2\rho_1)}.$$

The desired lower bound is obtained by noting that $\tan{(\phi_1)^2} = (1-d_1^2)/d_1^2.$

B N 4 B N

Theorem 22

Using the same notation as Theorem 21,

$$\lambda_n \le \theta_j \le \lambda_n + \frac{(\lambda_1 - \lambda_n) \tan^2 \varphi_n}{[c_{j-1}(1+2\rho_n)]^2},$$

where

$$\rho_n = \frac{\lambda_{n-1} - \lambda_n}{\lambda_1 - \lambda_{n-1}}, \quad \cos \varphi_n = |u_1^\top z_n|.$$

Proof : Apply Theorem 21 with A replaced by -A.

→

Restarted Lanczos method

Let

$$AU_m = U_m T_m + \beta_m u_{m+1} e_m^T$$

be a Lanczos decomposition.

- In principle, we can keep expanding the Lanczos decomposition until the Ritz pairs have converged.
- 2 Unfortunately, it is limited by the amount of memory to storage of U_m .
- 3 Restarted the Lanczos process once m becomes so large that we cannot store U_m .
 - Implicitly restarting method
 - Krylov-Schur decomposition

Implicitly restarted Lanczos method

- Choose a new starting vector for the underlying Krylov sequence
- A natural choice would be a linear combination of Ritz vectors that we are interested in.

Filter polynomials

Assume A has a complete system of eigenpairs (λ_i, x_i) and we are interested in the first k of these eigenpairs. Expand u_1 in the form

$$u_1 = \sum_{i=1}^k \gamma_i x_i + \sum_{i=k+1}^n \gamma_i x_i.$$

If p is any polynomial, we have

$$p(A)u_1 = \sum_{i=1}^k \gamma_i p(\lambda_i) x_i + \sum_{i=k+1}^n \gamma_i p(\lambda_i) x_i.$$

- Choose *p* so that the values *p*(λ_i) (*i* = *k* + 1,..., *n*) are small compared to the values *p*(λ_i) (*i* = 1,..., *k*).
- Then $p(A)u_1$ is rich in the components of the x_i that we want and deficient in the ones that we do not want.
- p is called a filter polynomial.
- Suppose we have Ritz values $\theta_1, \ldots, \theta_m$ and $\theta_1, \ldots, \theta_{m-k}$ are not interesting. Then take

$$p(t) = (t - \theta_1) \cdots (t - \theta_{m-k}).$$

Implicitly restarted Lanczos: Let

$$AU_m = U_m T_m + \beta_m u_{m+1} e_m^\top \tag{10}$$

be a Lanczos decomposition with order m. Choose a filter polynomial p of degree m - k and use the implicit restarting process to reduce the decomposition to a decomposition

$$A\tilde{U}_k = \tilde{U}_k\tilde{T}_k + \tilde{\beta}_k\tilde{u}_{k+1}e_k^\top$$

of order k with starting vector $p(A)u_1$.

Let $\theta_1, \ldots, \theta_m$ be eigenvalues of T_m and suppose that $\theta_1, \ldots, \theta_{m-k}$ correspond to the part of the spectrum we are not interested in. Then take

$$p(t) = (t - \theta_1)(t - \theta_2) \cdots (t - \theta_{m-k}).$$

The starting vector $p(A)u_1$ is equal to

$$p(A)u_1 = (A - \theta_{m-k}I) \cdots (A - \theta_2I)(A - \theta_1I)u_1$$

= $(A - \theta_{m-k}I) [\cdots [(A - \theta_2I) [(A - \theta_1I)u_1]]].$

In the first, we construct a Lanczos decomposition with starting vector $(A - \theta_1 I)u_1$. From (10), we have

$$(A - \theta_1 I) U_m = U_m (T_m - \theta_1 I) + \beta_m u_{m+1} e_m^\top$$

$$= U_m Q_1 R_1 + \beta_m u_{m+1} e_m^\top,$$
(11)

where

$$T_m - \theta_1 I = Q_1 R_1$$

is the QR factorization of $T_m - \theta_1 I$.

T.-M. Huang (Taiwan Normal University) Krylov Subspace Methods for Large/Spars

Postmultiplying by Q_1 , we get

$$(A - \theta_1 I)(U_m Q_1) = (U_m Q_1)(R_1 Q_1) + \beta_m u_{m+1}(e_m^\top Q_1).$$

It implies that

$$AU_m^{(1)} = U_m^{(1)}T_m^{(1)} + \beta_m u_{m+1}b_{m+1}^{(1)H},$$

where

$$U_m^{(1)} = U_m Q_1, \quad T_m^{(1)} = R_1 Q_1 + \theta_1 I, \quad b_{m+1}^{(1)H} = e_m^\top Q_1.$$

 $(T_m^{(1)}:$ one step of single shifted QR algorithm)

< ∃⇒

- 21

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem 23

Let T_m be an unreduced tridiagonal. Then $T_m^{(1)}$ has the form

$$T_m^{(1)} = \left[\begin{array}{cc} \hat{T}_m^{(1)} & 0\\ 0 & \theta_1 \end{array} \right],$$

where $\hat{T}_m^{(1)}$ is unreduced tridiagonal.

Proof: Let

$$T_m - \theta_1 I = Q_1 R_1$$

be the QR factorization of $T_m - \theta_1 I$ with

$$Q_1 = G(1, 2, \varphi_1) \cdots G(m-1, m, \varphi_{m-1})$$

where $G(i, i + 1, \varphi_i)$ for i = 1, ..., m - 1 are Given rotations.

Since T_m is unreduced tridiagonal, i.e., the subdiagonal elements of T_m are nonzero, we get

$$\varphi_i \neq 0$$
 for $i = 1, ..., m - 1$ (12)

and

$$(R_1)_{ii} \neq 0$$
 for $i = 1, \dots, m-1$. (13)

Since θ_1 is an eigenvalue of T_m , we have that $T_m - \theta_1 I$ is singular and then

$$(R_1)_{mm} = 0.$$
 (14)

Using the results of (12), (13) and (14), we get

$$T_m^{(1)} = R_1 Q_1 + \theta_1 I = R_1 G(1, 2, \varphi_1) \cdots G(m - 1, m, \varphi_{m-1}) + \theta_1 I$$

= $\begin{bmatrix} \hat{H}_m^{(1)} & \hat{h}_{12} \\ 0 & \theta_1 \end{bmatrix}$, (1)

where $\hat{H}_m^{(1)}$ is unreduced upper Hessenberg.

T.-M. Huang (Taiwan Normal University) Krylov Subspace Methods for Large/Spars

April 17, 2012 47 / 80

By the definition of $T_m^{(1)}$, we get

$$Q_1 T_m^{(1)} Q_1^H = Q_1 (R_1 Q_1 + \theta_1 I) Q_1^H = Q_1 R_1 + \theta_1 I = T_m.$$

It implies that $T_m^{(1)}$ is tridiagonal and then, from (15), the result in (12) is obtained.

Remark 2

•
$$U_m^{(1)}$$
 is orthonormal.

• The vector $b_{m+1}^{(1)H} = e_m^\top Q_1$ has the form

$$b_{m+1}^{(1)H} = \begin{bmatrix} 0 & \cdots & 0 & q_{m-1,m}^{(1)} & q_{m,m}^{(1)} \end{bmatrix};$$

i.e., only the last two components of $b_{m+1}^{(1)}$ are nonzero.

• For on postmultiplying (11) by e_1 , we get

$$(A - \theta_1 I)u_1 = (A - \theta_1 I)(U_m e_1) = U_m^{(1)} R_1 e_1 = r_{11}^{(1)} u_1^{(1)}.$$

Since T_m is unreduced, $r_{11}^{(1)}$ is nonzero. Therefore, the first column of $U_m^{(1)}$ is a multiple of $(A - \theta_1 I)u_1$.

• By the definition of $T_m^{(1)}$, we get

$$Q_1 T_m^{(1)} Q_1^H = Q_1 (R_1 Q_1 + \theta_1 I) Q_1^H = Q_1 R_1 + \theta_1 I = T_m.$$

Therefore, $\theta_1, \theta_2, \ldots, \theta_m$ are also eigenvalues of $T_m^{(1)}$.

Similarly,

$$(A - \theta_2 I)U_m^{(1)} = U_m^{(1)}(T_m^{(1)} - \theta_2 I) + \beta_m u_{m+1} b_{m+1}^{(1)H}$$
(16)
$$= U_m^{(1)}Q_2 R_2 + \beta_m u_{m+1} b_{m+1}^{(1)H},$$

where

$$T_m^{(1)} - \theta_2 I = Q_2 R_2$$

is the QR factorization of $T_m^{(1)} - \theta_2 I$. Postmultiplying by Q_2 , we get

$$(A - \theta_2 I)(U_m^{(1)}Q_2) = (U_m^{(1)}Q_2)(R_2Q_2) + \beta_m u_{m+1}(b_{m+1}^{(1)H}Q_2).$$

It implies that

$$AU_m^{(2)} = U_m^{(2)}T_m^{(2)} + \beta_m u_{m+1}b_{m+1}^{(2)H},$$

where

$$U_m^{(2)} \equiv U_m^{(1)} Q_2$$

is orthonormal,

T.-M. Huang (Taiwan Normal University) Krylov Subspace Methods for Large/Spars

< E

$$T_m^{(2)} \equiv R_2 Q_2 + \theta_2 I = \begin{bmatrix} T_{m-2}^{(2)} & 0 & 0\\ \theta_2 & 0\\ 0 & \theta_1 \end{bmatrix}$$

is tridiagonal with unreduced matrix $T_{m-2}^{(2)}$ and

$$b_{m+1}^{(2)H} \equiv b_{m+1}^{(1)H}Q_2 = q_{m-1,m}^{(1)}e_{m-1}^HQ_2 + q_{m,m}^{(1)}e_m^\top Q_2$$

= $\begin{bmatrix} 0 & \cdots & 0 & \times & \times \end{bmatrix}.$

For on postmultiplying (16) by e_1 , we get

$$(A - \theta_2 I)u_1^{(1)} = (A - \theta_2 I)(U_m^{(1)}e_1) = U_m^{(2)}R_2e_1 = r_{11}^{(2)}u_1^{(2)}$$

Since $H_m^{(1)}$ is unreduced, $r_{11}^{(2)}$ is nonzero. Therefore, the first column of $U_m^{(2)}$ is a multiple of

$$(A - \theta_2 I)u_1^{(1)} = 1/r_{11}^{(1)}(A - \theta_2 I)(A - \theta_1 I)u_1.$$

Repeating this process with $\theta_3, \ldots, \theta_{m-k}$, the result will be a Krylov decomposition

$$AU_m^{(m-k)} = U_m^{(m-k)}T_m^{(m-k)} + \beta_m u_{m+1}b_{m+1}^{(m-k)H}$$

with the following properties

•
$$U_m^{(m-k)}$$
 is orthonormal.

3 The first k - 1 components of $b_{m+1}^{(m-k)H}$ are zero.

• The first column of
$$U_m^{(m-k)}$$
 is a multiple of $(A - \theta_1 I) \cdots (A - \theta_{m-k} I) u_1$.

-

Corollary 24

Let $\theta_1, \ldots, \theta_m$ be eigenvalues of T_m . If the implicitly restarted QR step is performed with shifts $\theta_1, \ldots, \theta_{m-k}$, then the matrix $T_m^{(m-k)}$ has the form

$$T_m^{(m-k)} = \begin{bmatrix} T_{kk}^{(m-k)} & 0\\ 0 & D^{(m-k)} \end{bmatrix},$$

where $D^{(m-k)}$ is an digonal matrix with Ritz value $\theta_1, \ldots, \theta_{m-k}$ on its diagonal.

For k = 3 and m = 6,

$$A \begin{bmatrix} u & u & u & u & u & u \end{bmatrix}$$

$$= \begin{bmatrix} u & u & u & u & u \end{bmatrix} \begin{bmatrix} \times & \times & 0 & 0 & 0 & 0 \\ \times & \times & \times & 0 & 0 & 0 \\ 0 & \times & \times & \times & 0 & 0 \\ \hline 0 & 0 & \times & \times & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \times & 0 \\ 0 & 0 & 0 & 0 & 0 & \infty \end{bmatrix}$$

$$+u \begin{bmatrix} 0 & 0 & q & q & q & q \end{bmatrix}.$$

Therefore, the first k columns of the decomposition can be written in the form

$$AU_{k}^{(m-k)} = U_{k}^{(m-k)}T_{kk}^{(m-k)} + t_{k+1,k}u_{k+1}^{(m-k)}e_{k}^{\top} + \beta_{m}q_{mk}u_{m+1}e_{k}^{\top},$$

where $U_{k}^{(m-k)}$ consists of the first k columns of $U_{m}^{(m-k)}$, $T_{kk}^{(m-k)}$ is the eading principal submatrix of order k of $T_{m}^{(m-k)}$, and q_{mk} is from the matrix $Q = Q_{1} \cdots Q_{m-k}$.

T.-M. Huang (Taiwan Normal University) Krylov Subspace Methods for Large/Spars

Hence if we set

$$\begin{split} \tilde{U}_k &= U_k^{(m-k)}, \\ \tilde{T}_k &= T_{kk}^{(m-k)}, \\ \tilde{\beta}_k &= \|t_{k+1,k} u_{k+1}^{(m-k)} + \beta_m q_{mk} u_{m+1}\|_2, \\ \tilde{u}_{k+1} &= \tilde{\beta}_k^{-1} (t_{k+1,k} u_{k+1}^{(m-k)} + \beta_m q_{mk} u_{m+1}), \end{split}$$

then

$$A\tilde{U}_k = \tilde{U}_k\tilde{T}_k + \tilde{\beta}_k\tilde{u}_{k+1}e_k^\top$$

is a Lanczos decomposition whose starting vector is proportional to $(A - \theta_1 I) \cdots (A - \theta_{m-k} I) u_1$.

- Avoid any matrix-vector multiplications in forming the new starting vector.
- Get its Lanczos decomposition of order k for free.
- For large *n* the major cost will be in computing *UQ*.

Practical Implementation

Restarted Lanczos method

Input: Given Lanczos decomp. $AU_m = U_m T_m + \beta_m u_{m+1} e_m^\top$ **Output:** new Lanczos decomp. $AU_k = U_k T_k + \beta_k u_{k+1} e_k^\top$

- 1: Compute the eigenvalues $\theta_1, \ldots, \theta_m$ of T_m .
- 2: Determine shifts, said $\theta_1, \ldots, \theta_{m-k}$, and set $b_m = e_m^{\top}$.

3: for
$$j = 1, ..., m - k$$
 do

- 4: Compute QR factorization: $T_m \theta_j I = Q_m R_m$.
- 5: Update $T_m := R_m Q_m + \theta_j I$, $U_m := U_m Q_m$, $b_m := Q_m^\top b_m$.
- 6: end for
- 7: Compute $v = \beta_k u_{k+1} + \beta_m b_m(k) u_{m+1}$.
- 8: Set $U_k := U_m(:, 1:k)$, $\beta_k = ||v||_2$, $u_{k+1} = v/\beta_k$, and $T_k := T_m(1:k, 1:k)$,

Question

Can we implicitly compute Q_m and get new tridiagonal matrix T_m ?

General algorithm

- Determine the first column c_1 of $T_m \theta_j I$.
- 2 Let \hat{Q} be a Householder transformation such that $\hat{Q}^{\top}c_1 = \sigma e_1$.
- Use Householder transformation \widetilde{Q} to reduce T to a new tridiagonal form $\widehat{T} \equiv \widetilde{Q}^{\top}T\widetilde{Q}$.

$$I Set Q_m = \widehat{Q}\widetilde{Q}.$$

Question

General algorithm = one step of single shift QR algorithm ?

Answer:

(I) Let

$$T_m - \theta_j I = \begin{bmatrix} c_1 & C_* \end{bmatrix} = Q_m R_m = \begin{bmatrix} q & Q_{m*} \end{bmatrix} \begin{bmatrix} \rho & r_* \\ 0 & R_* \end{bmatrix}$$

be the QR factorization of $T_m - \theta_j I$. Then $c_1 = \rho q$. Partition $\widehat{Q} \equiv \begin{bmatrix} \hat{q} & \widehat{Q}_* \end{bmatrix}$, then $c_1 = \sigma \widehat{Q} e_1 = \sigma \widehat{q}$ which implies that q and \widehat{q} are proportional to c_1 . (II) Since $\widehat{T} = \widetilde{Q}^\top T \widetilde{Q}$ is tridiagonal, we have

$$\widetilde{Q}e_1 = e_1.$$

Hence,

$$(\widehat{Q}\widetilde{Q})e_1 = \widehat{Q}e_1 = \widehat{q}$$

which implies that the first column of $\widehat{Q}\widetilde{Q}$ is proportional to q. (III) Since $(\widehat{Q}\widetilde{Q})^{\top}T_m(\widehat{Q}\widetilde{Q})$ is tridiagonal and the first column of $\widehat{Q}\widetilde{Q}$ is proportional to q, by the implicit Q Theorem, if \widehat{T} is unreduced, then $\widehat{Q} = Q_0Q_1$ and $\widehat{T} = (\widehat{Q}\widetilde{Q})^{\top}T_m(\widehat{Q}\widetilde{Q})$.

Definition 25 (Givens rotation)

A plane rotation (also called a Givens rotation) is a matrix of the form

$$G = \left[\begin{array}{cc} c & s \\ -\bar{s} & c \end{array} \right]$$

where $|c|^2 + |s|^2 = 1$.

Given $a \neq 0$ and b, set

$$v = \sqrt{|a|^2 + |b|^2}, \ c = |a|/v \text{ and } s = \frac{a}{|a|} \cdot \frac{b}{v},$$

then

$$\left[\begin{array}{cc}c&s\\-\bar{s}&c\end{array}\right]\left[\begin{array}{c}a\\b\end{array}\right] = \left[\begin{array}{cc}v\frac{a}{|a|}\\0\end{array}\right]$$

T.-M. Huang (Taiwan Normal University) Krylov Subspace Methods for Large/Spars

-

< A > <

Let

$$G_{ij} = \begin{pmatrix} I_{i-1} & & & \\ & C & & s & \\ & & I_{j-i-1} & & \\ & -\bar{s} & & C & \\ & & & & I_{n-j} \end{pmatrix}$$

(I) Compute the first column $t_1 \equiv \begin{bmatrix} \alpha_1 - \theta_j \\ \beta_1 \\ 0 \end{bmatrix}$ of $T_m - \theta_j I$ and determine Givens rotation G_{12} such that $G_{12}t_1 = \gamma e_1$. (II) Set $T_m := G_{12}T_m G_{12}^{\top}$.

$$T_m := G_{12} \begin{bmatrix} \times & \times & 0 & 0 & 0 \\ \times & \times & \times & 0 & 0 \\ 0 & \times & \times & \times & 0 \\ 0 & 0 & \times & \times & \times \\ 0 & 0 & 0 & \times & \times \end{bmatrix} G_{12}^{\top} = \begin{bmatrix} \times & \times & + & 0 & 0 \\ \times & \times & \times & 0 & 0 \\ + & \times & \times & \times & 0 \\ 0 & 0 & \times & \times & \times \\ 0 & 0 & 0 & \times & \times \end{bmatrix}$$

Э

(III) Construct orthonormal Q such that $T_m := QT_mQ^{\top}$ is tridiagonal:

$$T_{m} := G_{23} \begin{bmatrix} \times & \times & + & 0 & 0 \\ \times & \times & \times & 0 & 0 \\ + & \times & \times & \times & 0 \\ 0 & 0 & \times & \times & \times \\ 0 & 0 & 0 & \times & \times \end{bmatrix} G_{23}^{\top} = \begin{bmatrix} \times & \times & 0 & 0 & 0 \\ \times & \times & \times & + & 0 \\ 0 & + & \times & \times & \times \\ 0 & 0 & 0 & \times & \times \end{bmatrix} G_{34}^{\top} = \begin{bmatrix} \times & \times & 0 & 0 & 0 \\ 0 & \times & \times & \times & 0 & 0 \\ 0 & \times & \times & \times & 0 & 0 \\ 0 & \times & \times & \times & \times & 0 \\ 0 & 0 & 0 & \times & \times \end{bmatrix} G_{45}^{\top} = \begin{bmatrix} \times & \times & 0 & 0 & 0 \\ 0 & \times & \times & \times & 0 & 0 \\ 0 & 0 & - & \times & \times & 0 \\ 0 & 0 & - & \times & \times & 0 \\ 0 & 0 & - & \times & \times & 0 \end{bmatrix} G_{45}^{\top} = \begin{bmatrix} \times & \times & 0 & 0 & 0 \\ 0 & - & \times & \times & 0 & 0 \\ 0 & - & - & \times & 0 & 0 \\ 0 & - & - & - & - & 0 \\ 0 & - & - & - & - & 0 \\ 0 & - & - & - & - & - \\ 0$$

T.-M. Huang (Taiwan Normal University) Krylov Subspace Methods for Large/Spars

April 17, 2012 61 / 80

Implicit Restarting for Lanczos method

Input: Given Lanczos decomp. $AU_m = U_m T_m + \beta_m u_{m+1} e_m^\top$ **Output:** new Lanczos decomp. $AU_k = U_k T_k + \beta_k u_{k+1} e_k^\top$

- 1: Compute the eigenvalues $\theta_1, \ldots, \theta_m$ of T_m .
- 2: Determine shifts, said $\theta_1, \ldots, \theta_{m-k}$, and set $b_m = e_m^{\top}$.

3: for
$$j = 1, ..., m - k$$
 do

- 4: Compute Givens rotation G_{12} such that $G_{12} \begin{bmatrix} \alpha_1 \theta_j \\ \beta_1 \\ 0 \end{bmatrix} = \gamma e_1$.
- 5: Update $T_m := G_{12}T_m G_{12}^{\top}, U_m := U_m G_{12}^{\top}, b_m := G_{12}b_m.$
- 6: Compute Givens rotations $G_{23}, \ldots, G_{m-1,m}$ such that $T_m := G_{m-1,m} \cdots G_{23} T_m G_{23}^\top \cdots G_{m-1,m}^\top$ is tridiagonal.
- 7: Update $U_m := U_m G_{23}^{\top} \cdots G_{m-1,m}^{\top}$ and $b_m := G_{m-1,m} \cdots G_{23} b_m$.
- 8: end for
- 9: Compute $v = \beta_k u_{k+1} + \beta_m b_m(k) u_{m+1}$.
- 10: Set $U_k := U_m(:, 1:k)$, $\beta_k = ||v||_2$, $u_{k+1} = v/\beta_k$, and $T_k := T_m(1:k, 1:k)$,

Problem

- Mathematically, u_j must be orthogonal.
- In practice, they can lose orthogonality.

Solutions

Reorthogonalize the vectors at each step.

j-th step of Lanczos process

Input: Given β_{j-1} and orthonormal matrix $U_j = [u_1, \ldots, u_j]$. **Output:** α_j , β_j and unit vector u_{j+1} with $u_{j+1}^\top U_j = 0$ and

$$Au_j = \alpha_j u_j + \beta_{j-1} u_{j-1} + \beta_j u_{j+1}.$$

1: Compute
$$u_{j+1} = Au_j - \beta_{j-1}u_{j-1}$$
 and $\alpha_j = u_j^\top u_{j+1}$;

- 2: Update $u_{j+1} := u_{j+1} \alpha_j u_j$;
- 3: for i = 1, ..., j do
- 4: Compute $\gamma_i = u_i^\top u_{j+1}$ and update $u_{j+1} := u_{j+1} \gamma_i u_i$;

5: end for

6: Update $\alpha_j := \alpha_j + \gamma_j$ and compute $\beta_j = ||u_{j+1}||_2$ and $u_{j+1} := u_{j+1}/\beta_j$.

Lanczos algorithm with implicit restarting

Input: Given initial unit vector u_1 , number k of desired eigenpairs, restarting number m and stopping tolerance ε .

Output: desired eigenpairs (θ_i, x_i) for $i = 1, \ldots, k$.

1: Compute Lanczos decomposition with order k:

$$AU_k = U_k T_k + \beta_k u_{k+1} e_k^\top;$$

- 2: repeat
- 3: Extend the Lanczos decomposition from order k to order m: $AU_m = U_m T_m + \beta_m u_{m+1} e_m^{\top};$
- 4: Use implicitly restarting scheme to reform a new Lanczos decomposition with order *k*;
- 5: Compute the eigenpairs (θ_i, s_i) , i = 1, ..., k, of T_k ;
- 6: **until** ($|\beta_k| |s_{i,k}| < \varepsilon$ for $i = 1, \ldots, k$)
- 7: Compute eigenvector $x_i = U_k s_i$ for i = 1, ..., k.

Arnoldi method

Recall: Arnoldi decomposition of unsymmetric A:

$$AU_k = U_k H_k + h_{k+1,k} u_{k+1} e_k^{\top},$$
(17)

where H_k is unreduced upper Hessenberg. Write (17) in the form

$$Au_k = U_k h_k + h_{k+1,k} u_{k+1}.$$

Then from the orthogonality of U_{k+1} , we have

$$h_k = U_k^H A u_k.$$

Since $h_{k+1,k}u_{k+1} = Au_k - U_kh_k$ and $||u_{k+1}||_2 = 1$, we must have

$$h_{k+1,k} = ||Au_k - U_k h_k||_2, \ u_{k+1} = h_{k+1,k}^{-1} (Au_k - U_k h_k).$$

April 17, 2012 65 / 80

Arnoldi process

- 1: for k = 1, 2, ... do 2: $h_k = U_k^H A u_k$; 3: $v = A u_k - U_k h_k$; 4: $h_{k+1,k} = ||v||_2$; 5: $u_{k+1} = v/h_{k+1,k}$; 6: $\hat{H}_k = \begin{bmatrix} \hat{H}_{k-1} & h_k \\ 0 & h_{k+1,k} \end{bmatrix}$; 7: end for
 - The computation of u_{k+1} is actually a form of the well-known Gram-Schmidt algorithm.
 - In the presence of inexact arithmetic cancelation in statement 3 can cause it to fail to produce orthogonal vectors.
 - The cure is process called reorthogonalization.

Reorthogonalized Arnoldi process

1: for
$$k = 1, 2, ...$$
 do
2: $h_k = U_k^H A u_k;$
3: $v = A u_k - U_k h_k;$
4: $w = U_k^H v;$
5: $h_k = h_k + w;$
6: $v = v - U_k w;$
7: $h_{k+1,k} = ||v||_2;$
8: $u_{k+1} = v/h_{k+1,k};$
9: $\hat{H}_k = \begin{bmatrix} \hat{H}_{k-1} & h_k \\ 0 & h_{k+1,k} \end{bmatrix};$
10: end for

T.-M. Huang (Taiwan Normal University) Krylov Subspace Methods for Large/Spars

April 17, 2012 67 / 80

< 67 >

Let $y_i^{(k)}$ be an eigenvector of H_k associated with the eigenvalue $\lambda_i^{(k)}$ and $x_i^{(k)} = U_k y_i^{(k)}$ the Ritz approximate eigenvector.

Theorem 26

$$(A - \lambda_i^{(k)}I)x_i^{(k)} = h_{k+1,k}e_k^\top y_i^{(k)}u_{k+1}.$$

and therefore,

$$\|(A - \lambda_i^{(k)}I)x_i^{(k)}\|_2 = |h_{k+1,k}| \|e_k^\top y_i^{(k)}\|_2$$

T.-M. Huang (Taiwan Normal University) Krylov Subspace Methods for Large/Spars

April 17, 2012 68 / 80

Generalized eigenvalue problem

Consider the generalized eigenvalue problem

 $Ax = \lambda Bx,$

where B is nonsingular. Let

$$C = B^{-1}A.$$

Applying Arnoldi process to matrix C, we get

$$CU_k = U_k H_k + h_{k+1,k} u_{k+1} e_k^\top,$$

or

$$AU_k = BU_kH_k + h_{k+1,k}Bu_{k+1}e_k^{\top}.$$

T.-M. Huang (Taiwan Normal University) Krylov Subspace Methods for Large/Spars

April 17, 2012 69 / 80

(18)

Write the k-th column of (18) in the form

$$Au_k = BU_k h_k + h_{k+1,k} Bu_{k+1}.$$
 (19)

Let U_k satisfy that

$$U_k^\top U_k = I_k.$$

Then

$$h_k = U_k^\top B^{-1} A u_k$$

and

$$h_{k+1,k}u_{k+1} = B^{-1}Au_k - U_kh_k \equiv t_k$$

which implies that

$$h_{k+1,k} = ||t_k||, \quad u_{k+1} = h_{k+1,k}^{-1} t_k.$$

< □ > < □ > < □ > < □ > < □ >

Shift-and-invert Lanczos for GEP

Consider the generalized eigenvalue problem

$$Ax = \lambda Bx,\tag{20}$$

where A is symmetric and B is symmetric positive definite.

Shift-and-invert

- Compute the eigenvalues which are closest to a given shift value σ .
- Transform (20) into

$$(A - \sigma B)^{-1}Bx = (\lambda - \sigma)^{-1}x.$$
 (21)

71 / 80

April 17, 2012

The basic recursion for applying Lanczos method to (21) is

$$(A - \sigma B)^{-1} B U_j = U_j T_j + \beta_j u_{j+1} e_j^{\top},$$
(22)

where the basis U_j is *B*-orthogonal and T_j is a real symmetric tridiagonal matrix defined by

$$T_{j} = \begin{bmatrix} \alpha_{1} & \beta_{1} & & \\ \beta_{1} & \alpha_{2} & \ddots & \\ & \ddots & \ddots & \beta_{j-1} \\ & & \beta_{j-1} & \alpha_{j} \end{bmatrix}$$

or equivalent to

$$(A - \sigma B)^{-1} B u_j = \alpha_j u_j + \beta_{j-1} u_{j-1} + \beta_j u_{j+1}.$$

By the condition $U_j^* B U_j = I_j$, it holds that

$$\alpha_j = u_j^* B (A - \sigma B)^{-1} B u_j, \quad \beta_j^2 = t_j^* B t_j,$$

where

$$t_j \equiv (A - \sigma B)^{-1} B u_j - \alpha_j u_j - \beta_{j-1} u_{j-1} = \beta_j u_{j+1}.$$

An eigenpair (θ_i,s_i) of T_j is used to get an approximate eigenpair (λ_i,x_i) of (A,B) by

$$\lambda_i = \sigma + \frac{1}{\theta_i}, \quad x_i = U_j s_i.$$

The corresponding residual is

$$r_i = AU_j s_i - \lambda_i BU_j s_i = (A - \sigma B)U_j s_i - \theta_i^{-1} BU_j s_i$$

$$= -\theta_i^{-1} [BU_j - (A - \sigma B)U_j T_j] s_i$$

$$= -\theta_i^{-1} (A - \sigma B) [(A - \sigma B)^{-1} BU_j - U_j T_j] s_i$$

$$= -\theta_i^{-1} \beta_j (e_j^\top s_i) (A - \sigma B) u_{j+1}$$

which implies $||r_i||$ is small whenever $|\beta_j(e_j^{\top}s_i)/\theta_i|$ is small.

Shift-and-invert Lanczos method for symmetric GEP

- 1: Given starting vector t, compute q = Bt and $\beta_0 = \sqrt{|q^*t|}$.
- 2: for j = 1, 2, ..., do
- 3: Compute $w_j = q/\beta_{j-1}$ and $u_j = t/\beta_{j-1}$.
- 4: Solve linear system $(A \sigma B)t = w_j$.
- 5: Set $t := t \beta_{j-1}u_{j-1}$; compute $\alpha_j = w_j^* t$ and reset $t := t \alpha_j u_j$.
- 6: B-reorthogonalize t to u_1, \ldots, u_j if necessary.
- 7: Compute q = Bt and $\beta_j = \sqrt{|q^*t|}$.
- 8: Compute approximate eigenvalues $T_j = S_j \Theta_j S_j^*$.
- 9: Test for convergence.
- 10: end for
- 11: Compute approximate eigenvectors $X = U_j S_j$.

A D > A D > A D >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Krylov-Schur restarting method (Locking and Purging)

Theorem 27 (Schur decomposition)

Let $A \in \mathbb{C}^{n \times n}$. Then there is a unitary matrix V such that

$$A = VTV^H,$$

where T is upper triangular.

The process of Krylov-Schur restarting:

- Compute the Schur decomposition of the Rayleigh quotient
- Move the desired eigenvalues to the beginning
- Throw away the rest of the decomposition

Use Lanczos process to generate the Lanczos decomposition of order $m \equiv k+p$

$$(A - \sigma B)^{-1} B U_{k+p} = U_{k+p} T_{k+p} + \beta_{k+p} u_{k+p+1} e_{k+p}^{\top}.$$
 (23)

Let

$$T_{k+p} = V_{k+p} D_{k+p} V_{k+p}^{\top} \equiv \begin{bmatrix} V_k & V_p \end{bmatrix} \operatorname{diag} (D_k, D_p) \begin{bmatrix} V_k^{\top} \\ V_p^{\top} \end{bmatrix}$$
(24)

be a Schur decomposition of T_{k+p} . The diagonal elements of D_k and D_p contain the *k* wanted and *p* unwanted Ritz values, respectively.

Substituting (24) into (23), it holds that

$$(A - \sigma B)^{-1} B(U_{k+p} V_{k+p}) = (U_{k+p} V_{k+p}) (V_{k+p}^{\top} T_{k+p} V_{k+p}) + \beta_{k+p} u_{k+p+1} (e_{k+p}^{\top} V_{k+p}),$$

which implies that

$$(A - \sigma B)^{-1} B \tilde{U}_k = \tilde{U}_k D_k + u_{k+p+1} t_k^{\top} = \begin{bmatrix} \tilde{U}_k & \tilde{u}_{k+1} \end{bmatrix} \begin{bmatrix} D_k \\ t_k^{\top} \end{bmatrix}$$

is a Krylov decomposition of order k where $\tilde{U}_k \equiv U_{k+p}V_k$, $\tilde{u}_{k+1} = u_{k+p+1}$ and $[t_k^{\top}, t_p^{\top}] \equiv \beta_{k+p} e_{k+p}^{\top} V_{k+p}$. The new vectors $\tilde{u}_{k+2}, \ldots, \tilde{u}_{k+p+1}$ are computed sequentially starting from \tilde{u}_{j+2} with

$$(A - \sigma B)^{-1} B \tilde{U}_{k+1} = \begin{bmatrix} \tilde{U}_{k+1} & \tilde{u}_{k+2} \end{bmatrix} \begin{bmatrix} D_k & t_k \\ t_k^\top & \tilde{\alpha}_{k+1} \\ 0 & \tilde{\beta}_{k+1} \end{bmatrix}.$$

or equivalently

$$(A - \sigma B)^{-1} B \tilde{u}_{k+1} = \tilde{U}_k t_k + \tilde{\alpha}_{k+1} \tilde{u}_{k+1} + \tilde{\beta}_{k+1} \tilde{u}_{k+2},$$

for

$$\tilde{\alpha}_{k+1} = \tilde{u}_{k+1}^* B(A - \sigma B)^{-1} B \tilde{u}_{k+1}.$$

Consequently a new Krylov decomposition of order $k+p\ {\rm can}\ {\rm be}$ generated by

$$(A - \sigma B)^{-1} B \tilde{U}_{k+p} = \tilde{U}_{k+p} \tilde{T}_{k+p} + \tilde{\beta}_{k+p} \tilde{u}_{k+p+1} e_{k+p}^{\top},$$
(25)

where

$$\tilde{T}_{k+p} = \begin{bmatrix} D_k & t_k & & & \\ t_k^{\top} & \tilde{\alpha}_{k+1} & \tilde{\beta}_{k+1} & & & \\ & \tilde{\beta}_{k+1} & \tilde{\alpha}_{k+2} & \ddots & & \\ & & \ddots & \ddots & \tilde{\beta}_{k+p-1} \\ & & & \tilde{\beta}_{k+p-1} & \tilde{\alpha}_{k+p} \end{bmatrix} .$$
(26)

T.-M. Huang (Taiwan Normal University) Krylov Subspace Methods for Large/Spars

Shift-and-invert Krylov-Schur method for solving $Ax = \lambda Bx$

Build an initial Lanczos decomposition of order k + p:

$$(A - \sigma B)^{-1} B U_{k+p} = U_{k+p} T_{k+p} + \beta_{k+p} u_{k+p+1} e_{k+p}^{\top}.$$

repeat

 $\begin{array}{l} \text{Compute Schur decomposition } T_{k+p} = \begin{bmatrix} V_k & V_p \end{bmatrix} \text{diag} \begin{pmatrix} D_k, D_p \end{pmatrix} \begin{bmatrix} V_k & V_p \end{bmatrix}^\top. \\ \text{Set } U_k := U_{k+p}V_k, u_{k+1} := u_{k+p+1} \text{ and } t_k^\top := \beta_{k+p}e_{k+p}^\top V_k \text{ to get} \end{array}$

$$(A - \sigma B)^{-1} B U_k = U_k D_k + u_{k+1} t_k^{\top}.$$

for
$$j = k + 1, ..., k + p$$
 do
Solve linear system $(A - \sigma B)q = Bu_j$.
if $j = k + 1$ then
Set $q := q - U_k t_k$.
else
Set $q := q - \beta_{j-1}u_{j-1}$.
end if
Compute $\alpha_j = u_j^* Bq$ and reset $q := q - \alpha_j u_j$.
B-reorthogonalize q to $u_1, ..., u_{j-1}$ if necessary.
Compute $\beta_j = \sqrt{q^* Bq}$ and $u_{j+1} = q/\beta_j$.
end for
Decompose $T_{k+p} = S_{k+p}\Theta_{k+p}S_{k+p}^*$ to get the approximate eigenvalues.
Test for convergence.
til all the k wanted eigenpairs are convergent

< 同 > < 三 > < 三 >