Polynomial Jacobi Davidson Method for Large/Sparse Eigenvalue Problems

Tsung-Ming Huang

Department of Mathematics National Taiwan Normal University, Taiwan

April 28, 2011

T.M. Huang (Taiwan Normal Univ.)

Poly. JD method for PEP

< < >> < <</p>

Outline

Davidson's method

T.M. Huang (Taiwan Normal Univ.)

Poly. JD method for PEP

- ₹ ₹ >

References

- SIAM J. Matrix Anal. Vol. 17, No. 2, PP.401-425, 1996, Van der Vorst etc.
- BIT. Vol. 36, No. 3, PP.595-633, 1996, Van der Vorst etc.
- T.-M. Hwang, W.-W. Lin and V. Mehrmann, SIAM J. Sci. Comput.

Some basic theorems

Theorem 1

Let \mathcal{X} be an eigenspace of A and let X be a basis for \mathcal{X} . Then there is a unique matrix L such that

$$AX = XL.$$

The matrix L is given by

$$L = X^I A X,$$

where X^{I} is a matrix satisfying $X^{I}X = I$. If (λ, x) is an eigenpair of A with $x \in \mathcal{X}$, then $(\lambda, X^{I}x)$ is an eigenpair of L. Conversely, if (λ, u) is an eigenpair of L, then (λ, Xu) is an eigenpair of A. Proof: Let

$$X = [x_1 \cdots x_k]$$
 and $Y = AX = [y_1 \cdots y_k]$.

Since $y_i \in \mathcal{X}$ and X is a basis for \mathcal{X} , there is a unique vector ℓ_i such that

$$y_i = X\ell_i.$$

If we set $L = [\ell_1 \cdots \ell_k]$, then AX = XL and

$$L = X^I X L = X^I A X.$$

Now let (λ, x) be an eigenpair of A with $x \in \mathcal{X}$. Then there is a unique vector u such that x = Xu. However, $u = X^{I}x$. Hence

$$\lambda x = Ax = AXu = XLu \quad \Rightarrow \quad \lambda u = \lambda X^{I}x = Lu.$$

Conversely, if $Lu = \lambda u$, then

$$A(Xu) = (AX)u = (XL)u = X(Lu) = \lambda(Xu),$$

so that (λ, Xu) is an eigenpair of A.

Theorem 2 (Optimal residuals) Let $[X X_{\perp}]$ be unitary. Let

$$R = AX - XL$$
 and $S^H = X^H A - LX^H$.

Then ||R|| and ||S|| are minimized when

$$L = X^H A X,$$

in which case

(a)
$$||R|| = ||X_{\perp}^{H}AX||,$$

(b) $||S|| = ||X^{H}AX_{\perp}||,$
(c) $X^{H}R = 0.$

T.M. Huang (Taiwan Normal Univ.)

Poly. JD method for PEP

1

• • • • • • • • • • •

Proof: Set

$$\left[\begin{array}{c} X^H \\ X^H_{\perp} \end{array}\right] A \left[\begin{array}{cc} X & X_{\perp} \end{array}\right] = \left[\begin{array}{cc} \hat{L} & H \\ G & M \end{array}\right].$$

Then

$$\begin{bmatrix} X^{H} \\ X^{H}_{\perp} \end{bmatrix} R = \begin{bmatrix} \hat{L} & H \\ G & M \end{bmatrix} \begin{bmatrix} X^{H} \\ X^{H}_{\perp} \end{bmatrix} X - \begin{bmatrix} X^{H} \\ X^{H}_{\perp} \end{bmatrix} XL = \begin{bmatrix} \hat{L} - L \\ G \end{bmatrix}.$$

It implies that

$$\|R\| = \left\| \begin{bmatrix} X^H \\ X^H_{\perp} \end{bmatrix} R \right\| = \left\| \begin{bmatrix} \hat{L} - L \\ G \end{bmatrix} \right\|,$$

which is minimized when $L = \hat{L} = X^H A X$ and

$$\min \|R\| = \|G\| = \|X_{\perp}^{H}AX\|.$$

The proof for *S* is similar. If $L = X^H A X$, then

$$X^H R = X^H A X - X^H X L = X^H A X - L = 0.$$

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Definition 3

Let *X* be of full column rank and let X^I be a left inverse of *X*. Then $X^I A X$ is a Rayleigh quotient of *A*.

Theorem 4

Let X be orthonormal, A be Hermitian and

R = AX - XL.

If ℓ_1, \ldots, ℓ_k are the eigenvalues of *L*, then there are eigenvalues $\lambda_{j_1}, \ldots, \lambda_{j_k}$ of *A* such that

$$|\ell_i - \lambda_{j_i}| \le \|R\|_2$$
 and $\sqrt{\sum_{i=1}^k (\ell_i - \lambda_{j_i})^2} \le \sqrt{2} \|R\|_F$

Jacobi's orthogonal component correction, 1846

Consider the eigenvalue problem

$$A\begin{bmatrix}1\\z\end{bmatrix} \equiv \begin{bmatrix}\alpha & c^T\\b & F\end{bmatrix}\begin{bmatrix}1\\z\end{bmatrix} = \lambda\begin{bmatrix}1\\z\end{bmatrix},$$
(1)

where A is diagonal dominant and α is the largest diagonal element. (1) is equivalent to

$$\begin{cases} \lambda = \alpha + c^T z, \\ (F - \lambda I)z = -b \end{cases}$$

Jacobi iteration : (with $z_1 = 0$)

$$\begin{cases} \theta_k = \alpha + c^T z_k, \\ (D - \theta_k I) z_{k+1} = (D - F) z_k - b \end{cases}$$

where $D = \operatorname{diag}(F)$.

(2)

Davidson's method (1975)

Algorithm 1 (Davidson's method)

Given unit vector v, set V = [v]Iterate until convergence Compute desired eigenpair (θ, s) of $V^T A V$. Compute u = Vs and $r = Au - \theta u$. If $(|| r ||_2 < \varepsilon)$, stop. Solve $(D_A - \theta I)t = r$. Orthog. $t \perp V \rightarrow v, V = [V, v]$ end

- A 🚍

Let $u_k = (1, z_k^T)^T$. Then

$$r_k = (A - \theta_k I)u_k = \begin{bmatrix} \alpha - \theta_k + c^T z_k \\ (F - \theta_k I)z_k + b \end{bmatrix}$$

Substituting the residual vector r_k into linear systems

$$(D_A - \theta_k I)t_k = -r_k$$
, where $D_A = \begin{bmatrix} \alpha & 0 \\ 0 & D \end{bmatrix}$,

we get

$$(D - \theta_k I)y_k = -(F - \theta_k I)z_k - b$$

= $(D - F)z_k - (D - \theta_k I)z_k - b$

From (2) and above equality, we see that

$$(D - \theta_k I)(z_k + y_k) = (D - F)z_k - b = (D - \theta_k I)z_{k+1}.$$

This implies that $z_{k+1} = z_k + y_k$ as one step of JOCC starting with z_k .

Jacobi-Davidson method (1996)

 (θ_k, u_k) : approx. eigenpair of A, $\theta_k \approx \lambda$, with

$$u_k = V_k s_k, \ V_k^T A V_k s_k = \theta_k s_k \text{ and } \| s_k \|_2 = 1.$$

Definition 5

 (θ_k, u_k) is called a Ritz pair of A. θ_k is called a Ritz value and u_k is a Ritz vector.

Jacobi-Davidson method (1996)

$$(\theta_k, u_k)$$
: approx. eigenpair of A , $\theta_k \approx \lambda$, with

$$u_k = V_k s_k, \ V_k^T A V_k s_k = \theta_k s_k$$
 and $|| s_k ||_2 = 1.$

Then

$$u_k^T r_k \equiv u_k^T (A - \theta_k I) u_k = s_k^T V_k^T A V_k s_k - \theta_k s_k^T V_k^T V_k s_k = 0 \implies r_k \perp u_k$$

Find the correction $t \perp u_k$ such that

$$A(u_k + t) = \lambda(u_k + t).$$

That is

$$(A - \lambda I)t = \lambda u_k - Au_k = -r_k + (\lambda - \theta_k)u_k.$$

Poly. JD method for PEP

Since
$$(I - u_k u_k^T)r_k = r_k$$
, we have
 $\left(I - u_k u_k^T\right)(A - \lambda I)t = -r_k.$

Correction equation

$$(I - u_k u_k^T)(A - \theta_k I) \left(I - u_k u_k^T\right) t = -r_k \text{ and } t \perp u_k,$$

T.M. Huang (Taiwan Normal Univ.)

Poly. JD method for PEP

< D > < B > < E > < E >

Solving correction vector t

Correction equation:

$$\left(I - u_k u_k^T\right) (A - \theta_k I) (I - u_k u_k^T) t = -r_k, \quad t \perp u_k.$$
(3)

Scheme S_{OneLS} :

- Use preconditioning iterative approximations, e.g., GMRES, to solve (3).
- Use a preconditioner

$$\mathcal{M}_{p} \equiv \left(I - u_{k} u_{k}^{T}\right) \mathcal{M} \left(I - u_{k} u_{k}^{T}\right),$$

where \mathcal{M} is an approximation of $A - \theta_k I$.

• In each of the iterative steps, it needs to solve

$$\mathcal{M}_p y = b, \quad y \perp u_k$$

for a given *b*.

T.M. Huang (Taiwan Normal Univ.)

-

• Since $y \perp u_k$, Eq. (4) can be rewritten as

$$(I - u_k u_k^T) \mathcal{M} y = b \Rightarrow \mathcal{M} y = (u_k^T \mathcal{M} y) u_k + b \equiv \eta_k u_k + b.$$

Hence

$$y = \mathcal{M}^{-1}b + \eta_k \mathcal{M}^{-1}u_k,$$

where

$$\eta_k = -\frac{u_k^T \mathcal{M}^{-1} b}{u_k^T \mathcal{M}^{-1} u_k}.$$

• SSOR preconditioner: Let $A - \theta_k I = L + D + U$. Then

$$\mathcal{M} = (D + \omega L)D^{-1}(D + \omega U).$$

T.M. Huang (Taiwan Normal Univ.)

Scheme S_{TwoLS} : Since $t \perp u_k$, Eq. (3) can be rewritten as

$$(A - \theta_k I)t = \left(u_k^T (A - \theta_k I)t\right)u_k - r_k \equiv \varepsilon u_k - r_k.$$
(5)

Let t_1 and t_2 be approximated solutions of the following linear systems:

$$(A - \theta_k I)t = -r_k$$
 and $(A - \theta_k I)t = u_k$,

respectively. Then the approximated solution \tilde{t} for (5) is

$$\tilde{t} = t_1 + \varepsilon t_2$$
 for $\varepsilon = -\frac{u_k^T t_1}{u_k^T t_2}.$

Scheme $S_{OneStep}$: The approximated solution \tilde{t} for (5) is

$$\tilde{t} = -\mathcal{M}^{-1}r_k + \varepsilon \mathcal{M}^{-1}u_k \quad \text{ for } \quad \varepsilon = \frac{u_k^\top \mathcal{M}^{-1}r_k}{u_k^\top \mathcal{M}^{-1}u_k},$$

where \mathcal{M} is an approximation of $A - \theta_k I$.

Algorithm 2 (Jacobi-Davidson Method)

Choose an *n*-by-*m* orthonormal matrix V_0 Do $k = 0, 1, 2, \cdots$ Compute all the eigenpairs of $V_k^T A V_k s = \lambda s$. Select the desired (target) eigenpair (θ_k, s_k) with $||s_k||_2 = 1$. Compute $u_k = V_k s_k$ and $r_k = (A - \theta_k I) u_k$. If $(||r_k||_2 < \varepsilon)$, $\lambda = \theta_k$, $x = u_k$, Stop Solve (approximately) a $t_k \perp u_k$ from $(I - u_k u_k^T)(A - \theta_k I)(I - u_k u_k^T)t = -r_k$. Orthogonalize $t_k \perp V_k \rightarrow v_{k+1}$, $V_{k+1} = [V_k, v_{k+1}]$

T.M. Huang (Taiwan Normal Univ.)

Poly. JD method for PEP

< < >> < <</p>

• Locking: V_k with $V_k^*V = I_k$ are convergent Schur vectors, i.e.,

 $AV_k = V_k T_k$

for some upper triangular T_k . Set $V = [V_k, V_q]$ with $V^*V = I_{k+q}$ in k + 1-th iteration of Jacobi-Davidson Algorithm. Then

$$\begin{array}{ll} V^*AV &= \begin{bmatrix} V_k^*AV_k & V_k^*AV_q \\ V_q^*AV_k & V_q^*AV_q \end{bmatrix} = \begin{bmatrix} T_k & V_k^*AV_q \\ V_q^*V_kT_k & V_q^*AV_q \end{bmatrix} \\ &= \begin{bmatrix} T_k & V_k^*AV_q \\ 0 & V_q^*AV_q \end{bmatrix}. \end{array}$$

• Restarting:

Keep the locked Schur vectors as well as the Schur vectors of interest in the subspace and throw away those we are not interested.

Remark 1

• If $\varepsilon = 0$, we obtain Davidson method with

$$t_1 = -(D_A - \theta_k I)^{-1} r.$$

(\tilde{t} is NOT orthogonal to u_k)

 If the linear systems in (6) are exactly solved, then the vector t becomes

$$t = \varepsilon (A - \theta_k I)^{-1} u_k - u_k.$$
(6)

Since t is made orthogonal to u_k , (6) is equivalent to

$$t = (A - \theta_k I)^{-1} u_k$$

which is equivalent to shift-invert power iteration. Hence it is quadratic convergence.

T.M. Huang (Taiwan Normal Univ.)

Poly. JD method for PEP

April 28, 2011 19 / 42

ъ.

Consider $Ax = \lambda x$ and assume that λ is simple.

Lemma 6

Consider w with $w^T x \neq 0$. Then the map

$$F_p \equiv \left(I - \frac{xw^T}{w^T x}\right) \left(A - \lambda I\right) \left(I - \frac{xw^T}{w^T x}\right)$$

is a bijection from w^{\perp} to w^{\perp} .

Proof: Suppose $y \perp w$ and $F_p y = 0$. That is

$$\left(I - \frac{xw^T}{w^T x}\right) \left(A - \lambda I\right) \left(I - \frac{xw^T}{w^T x}\right) y = 0.$$

Then it holds that

$$(A - \lambda I)y = \varepsilon x.$$

Therefore, both y and x belong to the kernel of $(A - \lambda I)^2$. The simplicity of λ implies that y is a scale multiple of x. The fact that $y \perp w$ and $x^T w \neq 0$ implies y = 0, which proves the injectivity of F_p . An obvious dimension argument implies bijectivity.

Extension

$$F_p t \equiv \left(I - \frac{uu^T}{u^T u}\right) \left(A - \theta I\right) \left(I - \frac{uu^T}{u^T u}\right) t = -r, \quad t \perp u, \ r \perp u.$$

Then

$$t \in u^{\perp} \xrightarrow{F_p} r \in u^{\perp}.$$

T.M. Huang (Taiwan Normal Univ.)

Poly. JD method for PEP

April 28, 2011 21 / 42

Theorem 7

Assume that the correction equation

$$(I - uu^T) (A - \theta I) (I - uu^T) t = -r, \quad t \perp u$$
(7)

is solved exactly in each step of Jacobi-Davidson Algorithm. Assume $u_k = u \rightarrow x$ and $u_k^T x$ has non-trivial limit. Then if u_k is sufficiently chosen to x, then $u_k \rightarrow x$ with locally quadratical convergence and

$$\theta_k = u_k^T A u_k \ \to \ \lambda.$$

T.M. Huang (Taiwan Normal Univ.)

Proof: Suppose $Ax = \lambda x$ with x such that x = u + z for $z \perp u$. Then

$$(A - \theta I) z = -(A - \theta I) u + (\lambda - \theta) x = -r + (\lambda - \theta) x.$$
(8)

Consider the exact solution $z_1 \perp u$ of (7):

$$(I - P) (A - \theta I) z_1 = - (I - P) r,$$
 (9)

where $P = uu^T$. Note that (I - P)r = r since $u \perp r$. Since $x - (u + z_1) = z - z_1$ and z = x - u, for quadratic convergence, it suffices to show that

$$||x - (u + z_1)|| = ||z - z_1|| = O(||z||^2).$$
(10)

Multiplying (8) by (I - P) and subtracting the result from (9) yields

$$(I-P)(A-\theta I)(z-z_1) = (\lambda-\theta)(I-P)z + (\lambda-\theta)(I-P)u.$$

(I)

Multiplying (8) by u^T and using $r \perp u$ leads to

$$\lambda - \theta = \frac{u^T \left(A - \theta I\right) z}{u^T x}.$$
(12)

Since $u_k^T x$ has non-trivial limit, we obtain

$$\|(\lambda - \theta)(I - P)z\| = \left\|\frac{u^T (A - \theta I)z}{u^T x}(I - P)z\right\|.$$
(13)

From (11), Lemma 6 and (I - P) u = 0, we have

$$||z - z_{1}|| = \left\| \left[(I - P) (A - \theta_{k}I) |_{u_{k}^{\perp}} \right]^{-1} (\lambda - \theta) (I - P) z \right\|$$

=
$$\left\| \left[(I - P) (A - \theta_{k}I) |_{u_{k}^{\perp}} \right]^{-1} \frac{u_{k}^{T} (A - \theta_{k}I) z}{u_{k}^{T} x} (I - P) z \right\|$$

= $O(||z||^{2}).$

T.M. Huang (Taiwan Normal Univ.)

Jacobi Davidson method as on accelerated Newton Scheme

Consider $Ax = \lambda x$ and assume that λ is simple. Choose $w^T x = 1$. Consider nonlinear equation

$$F(u) = Au - \theta(u)u = 0$$
 with $\theta(u) = \frac{w^T Au}{w^T u}$,

where ||u|| = 1 or $w^T u = 1$. Then $F : \{u|w^T u = 1\} \to w^{\perp}$. In particular, $r \equiv F(u) = Au - \theta(u) u \perp w$.

Suppose $u_k \approx x$ and the next Newton approximation u_{k+1} :

$$u_{k+1} = u_k - \left(\frac{\partial F}{\partial u}\Big|_{u=u_k}\right)^{-1} F(u_k)$$

is given by $u_{k+1} = u_k + t$, i.e., t satisfies that

$$\left(\left.\frac{\partial F}{\partial u}\right|_{u=u_k}\right)t = F\left(u_k\right) = -r.$$

Since $1 = u_{k+1}^T w = (u_k + t)^T w = 1 + t^T w$, it implies that $w^T t = 0$. By the definition of F, we have

$$\begin{aligned} \frac{\partial F}{\partial u} &= A - \theta \left(u \right) I - \frac{-\left(w^{T}Au \right) u w^{T} + \left(w^{T}u \right) u w^{T}A}{\left(w^{T}u \right)^{2}} \\ &= A - \theta I + \frac{w^{T}Au}{\left(w^{T}u \right)^{2}} u w^{T} - \frac{u w^{T}A}{w^{T}u} = \left(I - \frac{u_{k}w^{T}}{w^{T}u_{k}} \right) \left(A - \theta_{k}I \right). \end{aligned}$$

Consequently, the Jacobian of F acts on w^{\perp} and is given by

$$\left(\frac{\partial F}{\partial u}\Big|_{u=u_k}\right)t = \left(I - \frac{u_k w^T}{w^T u_k}\right) \left(A - \theta_k I\right)t, \ t \perp w.$$

Hence the correction equation of Newton method read as

$$t \perp w$$
, $\left(I - \frac{u_k w^T}{w^T u_k}\right) \left(A - \theta_k I\right) t = -r$,

which is the correction equation of Jacobi-Davidson method in (7) with

w = u.

T.M. Huang (Taiwan Normal Univ.)

Polynomial Jacobi-Davidson method (θ_k, u_k): approx. eigenpair of $\mathbf{A}(\lambda) \equiv \sum_{k=0}^{\tau} \lambda^k A_k, \theta_k \approx \lambda$, with

$$u_k = V_k s_k, \ V_k^{\top} \mathbf{A}(\lambda) V_k s_k = 0 \text{ and } \| s_k \|_2 = 1.$$

Let

$$r_k = \mathbf{A}(\theta_k) u_k.$$

Then

$$u_k^{\top} r_k = u_k^{\top} \mathbf{A}(\theta_k) u_k = s_k^{\top} V_k^{\top} \mathbf{A}(\theta_k) V_k s_k = 0 \implies r_k \perp u_k$$

Find the correction *t* such that

 $\mathbf{A}(\lambda)(u_k+t) = 0.$

That is

$$\mathbf{A}(\lambda)t = -\mathbf{A}(\lambda)u_k = -r_k + (\mathbf{A}(\theta_k) - \mathbf{A}(\lambda))u_k.$$

• • • • • • • • • • •

Let

$$p_k = \mathbf{A}'(\theta_k) u_k \equiv \left(\sum_{i=1}^{\tau} i\theta_k^{i-1} A_i\right) u_k.$$

• $\mathbf{A}(\lambda) = A - \lambda I$: $p_k = -u_k,$ $(\mathbf{A}(\theta_k) - \mathbf{A}(\lambda))u_k = (\lambda - \theta_k)u_k = (\theta_k - \lambda_k)p_k$ • $\mathbf{A}(\lambda) = A - \lambda B$: $p_k = -Bu_k$ $(\mathbf{A}(\theta_k) - \mathbf{A}(\lambda))u_k = (\lambda - \theta_k)Bu_k = (\theta_k - \lambda)p_k$ • $\mathbf{A}(\lambda) = \sum_{i=0}^{\tau} \lambda^i A_i$ with $\tau \geq 2$: $(\mathbf{A}(\theta_k) - \mathbf{A}(\lambda))u_k = \left| (\theta_k - \lambda)\mathbf{A}'(\theta_k) - \frac{1}{2}(\theta_k - \lambda)^2\mathbf{A}''(\xi_k) \right| u_k$ $= (\theta_k - \lambda)p_k - \frac{1}{2}(\theta_k - \lambda)^2 \mathbf{A}''(\xi_k)u_k$ 4 All > 4

Hence

$$\mathbf{A}(\lambda)t = -r_k + (\theta_k - \lambda)p_k - \frac{1}{2}(\theta_k - \lambda)^2 \mathbf{A}''(\xi_k)u_k$$

Since $r_k \perp u_k$, we have

$$\left(I - \frac{p_k u_k^\top}{u_k^\top p_k}\right) \mathbf{A}(\lambda) t = -r_k - \frac{1}{2} (\theta_k - \lambda)^2 \left(I - \frac{p_k u_k^\top}{u_k^\top p_k}\right) \mathbf{A}''(\xi_k) u_k.$$

Correction equation:

$$\left(I - rac{p_k u_k^\top}{u_k^\top p_k}
ight) \mathbf{A}(\theta_k) (I - u_k u_k^\top) t = -r_k \text{ and } t \perp u_k,$$

or

$$\left(I - \frac{p_k u_k^\top}{u_k^\top p_k}\right) (A - \theta_k B) \left(I - \frac{u_k p_k^\top}{p_k^\top u_k}\right) t = -r_k \text{ and } t \perp_B u_k,$$

with symmetric positive definite matrix B.

T.M. Huang (Taiwan Normal Univ.)

Poly. JD method for PEP

(a)

Algorithm 3 (Jacobi-Davidson Algorithm for solving $A(\lambda)x = 0$)

Choose an *n*-by-*m* orthonormal matrix V_0 Do $k = 0, 1, 2, \cdots$ Compute all the eigenpairs of $V_k^{\top} \mathbf{A}(\lambda) V_k = 0$. Select the desired (target) eigenpair (θ_k, s_k) with $||s_k||_2 = 1$. Compute $u_k = V_k s_k$, $r_k = \mathbf{A}(\theta_k) u_k$ and $p_k = \mathbf{A}'(\theta_k) u_k$. If $(||r_k||_2 < \varepsilon)$, $\lambda = \theta_k$, $x = u_k$, Stop Solve (approximately) a $t_k \perp u_k$ from $(I - \frac{p_k u_k^T}{u_k^T p_k}) \mathbf{A}(\theta_k) (I - u_k u_k^T) t = -r_k$. Orthogonalize $t_k \perp V_k \rightarrow v_{k+1}$, $V_{k+1} = [V_k, v_{k+1}]$

$$p_k = \mathbf{A}'(\theta_k) u_k \equiv \left(\sum_{i=1}^{\tau} i\theta_k^{i-1} A_i\right) u_k.$$

T.M. Huang (Taiwan Normal Univ.)

< 口 > < 同 > < 三 > < 三 >

Non-equivalence deflation of quadratic eigenproblems Let λ_1 be a real eigenvalue of $\mathbf{Q}(\lambda) \equiv \lambda^2 M + \lambda C + K$ and x_1, z_1 be the associated right and left eigenvectors, respectively, with $z_1^T K x_1 = 1$. Let

$$\theta_1 = (z_1^T M x_1)^{-1}.$$

We introduce a deflated quadratic eigenproblem

$$\widetilde{\mathbf{Q}}(\lambda)x \equiv \left[\lambda^2 \widetilde{M} + \lambda \widetilde{C} + \widetilde{K}\right] x = 0,$$

where

$$\widetilde{M} = M - \theta_1 M x_1 z_1^T M,$$

$$\widetilde{C} = C + \frac{\theta_1}{\lambda_1} (M x_1 z_1^T K + K x_1 z_1^T M),$$

$$\widetilde{K} = K - \frac{\theta_1}{\lambda_1^2} K x_1 z_1^T K.$$

Complex deflation

Let $\lambda_1 = \alpha_1 + i\beta_1$ be a complex eigenvalue of $\mathbf{Q}(\lambda)$ and $x_1 = x_{1R} + ix_{1I}$, $z_1 = z_{1R} + iz_{1I}$ be the associated right and left eigenvectors, respectively, such that

$$Z_1^T K X_1 = I_2,$$

where $X_1 = [x_{1R}, x_{1I}]$ and $Z_1 = [z_{1R}, z_{1I}]$. Let $\Theta_1 = (Z_1^T M X_1)^{-1}$.

Then we introduce a deflated quadratic eigenproblem with

$$\begin{split} \widetilde{M} &= M - M X_1 \Theta_1 Z_1^T M, \\ \widetilde{C} &= C + M X_1 \Theta_1 \Lambda_1^{-T} Z_1^T K + K X_1 \Lambda_1^{-1} \Theta_1^T Z_1^T M, \\ \widetilde{K} &= K - K X_1 \Lambda_1^{-1} \Theta_1 \Lambda_1^{-T} Z_1^T K \end{split}$$

in which $\Lambda_1 = \begin{bmatrix} \alpha_1 & \beta_1 \\ -\beta_1 & \alpha_1 \end{bmatrix}$.

T.M. Huang (Taiwan Normal Univ.)

Theorem 8

(i) Let λ_1 be a simple real eigenvalue of $Q(\lambda)$. Then the spectrum of $\widetilde{Q}(\lambda)$ is given by

 $(\sigma(\mathbf{Q}(\lambda)) \smallsetminus \{\lambda_1\}) \cup \{\infty\}$

provided that $\lambda_1^2 \neq \theta_1$.

(ii) Let λ_1 be a simple complex eigenvalue of $\mathbf{Q}(\lambda)$. Then the spectrum of $\widetilde{\mathbf{Q}}(\lambda)$ is given by

 $\left(\sigma(\mathbf{Q}(\lambda)) \setminus \{\lambda_1, \bar{\lambda}_1\}\right) \cup \{\infty, \infty\}$

provided that $\Lambda_1 \Lambda_1^T \neq \Theta_1$.

Furthermore, in both cases (i) and (ii), if $\lambda_2 \neq \lambda_1$ and (λ_2, x_2) is an eigenpair of $\mathbf{Q}(\lambda)$ then the pair (λ_2, x_2) is also an eigenpair of $\widetilde{\mathbf{Q}}(\lambda)$.

Suppose that M, C, K are symmetric. Given an eigenmatrix pair $(\Lambda_1, X_1) \in \mathbb{R}^{r \times r} \times \mathbb{R}^{n \times r}$ of $Q(\lambda)$, where Λ_1 is nonsingular and X_1 satisfies

$$X_1^T K X_1 = I_r, \qquad \Theta_1 := (X_1^T M X_1)^{-1}.$$

We define $\tilde{Q}(\lambda) := \lambda^2 \tilde{M} + \lambda \tilde{C} + \tilde{K}$, where

$$\begin{split} \tilde{M} &:= M - MX_1 \Theta_1 X_1^T M, \\ \tilde{C} &:= C + MX_1 \Theta_1 \Lambda_1^{-T} X_1^T K + KX_1 \Lambda_1^{-1} \Theta_1 X_1^T M, \\ \tilde{K} &:= K - KX_1 \Lambda_1^{-1} \Theta_1 \Lambda_1^{-T} X_1^T K. \end{split}$$

Theorem 9

Suppose that $\Theta_1 - \Lambda_1 \Lambda_1^T$ is nonsingular. Then the eigenvalues of the real symmetric quadratic pencil $\tilde{Q}(\lambda)$ are the same as those of $Q(\lambda)$ except that the eigenvalues of Λ_1 , which are closed under complex conjugation, are replaced by r infinities.

T.M. Huang (Taiwan Normal Univ.)

Poly. JD method for PEP

(日)

Proof: Since (Λ_1, X_1) is an eigenmatrix pair of $Q(\lambda)$, i.e.,

$$MX_1\Lambda_1^2 + CX_1\Lambda_1 + KX_1 = 0,$$

we have

$$\tilde{Q}(\lambda) = Q(\lambda) + [MX_1(\lambda I_r + \Lambda_1) + CX_1] \Theta_1 \Lambda_1^{-T} (X_1^T K - \lambda \Lambda_1^T X_1^T M) = Q(\lambda) + Q(\lambda) X_1 (\lambda I_r - \Lambda_1)^{-1} \Theta_1 \Lambda_1^{-T} (X_1^T K - \lambda \Lambda_1^T X_1^T M).$$

By using the identity

$$\det(I_n + RS) = \det(I_m + SR),$$

where $R, S^T \in \mathbb{R}^{n \times m}$, we have

$$det[\tilde{Q}(\lambda)] = det[Q(\lambda)]det[I + X_1(\lambda I_r - \Lambda_1)^{-1}\Theta_1\Lambda_1^{-T}(X_1^T K - \lambda\Lambda_1^T X_1^T M)]$$

=
$$det[Q(\lambda)]det[I_r + (\lambda I_r - \Lambda_1)^{-1}\Theta_1\Lambda_1^{-T}(I_r - \lambda\Lambda_1^T\Theta_1^{-1})]$$

=
$$\frac{det[Q(\lambda)]}{det(\lambda I_r - \Lambda_1)}det(\Theta_1\Lambda_1^{-T} - \Lambda_1).$$

< 回 > < 回 > < 回 > < 回 > < 回

Since $(\Theta_1 - \Lambda_1 \Lambda_1^T) \in \mathbb{R}^{r \times r}$ is nonsingular, we have

$$\det(\Theta_1 \Lambda_1^{-T} - \Lambda_1) \neq 0.$$

Therefore, $\tilde{Q}(\lambda)$ has the same eigenvalues as $Q(\lambda)$ except that r eigenvalues of Λ_1 are replaced by r infinities.

< D > < A > < B >

Non-equiv. deflation for cubic poly. eigenproblems Let $(\Lambda, V_u) \in \mathbb{R}^{r \times r} \times \mathbb{R}^{n \times r}$ be an eigenmatrix pair of

$$\mathbf{A}(\lambda) \equiv \lambda^3 A_3 + \lambda^2 A_2 + \lambda A_1 + A_0 \tag{14}$$

with $V_u^T V_u = I_r$ and $0 \notin \sigma(\Lambda)$, i.e.,

$$A_3 V_u \Lambda^3 + A_2 V_u \Lambda^2 + A_1 V_u \Lambda + A_0 V_u = 0.$$
⁽¹⁵⁾

Define a new deflated cubic eigenvalue problem by

$$\widetilde{\mathbf{A}}(\lambda)u = (\lambda^3 \widetilde{A}_3 + \lambda^2 \widetilde{A}_2 + \lambda \widetilde{A}_1 + \widetilde{A}_0)u = 0,$$
(16)

where

$$\begin{cases} \tilde{A}_0 = A_0, \\ \tilde{A}_1 = A_1 - (A_1 V_u V_u^T + A_2 V_u \Lambda V_u^T + A_3 V_u \Lambda^2 V_u^T), \\ \tilde{A}_2 = A_2 - (A_2 V_u V_u^T + A_3 V_u \Lambda V_u^T), \\ \tilde{A}_3 = A_3 - A_3 V_u V_u^T. \end{cases}$$

(17

Lemma 10

Let $A(\lambda)$ and $\widetilde{A}(\lambda)$ be cubic pencils given by (14) and (16), respectively. Then it holds

$$\widetilde{\mathbf{A}}(\lambda) = \mathbf{A}(\lambda) \left(I_n - \lambda V_u (\lambda I_r - \Lambda)^{-1} V_u^T \right).$$
(18)

Theorem 11

- Let (Λ, V_u) be an eigenmatrix pair of $\mathbf{A}(\lambda)$ with $V_u^T V_u = I_r$. Then (i) $(\sigma(\mathbf{A}(\lambda)) \setminus \sigma(\Lambda)) \cup \{\infty\} = \sigma(\widetilde{\mathbf{A}}(\lambda)).$
 - (ii) Let (μ, z) be an eigenpair of $\mathbf{A}(\lambda)$ with $|| z ||_2 = 1$ and $\mu \notin \sigma(\Lambda)$. Define

$$\tilde{z} = (I_n - \mu V_u \Lambda^{-1} V_u^T) z \equiv T(\mu) z.$$
(19)

Then (μ, \tilde{z}) is an eigenpair of $\widetilde{\mathbf{A}}(\lambda)$.

3

- コン (雪) (ヨ) (ヨ)

Proof of Lemma: Using (17) and (15), and the fundamental matrix calculation, we have

$$\begin{split} \widetilde{\mathbf{A}}(\lambda) &= \mathbf{A}(\lambda) - \lambda \left(\lambda^2 A_3 V_F V_F^T + \lambda A_2 V_F V_F^T + \lambda A_3 V_F \Lambda V_F^T \right. \\ &+ A_1 V_F V_F^T + A_2 V_F \Lambda V_F^T + A_3 V_F \Lambda^2 V_F^T \left) \\ &= \mathbf{A}(\lambda) - \lambda \left(A_3 V_F (\lambda I_r - \Lambda)^3 (\lambda I_r - \Lambda)^{-1} V_F^T \right. \\ &+ 3A_3 V_F \Lambda (\lambda I_r - \Lambda)^2 (\lambda I_r - \Lambda)^{-1} V_F^T \\ &+ 3A_3 V_F \Lambda^2 (\lambda I_r - \Lambda) (\lambda I_r - \Lambda)^{-1} V_F^T \\ &+ A_2 V_F (\lambda I_r - \Lambda)^2 (\lambda I_r - \Lambda)^{-1} V_F^T \\ &+ 2A_2 V_F \Lambda (\lambda I_r - \Lambda) (\lambda I_r - \Lambda)^{-1} V_F^T \\ &+ A_1 V_F (\lambda I_r - \Lambda) (\lambda I_r - \Lambda)^{-1} V_F^T \right) \end{split}$$

T.M. Huang (Taiwan Normal Univ.)

Poly. JD method for PEP

April 28, 2011 39 / 42

< < >> < <</>

$$\begin{split} \widetilde{\mathbf{A}}(\lambda) &= \mathbf{A}(\lambda) - \lambda \left\{ \begin{bmatrix} A_3 V_F(\lambda^3 I_r - \Lambda^3) + A_2 V_F(\lambda^2 I_r - \Lambda^2) \\ + A_1 V_F(\lambda I_r - \Lambda) + A_0 V_F - A_0 V_F \end{bmatrix} (\lambda I_r - \Lambda)^{-1} V_F^T \right\} \\ &= \mathbf{A}(\lambda) - \lambda \left[\mathbf{A}(\lambda) V_F(\lambda I_r - \Lambda)^{-1} V_F^T \right] \\ &= \mathbf{A}(\lambda) \left[I_n - \lambda V_F(\lambda I_r - \Lambda)^{-1} V_F^T \right]. \end{split}$$

T.M. Huang (Taiwan Normal Univ.)

Poly. JD method for PEP

April 28, 2011 40 / 42

・ロ・・ (日・・ (日・・ (日・))

Proof of Theorem: (i) Using the identity

$$\det(I_n + RS) = \det(I_m + SR)$$

and Lemma 10, we have

$$det(\widetilde{\mathbf{A}}(\lambda)) = det(\mathbf{A}(\lambda)) det (I_n - \lambda V_F (\lambda I_r - \Lambda)^{-1} V_F^T)$$

= $det(\mathbf{A}(\lambda)) det (I_n - \lambda (\lambda I_r - \Lambda)^{-1})$
= $det(\mathbf{A}(\lambda)) det (\lambda I_r - \Lambda)^{-1} det(-\Lambda).$

Since $0 \notin \sigma(\Lambda)$, $\det(-\Lambda) \neq 0$. Thus, $\widetilde{\mathbf{A}}(\lambda)$ and $\mathbf{A}(\lambda)$ have the same finite spectrum except the eigenvalues in $\sigma(\Lambda)$. Furthermore, dividing Eq. (16) by λ^3 and using the fact that

$$\widetilde{\mathbf{A}}_3 V_F = (A_3 - A_3 V_F V_F^T) V_F = 0,$$

we see that $(\text{diag}_r\{\infty, \cdots, \infty\}, V_F)$ is an eigenmatrix pair of $\widetilde{\mathbf{A}}(\lambda)$ corresponding to infinite eigenvalues.

< ロ > < 同 > < 三 > < 三 >

(ii) Since $\mu \notin \sigma(\Lambda)$, the matrix $T(\mu) = (I - \mu V_F \Lambda^{-1} V_F^T)$ in (19) is invertible with the inverse

$$T(\mu)^{-1} = I_n - \mu V_F (\mu I_r - \Lambda)^{-1} V_F^T.$$
(20)

From Lemma 10, we have

$$\widetilde{\mathbf{A}}(\mu)\widetilde{z} = \mathbf{A}(\mu)\left[I_n - \mu V_F (\mu I_r - \Lambda)^{-1} V_F^T\right]\left[I_n - \mu V_F \Lambda^{-1} V_F^T\right] z = 0$$

This completes the proof.

< ∃⇒

< D > < A > < B >