Polynomial Jacobi Davidson Method for Large/Sparse Eigenvalue Problems

Tsung-Ming Huang

Department of Mathematics
National Taiwan Normal University, Taiwan

April 28, 2011

Outline

(1) Jacobi's orthogonal component correction
(2) Davidson's method
(3) Jacobi-Davidson method

4 Polynomial Jacobi-Davidson method
(5) Non-equivalence deflation

References

- SIAM J. Matrix Anal. Vol. 17, No. 2, PP.401-425, 1996, Van der Vorst etc.
- BIT. Vol. 36, No. 3, PP.595-633, 1996, Van der Vorst etc.
- T.-M. Hwang, W.-W. Lin and V. Mehrmann, SIAM J. Sci. Comput.

Some basic theorems

Theorem 1

Let \mathcal{X} be an eigenspace of A and let X be a basis for \mathcal{X}. Then there is a unique matrix L such that

$$
A X=X L
$$

The matrix L is given by

$$
L=X^{I} A X
$$

where X^{I} is a matrix satisfying $X^{I} X=I$. If (λ, x) is an eigenpair of A with $x \in \mathcal{X}$, then $\left(\lambda, X^{I} x\right)$ is an eigenpair of L. Conversely, if (λ, u) is an eigenpair of L, then $(\lambda, X u)$ is an eigenpair of A.

Proof: Let

$$
X=\left[x_{1} \cdots x_{k}\right] \quad \text { and } \quad Y=A X=\left[y_{1} \cdots y_{k}\right] .
$$

Since $y_{i} \in \mathcal{X}$ and X is a basis for \mathcal{X}, there is a unique vector ℓ_{i} such that

$$
y_{i}=X \ell_{i} .
$$

If we set $L=\left[\ell_{1} \cdots \ell_{k}\right]$, then $A X=X L$ and

$$
L=X^{I} X L=X^{I} A X
$$

Now let (λ, x) be an eigenpair of A with $x \in \mathcal{X}$. Then there is a unique vector u such that $x=X u$. However, $u=X^{I} x$. Hence

$$
\lambda x=A x=A X u=X L u \quad \Rightarrow \quad \lambda u=\lambda X^{I} x=L u .
$$

Conversely, if $L u=\lambda u$, then

$$
A(X u)=(A X) u=(X L) u=X(L u)=\lambda(X u)
$$

so that $(\lambda, X u)$ is an eigenpair of A.

Theorem 2 (Optimal residuals)
Let $\left[\begin{array}{ll}X & X_{\perp}\end{array}\right]$ be unitary. Let

$$
R=A X-X L \quad \text { and } \quad S^{H}=X^{H} A-L X^{H} .
$$

Then $\|R\|$ and $\|S\|$ are minimized when

$$
L=X^{H} A X,
$$

in which case

$$
\begin{array}{ll}
\text { (a) } & \|R\|=\left\|X_{\perp}^{H} A X\right\|, \\
\text { (b) } & \|S\|=\left\|X^{H} A X_{\perp}\right\|, \\
\text { (c) } & X^{H} R=0 .
\end{array}
$$

Proof: Set

$$
\left[\begin{array}{c}
X^{H} \\
X_{\perp}^{H}
\end{array}\right] A\left[\begin{array}{ll}
X & X_{\perp}
\end{array}\right]=\left[\begin{array}{cc}
\hat{L} & H \\
G & M
\end{array}\right] .
$$

Then

$$
\left[\begin{array}{c}
X^{H} \\
X_{\perp}^{H}
\end{array}\right] R=\left[\begin{array}{cc}
\hat{L} & H \\
G & M
\end{array}\right]\left[\begin{array}{c}
X^{H} \\
X_{\perp}^{H}
\end{array}\right] X-\left[\begin{array}{c}
X^{H} \\
X_{\perp}^{H}
\end{array}\right] X L=\left[\begin{array}{c}
\hat{L}-L \\
G
\end{array}\right] .
$$

It implies that

$$
\|R\|=\left\|\left[\begin{array}{c}
X^{H} \\
X_{\perp}^{H}
\end{array}\right] R\right\|=\left\|\left[\begin{array}{c}
\hat{L}-L \\
G
\end{array}\right]\right\|
$$

which is minimized when $L=\hat{L}=X^{H} A X$ and

$$
\min \|R\|=\|G\|=\left\|X_{\perp}^{H} A X\right\| .
$$

The proof for S is similar. If $L=X^{H} A X$, then

$$
X^{H} R=X^{H} A X-X^{H} X L=X^{H} A X-L=0
$$

Definition 3

Let X be of full column rank and let X^{I} be a left inverse of X. Then $X^{I} A X$ is a Rayleigh quotient of A.

Theorem 4

Let X be orthonormal, A be Hermitian and

$$
R=A X-X L .
$$

If $\ell_{1}, \ldots, \ell_{k}$ are the eigenvalues of L, then there are eigenvalues $\lambda_{j_{1}}, \ldots, \lambda_{j_{k}}$ of A such that

$$
\left|\ell_{i}-\lambda_{j_{i}}\right| \leq\|R\|_{2} \quad \text { and } \quad \sqrt{\sum_{i=1}^{k}\left(\ell_{i}-\lambda_{j_{i}}\right)^{2}} \leq \sqrt{2}\|R\|_{F} .
$$

Jacobi's orthogonal component correction, 1846

Consider the eigenvalue problem

$$
A\left[\begin{array}{l}
1 \tag{1}\\
z
\end{array}\right] \equiv\left[\begin{array}{ll}
\alpha & c^{T} \\
b & F
\end{array}\right]\left[\begin{array}{l}
1 \\
z
\end{array}\right]=\lambda\left[\begin{array}{l}
1 \\
z
\end{array}\right]
$$

where A is diagonal dominant and α is the largest diagonal element. (1) is equivalent to

$$
\left\{\begin{array}{l}
\lambda=\alpha+c^{T} z \\
(F-\lambda I) z=-b
\end{array}\right.
$$

Jacobi iteration : (with $z_{1}=0$)

$$
\left\{\begin{array}{l}
\theta_{k}=\alpha+c^{T} z_{k}, \tag{2}\\
\left(D-\theta_{k} I\right) z_{k+1}=(D-F) z_{k}-b
\end{array}\right.
$$

where $D=\operatorname{diag}(F)$.

Davidson's method (1975)

Algorithm 1 (Davidson's method)

Given unit vector v, set $V=[v]$
Iterate until convergence
Compute desired eigenpair (θ, s) of $V^{T} A V$.
Compute $u=V s$ and $r=A u-\theta u$.
If ($\|r\|_{2}<\varepsilon$), stop.
Solve $\left(D_{A}-\theta I\right) t=r$.
Orthog. $t \perp V \rightarrow v, V=[V, v]$
end

Let $u_{k}=\left(1, z_{k}^{T}\right)^{T}$. Then

$$
r_{k}=\left(A-\theta_{k} I\right) u_{k}=\left[\begin{array}{l}
\alpha-\theta_{k}+c^{T} z_{k} \\
\left(F-\theta_{k} I\right) z_{k}+b
\end{array}\right]
$$

Substituting the residual vector r_{k} into linear systems

$$
\left(D_{A}-\theta_{k} I\right) t_{k}=-r_{k}, \quad \text { where } \quad D_{A}=\left[\begin{array}{cc}
\alpha & 0 \\
0 & D
\end{array}\right]
$$

we get

$$
\begin{aligned}
\left(D-\theta_{k} I\right) y_{k} & =-\left(F-\theta_{k} I\right) z_{k}-b \\
& =(D-F) z_{k}-\left(D-\theta_{k} I\right) z_{k}-b
\end{aligned}
$$

From (2) and above equality, we see that

$$
\left(D-\theta_{k} I\right)\left(z_{k}+y_{k}\right)=(D-F) z_{k}-b=\left(D-\theta_{k} I\right) z_{k+1} .
$$

This implies that $z_{k+1}=z_{k}+y_{k}$ as one step of JOCC starting with z_{k}.

Jacobi-Davidson method (1996)

$\left(\theta_{k}, u_{k}\right)$: approx. eigenpair of $A, \theta_{k} \approx \lambda$, with

$$
u_{k}=V_{k} s_{k}, V_{k}^{T} A V_{k} s_{k}=\theta_{k} s_{k} \text { and }\left\|s_{k}\right\|_{2}=1
$$

Definition 5

$\left(\theta_{k}, u_{k}\right)$ is called a Ritz pair of $A . \theta_{k}$ is called a Ritz value and u_{k} is a Ritz vector.

Jacobi-Davidson method (1996)

$\left(\theta_{k}, u_{k}\right)$: approx. eigenpair of $A, \theta_{k} \approx \lambda$, with

$$
u_{k}=V_{k} s_{k}, V_{k}^{T} A V_{k} s_{k}=\theta_{k} s_{k} \text { and }\left\|s_{k}\right\|_{2}=1
$$

Then
$u_{k}^{T} r_{k} \equiv u_{k}^{T}\left(A-\theta_{k} I\right) u_{k}=s_{k}^{T} V_{k}^{T} A V_{k} s_{k}-\theta_{k} s_{k}^{T} V_{k}^{T} V_{k} s_{k}=0 \Rightarrow r_{k} \perp u_{k}$
Find the correction $t \perp u_{k}$ such that

$$
A\left(u_{k}+t\right)=\lambda\left(u_{k}+t\right)
$$

That is

$$
(A-\lambda I) t=\lambda u_{k}-A u_{k}=-r_{k}+\left(\lambda-\theta_{k}\right) u_{k} .
$$

Since $\left(I-u_{k} u_{k}^{T}\right) r_{k}=r_{k}$, we have

$$
\left(I-u_{k} u_{k}^{T}\right)(A-\lambda I) t=-r_{k} .
$$

Correction equation

$$
\left(I-u_{k} u_{k}^{T}\right)\left(A-\theta_{k} I\right)\left(I-u_{k} u_{k}^{T}\right) t=-r_{k} \text { and } t \perp u_{k}
$$

Solving correction vector t

Correction equation:

$$
\begin{equation*}
\left(I-u_{k} u_{k}^{T}\right)\left(A-\theta_{k} I\right)\left(I-u_{k} u_{k}^{T}\right) t=-r_{k}, \quad t \perp u_{k} . \tag{3}
\end{equation*}
$$

Scheme $\mathcal{S}_{\text {OneLS }}$:

- Use preconditioning iterative approximations, e.g., GMRES, to solve (3).
- Use a preconditioner

$$
\mathcal{M}_{p} \equiv\left(I-u_{k} u_{k}^{T}\right) \mathcal{M}\left(I-u_{k} u_{k}^{T}\right),
$$

where \mathcal{M} is an approximation of $A-\theta_{k} I$.

- In each of the iterative steps, it needs to solve

$$
\begin{equation*}
\mathcal{M}_{p} y=b, \quad y \perp u_{k} \tag{4}
\end{equation*}
$$

for a given b.

- Since $y \perp u_{k}$, Eq. (4) can be rewritten as

$$
\left(I-u_{k} u_{k}^{T}\right) \mathcal{M} y=b \Rightarrow \mathcal{M} y=\left(u_{k}^{T} \mathcal{M} y\right) u_{k}+b \equiv \eta_{k} u_{k}+b
$$

Hence

$$
y=\mathcal{M}^{-1} b+\eta_{k} \mathcal{M}^{-1} u_{k}
$$

where

$$
\eta_{k}=-\frac{u_{k}^{T} \mathcal{M}^{-1} b}{u_{k}^{T} \mathcal{M}^{-1} u_{k}}
$$

- SSOR preconditioner: Let $A-\theta_{k} I=L+D+U$. Then

$$
\mathcal{M}=(D+\omega L) D^{-1}(D+\omega U)
$$

Scheme $\mathcal{S}_{T w o L S}:$ Since $t \perp u_{k}$, Eq. (3) can be rewritten as

$$
\begin{equation*}
\left(A-\theta_{k} I\right) t=\left(u_{k}^{T}\left(A-\theta_{k} I\right) t\right) u_{k}-r_{k} \equiv \varepsilon u_{k}-r_{k} \tag{5}
\end{equation*}
$$

Let t_{1} and t_{2} be approximated solutions of the following linear systems:

$$
\left(A-\theta_{k} I\right) t=-r_{k} \quad \text { and } \quad\left(A-\theta_{k} I\right) t=u_{k}
$$

respectively. Then the approximated solution \tilde{t} for (5) is

$$
\tilde{t}=t_{1}+\varepsilon t_{2} \quad \text { for } \quad \varepsilon=-\frac{u_{k}^{T} t_{1}}{u_{k}^{T} t_{2}}
$$

Scheme $\mathcal{S}_{\text {OneStep }}$: The approximated solution \tilde{t} for (5) is

$$
\tilde{t}=-\mathcal{M}^{-1} r_{k}+\varepsilon \mathcal{M}^{-1} u_{k} \quad \text { for } \quad \varepsilon=\frac{u_{k}^{\top} \mathcal{M}^{-1} r_{k}}{u_{k}^{\top} \mathcal{M}^{-1} u_{k}}
$$

where \mathcal{M} is an approximation of $A-\theta_{k} I$.

Algorithm 2 (Jacobi-Davidson Method)

Choose an n-by-m orthonormal matrix V_{0} Do $k=0,1,2, \cdots$

Compute all the eigenpairs of $V_{k}^{T} A V_{k} s=\lambda s$.
Select the desired (target) eigenpair $\left(\theta_{k}, s_{k}\right)$ with $\left\|s_{k}\right\|_{2}=1$.
Compute $u_{k}=V_{k} s_{k}$ and $r_{k}=\left(A-\theta_{k} I\right) u_{k}$.
If (\|r $r_{k} \|_{2}<\varepsilon$), $\lambda=\theta_{k}, x=u_{k}$, Stop
Solve (approximately) a $t_{k} \perp u_{k}$ from

$$
\left(I-u_{k} u_{k}^{T}\right)\left(A-\theta_{k} I\right)\left(I-u_{k} u_{k}^{T}\right) t=-r_{k} .
$$

Orthogonalize $t_{k} \perp V_{k} \rightarrow v_{k+1}, V_{k+1}=\left[V_{k}, v_{k+1}\right]$

- Locking:
V_{k} with $V_{k}^{*} V=I_{k}$ are convergent Schur vectors, i.e.,

$$
A V_{k}=V_{k} T_{k}
$$

for some upper triangular T_{k}. Set $V=\left[V_{k}, V_{q}\right]$ with $V^{*} V=I_{k+q}$ in $k+1$-th iteration of Jacobi-Davidson Algorithm. Then

$$
\begin{aligned}
V^{*} A V & =\left[\begin{array}{cc}
V_{k}^{*} A V_{k} & V_{k}^{*} A V_{q} \\
V_{q}^{*} A V_{k} & V_{q}^{*} A V_{q}
\end{array}\right]=\left[\begin{array}{cc}
T_{k} & V_{k}^{*} A V_{q} \\
V_{q}^{*} V_{k} T_{k} & V_{q}^{*} A V_{q}
\end{array}\right] \\
& =\left[\begin{array}{cc}
T_{k} & V_{k}^{*} A V_{q} \\
0 & V_{q}^{*} A V_{q}
\end{array}\right] .
\end{aligned}
$$

- Restarting:

Keep the locked Schur vectors as well as the Schur vectors of interest in the subspace and throw away those we are not interested.

Remark 1

- If $\varepsilon=0$, we obtain Davidson method with

$$
t_{1}=-\left(D_{A}-\theta_{k} I\right)^{-1} r .
$$

(\tilde{t} is NOT orthogonal to u_{k})

- If the linear systems in (6) are exactly solved, then the vector t becomes

$$
\begin{equation*}
t=\varepsilon\left(A-\theta_{k} I\right)^{-1} u_{k}-u_{k} . \tag{6}
\end{equation*}
$$

Since t is made orthogonal to u_{k}, (6) is equivalent to

$$
t=\left(A-\theta_{k} I\right)^{-1} u_{k}
$$

which is equivalent to shift-invert power iteration. Hence it is quadratic convergence.

Consider $A x=\lambda x$ and assume that λ is simple.

Lemma 6

Consider w with $w^{T} x \neq 0$. Then the map

$$
F_{p} \equiv\left(I-\frac{x w^{T}}{w^{T} x}\right)(A-\lambda I)\left(I-\frac{x w^{T}}{w^{T} x}\right)
$$

is a bijection from w^{\perp} to w^{\perp}.
Proof: Suppose $y \perp w$ and $F_{p} y=0$. That is

$$
\left(I-\frac{x w^{T}}{w^{T} x}\right)(A-\lambda I)\left(I-\frac{x w^{T}}{w^{T} x}\right) y=0
$$

Then it holds that

$$
(A-\lambda I) y=\varepsilon x
$$

Therefore, both y and x belong to the kernel of $(A-\lambda I)^{2}$. The simplicity of λ implies that y is a scale multiple of x. The fact that $y \perp w$ and $x^{T} w \neq 0$ implies $y=0$, which proves the injectivity of F_{p}. An obvious dimension argument implies bijectivity.

Extension

$$
F_{p} t \equiv\left(I-\frac{u u^{T}}{u^{T} u}\right)(A-\theta I)\left(I-\frac{u u^{T}}{u^{T} u}\right) t=-r, \quad t \perp u, r \perp u
$$

Then

$$
t \in u^{\perp} \underset{F_{p}}{\overrightarrow{ }} r \in u^{\perp} .
$$

Theorem 7

Assume that the correction equation

$$
\begin{equation*}
\left(I-u u^{T}\right)(A-\theta I)\left(I-u u^{T}\right) t=-r, \quad t \perp u \tag{7}
\end{equation*}
$$

is solved exactly in each step of Jacobi-Davidson Algorithm. Assume $u_{k}=u \rightarrow x$ and $u_{k}^{T} x$ has non-trivial limit. Then if u_{k} is sufficiently chosen to x, then $u_{k} \rightarrow x$ with locally quadratical convergence and

$$
\theta_{k}=u_{k}^{T} A u_{k} \rightarrow \lambda
$$

Proof: Suppose $A x=\lambda x$ with x such that $x=u+z$ for $z \perp u$. Then

$$
\begin{equation*}
(A-\theta I) z=-(A-\theta I) u+(\lambda-\theta) x=-r+(\lambda-\theta) x . \tag{8}
\end{equation*}
$$

Consider the exact solution $z_{1} \perp u$ of (7):

$$
\begin{equation*}
(I-P)(A-\theta I) z_{1}=-(I-P) r \tag{9}
\end{equation*}
$$

where $P=u u^{T}$. Note that $(I-P) r=r$ since $u \perp r$. Since $x-\left(u+z_{1}\right)=z-z_{1}$ and $z=x-u$, for quadratic convergence, it suffices to show that

$$
\begin{equation*}
\left\|x-\left(u+z_{1}\right)\right\|=\left\|z-z_{1}\right\|=O\left(\|z\|^{2}\right) . \tag{10}
\end{equation*}
$$

Multiplying (8) by $(I-P)$ and subtracting the result from (9) yields

$$
\begin{equation*}
(I-P)(A-\theta I)\left(z-z_{1}\right)=(\lambda-\theta)(I-P) z+(\lambda-\theta)(I-P) u \tag{11}
\end{equation*}
$$

Multiplying (8) by u^{T} and using $r \perp u$ leads to

$$
\begin{equation*}
\lambda-\theta=\frac{u^{T}(A-\theta I) z}{u^{T} x} . \tag{12}
\end{equation*}
$$

Since $u_{k}^{T} x$ has non-trivial limit, we obtain

$$
\begin{equation*}
\|(\lambda-\theta)(I-P) z\|=\left\|\frac{u^{T}(A-\theta I) z}{u^{T} x}(I-P) z\right\| . \tag{13}
\end{equation*}
$$

From (11), Lemma 6 and $(I-P) u=0$, we have

$$
\begin{aligned}
\left\|z-z_{1}\right\| & =\left\|\left[\left.(I-P)\left(A-\theta_{k} I\right)\right|_{u_{\frac{\perp}{k}}}\right]^{-1}(\lambda-\theta)(I-P) z\right\| \\
& =\left\|\left[\left.(I-P)\left(A-\theta_{k} I\right)\right|_{u_{k}^{\frac{1}{k}}}\right]^{-1} \frac{u_{k}^{T}\left(A-\theta_{k} I\right) z}{u_{k}^{T} x}(I-P) z\right\| \\
& =O\left(\|z\|^{2}\right) .
\end{aligned}
$$

Jacobi Davidson method as on accelerated Newton

Scheme

Consider $A x=\lambda x$ and assume that λ is simple. Choose $w^{T} x=1$. Consider nonlinear equation

$$
F(u)=A u-\theta(u) u=0 \quad \text { with } \quad \theta(u)=\frac{w^{T} A u}{w^{T} u}
$$

where $\|u\|=1$ or $w^{T} u=1$. Then $F:\left\{u \mid w^{T} u=1\right\} \rightarrow w^{\perp}$. In particular, $r \equiv F(u)=A u-\theta(u) u \perp w$.
Suppose $u_{k} \approx x$ and the next Newton approximation u_{k+1} :

$$
u_{k+1}=u_{k}-\left(\left.\frac{\partial F}{\partial u}\right|_{u=u_{k}}\right)^{-1} F\left(u_{k}\right)
$$

is given by $u_{k+1}=u_{k}+t$, i.e., t satisfies that

$$
\left(\left.\frac{\partial F}{\partial u}\right|_{u=u_{k}}\right) t=F\left(u_{k}\right)=-r .
$$

Since $1=u_{k+1}^{T} w=\left(u_{k}+t\right)^{T} w=1+t^{T} w$, it implies that $w^{T} t=0$. By the definition of F, we have

$$
\begin{aligned}
\frac{\partial F}{\partial u} & =A-\theta(u) I-\frac{-\left(w^{T} A u\right) u w^{T}+\left(w^{T} u\right) u w^{T} A}{\left(w^{T} u\right)^{2}} \\
& =A-\theta I+\frac{w^{T} A u}{\left(w^{T} u\right)^{2}} u w^{T}-\frac{u w^{T} A}{w^{T} u}=\left(I-\frac{u_{k} w^{T}}{w^{T} u_{k}}\right)\left(A-\theta_{k} I\right)
\end{aligned}
$$

Consequently, the Jacobian of F acts on w^{\perp} and is given by

$$
\left(\left.\frac{\partial F}{\partial u}\right|_{u=u_{k}}\right) t=\left(I-\frac{u_{k} w^{T}}{w^{T} u_{k}}\right)\left(A-\theta_{k} I\right) t, t \perp w .
$$

Hence the correction equation of Newton method read as

$$
t \perp w, \quad\left(I-\frac{u_{k} w^{T}}{w^{T} u_{k}}\right)\left(A-\theta_{k} I\right) t=-r
$$

which is the correction equation of Jacobi-Davidson method in (7) with $w=u$.

Polynomial Jacobi-Davidson method

$\left(\theta_{k}, u_{k}\right)$: approx. eigenpair of $\mathbf{A}(\lambda) \equiv \sum_{k=0}^{\tau} \lambda^{k} A_{k}, \theta_{k} \approx \lambda$, with

$$
u_{k}=V_{k} s_{k}, V_{k}^{\top} \mathbf{A}(\lambda) V_{k} s_{k}=0 \text { and }\left\|s_{k}\right\|_{2}=1
$$

Let

$$
r_{k}=\mathbf{A}\left(\theta_{k}\right) u_{k}
$$

Then

$$
u_{k}^{\top} r_{k}=u_{k}^{\top} \mathbf{A}\left(\theta_{k}\right) u_{k}=s_{k}^{\top} V_{k}^{\top} \mathbf{A}\left(\theta_{k}\right) V_{k} s_{k}=0 \Rightarrow r_{k} \perp u_{k}
$$

Find the correction t such that

$$
\mathbf{A}(\lambda)\left(u_{k}+t\right)=0
$$

That is

$$
\mathbf{A}(\lambda) t=-\mathbf{A}(\lambda) u_{k}=-r_{k}+\left(\mathbf{A}\left(\theta_{k}\right)-\mathbf{A}(\lambda)\right) u_{k}
$$

$$
p_{k}=\mathbf{A}^{\prime}\left(\theta_{k}\right) u_{k} \equiv\left(\sum_{i=1}^{\tau} i \theta_{k}^{i-1} A_{i}\right) u_{k}
$$

- $\mathbf{A}(\lambda)=A-\lambda I$:

$$
\begin{aligned}
& p_{k}=-u_{k} \\
& \left(\mathbf{A}\left(\theta_{k}\right)-\mathbf{A}(\lambda)\right) u_{k}=\left(\lambda-\theta_{k}\right) u_{k}=\left(\theta_{k}-\lambda_{k}\right) p_{k}
\end{aligned}
$$

- $\mathbf{A}(\lambda)=A-\lambda B$:

$$
\begin{aligned}
& p_{k}=-B u_{k} \\
& \left(\mathbf{A}\left(\theta_{k}\right)-\mathbf{A}(\lambda)\right) u_{k}=\left(\lambda-\theta_{k}\right) B u_{k}=\left(\theta_{k}-\lambda\right) p_{k}
\end{aligned}
$$

- $\mathbf{A}(\lambda)=\sum_{i=0}^{\tau} \lambda^{i} A_{i}$ with $\tau \geq 2$:

$$
\begin{aligned}
\left(\mathbf{A}\left(\theta_{k}\right)-\mathbf{A}(\lambda)\right) u_{k} & =\left[\left(\theta_{k}-\lambda\right) \mathbf{A}^{\prime}\left(\theta_{k}\right)-\frac{1}{2}\left(\theta_{k}-\lambda\right)^{2} \mathbf{A}^{\prime \prime}\left(\xi_{k}\right)\right] u_{k} \\
& =\left(\theta_{k}-\lambda\right) p_{k}-\frac{1}{2}\left(\theta_{k}-\lambda\right)^{2} \mathbf{A}^{\prime \prime}\left(\xi_{k}\right) u_{k}
\end{aligned}
$$

Hence

$$
\mathbf{A}(\lambda) t=-r_{k}+\left(\theta_{k}-\lambda\right) p_{k}-\frac{1}{2}\left(\theta_{k}-\lambda\right)^{2} \mathbf{A}^{\prime \prime}\left(\xi_{k}\right) u_{k}
$$

Since $r_{k} \perp u_{k}$, we have

$$
\left(I-\frac{p_{k} u_{k}^{\top}}{u_{k}^{\top} p_{k}}\right) \mathbf{A}(\lambda) t=-r_{k}-\frac{1}{2}\left(\theta_{k}-\lambda\right)^{2}\left(I-\frac{p_{k} u_{k}^{\top}}{u_{k}^{\top} p_{k}}\right) \mathbf{A}^{\prime \prime}\left(\xi_{k}\right) u_{k}
$$

Correction equation:

$$
\left(I-\frac{p_{k} u_{k}^{\top}}{u_{k}^{\top} p_{k}}\right) \mathbf{A}\left(\theta_{k}\right)\left(I-u_{k} u_{k}^{\top}\right) t=-r_{k} \text { and } t \perp u_{k}
$$

or

$$
\left(I-\frac{p_{k} u_{k}^{\top}}{u_{k}^{\top} p_{k}}\right)\left(A-\theta_{k} B\right)\left(I-\frac{u_{k} p_{k}^{\top}}{p_{k}^{\top} u_{k}}\right) t=-r_{k} \text { and } t \perp_{B} u_{k}
$$

with symmetric positive definite matrix B.

Algorithm 3 (Jacobi-Davidson Algorithm for solving A($\lambda) x=0$)

Choose an n-by-m orthonormal matrix V_{0} Dok=0,1,2, \cdots

Compute all the eigenpairs of $V_{k}^{\top} \mathbf{A}(\lambda) V_{k}=0$.
Select the desired (target) eigenpair $\left(\theta_{k}, s_{k}\right)$ with $\left\|s_{k}\right\|_{2}=1$.
Compute $u_{k}=V_{k} s_{k}, r_{k}=\mathbf{A}\left(\theta_{k}\right) u_{k}$ and $p_{k}=\mathbf{A}^{\prime}\left(\theta_{k}\right) u_{k}$. If $\left(\left\|r_{k}\right\|_{2}<\varepsilon\right), \lambda=\theta_{k}, x=u_{k}$, Stop
Solve (approximately) a $t_{k} \perp u_{k}$ from

$$
\left(I-\frac{p_{k} u_{k}^{T}}{u_{k}^{T} p_{k}} \mathbf{A}\left(\theta_{k}\right)\left(I-u_{k} u_{k}^{T}\right) t=-r_{k} .\right.
$$

Orthogonalize $t_{k} \perp V_{k} \rightarrow v_{k+1}, V_{k+1}=\left[V_{k}, v_{k+1}\right]$

$$
p_{k}=\mathbf{A}^{\prime}\left(\theta_{k}\right) u_{k} \equiv\left(\sum_{i=1}^{\tau} i \theta_{k}^{i-1} A_{i}\right) u_{k} .
$$

Non-equivalence deflation of quadratic eigenproblems

 Let λ_{1} be a real eigenvalue of $\mathbf{Q}(\lambda) \equiv \lambda^{2} M+\lambda C+K$ and x_{1}, z_{1} be the associated right and left eigenvectors, respectively, with $z_{1}^{T} K x_{1}=1$. Let$$
\theta_{1}=\left(z_{1}^{T} M x_{1}\right)^{-1} .
$$

We introduce a deflated quadratic eigenproblem

$$
\widetilde{\mathbf{Q}}(\lambda) x \equiv\left[\lambda^{2} \widetilde{M}+\lambda \widetilde{C}+\widetilde{K}\right] x=0,
$$

where

$$
\begin{aligned}
\widetilde{M} & =M-\theta_{1} M x_{1} z_{1}^{T} M, \\
\widetilde{C} & =C+\frac{\theta_{1}}{\lambda_{1}}\left(M x_{1} z_{1}^{T} K+K x_{1} z_{1}^{T} M\right), \\
\widetilde{K} & =K-\frac{\theta_{1}}{\lambda_{1}^{2}} K x_{1} z_{1}^{T} K .
\end{aligned}
$$

Complex deflation

Let $\lambda_{1}=\alpha_{1}+i \beta_{1}$ be a complex eigenvalue of $\mathbf{Q}(\lambda)$ and $x_{1}=x_{1 R}+i x_{1 I}, z_{1}=z_{1 R}+i z_{1 I}$ be the associated right and left eigenvectors, respectively, such that

$$
Z_{1}^{T} K X_{1}=I_{2}
$$

where $X_{1}=\left[x_{1 R}, x_{1 I}\right]$ and $Z_{1}=\left[z_{1 R}, z_{1 I}\right]$. Let

$$
\Theta_{1}=\left(Z_{1}^{T} M X_{1}\right)^{-1}
$$

Then we introduce a deflated quadratic eigenproblem with

$$
\begin{aligned}
\widetilde{M} & =M-M X_{1} \Theta_{1} Z_{1}^{T} M \\
\widetilde{C} & =C+M X_{1} \Theta_{1} \Lambda_{1}^{-T} Z_{1}^{T} K+K X_{1} \Lambda_{1}^{-1} \Theta_{1}^{T} Z_{1}^{T} M \\
\widetilde{K} & =K-K X_{1} \Lambda_{1}^{-1} \Theta_{1} \Lambda_{1}^{-T} Z_{1}^{T} K
\end{aligned}
$$

in which $\Lambda_{1}=\left[\begin{array}{cc}\alpha_{1} & \beta_{1} \\ -\beta_{1} & \alpha_{1}\end{array}\right]$.

Theorem 8

(i) Let λ_{1} be a simple real eigenvalue of $\mathbf{Q}(\lambda)$. Then the spectrum of $\widetilde{\mathbf{Q}}(\lambda)$ is given by

$$
\left(\sigma(\mathbf{Q}(\lambda)) \backslash\left\{\lambda_{1}\right\}\right) \cup\{\infty\}
$$

provided that $\lambda_{1}^{2} \neq \theta_{1}$.
(ii) Let λ_{1} be a simple complex eigenvalue of $\mathbf{Q}(\lambda)$. Then the spectrum of $\widetilde{\mathbf{Q}}(\lambda)$ is given by

$$
\left(\sigma(\mathbf{Q}(\lambda)) \backslash\left\{\lambda_{1}, \bar{\lambda}_{1}\right\}\right) \cup\{\infty, \infty\}
$$

provided that $\Lambda_{1} \Lambda_{1}^{T} \neq \Theta_{1}$.
Furthermore, in both cases (i) and (ii), if $\lambda_{2} \neq \lambda_{1}$ and $\left(\lambda_{2}, x_{2}\right)$ is an eigenpair of $\mathbf{Q}(\lambda)$ then the pair $\left(\lambda_{2}, x_{2}\right)$ is also an eigenpair of $\widetilde{\mathbf{Q}}(\lambda)$.

Suppose that M, C, K are symmetric. Given an eigenmatrix pair $\left(\Lambda_{1}, X_{1}\right) \in \mathbb{R}^{r \times r} \times \mathbb{R}^{n \times r}$ of $Q(\lambda)$, where Λ_{1} is nonsingular and X_{1} satisfies

$$
X_{1}^{T} K X_{1}=I_{r}, \quad \Theta_{1}:=\left(X_{1}^{T} M X_{1}\right)^{-1} .
$$

We define $\tilde{Q}(\lambda):=\lambda^{2} \tilde{M}+\lambda \tilde{C}+\tilde{K}$, where

$$
\begin{aligned}
\tilde{M} & :=M-M X_{1} \Theta_{1} X_{1}^{T} M, \\
\tilde{C} & :=C+M X_{1} \Theta_{1} \Lambda_{1}^{-T} X_{1}^{T} K+K X_{1} \Lambda_{1}^{-1} \Theta_{1} X_{1}^{T} M, \\
\tilde{K} & :=K-K X_{1} \Lambda_{1}^{-1} \Theta_{1} \Lambda_{1}^{-T} X_{1}^{T} K .
\end{aligned}
$$

Theorem 9

Suppose that $\Theta_{1}-\Lambda_{1} \Lambda_{1}^{T}$ is nonsingular. Then the eigenvalues of the real symmetric quadratic pencil $\tilde{Q}(\lambda)$ are the same as those of $Q(\lambda)$ except that the eigenvalues of Λ_{1}, which are closed under complex conjugation, are replaced by r infinities.

Proof: Since $\left(\Lambda_{1}, X_{1}\right)$ is an eigenmatrix pair of $Q(\lambda)$, i.e.,

$$
M X_{1} \Lambda_{1}^{2}+C X_{1} \Lambda_{1}+K X_{1}=0
$$

we have

$$
\begin{aligned}
\tilde{Q}(\lambda) & =Q(\lambda)+\left[M X_{1}\left(\lambda I_{r}+\Lambda_{1}\right)+C X_{1}\right] \Theta_{1} \Lambda_{1}^{-T}\left(X_{1}^{T} K-\lambda \Lambda_{1}^{T} X_{1}^{T} M\right) \\
& =Q(\lambda)+Q(\lambda) X_{1}\left(\lambda I_{r}-\Lambda_{1}\right)^{-1} \Theta_{1} \Lambda_{1}^{-T}\left(X_{1}^{T} K-\lambda \Lambda_{1}^{T} X_{1}^{T} M\right) .
\end{aligned}
$$

By using the identity

$$
\operatorname{det}\left(I_{n}+R S\right)=\operatorname{det}\left(I_{m}+S R\right)
$$

where $R, S^{T} \in \mathbb{R}^{n \times m}$, we have

$$
\begin{aligned}
& \operatorname{det}[\tilde{Q}(\lambda)] \\
= & \operatorname{det}[Q(\lambda)] \operatorname{det}\left[I+X_{1}\left(\lambda I_{r}-\Lambda_{1}\right)^{-1} \Theta_{1} \Lambda_{1}^{-T}\left(X_{1}^{T} K-\lambda \Lambda_{1}^{T} X_{1}^{T} M\right)\right] \\
= & \operatorname{det}[Q(\lambda)] \operatorname{det}\left[I_{r}+\left(\lambda I_{r}-\Lambda_{1}\right)^{-1} \Theta_{1} \Lambda_{1}^{-T}\left(I_{r}-\lambda \Lambda_{1}^{T} \Theta_{1}^{-1}\right)\right] \\
= & \frac{\operatorname{det}[Q(\lambda)]}{\operatorname{det}\left(\lambda I_{r}-\Lambda_{1}\right)} \operatorname{det}\left(\Theta_{1} \Lambda_{1}^{-T}-\Lambda_{1}\right) .
\end{aligned}
$$

Since $\left(\Theta_{1}-\Lambda_{1} \Lambda_{1}^{T}\right) \in \mathbb{R}^{r \times r}$ is nonsingular, we have

$$
\operatorname{det}\left(\Theta_{1} \Lambda_{1}^{-T}-\Lambda_{1}\right) \neq 0
$$

Therefore, $\tilde{Q}(\lambda)$ has the same eigenvalues as $Q(\lambda)$ except that r eigenvalues of Λ_{1} are replaced by r infinities.

Non-equiv. deflation for cubic poly. eigenproblems Let $\left(\Lambda, V_{u}\right) \in \mathbb{R}^{r \times r} \times \mathbb{R}^{n \times r}$ be an eigenmatrix pair of

$$
\begin{equation*}
\mathbf{A}(\lambda) \equiv \lambda^{3} A_{3}+\lambda^{2} A_{2}+\lambda A_{1}+A_{0} \tag{14}
\end{equation*}
$$

with $V_{u}^{T} V_{u}=I_{r}$ and $0 \notin \sigma(\Lambda)$, i.e.,

$$
\begin{equation*}
A_{3} V_{u} \Lambda^{3}+A_{2} V_{u} \Lambda^{2}+A_{1} V_{u} \Lambda+A_{0} V_{u}=0 \tag{15}
\end{equation*}
$$

Define a new deflated cubic eigenvalue problem by

$$
\begin{equation*}
\widetilde{\mathbf{A}}(\lambda) u=\left(\lambda^{3} \tilde{A}_{3}+\lambda^{2} \tilde{A}_{2}+\lambda \tilde{A}_{1}+\tilde{A}_{0}\right) u=0, \tag{16}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
\tilde{A}_{0}=A_{0} \tag{17}\\
\tilde{A}_{1}=A_{1}-\left(A_{1} V_{u} V_{u}^{T}+A_{2} V_{u} \Lambda V_{u}^{T}+A_{3} V_{u} \Lambda^{2} V_{u}^{T}\right) \\
\tilde{A}_{2}=A_{2}-\left(A_{2} V_{u} V_{u}^{T}+A_{3} V_{u} \Lambda V_{u}^{T}\right) \\
\tilde{A}_{3}=A_{3}-A_{3} V_{u} V_{u}^{T}
\end{array}\right.
$$

Lemma 10

Let $\mathbf{A}(\lambda)$ and $\widetilde{\mathbf{A}}(\lambda)$ be cubic pencils given by (14) and (16), respectively. Then it holds

$$
\begin{equation*}
\widetilde{\mathbf{A}}(\lambda)=\mathbf{A}(\lambda)\left(I_{n}-\lambda V_{u}\left(\lambda I_{r}-\Lambda\right)^{-1} V_{u}^{T}\right) . \tag{18}
\end{equation*}
$$

Theorem 11

Let $\left(\Lambda, V_{u}\right)$ be an eigenmatrix pair of $\mathbf{A}(\lambda)$ with $V_{u}^{T} V_{u}=I_{r}$. Then
(i) $(\sigma(\mathbf{A}(\lambda)) \backslash \sigma(\Lambda)) \cup\{\infty\}=\sigma(\widetilde{\mathbf{A}}(\lambda))$.
(ii) Let (μ, z) be an eigenpair of $\mathbf{A}(\lambda)$ with $\|z\|_{2}=1$ and $\mu \notin \sigma(\Lambda)$. Define

$$
\begin{equation*}
\tilde{z}=\left(I_{n}-\mu V_{u} \Lambda^{-1} V_{u}^{T}\right) z \equiv T(\mu) z . \tag{19}
\end{equation*}
$$

Then (μ, \tilde{z}) is an eigenpair of $\widetilde{\mathbf{A}}(\lambda)$.

Proof of Lemma: Using (17) and (15), and the fundamental matrix calculation, we have

$$
\begin{aligned}
\widetilde{\mathbf{A}}(\lambda)= & \mathbf{A}(\lambda)-\lambda\left(\lambda^{2} A_{3} V_{F} V_{F}^{T}+\lambda A_{2} V_{F} V_{F}^{T}+\lambda A_{3} V_{F} \Lambda V_{F}^{T}\right. \\
& \left.+A_{1} V_{F} V_{F}^{T}+A_{2} V_{F} \Lambda V_{F}^{T}+A_{3} V_{F} \Lambda^{2} V_{F}^{T}\right) \\
= & \mathbf{A}(\lambda)-\lambda\left(A_{3} V_{F}\left(\lambda I_{r}-\Lambda\right)^{3}\left(\lambda I_{r}-\Lambda\right)^{-1} V_{F}^{T}\right. \\
& +3 A_{3} V_{F} \Lambda\left(\lambda I_{r}-\Lambda\right)^{2}\left(\lambda I_{r}-\Lambda\right)^{-1} V_{F}^{T} \\
& +3 A_{3} V_{F} \Lambda^{2}\left(\lambda I_{r}-\Lambda\right)\left(\lambda I_{r}-\Lambda\right)^{-1} V_{F}^{T} \\
& +A_{2} V_{F}\left(\lambda I_{r}-\Lambda\right)^{2}\left(\lambda I_{r}-\Lambda\right)^{-1} V_{F}^{T} \\
& +2 A_{2} V_{F} \Lambda\left(\lambda I_{r}-\Lambda\right)\left(\lambda I_{r}-\Lambda\right)^{-1} V_{F}^{T} \\
& \left.+A_{1} V_{F}\left(\lambda I_{r}-\Lambda\right)\left(\lambda I_{r}-\Lambda\right)^{-1} V_{F}^{T}\right)
\end{aligned}
$$

$$
\begin{aligned}
\widetilde{\mathbf{A}}(\lambda)= & \mathbf{A}(\lambda)-\lambda\left\{\left[A_{3} V_{F}\left(\lambda^{3} I_{r}-\Lambda^{3}\right)+A_{2} V_{F}\left(\lambda^{2} I_{r}-\Lambda^{2}\right)\right.\right. \\
& \left.\left.+A_{1} V_{F}\left(\lambda I_{r}-\Lambda\right)+A_{0} V_{F}-A_{0} V_{F}\right]\left(\lambda I_{r}-\Lambda\right)^{-1} V_{F}^{T}\right\} \\
= & \mathbf{A}(\lambda)-\lambda\left[\mathbf{A}(\lambda) V_{F}\left(\lambda I_{r}-\Lambda\right)^{-1} V_{F}^{T}\right] \\
= & \mathbf{A}(\lambda)\left[I_{n}-\lambda V_{F}\left(\lambda I_{r}-\Lambda\right)^{-1} V_{F}^{T}\right] .
\end{aligned}
$$

Proof of Theorem: (i) Using the identity

$$
\operatorname{det}\left(I_{n}+R S\right)=\operatorname{det}\left(I_{m}+S R\right)
$$

and Lemma 10, we have

$$
\begin{aligned}
\operatorname{det}(\widetilde{\mathbf{A}}(\lambda)) & =\operatorname{det}(\mathbf{A}(\lambda)) \operatorname{det}\left(I_{n}-\lambda V_{F}\left(\lambda I_{r}-\Lambda\right)^{-1} V_{F}^{T}\right) \\
& =\operatorname{det}(\mathbf{A}(\lambda)) \operatorname{det}\left(I_{n}-\lambda\left(\lambda I_{r}-\Lambda\right)^{-1}\right) \\
& =\operatorname{det}(\mathbf{A}(\lambda)) \operatorname{det}\left(\lambda I_{r}-\Lambda\right)^{-1} \operatorname{det}(-\Lambda)
\end{aligned}
$$

Since $0 \notin \sigma(\Lambda), \operatorname{det}(-\Lambda) \neq 0$. Thus, $\widetilde{\mathbf{A}}(\lambda)$ and $\mathbf{A}(\lambda)$ have the same finite spectrum except the eigenvalues in $\sigma(\Lambda)$. Furthermore, dividing Eq. (16) by λ^{3} and using the fact that

$$
\widetilde{\mathbf{A}}_{3} V_{F}=\left(A_{3}-A_{3} V_{F} V_{F}^{T}\right) V_{F}=0
$$

we see that $\left(\operatorname{diag}_{r}\{\infty, \cdots, \infty\}, V_{F}\right)$ is an eigenmatrix pair of $\widetilde{\mathbf{A}}(\lambda)$ corresponding to infinite eigenvalues.
(ii) Since $\mu \notin \sigma(\Lambda)$, the matrix $T(\mu)=\left(I-\mu V_{F} \Lambda^{-1} V_{F}^{T}\right)$ in (19) is invertible with the inverse

$$
\begin{equation*}
T(\mu)^{-1}=I_{n}-\mu V_{F}\left(\mu I_{r}-\Lambda\right)^{-1} V_{F}^{T} . \tag{20}
\end{equation*}
$$

From Lemma 10, we have

$$
\widetilde{\mathbf{A}}(\mu) \tilde{z}=\mathbf{A}(\mu)\left[I_{n}-\mu V_{F}\left(\mu I_{r}-\Lambda\right)^{-1} V_{F}^{T}\right]\left[I_{n}-\mu V_{F} \Lambda^{-1} V_{F}^{T}\right] z=0 .
$$

This completes the proof.

