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Some basic theorems

Theorem 1
Let X be an eigenspace of A and let X be a basis for X . Then there is
a unique matrix L such that

AX = XL.

The matrix L is given by

L = XIAX,

where XI is a matrix satisfying XIX = I.
If (λ, x) is an eigenpair of A with x ∈ X , then (λ,XIx) is an eigenpair
of L. Conversely, if (λ, u) is an eigenpair of L, then (λ,Xu) is an
eigenpair of A.
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Proof: Let

X = [x1 · · ·xk] and Y = AX = [y1 · · · yk] .

Since yi ∈ X and X is a basis for X , there is a unique vector `i such
that

yi = X`i.

If we set L = [`1 · · · `k], then AX = XL and

L = XIXL = XIAX.

Now let (λ, x) be an eigenpair of A with x ∈ X . Then there is a unique
vector u such that x = Xu. However, u = XIx. Hence

λx = Ax = AXu = XLu ⇒ λu = λXIx = Lu.

Conversely, if Lu = λu, then

A(Xu) = (AX)u = (XL)u = X(Lu) = λ(Xu),

so that (λ,Xu) is an eigenpair of A.
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Theorem 2 (Optimal residuals)
Let [X X⊥] be unitary. Let

R = AX −XL and SH = XHA− LXH .

Then ‖R‖ and ‖S‖ are minimized when

L = XHAX,

in which case

(a) ‖R‖ = ‖XH
⊥AX‖,

(b) ‖S‖ = ‖XHAX⊥‖,
(c) XHR = 0.
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Proof: Set [
XH

XH
⊥

]
A
[
X X⊥

]
=

[
L̂ H
G M

]
.

Then[
XH

XH
⊥

]
R =

[
L̂ H
G M

] [
XH

XH
⊥

]
X −

[
XH

XH
⊥

]
XL =

[
L̂− L
G

]
.

It implies that

‖R‖ =

∥∥∥∥[ XH

XH
⊥

]
R

∥∥∥∥ =

∥∥∥∥[ L̂− LG

]∥∥∥∥ ,
which is minimized when L = L̂ = XHAX and

min ‖R‖ = ‖G‖ = ‖XH
⊥AX‖.

The proof for S is similar. If L = XHAX, then

XHR = XHAX −XHXL = XHAX − L = 0.
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Definition 3
Let X be of full column rank and let XI be a left inverse of X. Then
XIAX is a Rayleigh quotient of A.

Theorem 4
Let X be orthonormal, A be Hermitian and

R = AX −XL.

If `1, . . . , `k are the eigenvalues of L, then there are eigenvalues
λj1 , . . . , λjk of A such that

|`i − λji | ≤ ‖R‖2 and

√√√√ k∑
i=1

(`i − λji)2 ≤
√

2‖R‖F .
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Jacobi’s orthogonal component correction, 1846

Consider the eigenvalue problem

A

[
1
z

]
≡
[
α cT

b F

] [
1
z

]
= λ

[
1
z

]
, (1)

where A is diagonal dominant and α is the largest diagonal element.
(1) is equivalent to {

λ = α+ cT z,
(F − λI)z = −b.

Jacobi iteration : (with z1 = 0){
θk = α+ cT zk,
(D − θkI)zk+1 = (D − F )zk − b

(2)

where D = diag(F ).
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Davidson’s method (1975)

Algorithm 1 (Davidson’s method)

Given unit vector v, set V = [v]
Iterate until convergence

Compute desired eigenpair (θ, s) of V TAV .
Compute u = V s and r = Au− θu.
If (‖ r ‖2< ε), stop.
Solve (DA − θI)t = r.
Orthog. t ⊥ V → v, V = [V, v]

end
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Let uk = (1, zTk )T . Then

rk = (A− θkI)uk =

[
α− θk + cT zk
(F − θkI)zk + b

]
Substituting the residual vector rk into linear systems

(DA − θkI)tk = −rk, where DA =

[
α 0
0 D

]
,

we get

(D − θkI)yk = −(F − θkI)zk − b
= (D − F )zk − (D − θkI)zk − b

From (2) and above equality, we see that

(D − θkI)(zk + yk) = (D − F )zk − b = (D − θkI)zk+1.

This implies that zk+1 = zk + yk as one step of JOCC starting with zk.
T.M. Huang (Taiwan Normal Univ.) Poly. JD method for PEP April 28, 2011 11 / 42



師
大

Jacobi-Davidson method (1996)

(θk, uk): approx. eigenpair of A, θk ≈ λ, with

uk = Vksk, V
T
k AVksk = θksk and ‖ sk ‖2= 1.

Definition 5
(θk, uk) is called a Ritz pair of A. θk is called a Ritz value and uk is a
Ritz vector.
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Jacobi-Davidson method (1996)

(θk, uk): approx. eigenpair of A, θk ≈ λ, with

uk = Vksk, V
T
k AVksk = θksk and ‖ sk ‖2= 1.

Then

uTk rk ≡ uTk (A− θkI)uk = sTk V
T
k AVksk − θksTk V T

k Vksk = 0 ⇒ rk ⊥ uk

Find the correction t ⊥ uk such that

A(uk + t) = λ(uk + t).

That is

(A− λI)t = λuk −Auk = −rk + (λ− θk)uk.
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Since (I − ukuTk )rk = rk, we have(
I − ukuTk

)
(A− λI)t = −rk.

Correction equation

(I − ukuTk )(A− θkI)
(
I − ukuTk

)
t = −rk and t ⊥ uk,
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Solving correction vector t
Correction equation:(

I − ukuTk
)

(A− θkI)(I − ukuTk )t = −rk, t ⊥ uk. (3)

Scheme SOneLS :
Use preconditioning iterative approximations, e.g., GMRES, to
solve (3).
Use a preconditioner

Mp ≡
(
I − ukuTk

)
M
(
I − ukuTk

)
,

whereM is an approximation of A− θkI.
In each of the iterative steps, it needs to solve

Mpy = b, y ⊥ uk (4)

for a given b.
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Since y ⊥ uk, Eq. (4) can be rewritten as(
I − ukuTk

)
My = b ⇒ My =

(
uTkMy

)
uk + b ≡ ηkuk + b.

Hence

y =M−1b+ ηkM−1uk,

where

ηk = −
uTkM−1b
uTkM−1uk

.

SSOR preconditioner: Let A− θkI = L+D + U . Then

M = (D + ωL)D−1(D + ωU).
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Scheme STwoLS : Since t ⊥ uk, Eq. (3) can be rewritten as

(A− θkI)t =
(
uTk (A− θkI)t

)
uk − rk ≡ εuk − rk. (5)

Let t1 and t2 be approximated solutions of the following linear systems:

(A− θkI)t = −rk and (A− θkI)t = uk,

respectively. Then the approximated solution t̃ for (5) is

t̃ = t1 + εt2 for ε = −
uTk t1

uTk t2
.

Scheme SOneStep: The approximated solution t̃ for (5) is

t̃ = −M−1rk + εM−1uk for ε =
u>kM−1rk
u>kM−1uk

,

whereM is an approximation of A− θkI.
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Algorithm 2 (Jacobi-Davidson Method)

Choose an n-by-m orthonormal matrix V0
Do k = 0, 1, 2, · · ·

Compute all the eigenpairs of V T
k AVks = λs.

Select the desired (target) eigenpair (θk, sk) with ‖sk‖2 = 1.
Compute uk = Vksk and rk = (A− θkI)uk.
If (‖rk‖2 < ε), λ = θk, x = uk, Stop
Solve (approximately) a tk ⊥ uk from

(I − ukuTk )(A− θkI)(I − ukuTk )t = −rk.
Orthogonalize tk ⊥ Vk → vk+1, Vk+1 = [Vk, vk+1]
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Locking:
Vk with V ∗k V = Ik are convergent Schur vectors, i.e.,

AVk = VkTk

for some upper triangular Tk. Set V = [Vk, Vq] with V ∗V = Ik+q in
k + 1-th iteration of Jacobi-Davidson Algorithm. Then

V ∗AV =

[
V ∗k AVk V ∗k AVq
V ∗q AVk V ∗q AVq

]
=

[
Tk V ∗k AVq

V ∗q VkTk V ∗q AVq

]
=

[
Tk V ∗k AVq
0 V ∗q AVq

]
.

Restarting:
Keep the locked Schur vectors as well as the Schur vectors of
interest in the subspace and throw away those we are not
interested.
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Remark 1

If ε = 0, we obtain Davidson method with

t1 = −(DA − θkI)−1r.

( t̃ is NOT orthogonal to uk )
If the linear systems in (6) are exactly solved, then the vector t
becomes

t = ε(A− θkI)−1uk − uk. (6)

Since t is made orthogonal to uk, (6) is equivalent to

t = (A− θkI)−1uk

which is equivalent to shift-invert power iteration. Hence it is
quadratic convergence.
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Consider Ax = λx and assume that λ is simple.

Lemma 6

Consider w with wTx 6= 0. Then the map

Fp ≡
(
I − xwT

wTx

)
(A− λI)

(
I − xwT

wTx

)
is a bijection from w⊥ to w⊥.

Proof: Suppose y⊥w and Fpy = 0. That is(
I − xwT

wTx

)
(A− λI)

(
I − xwT

wTx

)
y = 0.

Then it holds that

(A− λI)y = εx.
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Therefore, both y and x belong to the kernel of (A− λI)2. The
simplicity of λ implies that y is a scale multiple of x. The fact that y⊥w
and xTw 6= 0 implies y = 0, which proves the injectivity of Fp. An
obvious dimension argument implies bijectivity.

Extension

Fpt ≡
(
I − uuT

uTu

)
(A− θI)

(
I − uuT

uTu

)
t = −r, t ⊥ u, r ⊥ u.

Then

t ∈ u⊥ →
Fp

r ∈ u⊥.
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Theorem 7

Assume that the correction equation(
I − uuT

)
(A− θI)

(
I − uuT

)
t = −r, t ⊥ u (7)

is solved exactly in each step of Jacobi-Davidson Algorithm. Assume
uk = u→ x and uTk x has non-trivial limit. Then if uk is sufficiently
chosen to x, then uk → x with locally quadratical convergence and

θk = uTkAuk → λ.
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Proof: Suppose Ax = λx with x such that x = u+ z for z ⊥ u. Then

(A− θI) z = − (A− θI)u+ (λ− θ)x = −r + (λ− θ)x. (8)

Consider the exact solution z1 ⊥ u of (7):

(I − P ) (A− θI) z1 = − (I − P ) r, (9)

where P = uuT . Note that (I − P ) r = r since u⊥r. Since
x− (u+ z1) = z − z1 and z = x− u, for quadratic convergence, it
suffices to show that

‖x− (u+ z1) ‖ = ‖z − z1‖ = O
(
‖z‖2

)
. (10)

Multiplying (8) by (I − P ) and subtracting the result from (9) yields

(I − P ) (A− θI) (z − z1) = (λ− θ) (I − P ) z + (λ− θ) (I − P )u. (11)
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Multiplying (8) by uT and using r ⊥ u leads to

λ− θ =
uT (A− θI) z

uTx
. (12)

Since uTk x has non-trivial limit, we obtain

‖ (λ− θ) (I − P ) z‖ =

∥∥∥∥uT (A− θI) z

uTx
(I − P ) z

∥∥∥∥ . (13)

From (11), Lemma 6 and (I − P )u = 0, we have

‖z − z1‖ =

∥∥∥∥[(I − P ) (A− θkI) |u⊥k
]−1

(λ− θ) (I − P ) z

∥∥∥∥
=

∥∥∥∥[(I − P ) (A− θkI) |u⊥k
]−1 uTk (A− θkI) z

uTk x
(I − P ) z

∥∥∥∥
= O

(
‖z‖2

)
.
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Jacobi Davidson method as on accelerated Newton
Scheme
Consider Ax = λx and assume that λ is simple. Choose wTx = 1.
Consider nonlinear equation

F (u) = Au− θ(u)u = 0 with θ (u) =
wTAu

wTu
,

where ‖u‖ = 1 or wTu = 1. Then F : {u|wTu = 1} → w⊥. In particular,
r ≡ F (u) = Au− θ (u)u ⊥ w.
Suppose uk ≈ x and the next Newton approximation uk+1:

uk+1 = uk −

(
∂F

∂u

∣∣∣∣
u=uk

)−1
F (uk)

is given by uk+1 = uk + t, i.e., t satisfies that(
∂F

∂u

∣∣∣∣
u=uk

)
t = F (uk) = −r.
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Since 1 = uTk+1w = (uk + t)T w = 1 + tTw, it implies that wT t = 0. By
the definition of F , we have

∂F

∂u
= A− θ (u) I −

−
(
wTAu

)
uwT +

(
wTu

)
uwTA

(wTu)2

= A− θI +
wTAu

(wTu)2
uwT − uwTA

wTu
=

(
I − ukw

T

wTuk

)
(A− θkI) .

Consequently, the Jacobian of F acts on w⊥ and is given by(
∂F

∂u

∣∣∣∣
u=uk

)
t =

(
I − ukw

T

wTuk

)
(A− θkI) t, t ⊥ w.

Hence the correction equation of Newton method read as

t ⊥ w,
(
I − ukw

T

wTuk

)
(A− θkI) t = −r,

which is the correction equation of Jacobi-Davidson method in (7) with
w = u.
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Polynomial Jacobi-Davidson method
(θk, uk): approx. eigenpair of A(λ) ≡

∑τ
k=0 λ

kAk, θk ≈ λ, with

uk = Vksk, V
>
k A(λ)Vksk = 0 and ‖ sk ‖2= 1.

Let

rk = A(θk)uk.

Then

u>k rk = u>kA(θk)uk = s>k V
>
k A(θk)Vksk = 0 ⇒ rk ⊥ uk

Find the correction t such that

A(λ)(uk + t) = 0.

That is

A(λ)t = −A(λ)uk = −rk + (A(θk)−A(λ))uk.
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Let

pk = A′(θk)uk ≡

(
τ∑
i=1

iθi−1k Ai

)
uk.

A(λ) = A− λI:

pk = −uk,
(A(θk)−A(λ))uk = (λ− θk)uk = (θk − λk)pk

A(λ) = A− λB:

pk = −Buk,
(A(θk)−A(λ))uk = (λ− θk)Buk = (θk − λ)pk

A(λ) =
∑τ

i=0 λ
iAi with τ ≥ 2:

(A(θk)−A(λ))uk =

[
(θk − λ)A′(θk)−

1

2
(θk − λ)2A′′(ξk)

]
uk

= (θk − λ)pk −
1

2
(θk − λ)2A′′(ξk)uk
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Hence

A(λ)t = −rk + (θk − λ)pk −
1

2
(θk − λ)2A′′(ξk)uk

Since rk ⊥ uk, we have(
I −

pku
>
k

u>k pk

)
A(λ)t = −rk −

1

2
(θk − λ)2

(
I −

pku
>
k

u>k pk

)
A′′(ξk)uk.

Correction equation:(
I −

pku
>
k

u>k pk

)
A(θk)(I − uku>k )t = −rk and t ⊥ uk,

or (
I −

pku
>
k

u>k pk

)
(A− θkB)

(
I −

ukp
>
k

p>k uk

)
t = −rk and t ⊥B uk,

with symmetric positive definite matrix B.
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Algorithm 3 (Jacobi-Davidson Algorithm for solving A(λ)x = 0)

Choose an n-by-m orthonormal matrix V0
Do k = 0, 1, 2, · · ·

Compute all the eigenpairs of V >k A(λ)Vk = 0.
Select the desired (target) eigenpair (θk, sk) with ‖sk‖2 = 1.
Compute uk = Vksk, rk = A(θk)uk and pk = A′(θk)uk.
If (‖rk‖2 < ε), λ = θk, x = uk, Stop
Solve (approximately) a tk ⊥ uk from

(I − pku
T
k

uTk pk
)A(θk)(I − ukuTk )t = −rk.

Orthogonalize tk ⊥ Vk → vk+1, Vk+1 = [Vk, vk+1]

pk = A′(θk)uk ≡

(
τ∑
i=1

iθi−1k Ai

)
uk.
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Non-equivalence deflation of quadratic eigenproblems
Let λ1 be a real eigenvalue of Q(λ) ≡ λ2M + λC +K and x1, z1 be the
associated right and left eigenvectors, respectively, with zT1 Kx1 = 1.
Let

θ1 = (zT1 Mx1)
−1.

We introduce a deflated quadratic eigenproblem

Q̃(λ)x ≡
[
λ2M̃ + λC̃ + K̃

]
x = 0,

where

M̃ = M − θ1Mx1z
T
1 M,

C̃ = C +
θ1
λ1

(Mx1z
T
1 K +Kx1z

T
1 M),

K̃ = K − θ1
λ21
Kx1z

T
1 K.
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Complex deflation
Let λ1 = α1 + iβ1 be a complex eigenvalue of Q(λ) and
x1 = x1R + ix1I , z1 = z1R + iz1I be the associated right and left
eigenvectors, respectively, such that

ZT1 KX1 = I2,

where X1 = [x1R, x1I ] and Z1 = [z1R, z1I ]. Let

Θ1 = (ZT1 MX1)
−1.

Then we introduce a deflated quadratic eigenproblem with

M̃ = M −MX1Θ1Z
T
1 M,

C̃ = C +MX1Θ1Λ
−T
1 ZT1 K +KX1Λ

−1
1 ΘT

1 Z
T
1 M,

K̃ = K −KX1Λ
−1
1 Θ1Λ

−T
1 ZT1 K

in which Λ1 =

[
α1 β1
−β1 α1

]
.

T.M. Huang (Taiwan Normal Univ.) Poly. JD method for PEP April 28, 2011 32 / 42



師
大

Theorem 8

(i) Let λ1 be a simple real eigenvalue of Q(λ). Then the spectrum of
Q̃(λ) is given by

(σ(Q(λ))�{λ1}) ∪ {∞}

provided that λ21 6= θ1.
(ii) Let λ1 be a simple complex eigenvalue of Q(λ). Then the

spectrum of Q̃(λ) is given by(
σ(Q(λ))�{λ1, λ̄1}

)
∪ {∞,∞}

provided that Λ1Λ
T
1 6= Θ1.

Furthermore, in both cases (i) and (ii), if λ2 6= λ1 and (λ2, x2) is an
eigenpair of Q(λ) then the pair (λ2, x2) is also an eigenpair of Q̃(λ).
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Suppose that M,C,K are symmetric. Given an eigenmatrix pair
(Λ1, X1) ∈ Rr×r × Rn×r of Q(λ), where Λ1 is nonsingular and X1

satisfies

XT
1 KX1 = Ir, Θ1 := (XT

1 MX1)
−1.

We define Q̃(λ) := λ2M̃ + λC̃ + K̃, where

M̃ := M −MX1Θ1X
T
1 M,

C̃ := C +MX1Θ1Λ
−T
1 XT

1 K +KX1Λ
−1
1 Θ1X

T
1 M,

K̃ := K −KX1Λ
−1
1 Θ1Λ

−T
1 XT

1 K.

Theorem 9
Suppose that Θ1 − Λ1Λ

T
1 is nonsingular. Then the eigenvalues of the

real symmetric quadratic pencil Q̃(λ) are the same as those of Q(λ)
except that the eigenvalues of Λ1, which are closed under complex
conjugation, are replaced by r infinities.
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Proof: Since (Λ1, X1) is an eigenmatrix pair of Q(λ), i.e.,

MX1Λ
2
1 + CX1Λ1 +KX1 = 0,

we have

Q̃(λ) = Q(λ) + [MX1(λIr + Λ1) + CX1] Θ1Λ
−T
1 (XT

1 K − λΛT1X
T
1 M)

= Q(λ) +Q(λ)X1(λIr − Λ1)
−1Θ1Λ

−T
1 (XT

1 K − λΛT1X
T
1 M).

By using the identity

det(In +RS) = det(Im + SR),

where R,ST ∈ Rn×m, we have

det[Q̃(λ)]

= det[Q(λ)]det[I +X1(λIr − Λ1)
−1Θ1Λ

−T
1 (XT

1 K − λΛT1X
T
1 M)]

= det[Q(λ)]det[Ir + (λIr − Λ1)
−1Θ1Λ

−T
1 (Ir − λΛT1 Θ−11 )]

=
det[Q(λ)]

det(λIr − Λ1)
det(Θ1Λ

−T
1 − Λ1).
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Since (Θ1 − Λ1Λ
T
1 ) ∈ Rr×r is nonsingular, we have

det(Θ1Λ
−T
1 − Λ1) 6= 0.

Therefore, Q̃(λ) has the same eigenvalues as Q(λ) except that r
eigenvalues of Λ1 are replaced by r infinities.
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Non-equiv. deflation for cubic poly. eigenproblems
Let (Λ, Vu) ∈ Rr×r × Rn×r be an eigenmatrix pair of

A(λ) ≡ λ3A3 + λ2A2 + λA1 +A0 (14)

with V T
u Vu = Ir and 0 /∈ σ(Λ), i.e.,

A3VuΛ3 +A2VuΛ2 +A1VuΛ +A0Vu = 0. (15)

Define a new deflated cubic eigenvalue problem by

Ã(λ)u = (λ3Ã3 + λ2Ã2 + λÃ1 + Ã0)u = 0, (16)

where 
Ã0 = A0,

Ã1 = A1 − (A1VuV
T
u +A2VuΛV T

u +A3VuΛ2V T
u ),

Ã2 = A2 − (A2VuV
T
u +A3VuΛV T

u ),

Ã3 = A3 −A3VuV
T
u .

(17)
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Lemma 10

Let A(λ) and Ã(λ) be cubic pencils given by (14) and (16),
respectively. Then it holds

Ã(λ) = A(λ)
(
In − λVu(λIr − Λ)−1V T

u

)
. (18)

Theorem 11

Let (Λ, Vu) be an eigenmatrix pair of A(λ) with V T
u Vu = Ir. Then

(i) (σ(A(λ))�σ(Λ)) ∪ {∞} = σ(Ã(λ)).

(ii) Let (µ, z) be an eigenpair of A(λ) with ‖ z ‖2= 1 and µ /∈ σ(Λ).
Define

z̃ = (In − µVuΛ−1V T
u )z ≡ T (µ)z. (19)

Then (µ, z̃) is an eigenpair of Ã(λ).
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Proof of Lemma: Using (17) and (15), and the fundamental matrix
calculation, we have

Ã(λ) = A(λ)− λ
(
λ2A3VFV

T
F + λA2VFV

T
F + λA3VFΛV T

F

+A1VFV
T
F +A2VFΛV T

F +A3VFΛ2V T
F

)
= A(λ)− λ

(
A3VF (λIr − Λ)3(λIr − Λ)−1V T

F

+3A3VFΛ(λIr − Λ)2(λIr − Λ)−1V T
F

+3A3VFΛ2(λIr − Λ)(λIr − Λ)−1V T
F

+A2VF (λIr − Λ)2(λIr − Λ)−1V T
F

+2A2VFΛ(λIr − Λ)(λIr − Λ)−1V T
F

+A1VF (λIr − Λ)(λIr − Λ)−1V T
F

)
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Ã(λ) = A(λ)− λ
{[
A3VF (λ3Ir − Λ3) +A2VF (λ2Ir − Λ2)

+A1VF (λIr − Λ) +A0VF −A0VF ] (λIr − Λ)−1V T
F

}
= A(λ)− λ

[
A(λ)VF (λIr − Λ)−1V T

F

]
= A(λ)

[
In − λVF (λIr − Λ)−1V T

F

]
.
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Proof of Theorem: (i) Using the identity

det(In +RS) = det(Im + SR)

and Lemma 10, we have

det(Ã(λ)) = det(A(λ)) det
(
In − λVF (λIr − Λ)−1V T

F

)
= det(A(λ)) det

(
In − λ(λIr − Λ)−1

)
= det(A(λ)) det(λIr − Λ)−1 det(−Λ).

Since 0 /∈ σ(Λ), det(−Λ) 6= 0. Thus, Ã(λ) and A(λ) have the same
finite spectrum except the eigenvalues in σ(Λ). Furthermore, dividing
Eq. (16) by λ3 and using the fact that

Ã3VF = (A3 −A3VFV
T
F )VF = 0,

we see that (diagr{∞, · · · ,∞}, VF ) is an eigenmatrix pair of Ã(λ)
corresponding to infinite eigenvalues.

T.M. Huang (Taiwan Normal Univ.) Poly. JD method for PEP April 28, 2011 41 / 42



師
大

(ii) Since µ /∈ σ(Λ), the matrix T (µ) = (I − µVFΛ−1V T
F ) in (19) is

invertible with the inverse

T (µ)−1 = In − µVF (µIr − Λ)−1V T
F . (20)

From Lemma 10, we have

Ã(µ)z̃ = A(µ)
[
In − µVF (µIr − Λ)−1V T

F

] [
In − µVFΛ−1V T

F

]
z = 0.

This completes the proof.
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