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The power and inverse power methods

Let A be a nondefective matrix and (λi, xi) for i = 1, · · · , n be a
complete set of eigenpairs of A. That is {x1, · · · , xn} is linearly
independent. Hence, for any u0 6= 0, ∃ α1, · · · , αn such that

u0 = α1x1 + · · ·+ αnxn.

Now Akxi = λki xi, so that

Aku0 = α1λ
k
1x1 + · · ·+ αnλ

k
nxn. (1)

If |λ1| > |λi| for i ≥ 2 and α1 6= 0, then

1
λk1
Aku0 = α1x1+(

λ2

λ1
)kα2x2+· · ·+αn(

λn
λ1

)kxn → α1x1 as k → 0.
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Theorem
Let A have a unique dominant eigenpair (λ1, x1) with x∗1x1 = 1
and X =

(
x1 X2

)
be a nonsingular matrix with X∗2X2 = I

such that

X−1AX =
(
λ1 0
0 M

)
.

Let u0 6= 0 be decomposed in u0 = r1x1 +X2c2.
Then

sin ∠(x1, A
ku0) ≤ |λ1|−k‖Mk‖2‖c2/r1‖2

1− |λ1|−k‖Mk‖2‖c2/r1‖2
.

In particular ∀ ε > 0, ∃ σ such that

sin ∠(x1, A
ku0) ≤ σ[ρ(M)/|λ1|+ ε]k

1− σ[ρ(M)/|λ1|+ ε]k
,

where ρ(M) is the spectral radius of M .
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Proof: Since

u0 = α1x1 +X2c2 =
(
x1 X2

)( α1

c2

)
= X

(
α1

c2

)
,

it follows that

X−1Aku0 = X−1AkX

(
α1

c2

)
= (X−1AX)(X−1AX) · · · (X−1AX)

(
α1

c2

)
=

(
λk1 0
0 Mk

)(
α1

c2

)
.

Hence,

Aku0 = X

(
λk1α1

Mkc2

)
= α1λ

k
1x1 +X2M

kc2.
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Let the columns of Y form an orthonormal basis for the
subspace orthogonal to x1. By Lemma 3.12 in Chapter 1, we
have

sin ∠(x1, A
ku0) =

‖Y ∗Aku0‖2
‖Aku0‖2

=
‖Y ∗X2M

kc2‖2
‖α1λk1x1 +X2Mkc2‖2

.

But
‖Y ∗X2M

kc2‖2 ≤ ‖Mk‖2‖c2‖2
and

‖α1λ
k
1x1 +X2M

kc2‖2 ≥ |α1||λk1| − ‖Mk‖2‖c2‖2,

we get

sin ∠(x1, A
ku0) ≤ |λ1|−k‖Mk‖2‖c2/α1‖2

1− |λ1|−k‖Mk‖2‖c2/α1‖2
.

By Theorem 2.9 in Chapter 1, ∀ ε > 0, ∃ σ̂ such that

‖Mk‖2 ≤ σ̂(ρ(M) + ε)k.
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Take σ = σ̂‖c2/α1‖2. Then ∀ ε > 0,

sin ∠(x1, A
ku0) ≤ σ[ρ(M)/|λ1|+ ε]k

1− σ[ρ(M)/|λ1|+ ε]k
.

The error in the eigenvector approximation converges to
zero at an asymptotic rate of [ρ(M)/|λ1|]k.
If A has a complete system of eigenvectors with
|λ1| > |λ2| ≥ · · · ≥ |λn|, then the convergence is as
|λ2/λ1|k.
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Algorithm (Power Method with 2-norm)

Choose an initial u 6= 0 with ‖u‖2 = 1.
Iterate until convergence

Compute v = Au; k = ‖v‖2; u := v/k

Theorem

The sequence defined by Algorithm 1 is satisfied

lim
i→∞

ki = |λ1|

lim
i→∞

εiui =
x1

‖x1‖
α1

|α1|
, where ε =

|λ1|
λ1
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Proof: It is obvious that

us = Asu0/‖Asu0‖, ks = ‖Asu0‖/‖As−1u0‖. (2)

This follows from λ1
−sAsu0 −→ α1x1 that

|λ1|−s‖Asu0‖ −→ |α1|‖x1‖

|λ1|−s+1‖As−1u0‖ −→ |α1|‖x1‖
and then

|λ1|−1‖Asu0‖/‖As−1u0‖ = |λ1|−1ks −→ 1.

From (1) follows now for s→∞

εsus = εs
Asu0

‖Asu0‖
=

α1x1 +
∑n

i=2 αi

(
λi
λ1

)s
xi

‖α1x1 +
∑n

i=2 αi

(
λi
λ1

)s
xi‖

→ α1x1

‖α1x1‖
=

x1

‖x1‖
α1

|α1|
.
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Algorithm (Power Method with Linear Function)

Choose an initial u 6= 0.
Iterate until convergence

Compute v = Au; k = `(v); u := v/k
where `(v), e.g. e1(v) or en(v), is a linear functional.

Theorem
Suppose `(x1) 6= 0 and `(vi) 6= 0, i = 1, 2, . . . , then

lim
i→∞

ki = λ1

lim
i→∞

ui =
x1

`(x1)
.
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Proof: As above we show that

ui = Aiu0/`(Aiu0), ki = `(Aiu0)/`(Ai−1u0).

From (1) we get for s→∞

λ1
−s`(Asu0) −→ α1`(x1),

λ1
−s+1`(As−1u0) −→ α1`(x1),

thus
λ1
−1ks −→ 1.

Similarly for i −→∞,

ui =
Aiu0

`(Aiu0)
=

α1x1 +
∑n

j=2 αj(
λj

λ1
)ixj

`(α1x1 +
∑n

j=2 αj(
λj

λ1
)ixj)

−→ α1x1

α1`(x1)
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Note that:

ks =
`(Asu0)
`(As−1u0)

= λ1

α1`(x1) +
∑n

j=2 αj(
λj

λ1
)s`(xj)

α1`(x1) +
∑n

j=2 αj(
λj

λ1
)s−1`(xj)

= λ1 +O

(
| λ2

λ1
|s−1

)
.

That is the convergent rate is
∣∣∣λ2
λ1

∣∣∣.



師
大

Power and inverse power methods Explicitly shift QR algorithm Implicity shifted QR algorithm The generalized eigenvalue problem

Theorem
Let u 6= 0 and for any µ set rµ = Au− µu. Then ‖rµ‖2 is
minimized when

µ = u∗Au/u∗u.

In this case rµ ⊥ u.

Proof: W.L.O.G. assume ‖u‖2 = 1. Let
(
u U

)
be unitary and set(

u∗

U∗

)
A
(
u U

)
≡
(
ν h∗

g B

)
=
(
u∗Au u∗AU
U∗Au U∗AU

)
.
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Then(
u∗

U∗

)
rµ =

(
u∗

U∗

)
Au− µ

(
u∗

U∗

)
u

=
(
u∗

U∗

)
A
(
u U

)( u∗

U∗

)
u− µ

(
u∗

U∗

)
u

=
(
ν h∗

g B

)(
u∗

U∗

)
u− µ

(
u∗

U∗

)
u

=
(
ν h∗

g B

)(
1
0

)
− µ

(
1
0

)
=
(
ν − µ
g

)
.

It follows that

‖rµ‖22 = ‖
(
u∗

U∗

)
rµ‖22 = ‖

(
ν − µ
g

)
‖22 = |ν − µ|2 + ‖g‖22.
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Hence
min
µ
‖rµ‖2 = ‖g‖2 = ‖rν‖2.

That is µ = ν = u∗Au. On the other hand, since

u∗rµ = u∗(Au− µu) = u∗Au− µ = 0,

it implies that rµ ⊥ u.

Definition (Rayleigh quotient)

Let u and v be vectors with v∗u 6= 0. Then v∗Au/v∗u is called a
Rayleigh quotient.

If u or v is an eigenvector corresponding to an eigenvalue λ of
A, then

v∗Au

v∗u
= λ

v∗u

v∗u
= λ.

Therefore, u∗kAuk/u
∗
kuk provide a sequence of approximation to

λ in the power method.
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The inverse power method

Inverse power method

Goal
Find the eigenvalue of A that is in a given region or closest to a
certain scalar σ and the corresponding eigenvector.

Let λ1, · · · , λn be the eigenvalues of A. Suppose λ1 is simple
and σ ≈ λ1. Then

µ1 =
1

λ1 − σ
, µ2 =

1
λ2 − σ

, · · · , µn =
1

λn − σ

are eigenvalues of (A− σI)−1 and µ1 →∞ as σ → λ1. Thus
we transform λ1 into a dominant eigenvalue µ1.
The inverse power method is simply the power method applied
to (A− σI)−1.
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The inverse power method

Let
y = (A− σI)−1x and x̂ = y/‖y‖2.

It holds that
(A− σI)x̂ =

x

‖y‖2
≡ w.

Set
ρ = x̂∗(A− σI)x̂ = x̂∗w.

Then

r = [A− (σ + ρ)I]x̂ = (A− σI)x̂− ρx̂ = w − ρx̂.

Algorithm (Inverse power method with a fixed shift)

Choose an initial u0 6= 0.
For i = 0, 1, 2, . . .

Compute vi+1 = (A− σI)−1ui and ki+1 = `(vi+1).
Set ui+1 = vi+1/ki+1
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The inverse power method

The convergence of Algorithm 3 is |λ1−σ
λ2−σ | whenever λ1 and

λ2 are the closest and the second closest eigenvalues to σ.
Algorithm 3 is linearly convergent.

Algorithm (Inverse power method with variant shifts)

Choose an initial u0 6= 0.
Given σ0 = σ.
For i = 0, 1, 2, . . .

Compute vi+1 = (A− σiI)−1ui and ki+1 = `(vi+1).
Set ui+1 = vi+1/ki+1 and σi+1 = σi + 1/ki+1.

Above algorithm is locally quadratic convergent.
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The inverse power method

Connection with Newton method

Consider the nonlinear equations:

F

([
u
λ

])
≡
[
Au− λu
`Tu− 1

]
=
[

0
0

]
. (3)

Newton method for (3): for i = 0, 1, 2, . . .[
ui+1

λi+1

]
=
[
ui
λi

]
−
[
F ′
([

ui
λi

])]−1

F

([
ui
λi

])
.

Since

F ′
([

u
λ

])
=
[
A− λI −u
`T 0

]
,

the Newton method can be rewritten by component-wise

(A− λi)ui+1 = (λi+1 − λi)ui (4)
`Tui+1 = 1. (5)
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The inverse power method

Let

vi+1 =
ui+1

λi+1 − λi
.

Substituting vi+1 into (4), we get

(A− λiI)vi+1 = ui.

By equation (5), we have

ki+1 = `(vi+1) =
`(ui+1)
λi+1 − λi

=
1

λi+1 − λi
.

It follows that

λi+1 = λi +
1

ki+1
.

Hence the Newton’s iterations (4) and (5) are identified with
Algorithm 4.
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The inverse power method

Algorithm (Inverse power method with Rayleigh Quotient)

Choose an initial u0 6= 0 with ‖u0‖2 = 1.
Compute σ0 = uT0Au0.
For i = 0, 1, 2, . . .

Compute vi+1 = (A− σiI)−1ui.
Set ui+1 = vi+1/‖vi+1‖2 and σi+1 = uTi+1Aui+1.

For symmetric A, Algorithm 5 is cubically convergent.
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The explicitly shift QR algorithm

The QR algorithm is an iterative method for reducing a matrix A
to triangular form by unitary similarity transformations.

Algorithm (explicitly shift QR algorithm)

Set A0 = A.
For k = 0, 1, 2, · · ·

Choose a shift σk;
Factor Ak − σkI = QkRk, where Qk is orthogonal and Rk is

upper triangular;
Ak+1 = RkQk + σkI;

end for
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Since
Ak − σkI = QkRk =⇒ Rk = Q∗k(Ak − σkI),

it holds that

Ak+1 = RkQk + σkI

= Q∗k(Ak − σkI)Qk + σkI

= Q∗kAkQk

The algorithm is a variant of the power method.
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The QR algorithm and the inverse power method

Let Q =
(
Q̂ q

)
be unitary and write

Q∗AQ =
(
Q̂∗AQ̂ Q̂∗Aq

q∗AQ̂ q∗Aq

)
≡
(
B̂ ĥ
ĝ∗ µ̂

)
.

If (λ, q) is a left eigenpair of A, then

ĝ∗ = q∗AQ̂ = λq∗Q̂ = 0 and µ̂ = q∗Aq = λq∗q = λ.

That is

Q∗AQ =
(
B̂ ĥ
0 λ

)
.

But it is not an effective computational procedure because it
requires q is an eigenvector of A.
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The QR algorithm and the inverse power method

Let q be an approximate left eigenvector of A with

q∗q = 1, µ̂ = q∗Aq and r = q∗A− µ̂q∗.

Then

r
(
Q̂ q

)
= (q∗A− µ̂q∗)

(
Q̂ q

)
=

(
q∗AQ̂− µ̂q∗Q̂ q∗Aq − µ̂q∗q

)
=

(
q∗AQ̂ 0

)
=
(
ĝ∗ 0

)
.

Therefore,
‖ĝ∗‖2 = ‖r

(
Q̂ q

)
‖2 = ‖r‖2.

The QR algorithm implicitly chooses q to be a vector produced
by the inverse power method with shift σ.
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The QR algorithm and the inverse power method

Write the QR factorization of A− σI as(
Q̂∗

q∗

)
(A− σI) = R ≡

(
R̂∗

r∗

)
.

It holds that

q∗(A− σI) = r∗ = rnne
T
n ⇒ q∗ = rnne

T
n (A− σI)−1 (6)

Hence, the last column of Q generated by the QR algorithm is
the result of the inverse power method with shift σ applied to eTn .

Question
How to choose shift σ?
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The QR algorithm and the inverse power method

Let

A =
(
B h
g∗ µ

)
.

Then

eTnAen = µ and eTnA− µen =
(
g∗ µ

)
− µen =

(
g∗ 0

)
.

If we take (µ, en) to be an approximate left eigenvector of
A, then the corresponding residual norm is ‖g‖2.
If g is small, then µ should approximate an eigenvalue of A
and choose σ = µ = eTnAen (Rayleigh quotient shift).

Question
Why the QR algorithm converges?
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The QR algorithm and the inverse power method

Let

A− σI ≡
(
B − σI h
g∗ µ− σ

)
= QR ≡

(
P f
e∗ π

)(
S r
0 ρ

)
(7)

be the QR factorization of A− σI. Take

Â ≡
(
B̂ ĥ
ĝ∗ µ̂

)
= RQ+ σI. (8)

Since Q is unitary, we have

‖e‖22 + π2 = ‖f‖22 + π2 = 1

which implies that

‖e‖2 = ‖f‖2 and |π| ≤ 1.
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The QR algorithm and the inverse power method

From (7), we have
g∗ = e∗S.

Assume S is nonsingular and κ = ‖S−1‖2, then

‖e‖2 ≤ κ‖g‖2.

Since

R ≡
(
S r
0 ρ

)
= Q∗(A−σI) ≡

(
P ∗ e
f∗ π̄

)(
B − σI h
g∗ µ− σ

)
,

it implies that
ρ = f∗h+ π̄(µ− σ)

and then

|ρ| ≤ ‖f‖‖h‖+ |π||µ− σ| = ‖e‖2‖h‖2 + |π||µ− σ|
≤ κ‖g‖2‖h‖2 + |µ− σ|.
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The QR algorithm and the inverse power method

From (8), we have
ĝ∗ = ρe∗

which implies that

‖ĝ‖2 ≤ |ρ|‖e‖2 ≤ |ρ|κ‖g‖2 ≤ κ2‖h‖2‖g‖22 + κ|µ− σ|‖g‖2.

Consequently,

‖gj+1‖2 ≤ κ2
j‖hj‖2‖gj‖22 + κj |µj − σj |‖gj‖2.

If g0 is sufficiently small and µ0 is sufficiently near a simple
eigenvalue λ, then gj → 0 and µj → λ.
Assume ∃ η and κ such that

‖hj‖2 ≤ η and κj = ‖S−1
j ‖2 ≤ κ.
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The QR algorithm and the inverse power method

Take the Rayleigh quotient shift σj = µj . Then

‖gj+1‖2 ≤ κ2η‖gj‖22,

which means that ‖gj‖2 converges at least quadratically to zero.
If A0 is Hermitian, then Ak is also Hermitian. It holds that

hj = gj

and then
‖gj+1‖2 ≤ κ2‖gj‖32.

Therefore, the convergent rate is cubic.
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The unshifted QR algorithm

The unshifted QR algorithm

QR algorithm

Ak+1 = Q∗kAkQk

or
Ak+1 = Q∗kQ

∗
k−1 · · ·Q0A0Q0 · · ·Qk−1Qk

for k = 0, 1, 2, · · · .

Let
Q̂k = Q0 · · ·Qk−1Qk.

Then
Ak+1 = Q̂∗kA0Q̂k.
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The unshifted QR algorithm

Theorem
Let Q0, · · · , Qk and R0, · · · , Rk be the orthogonal and triangular
matrices generated by the QR algorithm with shifts σ0, · · · , σk
starting with A. Let

Q̂k = Q0 · · ·Qk and R̂k = R0 · · ·Rk.

Then
Q̂kR̂k = (A− σ0I) · · · (A− σkI).

Proof: Since

Rk = (Ak+1 − σkI)Q∗k
= Q̂∗k(A− σkI)Q̂kQ∗k
= Q̂∗k(A− σkI)Q̂k−1,
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The unshifted QR algorithm

it follows that

R̂k = RkR̂k−1 = Q̂∗k(A− σkI)Q̂k−1R̂k−1

and
Q̂kR̂k = (A− σkI)Q̂k−1R̂k−1.

By induction on Q̂k−1R̂k−1, we have

Q̂kR̂k = (A− σkI) · · · (A− σ0I).

If σk = 0 for k = 0, 1, 2, · · · , then Q̂kR̂k = Ak+1 and

r̂
(k)
11 q̂

(k)
1 = Q̂kR̂ke1 = Ak+1e1.

This implies that the first column of Q̂k is the normalized result
of applying k + 1 iterations of the power method to e1.



師
大

Power and inverse power methods Explicitly shift QR algorithm Implicity shifted QR algorithm The generalized eigenvalue problem

The unshifted QR algorithm

Hence, q̂(k)1 approaches the dominant eigenvector of A, i.e., if

Ak = Q̂∗kAQk =
(
µk h∗k
gk Bk

)
,

then gk → 0 and µk → λ1, where λ1 is the dominant eigenvalue
of A.

Theorem
Let

X−1AX = Λ ≡ diag(λ1, · · · , λn)

where |λ1| > |λ2| > · · · > |λn| > 0. Suppose X−1 has an LU
factorization X−1 = LU, where L is unit lower triangular, and let
X = QR be the QR factorization of X. If Ak has the QR
factorization Ak = Q̂kR̂k, then ∃ diagonal matrices Dk with
|Dk| = I such that Q̂kDk −→ Q.



師
大

Power and inverse power methods Explicitly shift QR algorithm Implicity shifted QR algorithm The generalized eigenvalue problem

The unshifted QR algorithm

Proof: By the assumptions, we get

Ak = XΛkX−1 = QRΛkLU = QR(ΛkLΛ−k)(ΛkU).

Since
(ΛkLΛ−k)ij = `ij(λi/λj)k → 0 for i > j,

it holds that
ΛkLΛ−k → I as k →∞.

Let
ΛkLΛ−k = I + Ek,

where Ek → 0 as k →∞. Then

Ak = QR(I + Ek)(ΛkU) = Q(I +REkR
−1)(RΛkU).
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The unshifted QR algorithm

Let
I +REkR

−1 = Q̄kR̄k

be the QR factorization of I +REkR
−1. Then

Ak = (QQ̄k)(R̄kRΛkU).

Since
I +REkR

−1 → I as k →∞,

we have
Q̄k → I as k →∞.

Let the diagonals of R̄kRΛkU be δ1, · · · , δm and set

Dk = diag(δ̄1/|δ1|, · · · , δ̄n/δn).

Then Ak = (QQ̄kD−1
k )(DkR̄kRΛkU) = Q̂kR̂k.
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The unshifted QR algorithm

Since the diagonals of DkR̄kRΛkU and R̂k are positive, by the
uniqueness of the QR factorization

Q̂k = QQ̄kD
−1
k ,

which implies that

Q̂kDk = QQ̄k → Q as k →∞.

Remark:
(i) Since X−1AX = Λ ≡ diag(λ1, · · · , λn), we have

A = XΛX−1 = (QR)Λ(QR)−1 = Q(RΛR−1)Q∗ ≡ QTQ∗

which is a Schur decomposition of A. Therefore, the
column of Q̂kDk converge to the Schur vector of A and
Ak = Q̂∗kAQ̂k converges to the triangular factor of the
Schur decomposition of A.
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The unshifted QR algorithm

(ii) Write

R(ΛkLΛ−k) =

 R11 r1,i R1,i+1

0 rii r∗i,i+1

0 0 Ri+1,i+1


 L

(k)
11 0 0

`
(k)∗
i,1 1 0

L
(k)
i+1,1 `

(k)
i+1,i L

(k)
i+1,i+1

 .

If `(k)∗i,1 , L
(k)
i+1,1 and `(k)i+1,i are zeros, then

R(ΛkLΛ−k) =

 R11L
(k)
11 r1,i R1,i+1Li+1,i+1

0 ri,i r∗i,i+1Li+1,i+1

0 0 Ri+1,i+1Li+1,i+1


and

I +REkR
−1 = R(I + Ek)R−1 = R(ΛkLΛ−k)R−1

=

 G11 g1,i G1,i+1

0 gii g∗i,i+1

0 0 Gi+1,i+1


= Q̄kR̄k ∼ QR factorization
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The unshifted QR algorithm

which implies that

Q̄k = diag(Q̄k11, w, Q̄
k
i+1,i+1)

and

Ak = Q̂∗kAQ̂k = Q̄∗kQ
∗AQQ̄k = Q̄∗kTQ̄k

=

 A
(k)
11 a

(k)
1,i A

(k)
1,i+1

0 λi A
(k)
i,i+1

0 0 A
(k)
i+1,i+1

 .

Therefore, Ak decouples at its ith diagonal element.
The rate of convergence is at least as fast as the approach of
max{|λi/λi−1|, |λi+1/λi|}k to zero.
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Hessenberg form

Definition
A Householder transformation or elementary reflector is a
matrix of

H = I − uu∗

where ‖u‖2 =
√

2.

Note that H is Hermitian and unitary.

Theorem
Let x be a vector such that ‖x‖2 = 1 and x1 is real and
nonnegative. Let

u = (x+ e1)/
√

1 + x1.

Then
Hx = (I − uu∗)x = −e1.
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Hessenberg form

Proof:

I − uu∗x = x− (u∗x)u = x− x∗x+ x1√
1 + x1

· x+ e1√
1 + x1

= x− (x+ e1) = −e1

Theorem
Let x be a vector with x1 6= 0. Let

u =
ρ x
‖x‖2 + e1√
1 + ρ x1

‖x‖2

,

where ρ = x̄1/|x1|. Then

Hx = −ρ̄‖x‖2e1.
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Hessenberg form

Proof: Since

[ρ̄x∗/‖x‖2 + eT1 ][ρx/‖x‖2 + e1]
= ρ̄ρ+ ρx1/‖x‖2 + ρ̄x̄1/‖x‖2 + 1
= 2[1 + ρx1/‖x‖2],

it follows that
u∗u = 2 ⇒ ‖u‖2 =

√
2

and

u∗x =
ρ̄‖x‖2 + x1√

1 + ρ x1
‖x‖2

.
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Hessenberg form

Hence,

Hx = x− (u∗x)u = x− ρ̄‖x‖2 + x1√
1 + ρ x1

‖x‖2

ρ x
‖x‖2 + e1√
1 + ρ x1

‖x‖2

=

[
1−

(ρ̄‖x‖2 + x1) ρ
‖x‖2

1 + ρ x1
‖x‖2

]
x− ρ̄‖x‖2 + x1

1 + ρ x1
‖x‖2

e1

= − ρ̄‖x‖2 + x1

1 + ρ x1
‖x‖2

e1

= −ρ̄‖x‖2e1.
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Hessenberg form

• Reduction to Hessenberg form
Take

A =
(
α11 a∗12

a21 A22

)
.

Let Ĥ1 be a Householder transformation such that

Ĥ1a21 = v1e1.

Set H1 = diag(1, Ĥ1). Then

H1AH1 =
(

α11 a∗12Ĥ1

Ĥ1a21 Ĥ1A22Ĥ1

)
=
(

α11 a∗12Ĥ1

v1e1 Ĥ1A22Ĥ1

)
For the general step, suppose H1, · · · , Hk−1 are Householder
transformation such that

Hk−1 · · ·H1AH1 · · ·Hk−1 =

 A11 a1,k A1,k+1

0 αkk a∗k,k+1

0 ak+1,k Ak+1,k+1

 ,
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Hessenberg form

where A11 is a Hessenberg matrix of order k − 1. Let Ĥk be a
Householder transformation such that

Ĥkak+1,k = vke1.

Set Hk = diag(Ik, Ĥk), then

HkHk−1 · · ·H1AH1 · · ·Hk−1Hk =

 A11 a1,k A1,k+1Ĥk

0 αkk a∗k,k+1Ĥk

0 vke1 ĤkAk+1,k+1Ĥk

 .
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Hessenberg form


× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 H1−→


× × × × ×
× × × × ×
0 × × × ×
0 × × × ×
0 × × × ×



H2−→


× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 × × ×



H3−→


× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×
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Hessenberg form

Definition (Givens rotation)
A plane rotation (also called a Givens rotation) is a matrix of the
form

P =
(

c s
−s̄ c̄

)
where |c|2 + |s|2 = 1.

Given a 6= 0 and b, set

v =
√
|a|2 + |b|2, c = |a|/v and s =

a

|a|
· b̄
v
,

then (
c s
−s̄ c̄

)(
a
b

)
=

(
v
a

|a|
0

)
.
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Hessenberg form

Let

Pij =


Ii−1

c s
Ij−i−1

−s̄ c̄
In−j

 .


× × × ×
× × × ×
× × × ×
× × × ×

 P12−→


+ + + +
0 + + +
× × × ×
× × × ×

P13−→


+ + + +
0 × × ×
0 + + +
× × × ×



P14−→


+ + + +
0 × × ×
0 × × ×
0 + + +
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Hessenberg form


× × × ×
× × × ×
× × × ×
× × × ×

 P12−→


+ 0 × ×
+ + × ×
+ + × ×
+ + × ×



P13−→


+ 0 0 ×
+ × + ×
+ × + ×
+ × + ×



P14−→


+ 0 0 0
+ × × +
+ × × +
+ × × +
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Hessenberg form

(i) Reduce a matrix to Hessenberg form by QR factorization.
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 Q1AQ
∗
1−−−−→


× × × × ×
× × × × ×
0 × × × ×
0 × × × ×
0 × × × ×



Q2AQ
∗
2−−−−→


× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 × × ×



Q3AQ
∗
3−−−−→


× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×

 : upper Hessenberg
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Hessenberg form

(ii) Reduce upper Hessenberg matrix to upper triangular form
by Givens rotations

× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×

P12A1−−−→


× × × × ×
0 × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×



P23A2−−−→


× × × × ×
0 × × × ×
0 0 × × ×
0 0 × × ×
0 0 0 × ×

P34A3−−−→


× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 × ×



P45A4−−−→


× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 0 ×

 = T (upper triangular)
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Hessenberg form


× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 0 ×

A1P
∗
12−−−→


+ + × × ×
+ + × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 0 ×



A2P
∗
23−−−→


× + + × ×
× + + × ×
0 + + × ×
0 0 0 × ×
0 0 0 0 ×

A3P
∗
34−−−→


× × + + ×
× × + + ×
0 × + + ×
0 0 + + ×
0 0 0 0 ×



A4P
∗
45−−−→


× × × + +
× × × + +
0 × × + +
0 0 × + +
0 0 0 + +

 = H (upper Hessenberg)
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Hessenberg form

A practical algorithm for reducing an upper Hessenberg matrix
H to Schur form:

1 If the shifted QR algorithm is applied to H, then hn,n−1 will
tend rapidly to zero and other subdiagonal elements may
also tend to zero, slowly.

2 If hi,i−1 ≈ 0, then deflate the matrix to save computation.
How to decide hi,i−1 to be negligible?
If

|hi+1,i| ≤ ε‖A‖F
for a small number ε, then hi+1,i is negligible.
Let Q be an orthogonal matrix such that

H = Q∗AQ ≡ [hij ]

is upper Hessenberg. Let

H̃ = H − hi+1,iei+1e
T
i ∼ deflated matrix
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Hessenberg form

Set
E = Q(hi+1,iei+1e

T
i )Q∗.

Then
H̃ = Q∗(A− E)Q.

If |hi+1,i| ≤ ε‖A‖F , then

‖E‖F = ‖Q(hi+1,iei+1e
T
i )Q∗‖F = |hi+1,i| ≤ ε‖A‖F

or

‖E‖F
‖A‖F

≤ ε.

When ε equals the rounding unit εM , the perturbation E is
of a size with the perturbation due to rounding the
elements of A.
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Hessenberg form

The Wilkinson shift

1 The Rayleigh-quotient shift σ = hn,n
⇒ local quadratic convergence to simple

2 If H is real
⇒ Rayleigh-quotient shift is also real
⇒ can not approximate a complex eigenvalue

3 The Wilkinson shift µ :

If λ1, λ2 are eigenvalues of
(
hn−1,n−1 hn−1,n

hn,n−1 hn,n

)
with

|λ1 − hn,n| ≤ |λ2 − hn,n|, then µ = λ1.
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Hessenberg form

Algorithm
do k = 1, 2, · · ·

compute Wilkinson shift µk
Reduce upper Hessenberg Hk − µkI to upper triangular Tk :

P
(k)
n−1,n · · ·P

(k)
12 (Hk − µkI) = Tk;

compute

Hk+1 = TkP
(k)∗
12 · · ·P (k)∗

n−1,n + µkI;

end do

⇒ Schur form of A⇒ eigenvalues of A.

Question
How to get eigenvectors of A?
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Hessenberg form

If A = QTQ∗ is the Schur decomposition of A and X is the
matrix of right eigenvectors of T , then QX is the matrix of right
eigenvalues of A.
If

T =

 T11 t1,k t1,k+1

0 τkk t∗k,k+1

0 0 Tk+1,k+1


and τkk is a simple eigenvalue of T , then −(T11 − τkkI)−1t1,k

1
0


is an eigenvector of T and(

0 1 −t∗k,k+1(Tk+1,k+1 − τkkI)−1
)

is a left eigenvector of T corresponding to τkk.
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The implicity shifted QR algorithm

Theorem (Real Schur form)
Let A be real of order n. Then ∃ an orthogonal matrix U such
that

UTAU =


T11 T12 · · · T1k

0 T22 · · · T2k
...

. . . . . .
...

0 · · · 0 Tkk

 ∼ quasi-triangular

The diagonal blocks of T are of order one or two. The blocks of
order one contain the real eigenvalue of A. The block of order
two contain the pairs of complex conjugate eigenvalue of A.
The blocks can be made to appear in any order.
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Proof: Let (λ, x) be a complex eigenpair with λ = µ+ iν and
x = y + iz. That is

2y = x+ x̄, 2zi = x− x̄
and

Ay =
1
2

[λx+ λ̄x̄]

=
1
2

[(µy − νz) + i(µz + νy) + (µy − νz)− i(νy + µz)]

= µy − νz. (9)

Similarly,

Az =
1
2i

[λx− λ̄x̄] = νy + µz. (10)

From (9) and (10), we have

A
(
y z

)
=

(
µy − νz νy + µz

)
=

(
y z

)( µ ν
−ν µ

)
≡
(
y z

)
L.
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Let (
y z

)
=
(
X1 X2

)( R
0

)
= X1R

be a QR factorization of
(
y z

)
. Since y and z are linearly

independent, it holds that R is nonsingular and

X1 =
(
y z

)
R−1.

Consequently,

AX1 = A
(
y z

)
R−1 =

(
y z

)
LR−1 = X1RLR

−1.

Using this result and (X1 X2) is unitary, we have(
XT

1

XT
2

)
A
(
X1 X2

)
=

(
XT

1 AX1 XT
1 AX2

XT
2 AX1 XT

2 AX2

)
=

(
RLR−1 XT

1 AX2

0 XT
2 AX2

)
. (11)
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Since λ and λ̄ are eigenvalues of L and RLR−1 is similar to L,
(11) completes the deflation of the complex conjugate pair λ
and λ̄.

Remark

AX1 = X1(RLR−1)
⇒ A maps the column space of X1 into itself
⇒ span(X1) is called an eigenspace or invariant subspace.

• Francis double shift

1 If the Wilkinson shift σ is complex, then σ̄ is also a
candidate for a shift.

2 Apply two steps of the QR algorithm, one with shift σ and
the other with shift σ̄ to yield a matrix Ĥ.
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Let
Q̂R̂ = (H − σI)(H − σ̂I)

be the QR factorization of (H − σI)(H − σ̂I), then

Ĥ = Q̂∗HQ̂.

Since

(H − σI)(H − σ̂I) = H2 − 2Re(σ)H + |σ|2I ∈ Rn×n,

we have that Q̂ ∈ Rn×n and Ĥ ∈ Rn×n. Therefore, the QR
algorithm with two complex conjugate shifts preserves reality.

Francis double shift strategy
1 Compute the Wilkinson shift σ;
2 From the matrix H2 − 2Re(σ)H + |σ|2I := H̃ ∼ O(n3)

operations;
3 Compute QR factorization of H̃ : H̃ = Q̂R̂;
4 Compute Ĥ = Q̂∗HQ̂.
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• The uniqueness of Hessenberg reduction

Definition
Let H be upper Hessenberg of order n. Then H is unreduced if
hi+1,i 6= 0 for i = 1, · · · , n− 1.

Theorem (Implicit Q theorem)

Suppose Q =
(
q1 · · · qn

)
and V =

(
v1 · · · vn

)
are

unitary matrices with

Q∗AQ = H and V ∗AV = G

being upper Hessenberg. Let k denote the smallest positive
integer for which hk+1,k = 0, with the convection that k = n if H
is unreduced. If v1 = q1, then vi = ±qi and |hi,i−1| = |gi,i−1| for
i = 2, · · · , k. Moreover, if k < n, then gk+1,k = 0.
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Proof: Define W ≡
(
w1 · · · wn

)
= V ∗Q. Then

GW = GV ∗Q = V ∗AQ = V ∗QH = WH

which implies that

hi,i−1wi = Gwi−1 −
i−1∑
j=1

hj,i−1wj for i = 2, · · · , k.

Since v1 = q1, it holds that

w1 = e1,

h21w2 = Gw1 − h11w1 = α21e1 + α22e2.

Assume
wi−1 = αi−1,1e1 + · · ·+ αi−1,i−1ei−1.
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Then

hi,i−1wi = G[αi−1,1e1 + · · ·+ αi−1,i−1ei−1]−
i−1∑
j=1

βi,jej

= ᾱi,1e1 + · · ·+ ᾱi,iei.

By induction,
(
w1 · · · wk

)
is upper triangular. Since V and

Q are unitary, W = V ∗Q is also unitary and then

w∗1wj = 0, for j = 2, · · · , k.

That is
w1j = 0, for j = 2, · · · , k

which implies that
w2 = ±e2.

Similarly, by
w∗2wj = 0, for j = 3, · · · , k,
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i.e.,
w2j = 0, for j = 3, · · · , k.

We get w3 = ±e3. By induction,

wi = ±ei, for i = 2, · · · , k.

Since wi = V ∗qi and hi,i−1 = w∗iGwi−1, we have

vi = V ei = ±V wi = ±qi

and
|hi,i−1| = |gi,i−1| for i = 2, · · · , k.

If hk+1,k = 0, then

gk+1,k = eTk+1Gek = ±eTk+1GWek = ±eTk+1WHek

= ±eTk+1

k∑
i=1

hikwi = ±
k∑
i=1

hike
T
k+1ei = 0



師
大

Power and inverse power methods Explicitly shift QR algorithm Implicity shifted QR algorithm The generalized eigenvalue problem

The implicit double shift

General algorithm
1 Determine the first column c1 of
C = H2 − 2Re(σ)H + |σ|2I.

2 Let Q0 be a Householder transformation such that
Q∗0c1 = σe1.

3 Set H1 = Q∗0HQ0.
4 Use Householder transformation Q1 to reduce H1 to upper

Hessenberg form Ĥ.
5 Set Q̂ = Q0Q1.

Question
General algorithm= the Francis double shift QR algorithm ?
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The implicit double shift

Answer:

(I) Let

C =
(
c1 C∗

)
= Q̂R̂ =

(
q̂ Q̂∗

)( ρ r∗

0 R∗

)
be the QR factorization of C. Then c1 = ρq̂. Partition
Q0 ≡

(
q0 Q

(0)
∗

)
, then c1 = σQ0e1 = σq0 which implies

that q̂ and q0 are proportional to c1.
(II) Since Ĥ = Q∗1H1Q1 is upper Hessenberg, we have

Q1e1 = e1.

Hence,
(Q0Q1)e1 = Q0e1 = q0

which implies that the first column of Q0Q1 is proportional
to q̂.
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The implicit double shift

(III) Since (Q0Q1)∗H(Q0Q1) is upper Hessenberg and the first
column of Q0Q1 is proportional to q̂, by the implicit Q
Theorem, if Ĥ is unreduced, then Q̂ = Q0Q1 and
Ĥ = (Q0Q1)∗H(Q0Q1).

• Computation of the first column of C = H2− 2Re(σ)H + |σ|2I:
Let

t ≡ 2Re(σ) = trace
(
hn−1,n−1 hn−1,n

hn,n−1 hn,n

)
,

d ≡ |σ|2 = det
(
hn−1,n−1 hn−1,n

hn,n−1 hn,n

)
.

Since H is upper Hessenberg, it holds that the first column of
H2 is  h11 h12

h21 h22

h32

( h11

h21

)
=

 h2
11 + h12h21

h21(h11 + h22)
h21h32

 .
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The implicit double shift

Thus, the first three components of the first column of C are c1
c2
c3

 =

 h2
11 + h12h21 − t · h11 + d
h21(h11 + h22)− t · h21

h21h32


= h21

 (hnn − h11)(hn−1,n−1 − h11)− hn,n−1hn−1,n/h21 + h12

(h22 − h11)− (hnn − h11)− (hn−1,n−1 − h11)
h32


which requires O(1) operations.
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The implicit double shift


× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×

Q0H−−−→


+ + + + + +
+ + + + + +
+ + + + + +
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×



HQ0−−−→


+ + + × × ×
+ + + × × ×
+ + + × × ×
+ + + × × ×
0 0 0 × × ×
0 0 0 0 × ×

Q1HQ1−−−−−→


× × × × × ×
× × × × × ×
0 × × × × ×
0 + × × × ×
0 + 0 × × ×
0 0 0 0 × ×



Q2HQ2−−−−−→


× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 + × × ×
0 0 + 0 × ×

Q3HQ3−−−−−→


× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 + × ×
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The implicit double shift

Q4HQ4−−−−−→


× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×

 ∼ O(n2) operations

• Deflation:

1 If the eigenvalues of
(
hn−1,n−1 hn−1,n

hn,n−1 hn,n

)
are complex

and nondefective, then hn−1,n−2 converges quadratically to
zero.

2 If the eigenvalues are real and nondefective, both the
hn−1,n−2 converge quadratically to zero. The subdiagonal
elements other than hn−1,n−2 and hn,n−1 may show a slow
convergent to zero.

3 Deflate matrix to a middle size of matrix.
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The implicit double shift

1 Converge to a block upper triangular with order one or two
diagonal blocks. i, e. converge to real Schur form.

• Eigenvector:
Suppose

T =

 T11 t12 t13

0 τ22 τ23

0 0 τ33


and

(
xT1 ξ2 1

)T is the eigenvector corresponding to
eigenvalue λ = τ33. Then T11 t12 t13

0 τ22 τ23

0 0 τ33

 x1

ξ2
1

 = λ

 x1

ξ2
1

 .

That is {
τ22ξ2 − λξ2 = −τ23,
T11x1 − λx1 = −t13 − ξ2t12,
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The implicit double shift

or{
ξ2 = −τ23/(τ22 − λ),
(T11 − λI)x1 = −t13 − ξ2t12. ∼ solve by back-substitution

Suppose

T =

 T11 t12 T13

0 τ22 tT23

0 0 T33


where T33 ∈ R2×2. Write T11 t12 T13

0 τ22 tT23

0 0 T33

 X1

xT2
X3

 =

 X1

xT2
X3

L, L ∈ R2×2

(I) Suppose X3 is nonsingular. Then

T33X3 = X3L =⇒ L = X−1
3 T33X3.

It follows that L is similar to T33.
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The implicit double shift

Let x3 = y3 + iz3 be the right eigenvector of T33 and the
corresponding eigenvalue be µ+ iν, i.e.,

T33(y3 + iz3) = (µ+ iν)(y3 + iz3)
= (µy3 − νz3) + i(νy3 + µz3)

which implies that

T33y3 = µy3 − νz3 and T33z3 = νy3 + µz3

or

T33

(
y3 z3

)
=

(
µy3 − νz3 νy3 + µz3

)
=

(
y3 z3

)( µ ν
−ν µ

)
.

Take X3 =
(
y3 z3

)
. Then

L =
(

µ ν
−ν µ

)
.
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The implicit double shift

(II) Since
τ22x

T
2 − xT2 L = −tT23X3,

it implies that
xT2 (τ22I − L) = −tT23X3.

Since τ22 is not an eigenvalue of L, we get that τ22I − L is
nonsingular and

xT2 = −tT23X3(τ22I − L)−1.

(III) On the other hand,

T11X1 −X1L = −T13X3 − t12x
T
2 .

This is a Sylvester equation, which we can solve for X1

because T11 and L have no eigenvalues in common.



師
大

Power and inverse power methods Explicitly shift QR algorithm Implicity shifted QR algorithm The generalized eigenvalue problem

The generalized eigenvalue problem

Ax = λBx ∼ generalized eigenvalue problem

Definition
Let A and B be of order n. The pair (λ, x) is an eigenpair or
right eigenpair of the pencil (A,B) if

Ax = λBx, x 6= 0

The pair (λ, y) is a left eigenpair of the pencil (A,B) if

y∗A = λy∗B, y 6= 0
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Remark
If B is singular, it is possible for any number λ to be an
eigenvalue of the pencil (A,B).

1 If A and B have a common null vector x, then (λ, x) is an
eigenpair of (A,B) for any λ.

2 Example:

0 =

 1 0 0
0 0 0
0 0 1

− λ
 0 1 0

0 0 1
0 0 0

 x1

x2

x3

 =

 x1 − λx2

−λx3

x3


⇒ x3 = 0, x1 = λx2 ∀λ

The determinant of A− λB defined in (I) and (II) is identically
zero.
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Definition
A matrix pencil (A,B) is regular if det(A− λB) is not identically
zero.

Remark
A regular matrix pencil can have only a finite number of
eigenvalues.

To see this

Ax = λBx, x 6= 0⇐⇒ det(A− λB) = 0

Now, P (λ) = det(A− λB) is a polynomial of degree m ≤ n.
If (A,B) is regular, then P (λ) is not identically zero.
Hence P (λ) has m zeros.
That is (A,B) has m eigenvalues.

If P (λ) ≡ constant, then (A,B) has no eigenvalues. This can
only occur if B is singular.
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Example
Consider

A = I3, B =

 0 1 0
0 0 1
0 0 0

 .

Then det(A− λB) ≡ 1 for all λ. From

(A− λB)x = 0,

we have
x1 − λx2 = 0, x2 − λx3 = 0, x3 = 0

which implies that
x1 = x2 = x3 = 0.

Therefore, it does not exist (λ, x) with x 6= 0 such that
(A− λB)x = 0. It follows that (A,B) has no eigenvalues.
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λ is an eigenvalue of (A , B)⇐⇒ µ = λ−1 is an eigenvalue
of (B , A)
If B is singular, then Bx = 0 for some x 6= 0.
⇒ 0 is an eigenvalue of (B , A)
⇒∞ = 1/0 is an eigenvalue of (A , B)
⇒ If P (λ) ≡ constant, then the pencil has infinite
eigenvalues.

Definition
Let (A,B) be a matrix pencil, U and V be nonsingular. Then
the pencil (U∗AV , U∗BV ) is said to be equivalent to (A,B).

Theorem
Let (λ, x) and (λ, y) be left and right eigenpairs of the regular
pencil (A,B). If U and V are nonsingular, then (λ, V −1x) and
(λ,U−1y) are eigenpairs of (U∗AV , U∗BV ).
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Since

det(U∗AV − λU∗BV ) = det(U∗) det(V ) det(A− λB),

it holds that the eigenvalues and their multiplicity are preserved
by equivalence transformations.

Theorem (Generalized Schur form)

Let (A,B) be a regular pencil. Then ∃ unitary matrices U and V
such that S = U∗AV and T = U∗BV are upper triangular.

Proof:
Let v be an eigenvector of (A,B) normalized so that ‖v‖2 = 1,
and let

(
v V⊥

)
be unitary.

Since (A,B) is regular, we have Av 6= 0 or Bv 6= 0, said
Av 6= 0.
Moreover, if Bv 6= 0, then, from Av = λBv, it follows that
Av//Bv.
Let u = Av/‖Av‖2 and

(
u U⊥

)
be unitary.
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Then(
u U⊥

)∗
A
(
v V⊥

)
=
(

u∗Av u∗AV⊥
U∗⊥Av U∗⊥AV⊥

)
≡
(
σ11 s∗12

0 Â

)
.

(∵ U∗⊥Av = U∗⊥u = 0.) Similarly,

(
u U⊥

)∗
B
(
v V⊥

)
=
(

u∗Bv u∗BV⊥
U∗⊥Bv U∗⊥BV⊥

)
≡
(
τ11 t∗12

0 B̂

)
.

(∵ U∗⊥Bv = λ−1U∗⊥Av = λ−1‖Av‖2U∗⊥u = 0.) The proof is
completed by an inductive reduction of (Â, B̂) to triangular
form.
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Definition
Let (A,B) be a regular pencil of order n.

1 P(A,B)(λ) ≡ det(A− λB) : characteristic poly. of (A,B).
2 algebraic multiplicity of a finite eigenvalue of (A,B) =

multiplicity of a zero of P(A,B)(λ) = 0.
3 deg(P(A,B)(λ)) = m < n then (A,B) has an infinite

eigenvalue of algebraic multiplicity n−m.

Let (A,B) be a regular pencil and

U∗AV = [αij ], U∗BV = [βij ]

be a generalized Schur form of (A,B). Then

P(A,B)(λ) =
∏
βii 6=0

(αii − λβii)
∏
βii=0

αii · det(U) det(V ∗).



師
大

Power and inverse power methods Explicitly shift QR algorithm Implicity shifted QR algorithm The generalized eigenvalue problem

If βii 6= 0, then λ = αii/βii is a finite eigenvalue of (A,B).
Otherwise, the eigenvalue is infinite.

Ax = λBx ⇔ βiiAx = αiiBx

⇔ (τβii)Ax = (ταii)Bx, τ ∈ C.

Definition
< αii, βii >= {τ(αii, βii) : τ ∈ C} is called the projective
representation of the eigenvalue.

< 0, 1 >: zero eigenvalue,
< 1, 0 >: infinite eigenvalue,
< λ, 1 >: ordinary eigenvalue.

If (λ, x) and (λ, y) are simple right and left eigenpair of A,
respectively, then x∗y 6= 0. This allows us to compute the
eigenvalue in the form of a Rayleigh quotient

y∗Ax/y∗x.
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But, the left and right eigenvectors of a simple eigenvalue of
(A , B) can be orthogonal.

Example
Consider

A− λB =
(

0 2
1 0

)
− λ

(
0 1
1 0

)
.

Then
det(A− λB) = (1− λ)(2− λ).

It follows that (1 , e1) and (1 , e2) are right and left eigenpair of
(A , B), respectively. Thus, eT1 e2 = 0.
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Perturbation theory:
Let (< α , β > , x) be a simple eigenpair of regular pencil
(A,B) and

(Ã, B̃) = (A+ E,B + F )

with √
‖E‖2F + ‖F‖2F = ε.

If (< α̃, β̃ >, x̃) is an eigenpair of (Ã, B̃), then
(< α̃, β̃ >, x̃) −→ (< α, β >, x) as ε→ 0.
Proof: Assume B is nonsingular⇒ B + F is also nonsingular.
Hence,

(A+ E)x̃ = λ̃(B + F )x̃⇒ (B + F )−1(A+ E)x̃ = λ̃x̃.

Similarly, for the left eigenvector ỹ,

ỹ∗(A+ E)(B + F )−1 = λ̃ỹ∗

By Theorem 3.13 in Chapter 1,

sin ∠(x, x̃) = O(ε), sin ∠(y, ỹ) = O(ε).
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Suppose ‖x‖2 = ‖x̃‖2 = ‖y‖2 = ‖ỹ‖2 = 1. Then

cos ∠(x, x̃) = |x∗x̃|, cos ∠(y, ỹ) = |y∗ỹ|

or
|x∗x̃|2 = cos2 ∠(x, x̃) = 1− sin2 ∠(x, x̃) = 1−O(ε),

which implies that

x̃ = x+O(ε) and ỹ = y +O(ε).

Therefore,

< α̃, β̃ > = < ỹ∗Ãx̃, ỹ∗Bx̃ >

= < y∗Ax, y∗Bx > +O(ε)
= < α, β > +O(ε).
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Theorem
Let x and y be a simple eigenvectors of the regular pencil
(A,B), and < α, β >=< y∗Ax, y∗Bx > be the corresponding
eigenvalue. Then

< α̃, β̃ >=< α+ y∗Ex, β + y∗Fx > +O(ε2). (12)

Proof: Since (A,B) is regular, it holds that not both y∗A and y∗B
can be zero. Assume u∗ ≡ y∗A 6= 0. By (4.6), (y∗Ax = 0⇒ Ax = 0
and y∗A = 0)

u∗x = y∗Ax 6= 0.

Let U be an orthonormal basis for the orthogonal complement of u.
Then

(
x U

)
is nonsingular. Write x̃ = rx+ Uc for some r and c.

Since x̃→ x, it implies that r → 1. Setting e = Uc/r, we may write
x̃ = x+ e with ‖e‖2 = O(ε). Then

y∗Ae = u∗Uc/r = 0.
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On the other hand, since

0 6= y∗A = λy∗B,

it holds that λ 6= 0. By the fact that

0 = y∗Ae = λy∗Be,

we get y∗Be = 0. Similarly, write

ỹ = y + f, where f∗Ax = f∗Bx = 0 and ‖f‖2 = O(ε).

Now,

α̃ = ỹ∗Ãx̃ = (y + f)∗(A+ E)(x+ e)
= y∗Ax+ y∗Ex+ f∗Ax+ y∗Ae+ f∗Ae+ f∗Ee+ f∗Ex+ y∗Ee

= α+ y∗Ex+ f∗Ae+ f∗Ee+ f∗Ex+ y∗Ee

= α+ y∗Ex+O(ε2).
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Similarly,
β̃ = β + y∗Fx+O(ε2)

The expression (12) can be written in the form

< α̃, β̃ >=< y∗Ãx, y∗B̃x > +O(ε2).

If λ is finite, then

λ̃ =
y∗Ãx

y∗B̃x
+O(ε2)

The chordal matric

< α, β >= {τ(α, β) : τ ∈ C} = span{(α, β)}

Question
How to measure the distance between two eigenvalues
< α, β > and < γ, δ >?

Answer: By the sine of the angle θ between them.
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By the Cauchy inequality

cos2 θ =
|αγ + βδ|2

(|α|2 + |β|2)(|γ|2 + |δ|2)
.

Hence,

sin2 θ = 1− cos2 θ =
|αδ − βγ|2

(|α|2 + |β|2)(|γ|2 + |δ|2)
.

Definition
The chordal distance between < α, β > and < γ, δ >is the
number

χ(< α, β >,< γ, δ >) =
|αδ − βγ|√

|α|2 + |β|2
√
|γ|2 + |δ|2

.
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Remark
1 If β and δ are nonzero, set λ = α/β and µ = γ/δ, then

χ(< α, β >,< γ, δ >) =
|λ− µ|√

1 + |λ|2
√

1 + |µ|2
:= χ(λ, µ).

χ(λ, µ) defines a distance between numbers in the
complex plane.

2 If |λ|, |µ| ≤ 1, then

1
2
|λ− µ| ≤ χ(λ , µ) ≤ |λ− µ|.

Hence, for eigenvalues that are not large, the chordal
matric behaves like the ordinary distance between two
points in the complex plane.
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The condition of an eigenvalue
Since

< α, β >∼=< α+ y∗Ex, β + y∗Fx >,

we have

χ(< α, β >,< α̃, β̃ >) ∼=
|αy∗Fx− βy∗Ex|
|α|2 + |β|2

.

By the fact∣∣∣∣( α β
)( y∗Fx
−y∗Ex

)∣∣∣∣ ≤ √
|α|2 + |β|2‖x‖2‖y‖2

√
‖E‖2F + ‖F‖2F

= ε‖x‖2‖y‖2
√
|α|2 + |β|2,

we get

χ(< α , β > , < α̃ , β̃ >) .
‖x‖2‖y‖2√
|α|2 + |β|2

· ε.
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Theorem
Let λ be a simple eigenvalue (possibly infinite) of (A,B) and let
x and y be its right and left eigenvectors. Let the projective
representation of λ be < α, β >, where

α = y∗Ax and β = y∗Bx.

Let Ã = A+ E and B̃ = B + F , and set

ε =
√
‖E‖2F + ‖F‖2F .

Then for ε sufficiently small, ∃ eigenvalue λ̃ of (Ã , B̃) satisfying

χ(λ , λ̃) ≤ νε+O(ε2)

where
ν =

‖x‖2‖y‖2√
|α|2 + |β|2

.
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Remark
1 ν is a condition number of eigenvalue.
2 If ‖x‖2 = ‖y‖2 = 1, α and β are both small, then the

eigenvalue is ill conditioned, i.e., it is sensitive to the
perturbation E and F . Otherwise, i.e., one of α or β is
large, the eigenvalue is well conditioned.
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Real Schur and Hessenberg-triangular forms

Theorem
Let (A,B) be a real regular pencil. Then there are orthogonal
matrices U and V such that

S = UTAV =


S11 S12 · · · S1k

0 S22 · · · S2k
...

...
. . .

...
0 0 · · · Skk


and

T = UTBV =


T11 T12 · · · T1k

0 T22 · · · T2k
...

...
. . .

...
0 0 · · · Tkk

 ,

where Tii, Sii ∈ R or R2×2.
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Real Schur and Hessenberg-triangular forms

Remark
The pencils (Tii, Sii) with Tii, Sii ∈ R contain the real
eigenvalues of (A,B). The pencils (Tii, Sii) with Tii, Sii ∈ R2×2

contain a pair of complex conjugate eigenvalues of (A,B). The
blocks can made to appear in any order.

Sketch the procedure of the proof: Let x = y + iz be the right
eigenvector of (A , B) corresponding to the eigenvalue
λ = µ+ iν, i.e.,

A(y + iz) = (µ+ iν)B(y + iz)
= (µBy − νBz) + i(νBy + µBz)

⇒
A(y z) = (µBy − νBz νBy + µBz)

= B(µy − νz νy + µz)

= B(y z)
(

µ ν
−ν µ

)
≡ BXL (13)
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Real Schur and Hessenberg-triangular forms

Since {y, z} is linearly independent, it holds that ∃ V with
V TV = I2 and a nonsingular 2× 2 matrix R such that(

y z
)

= V R. (14)

Substituting (14) into (13), we get

AV R = BV RL ⇒ AV = BV (RLR−1).

Let U ∈ R2×2 with UTU = I2 and S ∈ R2×2 such that

AV = US.

Then

BV = AV (RLR−1)−1 = USRL−1R−1 ≡ UT, T ∈ R2×2.
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Real Schur and Hessenberg-triangular forms

Let (V V⊥) and (U U⊥) be orthogonal. Then(
UT

UT⊥

)
(A, B)

(
V V⊥

)
= (

(
UTAV UTAV⊥
UT⊥AV UT⊥AV⊥

)
,

(
UTBV UTBV⊥
UT⊥BV UT⊥BV⊥

)
)

= (
(
S G

0 Â

)
,

(
T H

0 B̂

)
).

Hessenberg-triangular form

1 Determine an orthogonal matrix Q such that QTB is upper
triangular.

2 Apply QT to A : QTA.
3 Use plane rotations to reduce A to Hessenberg form while

preserving the upper triangularity of B.
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Real Schur and Hessenberg-triangular forms


× × × ×
× × × ×
× × × ×
× × × ×

 ,


× × × ×
0 × × ×
0 0 × ×
0 0 0 ×



P34(A , B)
−−−−−−−→


× × × ×
× × × ×
∗ ∗ ∗ ∗
0 ∗ ∗ ∗

 ,


× × × ×
0 × × ×
0 0 ∗ ∗
0 0 + ∗



(A , B)P̂43−−−−−−−→


× × ∗ ∗
× × ∗ ∗
× × ∗ ∗
0 × ∗ ∗

 ,


× × ∗ ∗
0 × ∗ ∗
0 0 ∗ ∗
0 0 0 ∗
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Real Schur and Hessenberg-triangular forms

P23(A , B)
−−−−−−−→


× × × ×
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 × × ×

 ,


× × × ×
0 ∗ ∗ ∗
0 + ∗ ∗
0 0 0 ×



(A , B)P̂32−−−−−−−→


× ∗ ∗ ×
× ∗ ∗ ×
0 ∗ ∗ ×
0 ∗ ∗ ×

 ,


× ∗ ∗ ×
0 ∗ ∗ ×
0 0 ∗ ×
0 0 0 ×


Deflation
A : upper Hessenberg matrix, B : upper triangular matrix
(I) If ak+1,k = 0, then

A− λB =
(
A11 − λB11 A12 − λB12

0 A22 − λB22

)
⇒ Solve two small problems A11 − λB11 and A22 − λB22
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Real Schur and Hessenberg-triangular forms

(II) If bkk = 0 for some k, then it is possible to introduce a zero
in A

′
s (n , n− 1) position and thereby deflate.

A =


× × × × ×
× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×

 , B =


× × × × ×
0 × × × ×
0 0 0 × ×
0 0 0 ⊗ ×
0 0 0 0 ×



A = P ∗
34A =


× × × × ×
× × × × ×
0 + + + +
0 ⊕ + + +
0 0 0 × ×

 , B = P ∗
34B =


× × × × ×
0 × × × ×
0 0 0 + +
0 0 0 0 +
0 0 0 0 ×



A = AQ23 =


× + + × ×
× + + × ×
0 + + × ×
0 0 + × ×
0 0 0 × ×

 , B = BQ23 =


× + + × ×
0 + + × ×
0 0 0 × ×
0 0 0 0 ×
0 0 0 0 ⊗
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Real Schur and Hessenberg-triangular forms

A = P ∗
45A =


× × × × ×
× × × × ×
0 × × × ×
0 0 + + +
0 0 ⊕ + +

 , B = P ∗
45B =


× × × × ×
0 × × × ×
0 0 0 × ×
0 0 0 0 +
0 0 0 0 0



A = AQ34 =


× × + + ×
× × + + ×
0 × + + ×
0 0 + + ×
0 0 0 ⊕ ×

 , B = BQ34 =


× × + + ×
0 × + + ×
0 0 + + ×
0 0 0 0 ×
0 0 0 0 0



A = AQ45 =


× × × + +
× × × + +
0 × × + +
0 0 × + +
0 0 0 0 +

 , B = BQ45 =


× × × + +
0 × × + +
0 0 × + +
0 0 0 + +
0 0 0 0 0
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The doubly shifted QZ algorithm

doubly shifted QR algorithm

iterative reduction of a real Hessenberg matrix to real Schur
form.

doubly shifted QZ algorithm
iterative reduction of a real Hessenberg-triangular pencil to real
generalized Schur form.

Basic idea
Update A and B as follows:

(Â− λB̂) = Q̂T (A− λB)Ẑ,

where Â is upper Hessenberg, B̂ is upper triangular, Q̂ and Ẑ
are orthogonal.
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The doubly shifted QZ algorithm

1 Let (A,B) be in Hessenberg-triangular form and B be
nonsingular.

2 C = AB−1 is Hessenberg.
3 a Francis QR step were explicitly applied to C.

Let a and b be the eigenvalues of(
cn−1,n−1 cn−1,n

cn,n−1 cn,n

)
,

v be the first column of (C − aI)(C − bI). Then, there is only
three nonzero components in v which requires O(1) flops.
Take Householder transformation H such that

HT v = αe1.

Determine orthogonal matrices Q and Z with Qe1 = e1 such
that

(Â , B̂) = QT (HTA , HTB)Z

is in Hessenberg-triangular form. Then
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The doubly shifted QZ algorithm

Ĉ = ÂB̂−1 = (QTHTAZ)(QTHTBZ)−1

= (QTHTAZ)(Z(TB−1HQ) = (HQ)TC(HQ).

Moreover, since Qe1 = e1, we have (HQ)e1 = He1.
It follows that Ĉ is the result of performing an implicit
double QR step on C.
Consequently, at least one of the subdiagonal elements
cn,n−1 and cn−1,n−2 converges to zero.
Since (A,B) is in Hessenberg-triangular form and
A = CB, we have{

an,n−1 = cn,n−1bn−1,n−1,
an−1,n−2 = cn−1,n−2bn−2,n−2.

Hence,
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The doubly shifted QZ algorithm

if bn−1,n−1 and bn−2,n−2 do not approach zero, then at least
one of the subdiagonal elements an,n−1 and an−1,n−2 must
approach zero.

an,n−1 → 0⇒ deflate with a real eigenvalue.
an−1,n−2 → 0⇒ a 2× 2 block, which may contain real or
complex eigenvalues, is isolated.

⇒ The iteration can be continued with a smaller matrix.
On the other hand, if either bn−1,n−1 or bn−2,n−2 approach
zero, the process converges to an infinite eigenvalue,
which can be deflated.
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The doubly shifted QZ algorithm

The QZ step
• only the first three components of v are nonzero and H is
Householder transformation such that

HT v = αe1

A = HTA =



+ + + + + +
+ + + + + +
+ + + + + +
0 × × × × ×
0 0 0 × × ×
0 0 0 0 × ×

 ,

B = HTB =



+ + + + + +
⊕ + + + + +
⊕ ⊕ + + + +
0 0 0 × × ×
0 0 0 0 × ×
0 0 0 0 0 ×

 ,
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The doubly shifted QZ algorithm

A = AZ1Z2 =



+ + + × × ×
+ + + × × ×
⊕ + + × × ×
⊕ ⊕ + × × ×
0 0 0 × × ×
0 0 0 0 × ×

 ,

B = BZ1Z2 =



+ + + × × ×
0 + + × × ×
0 0 + × × ×
0 0 0 × × ×
0 0 0 0 × ×
0 0 0 0 0 ×
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The doubly shifted QZ algorithm

A = Q2Q1A =



× × × × × ×
+ + + + + +
0 + + + + +
0 0 + + + +
0 0 0 × × ×
0 0 0 0 × ×

 ,

B = Q2Q1B =



× × × × × ×
0 + + + + +
0 ⊕ + + + +
0 ⊕ ⊕ + + +
0 0 0 0 × ×
0 0 0 0 0 ×
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