The QR algorithm

Tsung-Ming Huang

Department of Mathematics
National Taiwan Normal University, Taiwan

December 3, 2008

Outline

-

The power and inverse power methods

- The inverse power method
(2) The explicitly shift QR algorithm
- The QR algorithm and the inverse power method
- The unshifted QR algorithm
- Hessenberg form
(3) Implicity shifted QR algorithm
- The implicit double shift

4 The generalized eigenvalue problem

- Real Schur and Hessenberg-triangular forms
- The doubly shifted QZ algorithm

The power and inverse power methods

Let A be a nondefective matrix and $\left(\lambda_{i}, x_{i}\right)$ for $i=1, \cdots, n$ be a complete set of eigenpairs of A. That is $\left\{x_{1}, \cdots, x_{n}\right\}$ is linearly independent. Hence, for any $u_{0} \neq 0, \exists \alpha_{1}, \cdots, \alpha_{n}$ such that

$$
u_{0}=\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}
$$

Now $A^{k} x_{i}=\lambda_{i}^{k} x_{i}$, so that

$$
\begin{equation*}
A^{k} u_{0}=\alpha_{1} \lambda_{1}^{k} x_{1}+\cdots+\alpha_{n} \lambda_{n}^{k} x_{n} \tag{1}
\end{equation*}
$$

If $\left|\lambda_{1}\right|>\left|\lambda_{i}\right|$ for $i \geq 2$ and $\alpha_{1} \neq 0$, then
$\frac{1}{\lambda_{1}^{k}} A^{k} u_{0}=\alpha_{1} x_{1}+\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} \alpha_{2} x_{2}+\cdots+\alpha_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} x_{n} \rightarrow \alpha_{1} x_{1}$ as $k \rightarrow 0$.

Theorem

Let A have a unique dominant eigenpair $\left(\lambda_{1}, x_{1}\right)$ with $x_{1}^{*} x_{1}=1$ and $X=\left(\begin{array}{ll}x_{1} & X_{2}\end{array}\right)$ be a nonsingular matrix with $X_{2}^{*} X_{2}=I$ such that

$$
X^{-1} A X=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & M
\end{array}\right) .
$$

Let $u_{0} \neq 0$ be decomposed in $u_{0}=r_{1} x_{1}+X_{2} c_{2}$.
Then

$$
\sin \angle\left(x_{1}, A^{k} u_{0}\right) \leq \frac{\left|\lambda_{1}\right|^{-k}\left\|M^{k}\right\|_{2}\left\|c_{2} / r_{1}\right\|_{2}}{1-\left|\lambda_{1}\right|^{-k}\left\|M^{k}\right\|_{2}\left\|c_{2} / r_{1}\right\|_{2}} .
$$

In particular $\forall \varepsilon>0, \exists \sigma$ such that

$$
\sin \angle\left(x_{1}, A^{k} u_{0}\right) \leq \frac{\sigma\left[\rho(M) /\left|\lambda_{1}\right|+\varepsilon\right]^{k}}{1-\sigma\left[\rho(M) /\left|\lambda_{1}\right|+\varepsilon\right]^{k}},
$$

where $\rho(M)$ is the spectral radius of M.

Proof: Since

$$
u_{0}=\alpha_{1} x_{1}+X_{2} c_{2}=\left(\begin{array}{cc}
x_{1} & X_{2}
\end{array}\right)\binom{\alpha_{1}}{c_{2}}=X\binom{\alpha_{1}}{c_{2}}
$$

it follows that

$$
\begin{aligned}
X^{-1} A^{k} u_{0} & =X^{-1} A^{k} X\binom{\alpha_{1}}{c_{2}} \\
& =\left(X^{-1} A X\right)\left(X^{-1} A X\right) \cdots\left(X^{-1} A X\right)\binom{\alpha_{1}}{c_{2}} \\
& =\left(\begin{array}{cc}
\lambda_{1}^{k} & 0 \\
0 & M^{k}
\end{array}\right)\binom{\alpha_{1}}{c_{2}}
\end{aligned}
$$

Hence,

$$
A^{k} u_{0}=X\binom{\lambda_{1}^{k} \alpha_{1}}{M^{k} c_{2}}=\alpha_{1} \lambda_{1}^{k} x_{1}+X_{2} M^{k} c_{2}
$$

Let the columns of Y form an orthonormal basis for the subspace orthogonal to x_{1}. By Lemma 3.12 in Chapter 1, we have

$$
\sin \angle\left(x_{1}, A^{k} u_{0}\right)=\frac{\left\|Y^{*} A^{k} u_{0}\right\|_{2}}{\left\|A^{k} u_{0}\right\|_{2}}=\frac{\left\|Y^{*} X_{2} M^{k} c_{2}\right\|_{2}}{\left\|\alpha_{1} \lambda_{1}^{k} x_{1}+X_{2} M^{k} c_{2}\right\|_{2}}
$$

But

$$
\left\|Y^{*} X_{2} M^{k} c_{2}\right\|_{2} \leq\left\|M^{k}\right\|_{2}\left\|c_{2}\right\|_{2}
$$

and

$$
\left\|\alpha_{1} \lambda_{1}^{k} x_{1}+X_{2} M^{k} c_{2}\right\|_{2} \geq\left|\alpha_{1}\right|\left|\lambda_{1}^{k}\right|-\left\|M^{k}\right\|_{2}\left\|c_{2}\right\|_{2}
$$

we get

$$
\sin \angle\left(x_{1}, A^{k} u_{0}\right) \leq \frac{\left|\lambda_{1}\right|^{-k}\left\|M^{k}\right\|_{2}\left\|c_{2} / \alpha_{1}\right\|_{2}}{1-\left|\lambda_{1}\right|^{-k}\left\|M^{k}\right\|_{2}\left\|c_{2} / \alpha_{1}\right\|_{2}}
$$

By Theorem 2.9 in Chapter $1, \forall \varepsilon>0, \exists \hat{\sigma}$ such that

$$
\left\|M^{k}\right\|_{2} \leq \hat{\sigma}(\rho(M)+\varepsilon)^{k}
$$

Take $\sigma=\hat{\sigma}\left\|c_{2} / \alpha_{1}\right\|_{2}$. Then $\forall \varepsilon>0$,

$$
\sin \angle\left(x_{1}, A^{k} u_{0}\right) \leq \frac{\sigma\left[\rho(M) /\left|\lambda_{1}\right|+\varepsilon\right]^{k}}{1-\sigma\left[\rho(M) /\left|\lambda_{1}\right|+\varepsilon\right]^{k}}
$$

- The error in the eigenvector approximation converges to zero at an asymptotic rate of $\left[\rho(M) /\left|\lambda_{1}\right|\right]^{k}$.
- If A has a complete system of eigenvectors with $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{n}\right|$, then the convergence is as $\left|\lambda_{2} / \lambda_{1}\right|^{k}$.

Algorithm (Power Method with 2-norm)

Choose an initial $u \neq 0$ with $\|u\|_{2}=1$. Iterate until convergence Compute $v=A u ; k=\|v\|_{2} ; u:=v / k$

Theorem

The sequence defined by Algorithm 1 is satisfied

$$
\begin{aligned}
& \lim _{i \rightarrow \infty} k_{i}=\left|\lambda_{1}\right| \\
& \lim _{i \rightarrow \infty} \varepsilon^{i} u_{i}=\frac{x_{1}}{\left\|x_{1}\right\|} \frac{\alpha_{1}}{\left|\alpha_{1}\right|}, \text { where } \varepsilon=\frac{\left|\lambda_{1}\right|}{\lambda_{1}}
\end{aligned}
$$

Proof: It is obvious that

$$
\begin{equation*}
u_{s}=A^{s} u_{0} /\left\|A^{s} u_{0}\right\|, \quad k_{s}=\left\|A^{s} u_{0}\right\| /\left\|A^{s-1} u_{0}\right\| . \tag{2}
\end{equation*}
$$

This follows from $\lambda_{1}{ }^{-s} A^{s} u_{0} \longrightarrow \alpha_{1} x_{1}$ that

$$
\begin{gathered}
\left|\lambda_{1}\right|^{-s}\left\|A^{s} u_{0}\right\| \longrightarrow\left|\alpha_{1}\right|\left\|x_{1}\right\| \\
\left|\lambda_{1}\right|^{-s+1}\left\|A^{s-1} u_{0}\right\| \longrightarrow\left|\alpha_{1}\right|\left\|x_{1}\right\|
\end{gathered}
$$

and then

$$
\left|\lambda_{1}\right|^{-1}\left\|A^{s} u_{0}\right\| /\left\|A^{s-1} u_{0}\right\|=\left|\lambda_{1}\right|^{-1} k_{s} \longrightarrow 1 .
$$

From (1) follows now for $s \rightarrow \infty$

$$
\begin{aligned}
\varepsilon^{s} u_{s} & =\varepsilon^{s} \frac{A^{s} u_{0}}{\left\|A^{s} u_{0}\right\|}=\frac{\alpha_{1} x_{1}+\sum_{i=2}^{n} \alpha_{i}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{s} x_{i}}{\left\|\alpha_{1} x_{1}+\sum_{i=2}^{n} \alpha_{i}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{s} x_{i}\right\|} \\
& \rightarrow \frac{\alpha_{1} x_{1}}{\left\|\alpha_{1} x_{1}\right\|}=\frac{x_{1}}{\left\|x_{1}\right\|} \frac{\alpha_{1}}{\left|\alpha_{1}\right|}
\end{aligned}
$$

Algorithm (Power Method with Linear Function)

Choose an initial $u \neq 0$. Iterate until convergence

Compute $v=A u ; k=\ell(v) ; u:=v / k$ where $\ell(v)$, e.g. $e_{1}(v)$ or $e_{n}(v)$, is a linear functional.

Theorem

Suppose $\ell\left(x_{1}\right) \neq 0$ and $\ell\left(v_{i}\right) \neq 0, i=1,2, \ldots$, then

$$
\begin{aligned}
\lim _{i \rightarrow \infty} k_{i} & =\lambda_{1} \\
\lim _{i \rightarrow \infty} u_{i} & =\frac{x_{1}}{\ell\left(x_{1}\right)} .
\end{aligned}
$$

Proof: As above we show that

$$
u_{i}=A^{i} u_{0} / \ell\left(A^{i} u_{0}\right), \quad k_{i}=\ell\left(A^{i} u_{0}\right) / \ell\left(A^{i-1} u_{0}\right)
$$

From (1) we get for $s \rightarrow \infty$

$$
\begin{gathered}
\lambda_{1}^{-s} \ell\left(A^{s} u_{0}\right) \longrightarrow \alpha_{1} \ell\left(x_{1}\right), \\
\lambda_{1}^{-s+1} \ell\left(A^{s-1} u_{0}\right) \longrightarrow \alpha_{1} \ell\left(x_{1}\right),
\end{gathered}
$$

thus

$$
\lambda_{1}{ }^{-1} k_{s} \longrightarrow 1
$$

Similarly for $i \longrightarrow \infty$,

$$
u_{i}=\frac{A^{i} u_{0}}{\ell\left(A^{i} u_{0}\right)}=\frac{\alpha_{1} x_{1}+\sum_{j=2}^{n} \alpha_{j}\left(\frac{\lambda_{j}}{\lambda_{1}}\right)^{i} x_{j}}{\ell\left(\alpha_{1} x_{1}+\sum_{j=2}^{n} \alpha_{j}\left(\frac{\lambda_{j}}{\lambda_{1}}\right)^{i} x_{j}\right)} \longrightarrow \frac{\alpha_{1} x_{1}}{\alpha_{1} \ell\left(x_{1}\right)}
$$

- Note that:

$$
\begin{aligned}
k_{s} & =\frac{\ell\left(A^{s} u_{0}\right)}{\ell\left(A^{s-1} u_{0}\right)}=\lambda_{1} \frac{\alpha_{1} \ell\left(x_{1}\right)+\sum_{j=2}^{n} \alpha_{j}\left(\frac{\lambda_{j}}{\lambda_{1}}\right)^{s} \ell\left(x_{j}\right)}{\alpha_{1} \ell\left(x_{1}\right)+\sum_{j=2}^{n} \alpha_{j}\left(\frac{\lambda_{j}}{\lambda_{1}}\right)^{s-1} \ell\left(x_{j}\right)} \\
& =\lambda_{1}+O\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{s-1}\right) .
\end{aligned}
$$

That is the convergent rate is $\left|\frac{\lambda_{2}}{\lambda_{1}}\right|$.

Theorem

Let $u \neq 0$ and for any μ set $r_{\mu}=A u-\mu u$. Then $\left\|r_{\mu}\right\|_{2}$ is minimized when

$$
\mu=u^{*} A u / u^{*} u .
$$

In this case $r_{\mu} \perp u$.
Proof: W.L.O.G. assume $\|u\|_{2}=1$. Let $\left(\begin{array}{cc}u & U\end{array}\right)$ be unitary and set

$$
\binom{u^{*}}{U^{*}} A\left(\begin{array}{cc}
u & U
\end{array}\right) \equiv\left(\begin{array}{cc}
\nu & h^{*} \\
g & B
\end{array}\right)=\left(\begin{array}{cc}
u^{*} A u & u^{*} A U \\
U^{*} A u & U^{*} A U
\end{array}\right)
$$

Then

$$
\begin{aligned}
\binom{u^{*}}{U^{*}} r_{\mu} & =\binom{u^{*}}{U^{*}} A u-\mu\binom{u^{*}}{U^{*}} u \\
& =\binom{u^{*}}{U^{*}} A\left(\begin{array}{cc}
u & U
\end{array}\right)\binom{u^{*}}{U^{*}} u-\mu\binom{u^{*}}{U^{*}} u \\
& =\left(\begin{array}{cc}
\nu & h^{*} \\
g & B
\end{array}\right)\binom{u^{*}}{U^{*}} u-\mu\binom{u^{*}}{U^{*}} u \\
& =\left(\begin{array}{cc}
\nu & h^{*} \\
g & B
\end{array}\right)\binom{1}{0}-\mu\binom{1}{0}=\binom{\nu-\mu}{g} .
\end{aligned}
$$

It follows that

$$
\left\|r_{\mu}\right\|_{2}^{2}=\left\|\binom{u^{*}}{U^{*}} r_{\mu}\right\|_{2}^{2}=\left\|\binom{\nu-\mu}{g}\right\|_{2}^{2}=|\nu-\mu|^{2}+\|g\|_{2}^{2} .
$$

Hence

$$
\min _{\mu}\left\|r_{\mu}\right\|_{2}=\|g\|_{2}=\left\|r_{\nu}\right\|_{2}
$$

That is $\mu=\nu=u^{*} A u$. On the other hand, since

$$
u^{*} r_{\mu}=u^{*}(A u-\mu u)=u^{*} A u-\mu=0
$$

it implies that $r_{\mu} \perp u$.

Definition (Rayleigh quotient)

Let u and v be vectors with $v^{*} u \neq 0$. Then $v^{*} A u / v^{*} u$ is called a Rayleigh quotient.

If u or v is an eigenvector corresponding to an eigenvalue λ of A, then

$$
\frac{v^{*} A u}{v^{*} u}=\lambda \frac{v^{*} u}{v^{*} u}=\lambda
$$

Therefore, $u_{k}^{*} A u_{k} / u_{k}^{*} u_{k}$ provide a sequence of approximation to λ in the power method.

Inverse power method

Goal

Find the eigenvalue of A that is in a given region or closest to a certain scalar σ and the corresponding eigenvector.

Let $\lambda_{1}, \cdots, \lambda_{n}$ be the eigenvalues of A. Suppose λ_{1} is simple and $\sigma \approx \lambda_{1}$. Then

$$
\mu_{1}=\frac{1}{\lambda_{1}-\sigma}, \mu_{2}=\frac{1}{\lambda_{2}-\sigma}, \cdots, \mu_{n}=\frac{1}{\lambda_{n}-\sigma}
$$

are eigenvalues of $(A-\sigma I)^{-1}$ and $\mu_{1} \rightarrow \infty$ as $\sigma \rightarrow \lambda_{1}$. Thus we transform λ_{1} into a dominant eigenvalue μ_{1}.
The inverse power method is simply the power method applied to $(A-\sigma I)^{-1}$.

Let

$$
y=(A-\sigma I)^{-1} x \text { and } \hat{x}=y /\|y\|_{2} .
$$

It holds that

$$
(A-\sigma I) \hat{x}=\frac{x}{\|y\|_{2}} \equiv w
$$

Set

$$
\rho=\hat{x}^{*}(A-\sigma I) \hat{x}=\hat{x}^{*} w .
$$

Then

$$
r=[A-(\sigma+\rho) I] \hat{x}=(A-\sigma I) \hat{x}-\rho \hat{x}=w-\rho \hat{x}
$$

Algorithm (Inverse power method with a fixed shift)

Choose an initial $u_{0} \neq 0$.
For $i=0,1,2, \ldots$
Compute $v_{i+1}=(A-\sigma I)^{-1} u_{i}$ and $k_{i+1}=\ell\left(v_{i+1}\right)$.
Set $u_{i+1}=v_{i+1} / k_{i+1}$

- The convergence of Algorithm 3 is $\left|\frac{\lambda_{1}-\sigma}{\lambda_{2}-\sigma}\right|$ whenever λ_{1} and λ_{2} are the closest and the second closest eigenvalues to σ.
- Algorithm 3 is linearly convergent.

Algorithm (Inverse power method with variant shifts)

Choose an initial $u_{0} \neq 0$.
Given $\sigma_{0}=\sigma$.
For $i=0,1,2, \ldots$
Compute $v_{i+1}=\left(A-\sigma_{i} I\right)^{-1} u_{i}$ and $k_{i+1}=\ell\left(v_{i+1}\right)$. Set $u_{i+1}=v_{i+1} / k_{i+1}$ and $\sigma_{i+1}=\sigma_{i}+1 / k_{i+1}$.

- Above algorithm is locally quadratic convergent.

Connection with Newton method

Consider the nonlinear equations:

$$
F\left(\left[\begin{array}{l}
u \tag{3}\\
\lambda
\end{array}\right]\right) \equiv\left[\begin{array}{c}
A u-\lambda u \\
\ell^{T} u-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

Newton method for (3): for $i=0,1,2, \ldots$

$$
\left[\begin{array}{c}
u_{i+1} \\
\lambda_{i+1}
\end{array}\right]=\left[\begin{array}{c}
u_{i} \\
\lambda_{i}
\end{array}\right]-\left[F^{\prime}\left(\left[\begin{array}{c}
u_{i} \\
\lambda_{i}
\end{array}\right]\right)\right]^{-1} F\left(\left[\begin{array}{c}
u_{i} \\
\lambda_{i}
\end{array}\right]\right)
$$

Since

$$
F^{\prime}\left(\left[\begin{array}{l}
u \\
\lambda
\end{array}\right]\right)=\left[\begin{array}{cc}
A-\lambda I & -u \\
\ell^{T} & 0
\end{array}\right]
$$

the Newton method can be rewritten by component-wise

$$
\begin{align*}
\left(A-\lambda_{i}\right) u_{i+1} & =\left(\lambda_{i+1}-\lambda_{i}\right) u_{i} \tag{4}\\
\ell^{T} u_{i+1} & =1
\end{align*}
$$

(5)

Let

$$
v_{i+1}=\frac{u_{i+1}}{\lambda_{i+1}-\lambda_{i}}
$$

Substituting v_{i+1} into (4), we get

$$
\left(A-\lambda_{i} I\right) v_{i+1}=u_{i} .
$$

By equation (5), we have

$$
k_{i+1}=\ell\left(v_{i+1}\right)=\frac{\ell\left(u_{i+1}\right)}{\lambda_{i+1}-\lambda_{i}}=\frac{1}{\lambda_{i+1}-\lambda_{i}} .
$$

It follows that

$$
\lambda_{i+1}=\lambda_{i}+\frac{1}{k_{i+1}} .
$$

Hence the Newton's iterations (4) and (5) are identified with Algorithm 4.

Algorithm (Inverse power method with Rayleigh Quotient)

Choose an initial $u_{0} \neq 0$ with $\left\|u_{0}\right\|_{2}=1$.
Compute $\sigma_{0}=u_{0}^{T} A u_{0}$.
For $i=0,1,2, \ldots$
Compute $v_{i+1}=\left(A-\sigma_{i} I\right)^{-1} u_{i}$.

$$
\text { Set } u_{i+1}=v_{i+1} /\left\|v_{i+1}\right\|_{2} \text { and } \sigma_{i+1}=u_{i+1}^{T} A u_{i+1}
$$

- For symmetric A, Algorithm 5 is cubically convergent.

The explicitly shift QR algorithm

The QR algorithm is an iterative method for reducing a matrix A to triangular form by unitary similarity transformations.

Algorithm (explicitly shift QR algorithm)

Set $A_{0}=A$.
For $k=0,1,2, \cdots$
Choose a shift σ_{k};
Factor $A_{k}-\sigma_{k} I=Q_{k} R_{k}$, where Q_{k} is orthogonal and R_{k} is upper triangular;

$$
A_{k+1}=R_{k} Q_{k}+\sigma_{k} I
$$

end for

Since

$$
A_{k}-\sigma_{k} I=Q_{k} R_{k} \Longrightarrow R_{k}=Q_{k}^{*}\left(A_{k}-\sigma_{k} I\right)
$$

it holds that

$$
\begin{aligned}
A_{k+1} & =R_{k} Q_{k}+\sigma_{k} I \\
& =Q_{k}^{*}\left(A_{k}-\sigma_{k} I\right) Q_{k}+\sigma_{k} I \\
& =Q_{k}^{*} A_{k} Q_{k}
\end{aligned}
$$

The algorithm is a variant of the power method.

Let $Q=\left(\begin{array}{ll}\hat{Q} & q\end{array}\right)$ be unitary and write

$$
Q^{*} A Q=\left(\begin{array}{cc}
\hat{Q}^{*} A \hat{Q} & \hat{Q}^{*} A q \\
q^{*} A \hat{Q} & q^{*} A q
\end{array}\right) \equiv\left(\begin{array}{cc}
\hat{B} & \hat{h} \\
\hat{g}^{*} & \hat{\mu}
\end{array}\right)
$$

If (λ, q) is a left eigenpair of A, then

$$
\hat{g}^{*}=q^{*} A \hat{Q}=\lambda q^{*} \hat{Q}=0 \text { and } \hat{\mu}=q^{*} A q=\lambda q^{*} q=\lambda
$$

That is

$$
Q^{*} A Q=\left(\begin{array}{cc}
\hat{B} & \hat{h} \\
0 & \lambda
\end{array}\right)
$$

But it is not an effective computational procedure because it requires q is an eigenvector of A.

Let q be an approximate left eigenvector of A with

$$
q^{*} q=1, \hat{\mu}=q^{*} A q \text { and } r=q^{*} A-\hat{\mu} q^{*} .
$$

Then

$$
\begin{aligned}
r\left(\begin{array}{ll}
\hat{Q} & q
\end{array}\right) & =\left(\begin{array}{ll}
q^{*} A-\hat{\mu} q^{*}
\end{array}\right)\left(\begin{array}{ll}
\hat{Q} & q
\end{array}\right) \\
& =\left(\begin{array}{ll}
q^{*} A \hat{Q}-\hat{\mu} q^{*} \hat{Q} & q^{*} A q-\hat{\mu} q^{*} q
\end{array}\right) \\
& =\left(\begin{array}{ll}
q^{*} A \hat{Q} & 0
\end{array}\right)=\left(\begin{array}{ll}
\hat{g}^{*} & 0
\end{array}\right)
\end{aligned}
$$

Therefore,

$$
\left\|\hat{g}^{*}\right\|_{2}=\left\|r\left(\begin{array}{cc}
\hat{Q} & q
\end{array}\right)\right\|_{2}=\|r\|_{2} .
$$

The QR algorithm implicitly chooses q to be a vector produced by the inverse power method with shift σ.

Write the QR factorization of $A-\sigma I$ as

$$
\binom{\hat{Q}^{*}}{q^{*}}(A-\sigma I)=R \equiv\binom{\hat{R}^{*}}{r^{*}} .
$$

It holds that

$$
\begin{equation*}
q^{*}(A-\sigma I)=r^{*}=r_{n n} e_{n}^{T} \Rightarrow q^{*}=r_{n n} e_{n}^{T}(A-\sigma I)^{-1} \tag{6}
\end{equation*}
$$

Hence, the last column of Q generated by the QR algorithm is the result of the inverse power method with shift σ applied to e_{n}^{T}.

Question

How to choose shift σ ?

Let

$$
A=\left(\begin{array}{cc}
B & h \\
g^{*} & \mu
\end{array}\right)
$$

Then

$$
e_{n}^{T} A e_{n}=\mu \text { and } e_{n}^{T} A-\mu e_{n}=\left(\begin{array}{cc}
g^{*} & \mu
\end{array}\right)-\mu e_{n}=\left(\begin{array}{cc}
g^{*} & 0
\end{array}\right) .
$$

- If we take $\left(\mu, e_{n}\right)$ to be an approximate left eigenvector of A, then the corresponding residual norm is $\|g\|_{2}$.
- If g is small, then μ should approximate an eigenvalue of A and choose $\sigma=\mu=e_{n}^{T} A e_{n}$ (Rayleigh quotient shift).

Question

Why the QR algorithm converges?

Let

$$
\begin{align*}
A-\sigma I & \equiv\left(\begin{array}{cc}
B-\sigma I & h \\
g^{*} & \mu-\sigma
\end{array}\right) \\
& =Q R \equiv\left(\begin{array}{cc}
P & f \\
e^{*} & \pi
\end{array}\right)\left(\begin{array}{cc}
S & r \\
0 & \rho
\end{array}\right) \tag{7}
\end{align*}
$$

be the QR factorization of $A-\sigma I$. Take

$$
\hat{A} \equiv\left(\begin{array}{cc}
\hat{B} & \hat{h} \tag{8}\\
\hat{g}^{*} & \hat{\mu}
\end{array}\right)=R Q+\sigma I
$$

Since Q is unitary, we have

$$
\|e\|_{2}^{2}+\pi^{2}=\|f\|_{2}^{2}+\pi^{2}=1
$$

which implies that

$$
\|e\|_{2}=\|f\|_{2} \text { and }|\pi| \leq 1
$$

From (7), we have

$$
g^{*}=e^{*} S
$$

Assume S is nonsingular and $\kappa=\left\|S^{-1}\right\|_{2}$, then

$$
\|e\|_{2} \leq \kappa\|g\|_{2}
$$

Since
$R \equiv\left(\begin{array}{cc}S & r \\ 0 & \rho\end{array}\right)=Q^{*}(A-\sigma I) \equiv\left(\begin{array}{cc}P^{*} & e \\ f^{*} & \bar{\pi}\end{array}\right)\left(\begin{array}{cc}B-\sigma I & h \\ g^{*} & \mu-\sigma\end{array}\right)$,
it implies that

$$
\rho=f^{*} h+\bar{\pi}(\mu-\sigma)
$$

and then

$$
\begin{aligned}
|\rho| & \leq\|f\|\|h\|+|\pi||\mu-\sigma|=\|e\|_{2}\|h\|_{2}+|\pi||\mu-\sigma| \\
& \leq \kappa\|g\|_{2}\|h\|_{2}+|\mu-\sigma| .
\end{aligned}
$$

From (8), we have

$$
\hat{g}^{*}=\rho e^{*}
$$

which implies that

$$
\|\hat{g}\|_{2} \leq|\rho|\|e\|_{2} \leq|\rho| \kappa\|g\|_{2} \leq \kappa^{2}\|h\|_{2}\|g\|_{2}^{2}+\kappa|\mu-\sigma|\|g\|_{2} .
$$

Consequently,

$$
\left\|g_{j+1}\right\|_{2} \leq \kappa_{j}^{2}\left\|h_{j}\right\|_{2}\left\|g_{j}\right\|_{2}^{2}+\kappa_{j}\left|\mu_{j}-\sigma_{j}\right|\left\|g_{j}\right\|_{2}
$$

If g_{0} is sufficiently small and μ_{0} is sufficiently near a simple eigenvalue λ, then $g_{j} \rightarrow 0$ and $\mu_{j} \rightarrow \lambda$. Assume $\exists \eta$ and κ such that

$$
\left\|h_{j}\right\|_{2} \leq \eta \text { and } \kappa_{j}=\left\|S_{j}^{-1}\right\|_{2} \leq \kappa
$$

Take the Rayleigh quotient shift $\sigma_{j}=\mu_{j}$. Then

$$
\left\|g_{j+1}\right\|_{2} \leq \kappa^{2} \eta\left\|g_{j}\right\|_{2}^{2}
$$

which means that $\left\|g_{j}\right\|_{2}$ converges at least quadratically to zero. If A_{0} is Hermitian, then A_{k} is also Hermitian. It holds that

$$
h_{j}=g_{j}
$$

and then

$$
\left\|g_{j+1}\right\|_{2} \leq \kappa^{2}\left\|g_{j}\right\|_{2}^{3}
$$

Therefore, the convergent rate is cubic.

The unshifted QR algorithm

The unshifted QR algorithm

QR algorithm

$$
A_{k+1}=Q_{k}^{*} A_{k} Q_{k}
$$

or

$$
A_{k+1}=Q_{k}^{*} Q_{k-1}^{*} \cdots Q_{0} A_{0} Q_{0} \cdots Q_{k-1} Q_{k}
$$

for $k=0,1,2, \cdots$.
Let

$$
\hat{Q}_{k}=Q_{0} \cdots Q_{k-1} Q_{k}
$$

Then

$$
A_{k+1}=\hat{Q}_{k}^{*} A_{0} \hat{Q}_{k}
$$

Theorem

Let Q_{0}, \cdots, Q_{k} and R_{0}, \cdots, R_{k} be the orthogonal and triangular matrices generated by the QR algorithm with shifts $\sigma_{0}, \cdots, \sigma_{k}$ starting with A. Let

$$
\hat{Q}_{k}=Q_{0} \cdots Q_{k} \text { and } \hat{R}_{k}=R_{0} \cdots R_{k}
$$

Then

$$
\hat{Q}_{k} \hat{R}_{k}=\left(A-\sigma_{0} I\right) \cdots\left(A-\sigma_{k} I\right) .
$$

Proof: Since

$$
\begin{aligned}
R_{k} & =\left(A_{k+1}-\sigma_{k} I\right) Q_{k}^{*} \\
& =\hat{Q}_{k}^{*}\left(A-\sigma_{k} I\right) \hat{Q}_{k} Q_{k}^{*} \\
& =\hat{Q}_{k}^{*}\left(A-\sigma_{k} I\right) \hat{Q}_{k-1},
\end{aligned}
$$

it follows that

$$
\hat{R}_{k}=R_{k} \hat{R}_{k-1}=\hat{Q}_{k}^{*}\left(A-\sigma_{k} I\right) \hat{Q}_{k-1} \hat{R}_{k-1}
$$

and

$$
\hat{Q}_{k} \hat{R}_{k}=\left(A-\sigma_{k} I\right) \hat{Q}_{k-1} \hat{R}_{k-1} .
$$

By induction on $\hat{Q}_{k-1} \hat{R}_{k-1}$, we have

$$
\hat{Q}_{k} \hat{R}_{k}=\left(A-\sigma_{k} I\right) \cdots\left(A-\sigma_{0} I\right)
$$

If $\sigma_{k}=0$ for $k=0,1,2, \cdots$, then $\hat{Q}_{k} \hat{R}_{k}=A^{k+1}$ and

$$
\hat{r}_{11}^{(k)} \hat{q}_{1}^{(k)}=\hat{Q}_{k} \hat{R}_{k} e_{1}=A^{k+1} e_{1} .
$$

This implies that the first column of \hat{Q}_{k} is the normalized result of applying $k+1$ iterations of the power method to e_{1}.

Hence, $\hat{q}_{1}^{(k)}$ approaches the dominant eigenvector of A, i.e., if

$$
A_{k}=\hat{Q}_{k}^{*} A Q_{k}=\left(\begin{array}{cc}
\mu_{k} & h_{k}^{*} \\
g_{k} & B_{k}
\end{array}\right),
$$

then $g_{k} \rightarrow 0$ and $\mu_{k} \rightarrow \lambda_{1}$, where λ_{1} is the dominant eigenvalue of A.

Theorem

Let

$$
X^{-1} A X=\Lambda \equiv \operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)
$$

where $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\cdots>\left|\lambda_{n}\right|>0$. Suppose X^{-1} has an $L U$ factorization $X^{-1}=L U$, where L is unit lower triangular, and let $X=Q R$ be the $Q R$ factorization of X. If A^{k} has the $Q R$ factorization $A^{k}=\hat{Q}_{k} \hat{R}_{k}$, then \exists diagonal matrices D_{k} with $\left|D_{k}\right|=I$ such that $\hat{Q}_{k} D_{k} \longrightarrow Q$.

Proof: By the assumptions, we get

$$
A^{k}=X \Lambda^{k} X^{-1}=Q R \Lambda^{k} L U=Q R\left(\Lambda^{k} L \Lambda^{-k}\right)\left(\Lambda^{k} U\right)
$$

Since

$$
\left(\Lambda^{k} L \Lambda^{-k}\right)_{i j}=\ell_{i j}\left(\lambda_{i} / \lambda_{j}\right)^{k} \rightarrow 0 \text { for } i>j
$$

it holds that

$$
\Lambda^{k} L \Lambda^{-k} \rightarrow I \text { as } k \rightarrow \infty
$$

Let

$$
\Lambda^{k} L \Lambda^{-k}=I+E_{k},
$$

where $E_{k} \rightarrow 0$ as $k \rightarrow \infty$. Then

$$
A^{k}=Q R\left(I+E_{k}\right)\left(\Lambda^{k} U\right)=Q\left(I+R E_{k} R^{-1}\right)\left(R \Lambda^{k} U\right)
$$

Let

$$
I+R E_{k} R^{-1}=\bar{Q}_{k} \bar{R}_{k}
$$

be the QR factorization of $I+R E_{k} R^{-1}$. Then

$$
A^{k}=\left(Q \bar{Q}_{k}\right)\left(\bar{R}_{k} R \Lambda^{k} U\right)
$$

Since

$$
I+R E_{k} R^{-1} \rightarrow I \text { as } k \rightarrow \infty
$$

we have

$$
\bar{Q}_{k} \rightarrow I \text { as } k \rightarrow \infty
$$

Let the diagonals of $\bar{R}_{k} R \Lambda^{k} U$ be $\delta_{1}, \cdots, \delta_{m}$ and set

$$
D_{k}=\operatorname{diag}\left(\bar{\delta}_{1} /\left|\delta_{1}\right|, \cdots, \bar{\delta}_{n} / \delta_{n}\right)
$$

Then $A^{k}=\left(Q \bar{Q}_{k} D_{k}^{-1}\right)\left(D_{k} \bar{R}_{k} R \Lambda^{k} U\right)=\hat{Q}_{k} \hat{R}_{k}$.

Since the diagonals of $D_{k} \bar{R}_{k} R \Lambda^{k} U$ and \hat{R}_{k} are positive, by the uniqueness of the QR factorization

$$
\hat{Q}_{k}=Q \bar{Q}_{k} D_{k}^{-1},
$$

which implies that

$$
\hat{Q}_{k} D_{k}=Q \bar{Q}_{k} \rightarrow Q \text { as } k \rightarrow \infty .
$$

Remark:

(i) Since $X^{-1} A X=\Lambda \equiv \operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$, we have

$$
A=X \Lambda X^{-1}=(Q R) \Lambda(Q R)^{-1}=Q\left(R \Lambda R^{-1}\right) Q^{*} \equiv Q T Q^{*}
$$

which is a Schur decomposition of A. Therefore, the column of $\hat{Q}_{k} D_{k}$ converge to the Schur vector of A and $A_{k}=\hat{Q}_{k}^{*} A \hat{Q}_{k}$ converges to the triangular factor of the Schur decomposition of A.
(ii) Write

$$
R\left(\Lambda^{k} L \Lambda^{-k}\right)=\left(\begin{array}{ccc}
R_{11} & r_{1, i} & R_{1, i+1} \\
0 & r_{i i} & r_{i, i+1}^{*} \\
0 & 0 & R_{i+1, i+1}
\end{array}\right)\left(\begin{array}{ccc}
L_{11}^{(k)} & 0 & 0 \\
\ell_{i,}^{(k) *} & 1 & 0 \\
L_{i+1,1}^{(k)} & \ell_{i+1, i}^{(k)} & L_{i+1, i+1}^{(k)}
\end{array}\right)
$$

If $\ell_{i, 1}^{(k) *}, L_{i+1,1}^{(k)}$ and $\ell_{i+1, i}^{(k)}$ are zeros, then

$$
R\left(\Lambda^{k} L \Lambda^{-k}\right)=\left(\begin{array}{ccc}
R_{11} L_{11}^{(k)} & r_{1, i} & R_{1, i+1} L_{i+1, i+1} \\
0 & r_{i, i} & r_{i, i+1}^{*} L_{i+1, i+1} \\
0 & 0 & R_{i+1, i+1} L_{i+1, i+1}
\end{array}\right)
$$

and

$$
\begin{aligned}
I+R E_{k} R^{-1} & =R\left(I+E_{k}\right) R^{-1}=R\left(\Lambda^{k} L \Lambda^{-k}\right) R^{-1} \\
& =\left(\begin{array}{ccc}
G_{11} & g_{1, i} & G_{1, i+1} \\
0 & g_{i i} & g_{i, i+1}^{*} \\
0 & 0 & G_{i+1, i+1}
\end{array}\right) \\
& =\bar{Q}_{k} \bar{R}_{k} \sim \text { QR factorization }
\end{aligned}
$$

which implies that

$$
\bar{Q}_{k}=\operatorname{diag}\left(\bar{Q}_{11}^{k}, w, \bar{Q}_{i+1, i+1}^{k}\right)
$$

and

$$
\begin{aligned}
A_{k} & =\hat{Q}_{k}^{*} A \hat{Q}_{k}=\bar{Q}_{k}^{*} Q^{*} A Q \bar{Q}_{k}=\bar{Q}_{k}^{*} T \bar{Q}_{k} \\
& =\left(\begin{array}{ccc}
A_{11}^{(k)} & a_{1, i}^{(k)} & A_{1, i+1}^{(k)} \\
0 & \lambda_{i} & A_{i, i+1}^{(k)} \\
0 & 0 & A_{i+1, i+1}^{(k)}
\end{array}\right)
\end{aligned}
$$

Therefore, A_{k} decouples at its i th diagonal element. The rate of convergence is at least as fast as the approach of $\max \left\{\left|\lambda_{i} / \lambda_{i-1}\right|,\left|\lambda_{i+1} / \lambda_{i}\right|\right\}^{k}$ to zero.

Definition

A Householder transformation or elementary reflector is a matrix of

$$
H=I-u u^{*}
$$

where $\|u\|_{2}=\sqrt{2}$.
Note that H is Hermitian and unitary.

Theorem

Let x be a vector such that $\|x\|_{2}=1$ and x_{1} is real and nonnegative. Let

$$
u=\left(x+e_{1}\right) / \sqrt{1+x_{1}} .
$$

Then

$$
H x=\left(I-u u^{*}\right) x=-e_{1} .
$$

Hessenberg form

Proof:

$$
\begin{aligned}
I-u u^{*} x & =x-\left(u^{*} x\right) u=x-\frac{x^{*} x+x_{1}}{\sqrt{1+x_{1}}} \cdot \frac{x+e_{1}}{\sqrt{1+x_{1}}} \\
& =x-\left(x+e_{1}\right)=-e_{1}
\end{aligned}
$$

Theorem

Let x be a vector with $x_{1} \neq 0$. Let

$$
u=\frac{\rho \frac{x}{\|x\|_{2}}+e_{1}}{\sqrt{1+\rho \frac{x_{1}}{\|x\|_{2}}}}
$$

where $\rho=\bar{x}_{1} /\left|x_{1}\right|$. Then

$$
H x=-\bar{\rho}\|x\|_{2} e_{1} .
$$

Proof: Since

$$
\begin{aligned}
& {\left[\bar{\rho} x^{*} /\|x\|_{2}+e_{1}^{T}\right]\left[\rho x /\|x\|_{2}+e_{1}\right] } \\
= & \bar{\rho} \rho+\rho x_{1} /\|x\|_{2}+\bar{\rho} \bar{x}_{1} /\|x\|_{2}+1 \\
= & 2\left[1+\rho x_{1} /\|x\|_{2}\right],
\end{aligned}
$$

it follows that

$$
u^{*} u=2 \quad \Rightarrow \quad\|u\|_{2}=\sqrt{2}
$$

and

$$
u^{*} x=\frac{\bar{\rho}\|x\|_{2}+x_{1}}{\sqrt{1+\rho \frac{x_{1}}{\|x\|_{2}}}}
$$

Hence,

$$
\begin{aligned}
H x & =x-\left(u^{*} x\right) u=x-\frac{\bar{\rho}\|x\|_{2}+x_{1}}{\sqrt{1+\rho \frac{x_{1}}{\|x\|_{2}}}} \frac{\rho \frac{x}{\|x\|_{2}}+e_{1}}{\sqrt{1+\rho \frac{x_{1}}{\|x\|_{2}}}} \\
& =\left[1-\frac{\left(\bar{\rho}\|x\|_{2}+x_{1}\right) \frac{\rho}{\|x\|_{2}}}{1+\rho \frac{x_{1}}{\|x\|_{2}}}\right] x-\frac{\bar{\rho}\|x\|_{2}+x_{1}}{1+\rho \frac{x_{1}}{\|x\|_{2}}} e_{1} \\
& =-\frac{\bar{\rho}\|x\|_{2}+x_{1}}{1+\rho \frac{x_{1}}{\|x\|_{2}}} e_{1} \\
& =-\bar{\rho}\|x\|_{2} e_{1} .
\end{aligned}
$$

Hessenberg form

- Reduction to Hessenberg form

Take

$$
A=\left(\begin{array}{ll}
\alpha_{11} & a_{12}^{*} \\
a_{21} & A_{22}
\end{array}\right) .
$$

Let \hat{H}_{1} be a Householder transformation such that

$$
\hat{H}_{1} a_{21}=v_{1} e_{1} .
$$

Set $H_{1}=\operatorname{diag}\left(1, \hat{H}_{1}\right)$. Then

$$
H_{1} A H_{1}=\left(\begin{array}{cc}
\alpha_{11} & a_{12}^{*} \hat{H}_{1} \\
\hat{H}_{1} a_{21} & \hat{H}_{1} A_{22} \hat{H}_{1}
\end{array}\right)=\left(\begin{array}{cc}
\alpha_{11} & a_{12}^{*} \hat{H}_{1} \\
v_{1} e_{1} & \hat{H}_{1} A_{22} \hat{H}_{1}
\end{array}\right)
$$

For the general step, suppose H_{1}, \cdots, H_{k-1} are Householder transformation such that

$$
H_{k-1} \cdots H_{1} A H_{1} \cdots H_{k-1}=\left(\begin{array}{ccc}
A_{11} & a_{1, k} & A_{1, k+1} \\
0 & \alpha_{k k} & a_{k, k+1}^{*} \\
0 & a_{k+1, k} & A_{k+1, k+1}
\end{array}\right)
$$

where A_{11} is a Hessenberg matrix of order $k-1$. Let \hat{H}_{k} be a Householder transformation such that

$$
\hat{H}_{k} a_{k+1, k}=v_{k} e_{1} .
$$

Set $H_{k}=\operatorname{diag}\left(I_{k}, \hat{H}_{k}\right)$, then
$H_{k} H_{k-1} \cdots H_{1} A H_{1} \cdots H_{k-1} H_{k}=\left(\begin{array}{ccc}A_{11} & a_{1, k} & A_{1, k+1} \hat{H}_{k} \\ 0 & \alpha_{k k} & a_{k, k+1}^{*} \hat{H}_{k} \\ 0 & v_{k} e_{1} & \hat{H}_{k} A_{k+1, k+1} \hat{H}_{k}\end{array}\right)$.

Hessenberg form

$$
\begin{aligned}
& \left(\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times
\end{array}\right) \xrightarrow{H_{1}}\left(\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times
\end{array}\right) \\
& \xrightarrow{H_{2}}\left(\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times \\
0 & 0 & \times & \times & \times
\end{array}\right) \\
& \xrightarrow{H_{3}}\left(\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times \\
0 & 0 & 0 & \times & \times
\end{array}\right)
\end{aligned}
$$

Definition (Givens rotation)

A plane rotation (also called a Givens rotation) is a matrix of the form

$$
P=\left(\begin{array}{cc}
c & s \\
-\bar{s} & \bar{c}
\end{array}\right)
$$

where $|c|^{2}+|s|^{2}=1$.
Given $a \neq 0$ and b, set

$$
v=\sqrt{|a|^{2}+|b|^{2}}, c=|a| / v \text { and } s=\frac{a}{|a|} \cdot \frac{\bar{b}}{v}
$$

then

$$
\left(\begin{array}{cc}
c & s \\
-\bar{s} & \bar{c}
\end{array}\right)\binom{a}{b}=\binom{v \frac{a}{|a|}}{0} .
$$

Hessenberg form

Let

$$
\begin{aligned}
& P_{i j}=\left(\begin{array}{ccccc}
I_{i-1} & & & & \\
& c & & s & \\
& & I_{j-i-1} & & \\
& -\bar{s} & & \bar{c} & \\
& & & & I_{n-j}
\end{array}\right) . \\
& \left(\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times
\end{array}\right) \xrightarrow{P_{12}}\left(\begin{array}{cccc}
+ & + & + & + \\
0 & + & + & + \\
\times & \times & \times & \times \\
\times & \times & \times & \times
\end{array}\right) \xrightarrow{P_{13}}\left(\begin{array}{cccc}
+ & + & + & + \\
0 & \times & \times & \times \\
0 & + & + & + \\
\times & \times & \times & \times
\end{array}\right) \\
& \xrightarrow{P_{14}}\left(\begin{array}{cccc}
+ & + & + & + \\
0 & \times & \times & \times \\
0 & \times & \times & \times \\
0 & + & + & +
\end{array}\right)
\end{aligned}
$$

Hessenberg form

$$
\begin{aligned}
\left(\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times
\end{array}\right) & \xrightarrow{P_{12}}\left(\begin{array}{cccc}
+ & 0 & \times & \times \\
+ & + & \times & \times \\
+ & + & \times & \times \\
+ & + & \times & \times
\end{array}\right) \\
& \xrightarrow{P_{13}}\left(\begin{array}{cccc}
+ & 0 & 0 & \times \\
+ & \times & + & \times \\
+ & \times & + & \times \\
+ & \times & + & \times
\end{array}\right) \\
& \xrightarrow{P_{14}}\left(\begin{array}{cccc}
+ & 0 & 0 & 0 \\
+ & \times & \times & + \\
+ & \times & \times & + \\
+ & \times & \times & +
\end{array}\right)
\end{aligned}
$$

Hessenberg form

(i) Reduce a matrix to Hessenberg form by QR factorization.

$$
\left.\begin{array}{c}
\left(\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times
\end{array}\right) \xrightarrow{\xrightarrow{Q_{1} A Q_{1}^{*}}\left(\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & \times & \times & \times & \times
\end{array}\right)} \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
Q_{2} A Q_{2}^{*} A Q_{3}^{*}
\end{array}\left(\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times \\
0 & 0 & \times & \times & \times
\end{array}\right) . \begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times \\
0 & 0 & 0 & \times & \times
\end{array}\right) .
$$

: upper He

Hessenberg form

(ii) Reduce upper Hessenberg matrix to upper triangular form by Givens rotations
$\left(\begin{array}{ccccc}\times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times \\ 0 & 0 & 0 & \times & \times\end{array}\right) \xrightarrow{P_{12} A_{1}}\left(\begin{array}{ccccc}\times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times \\ 0 & 0 & 0 & \times & \times\end{array}\right)$
$\xrightarrow{P_{23} A_{2}}\left(\begin{array}{ccccc}\times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times \\ 0 & 0 & \times & \times & \times \\ 0 & 0 & 0 & \times & \times\end{array}\right) \xrightarrow{P_{34} A_{3}}\left(\begin{array}{ccccc}\times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times \\ 0 & 0 & 0 & \times & \times \\ 0 & 0 & 0 & \times & \times\end{array}\right)$
$\xrightarrow{P_{45} A_{4}}\left(\begin{array}{ccccc}\times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times \\ 0 & 0 & 0 & \times & \times \\ 0 & 0 & 0 & 0 & \times\end{array}\right)=T$

$$
\begin{aligned}
&\left(\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times \\
0 & 0 & 0 & \times & \times \\
0 & 0 & 0 & 0 & \times
\end{array}\right) \\
& \xrightarrow{A_{1} P_{12}^{*}}\left(\begin{array}{ccccc}
+ & + & \times & \times & \times \\
+ & + & \times & \times & \times \\
0 & 0 & \times & \times & \times \\
0 & 0 & 0 & \times & \times \\
0 & 0 & 0 & 0 & \times
\end{array}\right) \\
& A_{2} P_{23}^{*}\left(\begin{array}{ccccc}
\times & + & + & \times & \times \\
\times & + & + & \times & \times \\
0 & + & + & \times & \times \\
0 & 0 & 0 & \times & \times \\
0 & 0 & 0 & 0 & \times
\end{array}\right) \\
& \xrightarrow{A_{3} P_{34}^{*}}\left(\begin{array}{ccccc}
\times & \times & + & + & \times \\
\times & \times & + & + & \times \\
0 & \times & + & + & \times \\
0 & 0 & + & + & \times \\
0 & 0 & 0 & 0 & \times
\end{array}\right) \\
& \xrightarrow{A_{4} P_{45}^{*}}\left(\begin{array}{cccc}
\times & \times & \times & + \\
\times \\
\times & \times & \times & + \\
0 & + \\
0 & \times & \times & + \\
0 & + \\
0 & 0 & \times & +
\end{array}\right)=H \quad \text { (upper Hessenberg) }
\end{aligned}
$$

A practical algorithm for reducing an upper Hessenberg matrix H to Schur form:
(If the shifted QR algorithm is applied to H, then $h_{n, n-1}$ will tend rapidly to zero and other subdiagonal elements may also tend to zero, slowly.
(2) If $h_{i, i-1} \approx 0$, then deflate the matrix to save computation.

- How to decide $h_{i, i-1}$ to be negligible?
- If

$$
\left|h_{i+1, i}\right| \leq \varepsilon\|A\|_{F}
$$

for a small number ε, then $h_{i+1, i}$ is negligible.

- Let Q be an orthogonal matrix such that

$$
H=Q^{*} A Q \equiv\left[h_{i j}\right]
$$

is upper Hessenberg. Let

$$
\tilde{H}=H-h_{i+1, i} e_{i+1} e_{i}^{T} \quad \sim \text { deflated matrix }
$$

Set

$$
E=Q\left(h_{i+1, i} e_{i+1} e_{i}^{T}\right) Q^{*}
$$

Then

$$
\tilde{H}=Q^{*}(A-E) Q
$$

If $\left|h_{i+1, i}\right| \leq \varepsilon\|A\|_{F}$, then

$$
\|E\|_{F}=\left\|Q\left(h_{i+1, i} e_{i+1} e_{i}^{T}\right) Q^{*}\right\|_{F}=\left|h_{i+1, i}\right| \leq \varepsilon\|A\|_{F}
$$

or

$$
\frac{\|E\|_{F}}{\|A\|_{F}} \leq \varepsilon
$$

When ε equals the rounding unit ε_{M}, the perturbation E is of a size with the perturbation due to rounding the elements of A.

Hessenberg form

The Wilkinson shift

(1) The Rayleigh-quotient shift $\sigma=h_{n, n}$ \Rightarrow local quadratic convergence to simple
(2) If H is real
\Rightarrow Rayleigh-quotient shift is also real
\Rightarrow can not approximate a complex eigenvalue
(3) The Wilkinson shift μ :

If λ_{1}, λ_{2} are eigenvalues of $\left(\begin{array}{cc}h_{n-1, n-1} & h_{n-1, n} \\ h_{n, n-1} & h_{n, n}\end{array}\right)$ with
$\left|\lambda_{1}-h_{n, n}\right| \leq\left|\lambda_{2}-h_{n, n}\right|$, then $\mu=\lambda_{1}$.

Hessenberg form

Algorithm

do $k=1,2, \cdots$
compute Wilkinson shift μ_{k}
Reduce upper Hessenberg $H_{k}-\mu_{k} I$ to upper triangular T_{k} :

$$
P_{n-1, n}^{(k)} \cdots P_{12}^{(k)}\left(H_{k}-\mu_{k} I\right)=T_{k}
$$

compute

$$
H_{k+1}=T_{k} P_{12}^{(k) *} \cdots P_{n-1, n}^{(k) *}+\mu_{k} I
$$

end do
\Rightarrow Schur form of $A \Rightarrow$ eigenvalues of A.

Question

How to get eigenvectors of A ?

Hessenberg form

If $A=Q T Q^{*}$ is the Schur decomposition of A and X is the matrix of right eigenvectors of T, then $Q X$ is the matrix of right eigenvalues of A.
If

$$
T=\left(\begin{array}{ccc}
T_{11} & t_{1, k} & t_{1, k+1} \\
0 & \tau_{k k} & t_{k, k+1}^{*} \\
0 & 0 & T_{k+1, k+1}
\end{array}\right)
$$

and $\tau_{k k}$ is a simple eigenvalue of T, then

$$
\left(\begin{array}{c}
-\left(T_{11}-\tau_{k k} I\right)^{-1} t_{1, k} \\
1 \\
0
\end{array}\right)
$$

is an eigenvector of T and

$$
\left(\begin{array}{lll}
0 & 1 & -t_{k, k+1}^{*}\left(T_{k+1, k+1}-\tau_{k k} I\right)^{-1}
\end{array}\right)
$$

is a left eigenvector of T corresponding to $\tau_{k k}$.

The implicity shifted QR algorithm

Theorem (Real Schur form)

Let A be real of order n. Then \exists an orthogonal matrix U such that

$$
U^{T} A U=\left(\begin{array}{cccc}
T_{11} & T_{12} & \cdots & T_{1 k} \\
0 & T_{22} & \cdots & T_{2 k} \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & T_{k k}
\end{array}\right) \sim \text { quasi-triangular }
$$

The diagonal blocks of T are of order one or two. The blocks of order one contain the real eigenvalue of A. The block of order two contain the pairs of complex conjugate eigenvalue of A. The blocks can be made to appear in any order.

Proof: Let (λ, x) be a complex eigenpair with $\lambda=\mu+i \nu$ and $x=y+i z$. That is

$$
2 y=x+\bar{x}, \quad 2 z i=x-\bar{x}
$$

and

$$
\begin{align*}
A y & =\frac{1}{2}[\lambda x+\bar{\lambda} \bar{x}] \\
& =\frac{1}{2}[(\mu y-\nu z)+i(\mu z+\nu y)+(\mu y-\nu z)-i(\nu y+\mu z)] \\
& =\mu y-\nu z \tag{9}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
A z=\frac{1}{2 i}[\lambda x-\bar{\lambda} \bar{x}]=\nu y+\mu z . \tag{10}
\end{equation*}
$$

From (9) and (10), we have

$$
\begin{aligned}
A\left(\begin{array}{ll}
y & z
\end{array}\right) & =\left(\begin{array}{ll}
\mu y-\nu z & \nu y+\mu z
\end{array}\right) \\
& =\left(\begin{array}{ll}
y & z
\end{array}\right)\left(\begin{array}{cc}
\mu & \nu
\end{array}\right) \equiv(y, z) L
\end{aligned}
$$

Let

$$
\left(\begin{array}{ll}
y & z
\end{array}\right)=\left(\begin{array}{ll}
X_{1} & X_{2}
\end{array}\right)\binom{R}{0}=X_{1} R
$$

be a QR factorization of $\left(\begin{array}{ll}y & z\end{array}\right)$. Since y and z are linearly independent, it holds that R is nonsingular and

$$
X_{1}=\left(\begin{array}{ll}
y & z
\end{array}\right) R^{-1} .
$$

Consequently,

$$
A X_{1}=A\left(\begin{array}{ll}
y & z
\end{array}\right) R^{-1}=\left(\begin{array}{ll}
y & z
\end{array}\right) L R^{-1}=X_{1} R L R^{-1} .
$$

Using this result and ($X_{1} X_{2}$) is unitary, we have

$$
\begin{align*}
\binom{X_{1}^{T}}{X_{2}^{T}} A\left(\begin{array}{ll}
X_{1} & X_{2}
\end{array}\right) & =\left(\begin{array}{cc}
X_{1}^{T} A X_{1} & X_{1}^{T} A X_{2} \\
X_{2}^{T} A X_{1} & X_{2}^{T} A X_{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
R L R^{-1} & X_{1}^{T} A X_{2} \\
0 & X_{2}^{T} A X_{2}
\end{array}\right) \tag{11}
\end{align*}
$$

Since λ and $\bar{\lambda}$ are eigenvalues of L and $R L R^{-1}$ is similar to L, (11) completes the deflation of the complex conjugate pair λ and $\bar{\lambda}$.

Remark

$A X_{1}=X_{1}\left(R L R^{-1}\right)$
$\Rightarrow A$ maps the column space of X_{1} into itself
$\Rightarrow \operatorname{span}\left(X_{1}\right)$ is called an eigenspace or invariant subspace.

- Francis double shift
(1) If the Wilkinson shift σ is complex, then $\bar{\sigma}$ is also a candidate for a shift.
(2) Apply two steps of the QR algorithm, one with shift σ and the other with shift $\bar{\sigma}$ to yield a matrix \hat{H}.

Let

$$
\hat{Q} \hat{R}=(H-\sigma I)(H-\hat{\sigma} I)
$$

be the QR factorization of $(H-\sigma I)(H-\hat{\sigma} I)$, then

$$
\hat{H}=\hat{Q}^{*} H \hat{Q}
$$

Since

$$
(H-\sigma I)(H-\hat{\sigma} I)=H^{2}-2 \operatorname{Re}(\sigma) H+|\sigma|^{2} I \in \mathbb{R}^{n \times n}
$$

we have that $\hat{Q} \in \mathbb{R}^{n \times n}$ and $\hat{H} \in \mathbb{R}^{n \times n}$. Therefore, the QR algorithm with two complex conjugate shifts preserves reality.

Francis double shift strategy

(1) Compute the Wilkinson shift σ;
(2) From the matrix $H^{2}-2 \operatorname{Re}(\sigma) H+|\sigma|^{2} I:=\tilde{H} \sim O\left(n^{3}\right)$ operations;
(3) Compute QR factorization of $\tilde{H}: \tilde{H}=\hat{Q} \hat{R}$;
(9) Compute $\hat{H}=\hat{Q}^{*} H \hat{Q}$.

- The uniqueness of Hessenberg reduction

Definition

Let H be upper Hessenberg of order n. Then H is unreduced if $h_{i+1, i} \neq 0$ for $i=1, \cdots, n-1$.

Theorem (Implicit Q theorem)

Suppose $Q=\left(\begin{array}{lll}q_{1} & \cdots & q_{n}\end{array}\right)$ and $V=\left(\begin{array}{lll}v_{1} & \cdots & v_{n}\end{array}\right)$ are unitary matrices with

$$
Q^{*} A Q=H \quad \text { and } \quad V^{*} A V=G
$$

being upper Hessenberg. Let k denote the smallest positive integer for which $h_{k+1, k}=0$, with the convection that $k=n$ if H is unreduced. If $v_{1}=q_{1}$, then $v_{i}= \pm q_{i}$ and $\left|h_{i, i-1}\right|=\left|g_{i, i-1}\right|$ for $i=2, \cdots, k$. Moreover, if $k<n$, then $g_{k+1, k}=0$.

Proof: Define $W \equiv\left(\begin{array}{lll}w_{1} & \cdots & w_{n}\end{array}\right)=V^{*} Q$. Then

$$
G W=G V^{*} Q=V^{*} A Q=V^{*} Q H=W H
$$

which implies that

$$
h_{i, i-1} w_{i}=G w_{i-1}-\sum_{j=1}^{i-1} h_{j, i-1} w_{j} \text { for } i=2, \cdots, k .
$$

Since $v_{1}=q_{1}$, it holds that

$$
\begin{aligned}
w_{1} & =e_{1} \\
h_{21} w_{2} & =G w_{1}-h_{11} w_{1}=\alpha_{21} e_{1}+\alpha_{22} e_{2} .
\end{aligned}
$$

Assume

$$
w_{i-1}=\alpha_{i-1,1} e_{1}+\cdots+\alpha_{i-1, i-1} e_{i-1}
$$

Then

$$
\begin{aligned}
h_{i, i-1} w_{i} & =G\left[\alpha_{i-1,1} e_{1}+\cdots+\alpha_{i-1, i-1} e_{i-1}\right]-\sum_{j=1}^{i-1} \beta_{i, j} e_{j} \\
& =\bar{\alpha}_{i, 1} e_{1}+\cdots+\bar{\alpha}_{i, i} e_{i}
\end{aligned}
$$

By induction, ($\left.\begin{array}{lll}w_{1} & \cdots & w_{k}\end{array}\right)$ is upper triangular. Since V and Q are unitary, $W=V * Q$ is also unitary and then

$$
w_{1}^{*} w_{j}=0, \quad \text { for } j=2, \cdots, k .
$$

That is

$$
w_{1 j}=0, \text { for } j=2, \cdots, k
$$

which implies that

$$
w_{2}= \pm e_{2}
$$

Similarly, by

$$
w_{2}^{*} w_{j}=0, \text { for } j=3, \cdots, k
$$

i.e.,

$$
w_{2 j}=0, \text { for } j=3, \cdots, k
$$

We get $w_{3}= \pm e_{3}$. By induction,

$$
w_{i}= \pm e_{i}, \text { for } i=2, \cdots, k .
$$

Since $w_{i}=V^{*} q_{i}$ and $h_{i, i-1}=w_{i}^{*} G w_{i-1}$, we have

$$
v_{i}=V e_{i}= \pm V w_{i}= \pm q_{i}
$$

and

$$
\left|h_{i, i-1}\right|=\left|g_{i, i-1}\right| \text { for } i=2, \cdots, k .
$$

If $h_{k+1, k}=0$, then

$$
\begin{aligned}
g_{k+1, k} & =e_{k+1}^{T} G e_{k}= \pm e_{k+1}^{T} G W e_{k}= \pm e_{k+1}^{T} W H e_{k} \\
& = \pm e_{k+1}^{T} \sum_{i=1}^{k} h_{i k} w_{i}= \pm \sum_{i=1}^{k} h_{i k} e_{k+1}^{T} e_{i}=0
\end{aligned}
$$

General algorithm

(1) Determine the first column c_{1} of
$C=H^{2}-2 \operatorname{Re}(\sigma) H+|\sigma|^{2} I$.
(2) Let Q_{0} be a Householder transformation such that $Q_{0}^{*} c_{1}=\sigma e_{1}$.
(3) Set $H_{1}=Q_{0}^{*} H Q_{0}$.
(- Use Householder transformation Q_{1} to reduce H_{1} to upper Hessenberg form \hat{H}.
(5) Set $\hat{Q}=Q_{0} Q_{1}$.

Question

General algorithm= the Francis double shift QR algorithm ?

Answer:

(I) Let

$$
C=\left(\begin{array}{cc}
c_{1} & C_{*}
\end{array}\right)=\hat{Q} \hat{R}=\left(\begin{array}{cc}
\hat{q} & \hat{Q}_{*}
\end{array}\right)\left(\begin{array}{cc}
\rho & r^{*} \\
0 & R_{*}
\end{array}\right)
$$

be the QR factorization of C. Then $c_{1}=\rho \hat{q}$. Partition
$Q_{0} \equiv\left(\begin{array}{cc}q_{0} & Q_{*}^{(0)}\end{array}\right)$, then $c_{1}=\sigma Q_{0} e_{1}=\sigma q_{0}$ which implies that \hat{q} and q_{0} are proportional to c_{1}.
(II) Since $\hat{H}=Q_{1}^{*} H_{1} Q_{1}$ is upper Hessenberg, we have

$$
Q_{1} e_{1}=e_{1}
$$

Hence,

$$
\left(Q_{0} Q_{1}\right) e_{1}=Q_{0} e_{1}=q_{0}
$$

which implies that the first column of $Q_{0} Q_{1}$ is proportional to \hat{q}.
(III) Since $\left(Q_{0} Q_{1}\right)^{*} H\left(Q_{0} Q_{1}\right)$ is upper Hessenberg and the first column of $Q_{0} Q_{1}$ is proportional to \hat{q}, by the implicit Q Theorem, if \hat{H} is unreduced, then $\hat{Q}=Q_{0} Q_{1}$ and $\hat{H}=\left(Q_{0} Q_{1}\right)^{*} H\left(Q_{0} Q_{1}\right)$.

- Computation of the first column of $C=H^{2}-2 R e(\sigma) H+|\sigma|^{2} I$: Let

$$
\begin{aligned}
t & \equiv 2 \operatorname{Re}(\sigma)=\operatorname{trace}\left(\begin{array}{cc}
h_{n-1, n-1} & h_{n-1, n} \\
h_{n, n-1} & h_{n, n}
\end{array}\right) \\
d & \equiv|\sigma|^{2}=\operatorname{det}\left(\begin{array}{cc}
h_{n-1, n-1} & h_{n-1, n} \\
h_{n, n-1} & h_{n, n}
\end{array}\right)
\end{aligned}
$$

Since H is upper Hessenberg, it holds that the first column of H^{2} is

$$
\left(\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22} \\
& h_{32}
\end{array}\right)\binom{h_{11}}{h_{21}}=\left(\begin{array}{c}
h_{11}^{2}+h_{12} h_{21} \\
h_{21}\left(h_{11}+h_{22}\right) \\
h_{21} h_{32}
\end{array}\right) .
$$

Thus, the first three components of the first column of C are

$$
\begin{aligned}
& \left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{c}
h_{11}^{2}+h_{12} h_{21}-t \cdot h_{11}+d \\
h_{21}\left(h_{11}+h_{22}\right)-t \cdot h_{21} \\
h_{21} h_{32}
\end{array}\right) \\
= & h_{21}\left(\begin{array}{c}
\left(h_{n n}-h_{11}\right)\left(h_{n-1, n-1}-h_{11}\right)-h_{n, n-1} h_{n-1, n} / h_{21}+h_{12} \\
\left(h_{22}-h_{11}\right)-\left(h_{n n}-h_{11}\right)-\left(h_{n-1, n-1}-h_{11}\right) \\
h_{32}
\end{array}\right)
\end{aligned}
$$

which requires $O(1)$ operations.

	$\left(\begin{array}{cccccc}\times & \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times & \times \\ 0 & 0 & 0 & \times & \times & \times \\ 0 & 0 & 0 & 0 & \times & \times\end{array}\right)$	$\xrightarrow{Q_{0} H}$	$\left(\begin{array}{cccccc}+ & + & + & + & + & + \\ + & + & + & + & + & + \\ + & + & + & + & + & + \\ 0 & 0 & \times & \times & \times & \times \\ 0 & 0 & 0 & \times & \times & \times \\ 0 & 0 & 0 & 0 & \times & \times\end{array}\right)$
$\xrightarrow{H Q_{0}}$	$\left(\begin{array}{cccccc}+ & + & + & \times & \times & \times \\ + & + & + & \times & \times & \times \\ + & + & + & \times & \times & \times \\ + & + & + & \times & \times & \times \\ 0 & 0 & 0 & \times & \times & \times \\ 0 & 0 & 0 & 0 & \times & \times\end{array}\right)$	$\xrightarrow{Q_{1} H Q_{1}}$	$\rightarrow\left(\begin{array}{cccccc}\times & \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times & \times \\ 0 & + & \times & \times & \times & \times \\ 0 & + & 0 & \times & \times & \times \\ 0 & 0 & 0 & 0 & \times & \times\end{array}\right)$
$\xrightarrow{Q_{2} H Q_{2}}$	$\left(\begin{array}{cccccc}\times & \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times & \times \\ 0 & 0 & + & \times & \times & \times \\ 0 & 0 & + & 0 & \times & \times\end{array}\right)$	$\xrightarrow{Q_{3} H Q_{3}}$	$\rightarrow\left(\begin{array}{cccccc}\times & \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times & \times \\ 0 & 0 & 0 & \times & \times & \times \\ 0 & 0 & 0 & \pm & \times & \times\end{array}\right)$

$$
\xrightarrow{Q_{4} H Q_{4}}\left(\begin{array}{cccccc}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times & \times \\
0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times
\end{array}\right) \sim O\left(n^{2}\right) \text { operations }
$$

- Deflation:
(1) If the eigenvalues of $\left(\begin{array}{cc}h_{n-1, n-1} & h_{n-1, n} \\ h_{n, n-1} & h_{n, n}\end{array}\right)$ are complex and nondefective, then $h_{n-1, n-2}$ converges quadratically to zero.
(2) If the eigenvalues are real and nondefective, both the $h_{n-1, n-2}$ converge quadratically to zero. The subdiagonal elements other than $h_{n-1, n-2}$ and $h_{n, n-1}$ may show a slow convergent to zero.
(3) Deflate matrix to a middle size of matrix.
(1) Converge to a block upper triangular with order one or two diagonal blocks. i, e. converge to real Schur form.
- Eigenvector:

Suppose

$$
T=\left(\begin{array}{ccc}
T_{11} & t_{12} & t_{13} \\
0 & \tau_{22} & \tau_{23} \\
0 & 0 & \tau_{33}
\end{array}\right)
$$

and $\left(\begin{array}{lll}x_{1}^{T} & \xi_{2} & 1\end{array}\right)^{T}$ is the eigenvector corresponding to eigenvalue $\lambda=\tau_{33}$. Then

$$
\left(\begin{array}{ccc}
T_{11} & t_{12} & t_{13} \\
0 & \tau_{22} & \tau_{23} \\
0 & 0 & \tau_{33}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\xi_{2} \\
1
\end{array}\right)=\lambda\left(\begin{array}{c}
x_{1} \\
\xi_{2} \\
1
\end{array}\right) .
$$

That is

$$
\left\{\begin{array}{l}
\tau_{22} \xi_{2}-\lambda \xi_{2}=-\tau_{23}, \\
T_{11} x_{1}-\lambda x_{1}=-t_{13}-\xi_{2} t_{12},
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
\xi_{2}=-\tau_{23} /\left(\tau_{22}-\lambda\right) \\
\left(T_{11}-\lambda I\right) x_{1}=-t_{13}-\xi_{2} t_{12} . \quad \sim \text { solve by back-substitution }
\end{array}\right.
$$

Suppose

$$
T=\left(\begin{array}{ccc}
T_{11} & t_{12} & T_{13} \\
0 & \tau_{22} & t_{23}^{T} \\
0 & 0 & T_{33}
\end{array}\right)
$$

where $T_{33} \in \mathbb{R}^{2 \times 2}$. Write

$$
\left(\begin{array}{ccc}
T_{11} & t_{12} & T_{13} \\
0 & \tau_{22} & t_{23}^{T} \\
0 & 0 & T_{33}
\end{array}\right)\left(\begin{array}{c}
X_{1} \\
x_{2}^{T} \\
X_{3}
\end{array}\right)=\left(\begin{array}{c}
X_{1} \\
x_{2}^{T} \\
X_{3}
\end{array}\right) L, \quad L \in \mathbb{R}^{2 \times 2}
$$

(I) Suppose X_{3} is nonsingular. Then

$$
T_{33} X_{3}=X_{3} L \Longrightarrow L=X_{3}^{-1} T_{33} X_{3} .
$$

It follows that L is similar to T_{33}.

Let $x_{3}=y_{3}+i z_{3}$ be the right eigenvector of T_{33} and the corresponding eigenvalue be $\mu+i \nu$, i.e.,

$$
\begin{aligned}
T_{33}\left(y_{3}+i z_{3}\right) & =(\mu+i \nu)\left(y_{3}+i z_{3}\right) \\
& =\left(\mu y_{3}-\nu z_{3}\right)+i\left(\nu y_{3}+\mu z_{3}\right)
\end{aligned}
$$

which implies that

$$
T_{33} y_{3}=\mu y_{3}-\nu z_{3} \quad \text { and } \quad T_{33} z_{3}=\nu y_{3}+\mu z_{3}
$$

or

$$
\begin{aligned}
T_{33}\left(\begin{array}{cc}
y_{3} & z_{3}
\end{array}\right) & =\left(\begin{array}{ll}
\mu y_{3}-\nu z_{3} & \nu y_{3}+\mu z_{3}
\end{array}\right) \\
& =\left(\begin{array}{ll}
y_{3} & z_{3}
\end{array}\right)\left(\begin{array}{cc}
\mu & \nu \\
-\nu & \mu
\end{array}\right) .
\end{aligned}
$$

Take $X_{3}=\left(\begin{array}{ll}y_{3} & z_{3}\end{array}\right)$. Then

$$
L=\left(\begin{array}{cc}
\mu & \nu \\
-\nu & \mu
\end{array}\right)
$$

(II) Since

$$
\tau_{22} x_{2}^{T}-x_{2}^{T} L=-t_{23}^{T} X_{3}
$$

it implies that

$$
x_{2}^{T}\left(\tau_{22} I-L\right)=-t_{23}^{T} X_{3} .
$$

Since τ_{22} is not an eigenvalue of L, we get that $\tau_{22} I-L$ is nonsingular and

$$
x_{2}^{T}=-t_{23}^{T} X_{3}\left(\tau_{22} I-L\right)^{-1} .
$$

(III) On the other hand,

$$
T_{11} X_{1}-X_{1} L=-T_{13} X_{3}-t_{12} x_{2}^{T}
$$

This is a Sylvester equation, which we can solve for X_{1} because T_{11} and L have no eigenvalues in common.

The generalized eigenvalue problem

$$
A x=\lambda B x \quad \sim \text { generalized eigenvalue problem }
$$

Definition

Let A and B be of order n. The pair (λ, x) is an eigenpair or right eigenpair of the pencil (A, B) if

$$
A x=\lambda B x, \quad x \neq 0
$$

The pair (λ, y) is a left eigenpair of the pencil (A, B) if

$$
y^{*} A=\lambda y^{*} B, \quad y \neq 0
$$

Remark

If B is singular, it is possible for any number λ to be an eigenvalue of the pencil (A, B).
(1) If A and B have a common null vector x, then (λ, x) is an eigenpair of (A, B) for any λ.
(2) Example:

$$
\begin{aligned}
0= & {\left[\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)-\lambda\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)\right]\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
x_{1}-\lambda x_{2} \\
-\lambda x_{3} \\
x_{3}
\end{array}\right) } \\
& \Rightarrow x_{3}=0, x_{1}=\lambda x_{2} \forall \lambda
\end{aligned}
$$

The determinant of $A-\lambda B$ defined in (I) and (II) is identically zero.

Definition

A matrix pencil (A, B) is regular if $\operatorname{det}(A-\lambda B)$ is not identically zero.

Remark

A regular matrix pencil can have only a finite number of eigenvalues.

- To see this

$$
A x=\lambda B x, \quad x \neq 0 \Longleftrightarrow \operatorname{det}(A-\lambda B)=0
$$

- Now, $P(\lambda)=\operatorname{det}(A-\lambda B)$ is a polynomial of degree $m \leq n$.
- If (A, B) is regular, then $P(\lambda)$ is not identically zero.
- Hence $P(\lambda)$ has m zeros.
- That is (A, B) has m eigenvalues.

If $P(\lambda) \equiv$ constant, then (A, B) has no eigenvalues. This can only occur if B is singular.

Example

Consider

$$
A=I_{3}, \quad B=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Then $\operatorname{det}(A-\lambda B) \equiv 1$ for all λ. From

$$
(A-\lambda B) x=0
$$

we have

$$
x_{1}-\lambda x_{2}=0, x_{2}-\lambda x_{3}=0, x_{3}=0
$$

which implies that

$$
x_{1}=x_{2}=x_{3}=0
$$

Therefore, it does not exist (λ, x) with $x \neq 0$ such that $(A-\lambda B) x=0$. It follows that (A, B) has no eigenvalues.

- λ is an eigenvalue of $(A, B) \Longleftrightarrow \mu=\lambda^{-1}$ is an eigenvalue of (B, A)
- If B is singular, then $B x=0$ for some $x \neq 0$.
$\Rightarrow 0$ is an eigenvalue of (B, A)
$\Rightarrow \infty=1 / 0$ is an eigenvalue of (A, B)
\Rightarrow If $P(\lambda) \equiv$ constant, then the pencil has infinite eigenvalues.

Definition

Let (A, B) be a matrix pencil, U and V be nonsingular. Then the pencil $\left(U^{*} A V, U^{*} B V\right)$ is said to be equivalent to (A, B).

Theorem

Let (λ, x) and (λ, y) be left and right eigenpairs of the regular pencil (A, B). If U and V are nonsingular, then $\left(\lambda, V^{-1} x\right)$ and $\left(\lambda, U^{-1} y\right)$ are eigenpairs of $\left(U^{*} A V, U^{*} B V\right)$.

Since

$$
\operatorname{det}\left(U^{*} A V-\lambda U^{*} B V\right)=\operatorname{det}\left(U^{*}\right) \operatorname{det}(V) \operatorname{det}(A-\lambda B)
$$

it holds that the eigenvalues and their multiplicity are preserved by equivalence transformations.

Theorem (Generalized Schur form)

Let (A, B) be a regular pencil. Then \exists unitary matrices U and V such that $S=U^{*} A V$ and $T=U^{*} B V$ are upper triangular.

Proof:

- Let v be an eigenvector of (A, B) normalized so that $\|v\|_{2}=1$, and let $\left(\begin{array}{cc}v & V_{\perp}\end{array}\right)$ be unitary.
- Since (A, B) is regular, we have $A v \neq 0$ or $B v \neq 0$, said $A v \neq 0$.
- Moreover, if $B v \neq 0$, then, from $A v=\lambda B v$, it follows that $A v / / B v$.
- Let $u=A v /\|A v\|_{2}$ and $\left(\begin{array}{cc}u & U_{\perp}\end{array}\right)$ be unitary.

Then

$\left(\begin{array}{cc}u & U_{\perp}\end{array}\right)^{*} A\left(\begin{array}{cc}v & V_{\perp}\end{array}\right)=\left(\begin{array}{cc}u^{*} A v & u^{*} A V_{\perp} \\ U_{\perp}^{*} A v & U_{\perp}^{*} A V_{\perp}\end{array}\right) \equiv\left(\begin{array}{cc}\sigma_{11} & s_{12}^{*} \\ 0 & \hat{A}\end{array}\right)$.
$\left(\because U_{\perp}^{*} A v=U_{\perp}^{*} u=0.\right)$ Similarly,
$\left(\begin{array}{cc}u & U_{\perp}\end{array}\right)^{*} B\left(\begin{array}{cc}v & V_{\perp}\end{array}\right)=\left(\begin{array}{cc}u^{*} B v & u^{*} B V_{\perp} \\ U_{\perp}^{*} B v & U_{\perp}^{*} B V_{\perp}\end{array}\right) \equiv\left(\begin{array}{cc}\tau_{11} & t_{12}^{*} \\ 0 & \hat{B}\end{array}\right)$.
$\left(\because U_{\perp}^{*} B v=\lambda^{-1} U_{\perp}^{*} A v=\lambda^{-1}\|A v\|_{2} U_{\perp}^{*} u=0\right.$. $)$ The proof is completed by an inductive reduction of (\hat{A}, \hat{B}) to triangular form.

Definition

Let (A, B) be a regular pencil of order n.
(1) $P_{(A, B)}(\lambda) \equiv \operatorname{det}(A-\lambda B)$: characteristic poly. of (A, B).
(2) algebraic multiplicity of a finite eigenvalue of $(A, B)=$ multiplicity of a zero of $P_{(A, B)}(\lambda)=0$.
(3) $\operatorname{deg}\left(P_{(A, B)}(\lambda)\right)=m<n$ then (A, B) has an infinite eigenvalue of algebraic multiplicity $n-m$.

Let (A, B) be a regular pencil and

$$
U^{*} A V=\left[\alpha_{i j}\right], \quad U^{*} B V=\left[\beta_{i j}\right]
$$

be a generalized Schur form of (A, B). Then

$$
P_{(A, B)}(\lambda)=\prod_{\beta_{i i} \neq 0}\left(\alpha_{i i}-\lambda \beta_{i i}\right) \prod_{\beta_{i i}=0} \alpha_{i i} \cdot \operatorname{det}(U) \operatorname{det}\left(V^{*}\right) .
$$

If $\beta_{i i} \neq 0$, then $\lambda=\alpha_{i i} / \beta_{i i}$ is a finite eigenvalue of (A, B).
Otherwise, the eigenvalue is infinite.

$$
\begin{aligned}
A x=\lambda B x & \Leftrightarrow \beta_{i i} A x=\alpha_{i i} B x \\
& \Leftrightarrow\left(\tau \beta_{i i}\right) A x=\left(\tau \alpha_{i i}\right) B x, \tau \in \mathbb{C} .
\end{aligned}
$$

Definition

$<\alpha_{i i}, \beta_{i i}>=\left\{\tau\left(\alpha_{i i}, \beta_{i i}\right): \tau \in \mathbb{C}\right\}$ is called the projective representation of the eigenvalue.

- $\langle 0,1\rangle$: zero eigenvalue,
- $\langle 1,0\rangle$: infinite eigenvalue,
- $<\lambda, 1\rangle$: ordinary eigenvalue.

If (λ, x) and (λ, y) are simple right and left eigenpair of A, respectively, then $x^{*} y \neq 0$. This allows us to compute the eigenvalue in the form of a Rayleigh quotient

$$
y^{*} A x / y^{*} x
$$

But, the left and right eigenvectors of a simple eigenvalue of (A, B) can be orthogonal.

Example

Consider

$$
A-\lambda B=\left(\begin{array}{cc}
0 & 2 \\
1 & 0
\end{array}\right)-\lambda\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Then

$$
\operatorname{det}(A-\lambda B)=(1-\lambda)(2-\lambda)
$$

It follows that $\left(1, e_{1}\right)$ and $\left(1, e_{2}\right)$ are right and left eigenpair of (A, B), respectively. Thus, $e_{1}^{T} e_{2}=0$.

Perturbation theory:
Let ($\langle\alpha, \beta\rangle, x$) be a simple eigenpair of regular pencil (A, B) and

$$
(\tilde{A}, \tilde{B})=(A+E, B+F)
$$

with

$$
\sqrt{\|E\|_{F}^{2}+\|F\|_{F}^{2}}=\varepsilon .
$$

If $(\langle\tilde{\alpha}, \tilde{\beta}\rangle, \tilde{x})$ is an eigenpair of (\tilde{A}, \tilde{B}), then
$(<\tilde{\alpha}, \tilde{\beta}\rangle, \tilde{x}) \longrightarrow(\langle\alpha, \beta\rangle, x)$ as $\varepsilon \rightarrow 0$.
Proof: Assume B is nonsingular $\Rightarrow B+F$ is also nonsingular. Hence,

$$
(A+E) \tilde{x}=\tilde{\lambda}(B+F) \tilde{x} \Rightarrow(B+F)^{-1}(A+E) \tilde{x}=\tilde{\lambda} \tilde{x} .
$$

Similarly, for the left eigenvector \tilde{y},

$$
\tilde{y}^{*}(A+E)(B+F)^{-1}=\tilde{\lambda} \tilde{y}^{*}
$$

By Theorem 3.13 in Chapter 1,

$$
\sin \angle(x, \tilde{x})=O(\varepsilon), \quad \sin \angle(y, \tilde{y})=O(\varepsilon) .
$$

Suppose $\|x\|_{2}=\|\tilde{x}\|_{2}=\|y\|_{2}=\|\tilde{y}\|_{2}=1$. Then

$$
\cos \angle(x, \tilde{x})=\left|x^{*} \tilde{x}\right|, \quad \cos \angle(y, \tilde{y})=\left|y^{*} \tilde{y}\right|
$$

or

$$
\left|x^{*} \tilde{x}\right|^{2}=\cos ^{2} \angle(x, \tilde{x})=1-\sin ^{2} \angle(x, \tilde{x})=1-O(\varepsilon)
$$

which implies that

$$
\tilde{x}=x+O(\varepsilon) \text { and } \tilde{y}=y+O(\varepsilon)
$$

Therefore,

$$
\begin{aligned}
<\tilde{\alpha}, \tilde{\beta}> & =<\tilde{y}^{*} \tilde{A} \tilde{x}, \tilde{y}^{*} B \tilde{x}> \\
= & <y^{*} A x, y^{*} B x>+O(\varepsilon) \\
= & <\alpha, \beta>+O(\varepsilon)
\end{aligned}
$$

Theorem

Let x and y be a simple eigenvectors of the regular pencil (A, B), and $<\alpha, \beta>=<y^{*} A x, y^{*} B x>$ be the corresponding eigenvalue. Then

$$
\begin{equation*}
<\tilde{\alpha}, \tilde{\beta}>=<\alpha+y^{*} E x, \beta+y^{*} F x>+O\left(\varepsilon^{2}\right) \tag{12}
\end{equation*}
$$

Proof: Since (A, B) is regular, it holds that not both $y^{*} A$ and $y^{*} B$ can be zero. Assume $u^{*} \equiv y^{*} A \neq 0$. By (4.6), ($y^{*} A x=0 \Rightarrow A x=0$ and $y^{*} A=0$)

$$
u^{*} x=y^{*} A x \neq 0
$$

Let U be an orthonormal basis for the orthogonal complement of u. Then $\left(\begin{array}{cc}x & U\end{array}\right)$ is nonsingular. Write $\tilde{x}=r x+U c$ for some r and c. Since $\tilde{x} \rightarrow x$, it implies that $r \rightarrow 1$. Setting $e=U c / r$, we may write $\tilde{x}=x+e$ with $\|e\|_{2}=O(\varepsilon)$. Then

$$
y^{*} A e=u^{*} U c / r=0 .
$$

On the other hand, since

$$
0 \neq y^{*} A=\lambda y^{*} B,
$$

it holds that $\lambda \neq 0$. By the fact that

$$
0=y^{*} A e=\lambda y^{*} B e,
$$

we get $y^{*} B e=0$. Similarly, write

$$
\tilde{y}=y+f, \text { where } f^{*} A x=f^{*} B x=0 \text { and }\|f\|_{2}=O(\varepsilon) .
$$

Now,

$$
\begin{aligned}
\tilde{\alpha} & =\tilde{y}^{*} \tilde{A} \tilde{x}=(y+f)^{*}(A+E)(x+e) \\
& =y^{*} A x+y^{*} E x+f^{*} A x+y^{*} A e+f^{*} A e+f^{*} E e+f^{*} E x+y^{*} E e \\
& =\alpha+y^{*} E x+f^{*} A e+f^{*} E e+f^{*} E x+y^{*} E e \\
& =\alpha+y^{*} E x+O\left(\varepsilon^{2}\right) .
\end{aligned}
$$

Similarly,

$$
\tilde{\beta}=\beta+y^{*} F x+O\left(\varepsilon^{2}\right)
$$

The expression (12) can be written in the form

$$
<\tilde{\alpha}, \tilde{\beta}>=<y^{*} \tilde{A} x, y^{*} \tilde{B} x>+O\left(\varepsilon^{2}\right) .
$$

If λ is finite, then

$$
\tilde{\lambda}=\frac{y^{*} \tilde{A} x}{y^{*} \tilde{B} x}+O\left(\varepsilon^{2}\right)
$$

The chordal matric

$$
<\alpha, \beta>=\{\tau(\alpha, \beta): \tau \in \mathbb{C}\}=\operatorname{span}\{(\alpha, \beta)\}
$$

Question

How to measure the distance between two eigenvalues
$<\alpha, \beta>$ and $<\gamma, \delta>$?
Answer: By the sine of the angle θ between them.

By the Cauchy inequality

$$
\cos ^{2} \theta=\frac{|\alpha \gamma+\beta \delta|^{2}}{\left(|\alpha|^{2}+|\beta|^{2}\right)\left(|\gamma|^{2}+|\delta|^{2}\right)} .
$$

Hence,

$$
\sin ^{2} \theta=1-\cos ^{2} \theta=\frac{|\alpha \delta-\beta \gamma|^{2}}{\left(|\alpha|^{2}+|\beta|^{2}\right)\left(|\gamma|^{2}+|\delta|^{2}\right)} .
$$

Definition

The chordal distance between $\langle\alpha, \beta\rangle$ and $\langle\gamma, \delta\rangle$ is the number

$$
\chi(\langle\alpha, \beta\rangle,\langle\gamma, \delta\rangle)=\frac{|\alpha \delta-\beta \gamma|}{\sqrt{|\alpha|^{2}+|\beta|^{2}} \sqrt{|\gamma|^{2}+|\delta|^{2}}} .
$$

Remark

(1) If β and δ are nonzero, set $\lambda=\alpha / \beta$ and $\mu=\gamma / \delta$, then

$$
\chi(<\alpha, \beta>,<\gamma, \delta>)=\frac{|\lambda-\mu|}{\sqrt{1+|\lambda|^{2}} \sqrt{1+|\mu|^{2}}}:=\chi(\lambda, \mu) .
$$

$\chi(\lambda, \mu)$ defines a distance between numbers in the complex plane.
(2) If $|\lambda|,|\mu| \leq 1$, then

$$
\frac{1}{2}|\lambda-\mu| \leq \chi(\lambda, \mu) \leq|\lambda-\mu| .
$$

Hence, for eigenvalues that are not large, the chordal matric behaves like the ordinary distance between two points in the complex plane.

The condition of an eigenvalue

Since

$$
<\alpha, \beta>\cong<\alpha+y^{*} E x, \beta+y^{*} F x>
$$

we have

$$
\chi(<\alpha, \beta>,<\tilde{\alpha}, \tilde{\beta}>) \cong \frac{\left|\alpha y^{*} F x-\beta y^{*} E x\right|}{|\alpha|_{2}+|\beta|_{2}}
$$

By the fact

$$
\begin{aligned}
\left|\left(\begin{array}{cc}
\alpha & \beta
\end{array}\right)\binom{y^{*} F x}{-y^{*} E x}\right| & \leq \sqrt{|\alpha|_{2}+|\beta|_{2}}\|x\|_{2}\|y\|_{2} \sqrt{\|E\|_{F}^{2}+\|F\|_{F}^{2}} \\
& =\varepsilon\|x\|_{2}\|y\|_{2} \sqrt{|\alpha|_{2}+|\beta|_{2}}
\end{aligned}
$$

we get

$$
\chi(<\alpha, \beta>,<\tilde{\alpha}, \tilde{\beta}>) \lesssim \frac{\|x\|_{2}\|y\|_{2}}{\sqrt{|\alpha|_{2}+|\beta|_{2}}} \cdot \varepsilon
$$

Theorem

Let λ be a simple eigenvalue (possibly infinite) of (A, B) and let x and y be its right and left eigenvectors. Let the projective representation of λ be $<\alpha, \beta>$, where

$$
\alpha=y^{*} A x \quad \text { and } \quad \beta=y^{*} B x
$$

Let $\tilde{A}=A+E$ and $\tilde{B}=B+F$, and set

$$
\varepsilon=\sqrt{\|E\|_{F}^{2}+\|F\|_{F}^{2}}
$$

Then for ε sufficiently small, \exists eigenvalue $\tilde{\lambda}$ of (\tilde{A}, \tilde{B}) satisfying

$$
\chi(\lambda, \tilde{\lambda}) \leq \nu \varepsilon+O\left(\varepsilon^{2}\right)
$$

where

$$
\nu=\frac{\|x\|_{2}\|y\|_{2}}{\sqrt{|\alpha|_{2}+|\beta|_{2}}}
$$

Remark

(1) ν is a condition number of eigenvalue.
(2) If $\|x\|_{2}=\|y\|_{2}=1, \alpha$ and β are both small, then the eigenvalue is ill conditioned, i.e., it is sensitive to the perturbation E and F. Otherwise, i.e., one of α or β is large, the eigenvalue is well conditioned.

Theorem

Let (A, B) be a real regular pencil. Then there are orthogonal matrices U and V such that

$$
S=U^{T} A V=\left(\begin{array}{cccc}
S_{11} & S_{12} & \cdots & S_{1 k} \\
0 & S_{22} & \cdots & S_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & S_{k k}
\end{array}\right)
$$

and

$$
T=U^{T} B V=\left(\begin{array}{cccc}
T_{11} & T_{12} & \cdots & T_{1 k} \\
0 & T_{22} & \cdots & T_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & T_{k k}
\end{array}\right)
$$

where $T_{i i}, S_{i i} \in \mathbb{R}$ or $\mathbb{R}^{2 \times 2}$.

Remark

The pencils $\left(T_{i i}, S_{i i}\right)$ with $T_{i i}, S_{i i} \in \mathbb{R}$ contain the real eigenvalues of (A, B). The pencils $\left(T_{i i}, S_{i i}\right)$ with $T_{i i}, S_{i i} \in \mathbb{R}^{2 \times 2}$ contain a pair of complex conjugate eigenvalues of (A, B). The blocks can made to appear in any order.

Sketch the procedure of the proof: Let $x=y+i z$ be the right eigenvector of (A, B) corresponding to the eigenvalue $\lambda=\mu+i \nu$, i.e.,

$$
\begin{aligned}
A(y+i z) & =(\mu+i \nu) B(y+i z) \\
& =(\mu B y-\nu B z)+i(\nu B y+\mu B z)
\end{aligned}
$$

\Rightarrow

$$
\begin{align*}
A\left(\begin{array}{ll}
y & z
\end{array}\right) & =\left(\begin{array}{ll}
\mu B y-\nu B z & \nu B y+\mu B z
\end{array}\right) \\
& =B(\mu y-\nu z \\
& \nu y+\mu z) \tag{13}\\
& =B\left(\begin{array}{ll}
y & z
\end{array}\right)\left(\begin{array}{cc}
\mu & \nu \\
-\nu & \mu
\end{array}\right) \equiv B X L
\end{align*}
$$

Since $\{y, z\}$ is linearly independent, it holds that $\exists V$ with $V^{T} V=I_{2}$ and a nonsingular 2×2 matrix R such that

$$
\left(\begin{array}{ll}
y & z \tag{14}
\end{array}\right)=V R
$$

Substituting (14) into (13), we get

$$
A V R=B V R L \Rightarrow A V=B V\left(R L R^{-1}\right)
$$

Let $U \in \mathbb{R}^{2 \times 2}$ with $U^{T} U=I_{2}$ and $S \in \mathbb{R}^{2 \times 2}$ such that

$$
A V=U S
$$

Then

$$
B V=A V\left(R L R^{-1}\right)^{-1}=U S R L^{-1} R^{-1} \equiv U T, \quad T \in \mathbb{R}^{2 \times 2} .
$$

Let $\left(\begin{array}{ll}V & V_{\perp}\end{array}\right)$ and $\left(\begin{array}{ll}U & U_{\perp}\end{array}\right)$ be orthogonal. Then

$$
\begin{aligned}
& \binom{U^{T}}{U_{\perp}^{T}}(A, B)\left(\begin{array}{ll}
V & V_{\perp}
\end{array}\right) \\
= & \left(\left(\begin{array}{ll}
U^{T} A V & U^{T} A V_{\perp} \\
U_{\perp}^{T} A V & U_{\perp}^{T} A V_{\perp}
\end{array}\right),\left(\begin{array}{ll}
U^{T} B V & U^{T} B V_{\perp} \\
U_{\perp}^{T} B V & U_{\perp}^{T} B V_{\perp}
\end{array}\right)\right) \\
= & \left(\left(\begin{array}{cc}
S & G \\
0 & \hat{A}
\end{array}\right),\left(\begin{array}{cc}
T & H \\
0 & \hat{B}
\end{array}\right) .\right.
\end{aligned}
$$

Hessenberg-triangular form
(1) Determine an orthogonal matrix Q such that $Q^{T} B$ is upper triangular.
(2) Apply Q^{T} to $A: Q^{T} A$.
(3) Use plane rotations to reduce A to Hessenberg form while preserving the upper triangularity of B.

$$
\begin{array}{r}
\left(\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times
\end{array}\right),\left(\begin{array}{cccc}
\times & \times & \times & \times \\
0 & \times & \times & \times \\
0 & 0 & \times & \times \\
0 & 0 & 0 & \times
\end{array}\right) \\
\xrightarrow{P_{34}(A, B)}\left(\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
* & * & * & * \\
0 & * & * & *
\end{array}\right),\left(\begin{array}{cccc}
\times & \times & \times & \times \\
0 & \times & \times & \times \\
0 & 0 & * & * \\
0 & 0 & + & *
\end{array}\right) \\
\xrightarrow{(A, B) \hat{P}_{43}}\left(\begin{array}{cccc}
\times & \times & * & * \\
\times & \times & * & * \\
\times & \times & * & * \\
0 & \times & * & *
\end{array}\right),\left(\begin{array}{cccc}
\times & \times & * & * \\
0 & \times & * & * \\
0 & 0 & * & * \\
0 & 0 & 0 & *
\end{array}\right)
\end{array}
$$

$$
\begin{aligned}
& \xrightarrow{P_{23}(A, B)}\left(\begin{array}{cccc}
\times & \times & \times & \times \\
* & * & * & * \\
0 & * & * & * \\
0 & \times & \times & \times
\end{array}\right),\left(\begin{array}{cccc}
\times & \times & \times & \times \\
0 & * & * & * \\
0 & + & * & * \\
0 & 0 & 0 & \times
\end{array}\right) \\
& \xrightarrow{(A, B) \hat{P}_{32}}\left(\begin{array}{cccc}
\times & * & * & \times \\
\times & * & * & \times \\
0 & * & * & \times \\
0 & * & * & \times
\end{array}\right),\left(\begin{array}{cccc}
\times & * & * & \times \\
0 & * & * & \times \\
0 & 0 & * & \times \\
0 & 0 & 0 & \times
\end{array}\right)
\end{aligned}
$$

Deflation
A : upper Hessenberg matrix, B : upper triangular matrix
(I) If $a_{k+1, k}=0$, then

$$
A-\lambda B=\left(\begin{array}{cc}
A_{11}-\lambda B_{11} & A_{12}-\lambda B_{12} \\
0 & A_{22}-\lambda B_{22}
\end{array}\right)
$$

\Rightarrow Solve two small problems $A_{11}-\lambda B_{11}$ and $A_{22-}-\lambda B_{22}$

Real Schur and Hessenberg-triangular forms

(II) If $b_{k k}=0$ for some k, then it is possible to introduce a zero in $A^{\prime} \mathbf{s}(n, n-1)$ position and thereby deflate.

$$
\begin{gathered}
A=\left(\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times \\
0 & 0 & 0 & \times & \times
\end{array}\right), \quad B=\left(\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & 0 & 0 & \times & \times \\
0 & 0 & 0 & \otimes & \times \\
0 & 0 & 0 & 0 & \times
\end{array}\right) \\
A=P_{34}^{*} A=\left(\begin{array}{cccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
0 & + & + & + & + \\
0 & \oplus & + & + & + \\
0 & 0 & 0 & \times & \times
\end{array}\right), B=P_{34}^{*} B=\left(\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & 0 & 0 & + & + \\
0 & 0 & 0 & 0 & + \\
0 & 0 & 0 & 0 & \times
\end{array}\right) \\
A=A Q_{23}=\left(\begin{array}{ccccc}
\times & + & + & \times & \times \\
\times & + & + & \times & \times \\
0 & + & + & \times & \times \\
0 & 0 & + & \times & \times \\
0 & 0 & 0 & \times & \times
\end{array}\right), B=B Q_{23}=\left(\begin{array}{ccccc}
\times & + & + & \times & \times \\
0 & + & + & \times & \times \\
0 & 0 & 0 & \times & \times \\
0 & 0 & 0 & 0 & \times \\
0 & 0 & 0 & 0 & \otimes
\end{array}\right)
\end{gathered}
$$

Real Schur and Hessenberg-triangular forms

$$
\begin{aligned}
& A=P_{45}^{*} A=\left(\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & 0 & + & + & + \\
0 & 0 & \oplus & + & +
\end{array}\right), B=P_{45}^{*} B=\left(\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times \\
0 & 0 & 0 & \times & \times \\
0 & 0 & 0 & 0 & + \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& A=A Q_{34}=\left(\begin{array}{ccccc}
\times & \times & + & + & \times \\
\times & \times & + & + & \times \\
0 & \times & + & + & \times \\
0 & 0 & + & + & \times \\
0 & 0 & 0 & \oplus & \times
\end{array}\right), B=B Q_{34}=\left(\begin{array}{ccccc}
\times & \times & + & + & \times \\
0 & \times & + & + & \times \\
0 & 0 & + & + & \times \\
0 & 0 & 0 & 0 & \times \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& A=A Q_{45}=\left(\begin{array}{ccccc}
\times & \times & \times & + & + \\
\times & \times & \times & + & + \\
0 & \times & \times & + & + \\
0 & 0 & \times & + & + \\
0 & 0 & 0 & 0 & +
\end{array}\right), B=B Q_{45}=\left(\begin{array}{ccccc}
\times & \times & \times & + & + \\
0 & \times & \times & + & + \\
0 & 0 & \times & + & + \\
0 & 0 & 0 & + & + \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

doubly shifted QR algorithm

iterative reduction of a real Hessenberg matrix to real Schur form.

doubly shifted QZ algorithm

iterative reduction of a real Hessenberg-triangular pencil to real generalized Schur form.

Basic idea

Update A and B as follows:

$$
(\hat{A}-\lambda \hat{B})=\hat{Q}^{T}(A-\lambda B) \hat{Z}
$$

where \hat{A} is upper Hessenberg, \hat{B} is upper triangular, \hat{Q} and \hat{Z} are orthogonal.
(1) Let (A, B) be in Hessenberg-triangular form and B be nonsingular.
(3) $C=A B^{-1}$ is Hessenberg.
(3) a Francis QR step were explicitly applied to C.

Let a and b be the eigenvalues of

$$
\left(\begin{array}{cc}
c_{n-1, n-1} & c_{n-1, n} \\
c_{n, n-1} & c_{n, n}
\end{array}\right)
$$

v be the first column of $(C-a I)(C-b I)$. Then, there is only three nonzero components in v which requires $O(1)$ flops.
Take Householder transformation H such that

$$
H^{T} v=\alpha e_{1} .
$$

Determine orthogonal matrices Q and Z with $Q e_{1}=e_{1}$ such that

$$
(\hat{A}, \hat{B})=Q^{T}\left(H^{T} A, H^{T} B\right) Z
$$

is in Hessenberg-triangular form. Then

$$
\begin{aligned}
\hat{C} & =\hat{A} \hat{B}^{-1}=\left(Q^{T} H^{T} A Z\right)\left(Q^{T} H^{T} B Z\right)^{-1} \\
& =\left(Q^{T} H^{T} A Z\right)\left(Z\left(T B^{-1} H Q\right)=(H Q)^{T} C(H Q)\right.
\end{aligned}
$$

- Moreover, since $Q e_{1}=e_{1}$, we have $(H Q) e_{1}=H e_{1}$.
- It follows that \hat{C} is the result of performing an implicit double QR step on C.
- Consequently, at least one of the subdiagonal elements $c_{n, n-1}$ and $c_{n-1, n-2}$ converges to zero.
Since (A, B) is in Hessenberg-triangular form and $A=C B$, we have

$$
\left\{\begin{array}{l}
a_{n, n-1}=c_{n, n-1} b_{n-1, n-1} \\
a_{n-1, n-2}=c_{n-1, n-2} b_{n-2, n-2}
\end{array}\right.
$$

Hence,

- if $b_{n-1, n-1}$ and $b_{n-2, n-2}$ do not approach zero, then at least one of the subdiagonal elements $a_{n, n-1}$ and $a_{n-1, n-2}$ must approach zero.
- $a_{n, n-1} \rightarrow 0 \Rightarrow$ deflate with a real eigenvalue.
- $a_{n-1, n-2} \rightarrow 0 \Rightarrow$ a 2×2 block, which may contain real or complex eigenvalues, is isolated.
\Rightarrow The iteration can be continued with a smaller matrix.
- On the other hand, if either $b_{n-1, n-1}$ or $b_{n-2, n-2}$ approach zero, the process converges to an infinite eigenvalue, which can be deflated.

The QZ step

- only the first three components of v are nonzero and H is Householder transformation such that

$$
\begin{gathered}
H^{T} v=\alpha e_{1} \\
A=H^{T} A=\left(\begin{array}{ccccc}
+ & + & + & + & + \\
+ & + \\
+ & + & + & + & + \\
+ & + & + & + & + \\
0 & + \\
0 & \times & \times & \times & \times \\
0 & 0 & 0 & \times & \times \\
\times \\
0 & 0 & 0 & 0 & \times \\
\times
\end{array}\right), \\
B=H^{T} B=\left(\begin{array}{ccccc}
+ & + & + & + & + \\
+ \\
\oplus & + & + & + & + \\
\oplus & + & + & + & + \\
+ \\
0 & 0 & 0 & \times & \times \\
\hline 0 & 0 & 0 & 0 & \times \\
0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}\right),
\end{gathered}
$$

$$
\begin{aligned}
& A=A Z_{1} Z_{2}=\left(\begin{array}{cccccc}
+ & + & + & \times & \times & \times \\
+ & + & + & \times & \times & \times \\
\oplus & + & + & \times & \times & \times \\
\oplus & \oplus & + & \times & \times & \times \\
0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times
\end{array}\right), \\
& B=B Z_{1} Z_{2}=\left(\begin{array}{cccccc}
+ & + & + & \times & \times & \times \\
0 & + & + & \times & \times & \times \\
0 & 0 & + & \times & \times & \times \\
0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times \\
0 & 0 & 0 & 0 & 0 & \times
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& A=Q_{2} Q_{1} A=\left(\begin{array}{cccccc}
\times & \times & \times & \times & \times & \times \\
+ & + & + & + & + & + \\
0 & + & + & + & + & + \\
0 & 0 & + & + & + & + \\
0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times
\end{array}\right), \\
& B=Q_{2} Q_{1} B=\left(\begin{array}{cccccc}
\times & \times & \times & \times & \times & \times \\
0 & + & + & + & + & + \\
0 & \oplus & + & + & + & + \\
0 & \oplus & \oplus & + & + & + \\
0 & 0 & 0 & 0 & \times & \times \\
0 & 0 & 0 & 0 & 0 & \times
\end{array}\right)
\end{aligned}
$$

