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Power and inverse power methods

The power and inverse power methods

Let A be a nondefective matrix and (\;,z;) fori=1,--- ;nbe a
complete set of eigenpairs of A. Thatis {1, - ,z,} is linearly
independent. Hence, for any ug # 0, 3 a1, - - - , a, Such that

Uy = Q121 + -+ + Q.
Now AFz; = A\rx;, so that
Afug = an My + -+ ap iy, (1)

If |[A1| > |\i| fori > 2 and a; # 0, then

Ao
kA up = a1+ (= )kOQ.%'Q-i-' . ~—|—an(—")kxn — ajr;ask — 0.
AT A1 A



Power and inverse power methods

Theorem

Let A have a unique dominant eigenpair (A1, z1) with ziz, =1
and X = ( 1 X9 ) be a nonsingular matrix with X5 X, = 1

such that
A1 0
—1 _ 1
x4 8.
Let uy # 0 be decomposed in ug = riz1 + Xoco.
Then

: A% M*|2]le2/r1 |2
sin / wl,Akuo < .
( ) S TN H I allcafr o

In particular ¥V ¢ > 0, 3 o such that

. alp(M)/|M| + el*
sin Z(z1, A*ug) < 1—o[p(M)/|M|+el*’

where p(M) is the spectral radius of M.




Power and inverse power methods

Proof: Since

uO:alxl—i-XQCQ:(:Cl XQ)(QI)—X<QI ),

C2

it follows that

X Akyy = X‘lAkX< ‘c” >
2

= (X'AX)(X'AX) - (XTTAX) ( 321 )
- () (%)

)\]fal
MkCQ

Hence,

AkuO =X ( ) = al)\]f:zl + XQMkCQ.



Power and inverse power methods

Let the columns of Y form an orthonormal basis for the
subspace orthogonal to z;. By Lemma 3.12 in Chapter 1, we

have

sin / (a1, AFug) — [YV*AFuolla _ |[Y*XaM¥es|l2 .

7 [ AFug||2 Hal)\lfém + XoMPFes|o
But
[V * XaMFeqlla < ||MF||2]|c2]2
and
o Abary + XaMEealla > Jon|[AS] — [ M2]|2]lcall2,

we get

by —k Mk:
sin /(z1, AFug) < [Adl _Hk Hj||02/041H2 ‘
1_|/\1’ HM H2||02/041Hz

By Theorem 2.9 in Chapter 1, V ¢ > 0, 3 6 such that
15|z < 6(p(M) + ).



Power and inverse power methods

Take o = 7||ca/au||2- Then ¥V e > 0,

| olp(M)/ ] + <
sin e ') < T D Il

@ The error in the eigenvector approximation converges to
zero at an asymptotic rate of [p(M)/|\[].

@ If A has a complete system of eigenvectors with
[A1] > [A2] > -+ > |\y], then the convergence is as
Az /A"



Power and inverse power methods

Algorithm (Power Method with 2-norm)

Choose an initial v # 0 with ||ul|2 = 1.
Iterate until convergence
Compute v = Au; k = ||v|j2; u:=v/k

Theorem

The sequence defined by Algorithm 1 is satisfied
lim k; = |1}

3 A
lim &'u; = iﬂ, where ¢ = M
i—00 z1]| ] A1




Power and inverse power methods

Proof: It is obvious that
us = A*uo/||A%uoll, ks = || A%uol| /[ A ol @)
This follows from A\ ~*A%ug — a1 that
(A1 A%uol| — [ ][l
A T4 | — Jaa |
and then
Al Ao I/ A% uoll = M| ks — 1.

From (1) follows now for s — oo
S
n i
) L Ay a1z + ), Oli(rl) T

eus = ¢ = 3
1A%l oy + 37y an(32) il
a171 1 o1

>

Joazi]] [l oa]



Power and inverse power methods

Algorithm (Power Method with Linear Function)

Choose an initial u # 0.
Iterate until convergence
Compute v = Au; k= L(v); u:=v/k
where ((v), e.g. e1(v) ore,(v), is a linear functional.

Theorem
Suppose ¢(x1) # 0 and ¢(v;) # 0,1 =1,2,..., then

1—00
. 1
lim w; =

1—00 E(l’l)




Power and inverse power methods

Proof. As above we show that
w; = Alug/0(A%ug), ki = £(AMug) /0(A™ ).
From (1) we get for s — oo
A1 (APug) — arl(zy),

A5 T(A T ug) — al(xy),

thus
)\171]{33 — 1.
Similarly for i — oo,
A Aji
Aug a1y + Z?ZQ o (5) " z; Q1%
—

K(Aiuo) f(a1$1 + Z;»lzz aj(f\‘—i)iazj) alg(xl)



Power and inverse power methods

@ Note that:

n Aj\s
§ UAw) _ anl(wy) + 325 o (51)*(x;)
s = s— =AM n i\ g—
(A T00) " anba) + 5y ai(52)0 )

A
M +0O (’ f ’81> .

That is the convergent rate is

A2
AT




Power and inverse power methods

Letw # 0 and for any p setr, = Au — pu. Then ||r,|2 is
minimized when

p=u"Au/u*u.

In this case r;, 1 u.

Proof: W.L.O.G. assume ||u||2 = 1. Let ( w U ) be unitary and set

u* _ (v h"\ [ uwAu uAU
(U*)A(“ U):<g B>_<U*Au U*AU)'



Power and inverse power methods

Then

I |
7 N 7 N 7 N 7N
IS
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It follows that

u* vV— U
=1 (g Yl =1 (5 ) 1B = o=+ ol



Power and inverse power methods

Hence
min [rull2 = llgll2 = [Irv|l2-

That is p = v = u* Au. On the other hand, since
wry, = u(Au — pu) = v Au — p =0,

it implies that r,, L u. n

Definition (Rayleigh quotient)

Let » and v be vectors with v*u # 0. Then v* Au/v*u is called a
Rayleigh quotient.

If w or v is an eigenvector corresponding to an eigenvalue \ of
A, then

v*Au v*u

— =)A=\

U vTU
Therefore, uj Auy /uju;, provide a sequence of approximation to
A in the power method.




Power and inverse power methods
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The inverse power method

Inverse power method

Find the eigenvalue of A that is in a given region or closest to a
certain scalar o and the corresponding eigenvector.

Let A\y,---, A\, be the eigenvalues of A. Suppose \; is simple
and o = A1. Then

1 1 _ 1
ul_)\lio_a”’Q—A

2*0-7

are eigenvalues of (A —oI)~!t and 3 — co as o — ;. Thus
we transform A; into a dominant eigenvalue ;.

The inverse power method is simply the power method applied
to (A—ol)~ L.
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The inverse power method

Let
y=(A-ol)'zand i =y/|yll-

It holds that .

(A—oDi=—— =w.

=l

Set

p=1"(A—0ol)i =2 "w.
Then

r=[A—(c+pllt=(A—-0cl)i — pi=w— pi.

Algorithm (Inverse power method with a fixed shift)

Choose an initial uy # 0.

Fori=0,1,2,...
Compute Vit+1 = (A = U[)flu,‘ and ki1 = f(’UH_l).
Set uit1 = vit1/kit




Power and inverse power methods

[e]e] lelele}

The inverse power method

@ The convergence of Algorithm 3 is |§;—:g] whenever \; and
Ao are the closest and the second closest eigenvalues to o.

@ Algorithm 3 is linearly convergent.

Algorithm (Inverse power method with variant shifts)

Choose an initial uy # 0.

Given oy = o.

Fori=0,1,2,...
Compute Vi1l = (A = U,‘I)flui and kit1 = E(’Ui+1).
Setuwl = Ui+1/ki+1 and0i+1 — @ 1/ki+1.

@ Above algorithm is locally quadratic convergent.



Power and inverse power methods
[e]e]e] le]e]

The inverse power method

Connection with Newton method

Consider the nonlinear equations:

P(lA]) =m0 ®

Newton method for (3): fori =0,1,2,...
-1
Ui+l | | Wi | / U; U;
=D ()
Since
, U | A=A —u
PR -1 7]

the Newton method can be rewritten by component-wise

(A=X)uirr = (Nip1 — A)ug 4)
ET’LLH_l = 1. (5)



Power and inverse power methods

0000e0

The inverse power method
Let
o Uit1
(A VIR
Substituting v; 11 into (4), we get
(A - )\iI)UH—l = Uj.
By equation (5), we have

14 Us4-1 1
ki1 = L(viy1) = )\,J(rl i l TN

It follows that

1
kip1

Aig1 = A +

Hence the Newton’s iterations (4) and (5) are identified with
Algorithm 4.



Power and inverse power methods
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The inverse power method

Algorithm (Inverse power method with Rayleigh Quotient)

Choose an initial uy # 0 with ||ug||2 = 1.
Compute oy = ut Auy.
Fori=0,1,2,...
Compute vii1 = (A — ;1) tu,.
Set Ujtr] = vi+1/||v7;+1||2 and Oi+1 = U?+1Aui+1.

@ For symmetric A, Algorithm 5 is cubically convergent.



Explicitly shift QR algorithm

The explicitly shift QR algorithm

The QR algorithm is an iterative method for reducing a matrix A
to triangular form by unitary similarity transformations.

Algorithm (explicitly shift QR algorithm)
Set Ag = A.
Fork=0,1,2,---
Choose a shift oy,;
Factor Ay, — oI = Qr Ry, where Q. is orthogonal and Ry, is
upper triangular;
Agt1 = RgQx + oxl;
end for




Explicitly shift QR algorithm

Since
Ay — opl = QrRy = Ry = Qi (Ax — o),
it holds that
Agr1 = RpQp + ol
= Qu(Ar — o D)Qr + opd
QrARQk

The algorithm is a variant of the power method.



Explicitly shift QR algorithm
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The QR algorithm and the inverse power method

LetQ = ( Q ¢ ) be unitary and write
= (410 Qa8

A = N = ~x

vAQ < "AQ  q"Aq g

If (X, q) is a left eigenpair of A, then

= o>
N———

" =q"AQ=X\"Q =0 and fi=q"Aq=\g"q=\.

That is o
X (B h
@AQ = < 0 A > ’
But it is not an effective computational procedure because it
requires ¢ is an eigenvector of A.



Explicitly shift QR algorithm
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The QR algorithm and the inverse power method

Let ¢ be an approximate left eigenvector of A with
¢'q=1, p=q"Aq and r =q"A — jig".
Then
r(Q q) = (A=) (Q q)
= (¢*AQ — " Q q*Aq— jig*q )
= (¢4Q 0)=(g" 0).
Therefore,

gz =1lr (@ q)llz= lIr

The QR algorithm implicitly chooses ¢ to be a vector produced
by the inverse power method with shift o.



Explicitly shift QR algorithm
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The QR algorithm and the inverse power method

Write the QR factorization of A — oI as
( @ )(A—JI):RE ( r )
q T

T
n

It holds that
¢(A—ol) =1r* =rppel = ¢ =rppel(A—ol)™? (6)

Hence, the last column of @ generated by the QR algorithm is
the result of the inverse power method with shift o applied to e? .

How to choose shift o?




Explicitly shift QR algorithm
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The QR algorithm and the inverse power method

Let

N
I

()

el Ae, = and egA—,uen:(g* ,u)—,uen:(g* 0)-

Then

o If we take (u, e,,) to be an approximate left eigenvector of
A, then the corresponding residual norm is ||g||2.

@ If g is small, then p should approximate an eigenvalue of A
and choose o = i = el Ae, (Rayleigh quotient shift).

Why the QR algorithm converges?




Explicitly shift QR algorithm
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The QR algorithm and the inverse power method

Let
A— o] = <B—*O'I h >
g p—o
- . P f S r
—QR=<6*W><0[)> 7)
be the QR factorization of A — oI. Take

AE<€ }:L>:RQ+JI. (8)
g M

Since Q is unitary, we have

lell3 +7* = [If[I3 +7* =1

which implies that

lefla = [ fll2 and |r| < 1.



Explicitly shift QR algorithm
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The QR algorithm and the inverse power method

From (7), we have

gt =¢€*S.

Assume S is nonsingular and x = ||S7!||2, then

lellz < #llgll2-

Since
(S N\ _ea o Poe B—ol h
it implies that
p=["h+a(p—0)
and then
Ip| I£IRI+ |7 llp — ol = llell2llhll2 + |7]|p — o

cllgll2llhll2 + [ — o



Explicitly shift QR algorithm
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The QR algorithm and the inverse power method

From (8), we have
g" = pe’
which implies that
13112 < Iplllellz < lplsllgllz < &*[1R]2ll9l3 + Klu = alllgll2-
Consequently,
lgj1lle < &51R5ll2llg5115 + w515 — o5llg5l2-

If go is sufficiently small and g is sufficiently near a simple
eigenvalue A, then g; — 0 and p; — A.
Assume d 7 and « such that

1hjll2 < and r; = IS} [l2 < &



Explicitly shift QR algorithm
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The QR algorithm and the inverse power method

Take the Rayleigh quotient shift o; = ;. Then

lgj+1ll2 < K*nllg; 13,

which means that ||g;||» converges at least quadratically to zero.
If Ay is Hermitian, then A, is also Hermitian. It holds that

hj = g;

and then
lgjsallz < &°lg;ll5.

Therefore, the convergent rate is cubic.
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The unshifted QR algorithm

The unshifted QR algorithm

QR algorithm

A1 = QrARQk

or
Apt1 = QrQ%_1 - QoAoQo - - Qr—1Qk
fork=0,1,2,---.
Let R
Qr=Qo - Qr_1Qx-
Then

Ap1 = QAo Qr.



Explicitly shift QR algorithm

0@0000000

The unshifted QR algorithm

Theorem

LetQo,--- ,Qr and Ry, - - - , Ry, be the orthogonal and triangular
matrices generated by the QR algorithm with shifts o, - - - , o,
starting with A. Let

Qr=Qo---Qr and Ry, = Ry--- Ry
Then

QrRy, = (A—opl)--- (A —opl).

Proof: Since

R, = (j4k+1 - UkI)QZ
= C?Z(A - UkI)Cnglt
= QA —0rl)Qr—1,



Explicitly shift QR algorithm
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The unshifted QR algorithm

it follows that
Ry, = RiRy—1 = Q}(A — 01 1)Qp—1Ri—1

and o ) X
QiR = (A —0,1)Qp—1Ri—1.
By induction on Q;_1 R;_1, we have

QR = (A —opI) - (A — ool).

f o, =0fork =0,1,2,---, then QiR = A and
fﬁ)‘jgk) = QrRier = AFtle.

This implies that the first column of @}, is the normalized result
of applying k + 1 iterations of the power method to e;.



Explicitly shift QR algorithm

[e]e]e] leJelele]e]

The unshifted QR algorithm

Hence, éik) approaches the dominant eigenvector of A, i.e., if

A pr  hy )
A = QL AQL = ,
F F F ( gk Bk

then g, — 0 and ux — A1, where )\ is the dominant eigenvalue
of A.

Theorem
Let

X1AX = A = diag(\y, -+, \n)

where |\1| > |Xa| > -+ > |\,| > 0. Suppose X! has an LU
factorization X' = LU, where L is unit lower triangular, and let
X = QR be the QR factorization of X . If A* has the QR
factorization A* = Q, Ry, then 3 diagonal matrices D;, with

‘Dk| = I such thatQka — Q.




Explicitly shift QR algorithm
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The unshifted QR algorithm

Proof: By the assumptions, we get

AR = XAFX~1 = QRAFLU = QR(AFLAF)(A*D).

Since
(AkLAfk)Z‘j = &](/\Z/)\])k — 0 for i > j,
it holds that
AFLA™F S T as k — .
Let

AFLATF =T+ Ey,

where E;. — 0 as k — oo. Then

A¥ = QR(I + Ep)(A*U) = Q(I + RELRY)(RAFU).



Explicitly shift QR algorithm
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The unshifted QR algorithm

Let
I+ RE.R™ = QiR

be the QR factorization of I + RE,R~'. Then
AF = (QQr)(RyRAMD).

Since
I+RE,R ' —1T as k— oo,

we have
Qr — I as k — .

Let the diagonals of R, RA*U be 6y, - - , 6, and set
Dy, = diag(61/|61], -+, 0n/6n).

Then AF = (QQkDI;I)(DkRkRAkU) = QkRk



Explicitly shift QR algorithm
000000800

The unshifted QR algorithm

Since the diagonals of D, R, RAFU and Ry, are positive, by the
uniqueness of the QR factorization

Qr = QQrD;*,
which implies that

QiD= QQr — Q as k — oo.

Remark:
(i) Since X 'AX = A = diag(\1,--- ,\n), We have

A= XAX"" = (QR)AMQR)™' = Q(RAR™Q" = QTQ"

which is a Schur decomposition of A. Therefore, the
column of Q. D, converge to the Schur vector of A and

A = Q3 AQ), converges to the triangular factor of the
Schur decomposition of A.
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The unshifted QR algorithm

(il) Write
i . Riy riy Riin Izlg? 0 0
0 0 Ritritr L gk )

i+1,1 Y1 g4

If fz(-,kl)*, Lz(i)l,l and ZZ(.?LZ. are zeros, then

N . RllLﬁ) i Riit1Llivii
R(A"LAT") = 0 Tii  TiiviLliviie
0 0 Rit1it1Llit1i11
and
I+RE.R' = RUI+Ey)R '=RALAMR!
Gii 91 Griiyt
= 0 i Y5
0 0 Gigriv1
= QiRr ~ QR factorization
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The unshifted QR algorithm

which implies that
Qr = diag(Qf, w, Qf—&-l,i—&-l)
and

Ap = QAQk = Q1Q"AQQ: = Q;TQy
4B B 4

Ay 1i€i+1
- 0 A Az(,i)-‘rl
k
0 0 Az(—i-)l,i-i-l

Therefore, A; decouples at its ith diagonal element.
The rate of convergence is at least as fast as the approach of
max{|>\i/)\i_1\, |)\Z+1/)\Z|}k to zero.
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Hessenberg form

Definition
A Householder transformation or elementary reflector is a
matrix of

H=1—uu*

where ||ull2 = v/2.

Note that H is Hermitian and unitary.

Theorem

Let = be a vector such that ||z|2 = 1 and x; is real and
nonnegative. Let

u=(r+e)/V1+uzi.
Then

Hx = (I —wu)x = —ey.
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Hessenberg form

Proof:

*r+x1 THe;
\/1+$1 \/1+£Cl
= z—(x+e)=—-€

I—wzs = z—(ur)u==2x

Let x be a vector with 1 # 0. Let

T
T e
_ PRE TA
- b)

1+ prs-

l[]l2

where p = z1/|x1|. Then

Hz = —p|z|2e1.
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Hessenberg form

Proof: Since

[pz* /||z||2 + €] ][pz/ ||z + e1]
pp + pr1/lzll2 + pr1/|xll2 + 1
= 2[1 + px1/||z]l2],
it follows that
wvu=2 = |ula=v2

and ~
v Plalz 421
Uur—= ——.

/ T
1+pm
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[e]elol le[elelee ele ¢ e]o]el0]0]0]

Hessenberg form

Mﬂb+$1pﬁﬁ+el

X
\/Hpnxm N

Hx = z— (u'z)u

B P (Pllzll2 + =1) gl pllzllz + 1
= — T - x
1+ prds L+ r1s
_ Pl A
1+ ol
= —pllzllzer.
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Hessenberg form

e Reduction to Hessenberg form

Take
il ajy
A= .
( azr Az >
Let i, be a Householder transformation such that
ﬁ1a21 = vi€eq.
Set H, = diag(1, Hy). Then
_ ail aﬁfh ) N < aq Cf{gﬁﬁ )
H{AH, = A . " = N n
tea ( Hiasy HiAx»H; vier HiAH;

For the general step, suppose Hi,--- , Hp_1 are Householder
transformation such that
A arg At k1
Hyy--HiAHy - Hyy = 0 o appq |,
0 apr1re Aryien
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Hessenberg form

where A1, is a Hessenberg matrix of order k — 1. Let Hj, be a
Householder transformation such that

ﬁkak+1’k = Vge€q.
Set Hy, = diag(Iy,, Hy), then

A ayy Ay
Hka_l'--HlAHl---Hk_lHk: 0 ALl A a}‘;’kHHk
0  wger HpAppr g1 Hy



o
o
o}
o]
o
1<}
3
<}
3
g
<]
e
<]
<}
o]
o]
o

£
=
S
k=
©
[any
(¢
£
[}
2
S
o
X
w

Hessenberg form

X X X

X
X
X
X
X

X X X
X X X
X X X
X X X

X X X

X

X X X X
X X X X

X

X X X

X

X

X

0 0 O
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Hessenberg form

Definition (Givens rotation)

A plane rotation (also called a Givens rotation) is a matrix of the
form

where |c|? + |s|> = 1.

Given a # 0 and b, set

b
v=1+/|a]?>+ |b]?, ¢ = |a|/v and sz%-—,
al v

then
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0 00000VO®OODOOO000

Hessenberg form

Let
I
c s
P = Ii i
—S C
I,

X X X X + + + + + + 4+ +
X X X X 0 + 4+ + 0 x X X
Py Py3
X X X X X X X X |=1 0 + 4+ +
X X X X X X X X X X X X
+ + + +
0 X X X
]i% 0 X X X

0 + + +
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Hessenberg form

X X X X + 0 x x
X X X X + 4+ x X
Py
X X X X + 4+ X X
X X X X + 4+ x X

+ 0 0 x
4+ X + X

Pr3

— | + X + X
4+ X + X
+ 0 0 0
+ X X +

Py

— | + X X +
+ X X +
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Hessenberg form

(i) Reduce a matrix to Hessenberg form by QR factorization.

X X X X X X X X X X
X X X X X X X X X X
X X X X X Q1AQ; 0 X X X X
Eam—
X X X X X 0 X X x X
X X X X X 0 X X X X
X X X X X
X X X X X
Q2AQ5 0 x X X X
E—
0 0 x x X
0 0 x x X
X X X X X
X X X X X
Q3 AQ3 0 x x x x |: upperHe
——
0 0 x x X
0 0 0 x x
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0 000000OVOOB®OOO000

Hessenberg form

(i) Reduce upper Hessenberg matrix to upper triangular form
by Givens rotations

X X X X X X X X X X
X X X X X 0 X X X X
0 X x x x | P4 0 x X x X
0 0 x x X - 0 0 x x X
0 0 0 x x 0 0 0 x x
X X X X X X X X X X
0 X X X X 0 X %X x X
PQSAQ 0 0 x x X P34A3 0 0 x x X
o0 x x x| oo o0 x x
0 0 0 x x 0 0 0 x x
X X X X X
0 x X X X
P4L>A4 0 0 x x x | =T (uppertriangular)
0 0 0 x x
0O 0 0 0 x




o]
o
o}
o}
o
®
2
8
8
g
<]
)
<}
o]
o}
o

£
=
S
k=
©
[any
(¢
£
]
2
S
o
X
w

Hessenberg form

X X X X X X X X X X @
(O]
X X XX 4+ 4+ 4+ 4o 2
(O]
X X Xoo 4+ 4+ + 4+ o %
+ + o0 o X X X oo m
[}
+ +tooco X Xo oo m
2
[a\] A
K X on
i i =
— [\p]
< < I
X X X X X X X X X X -+ + 4+ +
X X X X O X X X X o + + 4+ +
X X Xoo 4+ 4+ +o0o0 X X X O
X Xooo + + +o o X X © O
X Oooo X Xooo X o oo
[} L0
* N * <#
sl 5l
[a\] <t
< <
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Hessenberg form

A practical algorithm for reducing an upper Hessenberg matrix
H to Schur form:

@ I[f the shifted QR algorithm is applied to H, then h,, ,,—1 will
tend rapidly to zero and other subdiagonal elements may
also tend to zero, slowly.

@ If h;;—1 = 0, then deflate the matrix to save computation.

e How to decide h; ;_1 to be negligible?
o If
|hit1,il <ellAllr

for a small number ¢, then h,4 ; is negligible.
e Let @ be an orthogonal matrix such that

H =Q"AQ = [h]
is upper Hessenberg. Let

H=H — hiy1ei11e]  ~ deflated matrix
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Hessenberg form

Set
E = Q(hiy1ei11€] )Q*.
Then )
H=Q"(A-E)Q.
If [hit1,i| < e[| Al r, then
1E|F = |Q(hit1i€iv1e] )Q* || = |his1i] < || Allr

or

| £l F .

Al —

When ¢ equals the rounding unit ¢,;, the perturbation F is
of a size with the perturbation due to rounding the
elements of A.
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Hessenberg form

The Wilkinson shift

@ The Rayleigh-quotient shift o = h,,
= local quadratic convergence to simple
Q If Hisreal
= Rayleigh-quotient shift is also real
= can not approximate a complex eigenvalue

© The Wilkinson shift s :

If A1, X are eigenvalues of < hZ‘l’"_l hz_l’” ) with
n,n—1 n,n

|)\1 — hn,n’ < |>\2 — hn,n|s then n= )\1.
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Hessenberg form

Algorithm
dok=1,2,---
compute Wilkinson shift
Reduce upper Hessenberg Hy, — I to upper triangular Ty, :

P’r(z}i)l,n o PW(H, — i) = Ti;
compute
Hy1 = TkPl(S)* e Pgi)fn + 1
end do

= Schur form of A = eigenvalues of A.

How to get eigenvectors of A?
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Hessenberg form

If A= QTQ* is the Schur decomposition of A and X is the
matrix of right eigenvectors of 7', then QX is the matrix of right
eigenvalues of A.

If
Tin tige tig+
T'=1 0 7k lhp

0 0 Thi1p1

and 7 is a simple eigenvalue of 7', then

—(T11 — T d) Mg
1
0
is an eigenvector of 7" and

( 01 _tz,kﬂ(TkH,kH — 7erl) 7! )

is a left eigenvector of T' corresponding to 7.
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The implicity shifted QR algorithm

Theorem (Real Schur form)
Let A be real of order n. Then 3 an orthogonal matrix U such

that
Ty Ty -+ T
UTAU = (:) T22 T:% ~ quasi-triangular
0 .. 0 Ty

The diagonal blocks of T are of order one or two. The blocks of
order one contain the real eigenvalue of A. The block of order
two contain the pairs of complex conjugate eigenvalue of A.
The blocks can be made to appear in any order.
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Proof: Let (A, x) be a complex eigenpair with A = p + v and
r =1y +1z. Thatis

2y=ax+4+2, 22zi=x—2

and
Ay = %[Aw + ]
= %[(uy —vz) +i(pz +vy) + (py —vz) —i(vy + pz))
= py—vz. 9)
Similarly,
Az:%[)\m—j\i‘] = vy + pz. (10)

From (9) and (10), we have
A(y z) = (,uy—uz Vy—l—uz)

O L T
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Let
R

(y z2)=(X; X2)<0>:X1R

be a QR factorization of ( ¥ z ). Since y and z are linearly
independent, it holds that R is nonsingular and

X1 = ( Yy oz )Ril.
Consequently,
AX;=A(y 2 )R '=(y z)LR'=X,RLR".

Using this result and (X; X5) is unitary, we have
X7 - (xTAX, XTAX
<X2T >A( XX ) = (XQTAxl XTAX,

RLR™! XTAX,
T - (11)
0 XFAX,



Implicity shifted QR algorithm

Since \ and \ are eigenvalues of L and RLR~! is similar to L,
(11) completes the deflation of the complex conjugate pair A
and \. -

AXy = Xl(RLRil)
= A maps the column space of X, into itself
= span(X) is called an eigenspace or invariant subspace.

e Francis double shift
@ If the Wilkinson shift o is complex, then & is also a
candidate for a shift.

@ Apply two steps of the QR algorithm, one with shift o and
the other with shift & to yield a matrix H.
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Let =
QR=(H —-oI)(H—¢61I)
be the QR factorization of (H — oI)(H — 61), then
H=Q"HQ.
Since
(H —oI)(H — 61) = H?> — 2Re(0)H + |o|*T € R™*",
we have that Q € R"*" and H € R"*". Therefore, the QR
algorithm with two complex conjugate shifts preserves reality.
Francis double shift strategy
@ Compute the Wilkinson shift o;
@ From the matrix H? — 2Re(0)H + |o|2I := H ~ O(n?)
operations;
@ Compute QR factorization of H : H = QR;
© Compute H = Q*HQ).
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e The uniqueness of Hessenberg reduction

Definition
Let H be upper Hessenberg of order n. Then H is unreduced if
hi+1,ﬁé0forz‘:1,--- ,n—l.

Theorem (Implicit Q theorem)

Suppose Q= (q1 -+ qn )andV = (v - w, )are
unitary matrices with

Q*AQ=H and V*AV =G

being upper Hessenberg. Let k denote the smallest positive
integer for which hy.1 ;, = 0, with the convection that k = n if H
is unreduced. If vy = qi, then v; = +q; and |hm'_1| = |gm~_1\ for
i=2,---,k. Moreover, ifk < n, then g1 = 0.
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Proof: Define W = ( wy o Wy ) = V*Q. Then
GW =GV*"Q=V"AQ =V*QH =WH

which implies that

1—1
hii—1w; = Guwi—1 — E hji—qwj for i =2,--- k.
Jj=1
Since v1 = gy, it holds that
wl = 61’
h21w2 == Gwl — hllwl = a91€1 + Q99€9.

Assume
Wi—1 = Qqj—11€1 + -+ 0—1,-1€j—1-
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Then
i—1
hiicqw; = Gloy—11€1+ -+ ai—1i-1€i-1] — Z Bi je;
j=1
= 5&@161 “+ -+ dm-ei.
By induction, ( wy --- wy ) is upper triangular. Since V and

Q@ are unitary, W =V x @ is also unitary and then
wjw; =0, for j=2,--- k.

That is
wlj:O, for j:2,-",k

which implies that
wy = Feo.

Similarly, by
wywj =0, for j=3,--- k,
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i.e.,
ng:O, for 7=3,-- k.

We get w3 = +es. By induction,
w; = *e;, for i =2,--- k.
Since w; = V*q; and h; ;1 = w;Gw;_1, we have
v; =Ve; =+Vw; = +q;

and
|hii—1| = |gii—1| for i=2,--- k.

If hk+1,k =0, then

T T T
gk+1k = epp1Gex = e GWep = tep W Hey

k k
T 2 : 2 : T
= :i:ek+1 hikwi =+ hikek+16i =0
=1 i=1
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The implicit double shift

General algorithm

@ Determine the first column ¢; of
C = H? — 2Re(0)H + |o|?1.

@ Let Qy be a Householder transformation such that
Qécl = 0€q.

©Q Set Hy = Q HQo.

© Use Householder transformation @, to reduce H; to upper
Hessenberg form H.

@ SetQ = QuQ:.

General algorithm= the Francis double shift QR algorithm ?
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The implicit double shift

Answer:
() Let

C=(a C)=QR=(g @*)(g ;>

be the QR factorization of C. Then ¢; = pq. Partition
Qo = ( w OO ) then ¢; = 0Quer = oo which implies
that ¢ and ¢y are proportional to ¢;.

(1) Since H = Q7H1Q1 is upper Hessenberg, we have

Qie1 = ey.

Hence,
(QoQ1)e1r = Qoer = qo

which implies that the first column of QyQ1 is proportional
to q.
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The implicit double shift

(1) Since (QuQ1)*H(QoR1) is upper Hessenberg and the first
column of QoQ1 is proportional to g, by the implicit Q
'[heorem, if H is unreduced, then @Q = QoQ1 and
H = (QoQ1)"H(QoQ1).

e Computation of the first column of C = H? — 2Re(0)H + |o|*I:

Let
B B hn—l,n—l hn—l,n
t = 2R€(U) = flrace ( hn,n—l hn,n >7
Ry 191 P
= 2 — " 17n ! v 1’n
d = |of det( S . )

Since H is upper Hessenberg, it holds that the first column of

H?is
hi1 hi2 it h2, + hioha
ha1  ho ( o1 > = | hoi(hi1 +ha2) | .
haa ha1h3a
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The implicit double shift

Thus, the first three components of the first column of C are

c1 h31 + hishor — t-hi1 +d
2 | = ho1(h11 + hog) —t - hot
c3 ha1h3a
(hnn — h11)(hn—1n—1 — h11) — hpn—1hn—1,n/h21 + h12
= ho (hag — h11) — (hpn — h11) = (hn—1.n—1 — h11)
h3o

which requires O(1) operations.
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The implicit double shift

X

0. 0-0 4+ X

X

0 0 + O

el N
I/ X X X X X X XXX
X X X
T X X X X X X X X X
X X X
Tt X X X X X O X X X
X X O
T X X X X oo X X ©
X © O
T X X X + + o X © O
o oo
T X X oo oo (NN
+ + +ocoo
— o
— & &
H% T T
(=} — o
& & &
X X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X
X X X X XO©O X X X X X O X X X
X X X XxXoo 4+ ++ +o o X X 4+
X X Xooo + 4+ 4+ +oc o X © O
X Xoooo +++ +o o oo o
<
(=}
Q% o
) ~
&
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The implicit double shift

QuHQ, ~ O(n?) operations

O O OO X X
OO o X X X
S O X X X X
S X X X X X
X X X X X X
X X X X X X

e Deflation:
hn—l,n—l hn—l,n
hn,n—l hn,n

and nondefective, then h,,_; ,,_2 converges quadratically to
zero.

© If the eigenvalues are real and nondefective, both the
hn—1,n—2 cOnverge quadratically to zero. The subdiagonal
elements other than h,,_; ,—2 and h, ,—1 may show a slow
convergent to zero.

© Deflate matrix to a middle size of matrix.

@ If the eigenvalues of < > are complex
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0O00000®Q00

The implicit double shift

@ Converge to a block upper triangular with order one or two
diagonal blocks. i, e. converge to real Schur form.

e Eigenvector:

Suppose
Ti1 tiz ti3
T = 0 799 To3
0 0 733

and (2] & 1 )T is the eigenvector corresponding to
eigenvalue \ = m33. Then

Ty ti2 ti3 x1 x
0 T To3 S | =2 &
0 0 733 1 1

That is
{ To2&2 — Ao = —To3,

Tz — Az = —t13 — &ato,
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The implicit double shift

or

{ 52 = —7_23/(7-22 - )\)a

(Th1 — M)z = —t13 — &at1a.  ~ solve by back-substitution

Suppose
Ty t12 Tis
T = 0 729 tgg
0 0 Tss
where T33 € R?*2. Write
Ty tie Ti3 X1 X,
0 799 tl o | = «F | L, LeR*?
0 0 Ty X; X

(I) Suppose X3 is nonsingular. Then
T53X3 = X3L = L = X; 'T53X5.

It follows that L is similar to T3s.
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The implicit double shift

Let z3 = y3 + iz3 be the right eigenvector of T35 and the
corresponding eigenvalue be u + iv, i.e.,

Ts3(ys +i23) = (u+iv)(ys +iz3)
(nys — vzs) +i(vys + pzs)

which implies that

T33ys = py3 —vzz  and  Ts3z3 = vys + (23
or

Tss(ys 23 ) = (pys—vz vys+pzs )

[T
(ys Z3)<_V M)-
Take X3 = ( y3 23 ).Then

()
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The implicit double shift

(1) Since

T T T
ToaTy — Ty L = —193X3,

it implies that
565(7'22[ — L) = —t%;}Xg.

Since 19 is not an eigenvalue of L, we get that 707 — L is
nonsingular and

.’Eg = —t%},Xg(ngI — L)_l.
(1) On the other hand,
T X1 — X1L = ~Ti3X3 — tiaz] .

This is a Sylvester equation, which we can solve for X
because 71, and L have no eigenvalues in common.
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The generalized eigenvalue problem

Ax = ABx ~ generalized eigenvalue problem

Definition
Let A and B be of order n. The pair (A, ) is an eigenpair or
right eigenpair of the pencil (A, B) if

Ax =Bz, x#0

The pair (A, y) is a left eigenpair of the pencil (4, B) if

y'A=XyB, y#0




The generalized eigenvalue proble

Remark

If B is singular, it is possible for any number X to be an
eigenvalue of the pencil (A, B).
@ /f A and B have a common null vector z, then (), x) is an
eigenpair of (A, B) for any A.
© Example:

1 00 01 0 I r1 — )\1‘2
0= 00 0 ]]-X|O0O01 T2 = —\z3
0 0 1 000 T3 T3

= x3=0,21 = Axy VA
The determinant of A — \B defined in (I) and (ll) is identically
zero.
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A matrix pencil (A, B) is regular if det(A — AB) is not identically
zero.

REINES

A regular matrix pencil can have only a finite number of
eigenvalues.

A\

@ To see this
Az = ABzx, ©#0<=det(A—AB)=0

@ Now, P(\) = det(A — AB) is a polynomial of degree m < n.
@ If (A, B) is regular, then P()) is not identically zero.

@ Hence P(\) has m zeros.

@ Thatis (A, B) has m eigenvalues.

If P()\) = constant, then (A, B) has no eigenvalues. This can
only occur if B is singular.
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Consider

A=1I;, B=

oS O O
O = O

1
0
0
Then det(A — AB) = 1 for all A. From

(A—AB)x =0,
we have

1’1—)\.%'2:0, xg—)\x;;:O, a:3:0

which implies that
Tr1 — X9 = T3 = 0.

Therefore, it does not exist (A, z) with z # 0 such that
(A— AB)x = 0. It follows that (A, B) has no eigenvalues.
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@ )\ is an eigenvalue of (4, B) «— u = A~!is an eigenvalue
of (B, A)

@ If Bis singular, then Bz = 0 for some z # 0.
= 0 is an eigenvalue of (B, A)
= oo = 1/0 is an eigenvalue of (4, B)
= If P(\) = constant, then the pencil has infinite
eigenvalues.

Definition

Let (A, B) be a matrix pencil, U and V' be nonsingular. Then
the pencil (U*AV , U*BV) is said to be equivalent to (A, B).

Let (\,x) and (\,y) be left and right eigenpairs of the regular
pencil (A, B). IfU and V' are nonsingular, then (\,V~'x) and
(A, U~Yy) are eigenpairs of (U*AV , U*BV).
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Since
det(U*AV — \U*BV') = det(U™) det(V') det(A — AB),

it holds that the eigenvalues and their multiplicity are preserved
by equivalence transformations.

Theorem (Generalized Schur form)

Let (A, B) be a regular pencil. Then 3 unitary matrices U and V'
such that S = U*AV andT = U*BV are upper triangular.

Proof:

@ Let v be an eigenvector of (A, B) normalized so that ||v|2 = 1,
and let ( v V| ) be unitary.

@ Since (A, B) is regular, we have Av # 0 or Bv # 0, said
Av # 0.

@ Moreover, if Bv # 0, then, from Av = ABuw, it follows that
Av//Bw.

® Letu = Av/||Av|j; and ( v U, ) be unitary.
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Then

* _ ([ wAv wrAVE [ o sy
(w UL) A(v VL)(UjAv UIAVL)_< 0 A )

(.Ut Av = Ufu = 0.) Similarly,

* _( w'Bv w'BVy \ _ [ ™ {i
(w UL) B(v VL)(UIBU UjBVL)_< 0 B)'

(- Ut Bv = X\"1Ut Av = A1 Av||2U* w = 0.) The proof is
completed by an inductive reduction of (A, B) to triangular
form. [ ]
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Let (A, B) be a regular pencil of order n.
Q P4 )(N) = det(A — AB) : characteristic poly. of (4, B).
@ algebraic multiplicity of a finite eigenvalue of (A, B) =
multiplicity of a zero of P4 5y ()\) = 0.

Q deg(Pa,p)(N) = m < nthen (A, B) has an infinite
eigenvalue of algebraic multiplicity n — m.

Let (A, B) be a regular pencil and
U*AV = |oy5], U'BV = [Bj]
be a generalized Schur form of (4, B). Then

Pl = ] (i —A8:) T i - det(U) det (V).
Bii7#0 Bii=0
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If B;; # 0, then A = «;/3;; is a finite eigenvalue of (A, B).
Otherwise, the eigenvalue is infinite.
Ar = ABx & (;;Ar = o4 Bx
< (1Bii) Az = (Tayi) Bz, T € C.

Definition

< i, Bii >= {7 (v, Bii) : T € C} is called the projective
representation of the eigenvalue.

@ < 0,1 >: zero eigenvalue,
@ < 1,0 >: infinite eigenvalue,
@ < A, 1 >: ordinary eigenvalue.

If (\,z) and (A, y) are simple right and left eigenpair of A,
respectively, then xz*y # 0. This allows us to compute the
eigenvalue in the form of a Rayleigh quotient

y Az /ytx.
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But, the left and right eigenvectors of a simple eigenvalue of
(A, B) can be orthogonal.

Consider
0 2 0 1
aoam=(92) (0 1)
Then

det(A — AB) = (1 — \)(2 - \).

It follows that (1, e;) and (1, eq) are right and left eigenpair of
(A, B), respectively. Thus, el ey = 0.
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Perturbation theory:
Let (< a, B>, z) be a simple eigenpair of regular pencil
(A, B) and

(A,B)=(A+E,B+F)

VIEIE+IFIE =e.

If (< &, 3 >, %) is an eigenpair of (4, B), then

(<&, f>,7) — (<a,8>z)ase — 0.

Proof: Assume B is nonsingular = B + F' is also nonsingular.
Hence,

(A+ E)Ya=XNB+ F)i= (B+F) YA+ E)z = )\i.
Similarly, for the left eigenvector 7,
T(A+E)B+F)™ =)\
By Theorem 3.13 in Chapter 1,
sin Z(x,z) = O(e), sinZ(y,y) =O(e).

with
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Suppose [|z2 = [[Z[l2 = [[yll2 = [|g]l2 = 1. Then
cos Z(x, &) = |2"Z|, cos L(y,§) = |y*yl

or
|2*Z|? = cos® Z(x,%) = 1 —sin® Z(2,%) = 1 — O(e),

which implies that
Z=x+0() and g =y + O(e).
Therefore,

<a&fB> = <§Ai §*Bi >
= <y Az,y*Bzx > +0(¢)
= <a,B>40(e).
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Let x and y be a simple eigenvectors of the regular pencil
(A, B), and < «a, f >=< y*Az,y*Bx > be the corresponding
eigenvalue. Then

<a&fB>=<a+y'Ex,f+yFx> +0(e). (12)

Proof: Since (A, B) is regular, it holds that not both y* A and y* B
can be zero. Assume u* = y*A # 0. By (4.6), " Az =0= Ax =0
and y*A =0)

u'r =y Az #£0.
Let U be an orthonormal basis for the orthogonal complement of w.
Then ( x U ) is nonsingular. Write £ = rz + Uc for some 7 and c.
Since & — x, it implies that » — 1. Setting e = Uc¢/r, we may write
Z = x + e with ||e|]|2 = O(e). Then

y*Ae =u*Uc/r = 0.
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On the other hand, since
0# y*A=\y"B,
it holds that \ # 0. By the fact that
0 =y*Ae = \y*Be,
we get y*Be = 0. Similarly, write
y=y+ f, where f*Ax = f*Bx = 0and || f|l2 = O(e).

Now,

a = §AE=(y+ A+ E)(z+e)

Yy Ar + y*Ex + ffAx + y*Ae + ffAe+ f*Ee+ f*Ex +y*Fe
a+y*Ex+ ffAe+ f*Ee+ f*Ex +y*Ee

= a+y Ex+0().
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Similarly, )
B=p+y"Fz+0()

The expression (12) can be written in the form
<@&,fB>=<y* Az, y* Bz > +0(?).

If A is finite, then 3

y*Ax

A= "=
y*Bx

+ 0(e?)

The chordal matric
<a,f>={1(a,B) : 7 € C} = span{(a, B)}

How to measure the distance between two eigenvalues
<a,f>and < v,6 >?

Answer: By the sine of the angle 6 between them.
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By the Cauchy inequality

|y + 362
(lal2 + By + 10]%)

cos? 0 =

Hence,

lad — 3|2

sin?0 =1 — cos? 0 =

(lal? + 18P) (1 + [6]%)

Definition
The chordal distance between < «, 8 > and < v, >is the
number

|ad — B3]

x(<o,f>,<7,0>)

V0P BRYVNEF R
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@ /f3 and ¢ are nonzero, set \ = /3 and u = v/4, then

A —

VI PRI+ [P
X(A, n) defines a distance between numbers in the
complex plane.

Q If|A|, |ul <1, then

x(<o,f><7v,0>)= = X(A, p).

1
§M—u!§x<>\, p) <A — pl.

Hence, for eigenvalues that are not large, the chordal
matric behaves like the ordinary distance between two
points in the complex plane.
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The condition of an eigenvalue

Since
<a,f><a+y"FExr,0+y" Fx >,
we have
. = lay*Fx — By*Ex|
<a,f><a,pf>)= )
Msas N P
By the fact

A

*Fx
(o o) (25 )| < Vil hlelulyley/IET + 1712
clelelllo ol + 1Bl

we get

< _l=ll2llyll2

~Y T 8
Vialz + 82

x(<a,B>,<a,f>)
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Theorem

Let \ be a simple eigenvalue (possibly infinite) of (A, B) and let
x and y be its right and left eigenvectors. Let the projective
representation of A\ be < «, 8 >, where

a=y"Ar and (= y"Bzx.

LletA= A+ E and B = B+ F, and set

e=/IEI% +IFI%

Then for ¢ sufficiently small, 3 eigenvalue X of (A , B) satisfying
XA, 5\) < ve + 0(e?)

where
lzll2llyll2

Vielz + 182
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@ v is a condition number of eigenvalue.

Q If||z|l2 = |lyllz2 = 1,« and 3 are both small, then the
eigenvalue is ill conditioned, i.e., it is sensitive to the
perturbation E and F. Otherwise, i.e., one of o or 3 is
large, the eigenvalue is well conditioned.
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®0000000

Real Schur and Hessenberg-triangular forms

Let (A, B) be a real regular pencil. Then there are orthogonal
matrices U and V' such that
S Sz - Sk
Saa -+ Sop
S=UTAV = )
0 0 Skk
and
T Tz -+ Tig
o 0 Thy .-+ Ty
0 0 T
where Tj;, S;; € R or R?*2,
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[e] Ielelelele]e]

Real Schur and Hessenberg-triangular forms

The pencils (T;;, Sy;) with T;;, S;; € R contain the real
eigenvalues of (A, B). The pencils (Ty;, Si;) with Tj;, S;; € R?x2
contain a pair of complex conjugate eigenvalues of (A, B). The
blocks can made to appear in any order.

Sketch the procedure of the proof. Let x = y + iz be the right
eigenvector of (A, B) corresponding to the eigenvalue

A=p+iv,ie.,
Aly+iz) = (p+iv)B(y+iz)
= (uBy —vBz)+i(vBy+ puBz)
=
Aly z) = (uBy—vBz vBy+ uBz)
= B(py —vz vy+p2)
= By 2)( _“V Z)EBXL (13)
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Real Schur and Hessenberg-triangular forms

Since {y, z} is linearly independent, it holds that 3 V" with
VTV = I, and a nonsingular 2 x 2 matrix R such that

(y 2)=VR (14)
Substituting (14) into (13), we get
AVR = BVRL = AV = BV(RLR™).
Let U € R?*2 with UTU = I, and S € R?*? such that
AV =US.
Then

BV = AV(RLR™ Y ' =USRL'R'=UT, T ecR**%
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Real Schur and Hessenberg-triangular forms

Let (V Vy)and (U U,) be orthogonal. Then

(g;)m,B)(V Vi)

_ UTAV UTAV, UTBV UTBV, )
- W vTrav vrav, ) \ vTBV UTBV,

-0 i) (s )

Hessenberg-triangular form
@ Determine an orthogonal matrix @ such that Q7 B is upper
triangular.
Q Apply QT to A: QT A.
© Use plane rotations to reduce A to Hessenberg form while
preserving the upper triangularity of B.
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Real Schur and Hessenberg-triangular forms

X X X X X X X X
¥ ok % % 0 x x x
M 0 % *x % ’ 0 4+ x =x
0 X X X 0 0 0 x
X % % X X % x X
A X x *x X 0 * * X
(A’—B)P?’Q, 0 % *x X ’ 0 0 % Xx
0 * * X 0 0 0 x
Deflation

A : upper Hessenberg matrix, B : upper triangular matrix
(l) If Ap+1,k = 0, then

A B — < An —ABi1 A — ABig )

0 Ago — ABao

= Solve two small problems A7 — AB11 and Ass — ABays
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Real Schur and Hessenberg-triangular forms

(1) If by, = O for some k, then it is possible to introduce a zero
in A's (n, n — 1) position and thereby deflate.

X X X X X X X X X X
X X X X X 0 X X X X
A= 0 x x x x|, B= 0 0 0 x x
0 0 x x X 0 0 0 ® X
0 0 0 x x 0O 0 0 0 x
X X X X X X X X X X
X X X X X 0 X X x X
A=Py A= 0o + + + + ,B=PyB= o 0 0 + +
0O @& + + + 0O 0 0 0 +
0 0 0 x x 0O 0 0 0 x
X + 4+ X X X + + X X
X 4+ 4+ x x 0 4+ 4+ x X
A=AQy=] 0 + + X X |,B=BQx=] 0 0 0 x X
0 0 4+ x x 0 0 0 0~/
0 0 0 x x 0 0 0 0v®
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45

A=P

X + + X
X + + X

0

+ 8
++o

7B:BQ34:

,B=BQys5 =

X + + X
X+ 4+
X+

X

0

0 0 4+ 4+ x
0 0 0 & x

X+
0 0 x + +
00 0 0 +

A= AQz =

A=AQs =
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The doubly shifted QZ algorithm

doubly shifted QR algorithm

iterative reduction of a real Hessenberg matrix to real Schur
form.

v

doubly shifted QZ algorithm

iterative reduction of a real Hessenberg-triangular pencil to real
generalized Schur form.

Update A and B as follows:

(A—AB)=QT(A-AB)Z,

where A is upper Hessenberg, B is upper triangular, Q and Z
are orthogonal.
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The doubly shifted QZ algorithm

@ Let (4, B) be in Hessenberg-triangular form and B be
nonsingular.
Q@ C = AB~!is Hessenberg.
© a Francis QR step were explicitly applied to C.
Let @ and b be the eigenvalues of

Cn—1n—1 Cn—1n
Cnn—1 Cn,n ’
v be the first column of (C' — aI)(C — bI). Then, there is only

three nonzero components in v which requires O(1) flops.
Take Householder transformation H such that

HTy = oeq.

Determine orthogonal matrices @ and Z with Qe; = e; such
that o

(A, B)=Q"(HTA, H'B)Z
is in Hessenberg-triangular form. Then
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The doubly shifted QZ algorithm

C = AB™' = (Q"HTAZ)(Q"H"BZ)™!
= (QUH'AZ)(Z(TB™'HQ) = (HQ)" C(HQ).

@ Moreover, since Qe; = e1, we have (HQ)e; = He;.

e It follows that C is the result of performing an implicit
double QR step on C.

@ Consequently, at least one of the subdiagonal elements
Cnn—1 and c¢,—1 ,—2 converges to zero.
Since (A, B) is in Hessenberg-triangular form and
A = CB, we have

nn—-1 = Cn,nflbnfl,nfla
Gp—1n—2 = Cn—l,n—an—Q,n—Z

Hence,
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The doubly shifted QZ algorithm

@ if by,—1,—1 and b,—_2,—2 do not approach zero, then at least
one of the subdiagonal elements a,, ,,—1 and a,,—1 ,—2 Must
approach zero.

® a,n—1 — 0= deflate with a real eigenvalue.
@ a,_1,-2 — 0= a2 x 2 block, which may contain real or
complex eigenvalues, is isolated.

= The iteration can be continued with a smaller matrix.

@ On the other hand, if either b,,_; ,,—1 or b,,_2 ,,_2 approach
zero, the process converges to an infinite eigenvalue,
which can be deflated.
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The doubly shifted QZ algorithm

The QZ step
e only the first three components of v are nonzero and H is
Householder transformation such that

HTv:a61
o+ o+ o+
o+ o+ o+
AT |+t
o 1 0 x x x x x |’
0 0 0 x x x
0 0 0 0 x x
o+ o+ o+ o+
® + + + + +
e @ e+ + o+
B_HB_OOOXXX’
0 0 0 0 x x
0O 0 0 0 0 x



The generalized eigenvalue proble

000000

The doubly shifted QZ algorithm

A=AZ17Z5 =

o X X X X X
X X X X X X
X X X X X X

B=BZ17Zy =

coococo+ @B+ +
cooco+4 4+ 9D+ + +

S O X X X X
o X X X X X
X X X X X X
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The doubly shifted QZ algorithm

X X X X X X
+ + + + + +
0 + + + + +

A= A=

Q201 00 + + + + [’
0 0 0 x x X
0 0 0 0 x x
X X X X X X
0 + + + + +
0 @& + + + +

B = B =

Q201 0 & & + + +
0 0 0 0 x x
00 0 0 0 x
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