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Definitions

Definition
Let A be of order n and let X be a subspace of Cn. Then X is
an eigenspace or invariant subspace of A if

AX = {Ax;x ∈ X} ⊂ X .

If (λ, x) ≡ (α+ ıβ, y+ ız) is a complex eigenpair of a real matrix
A, i.e.,

A(y + ız) = (α+ ıβ)(y + ız) = (αy − βz) + ı(βy + αz)

⇒
{
Ay = αy − βz,
Az = βy + αz,

then

A
[
y z

]
=
[
y z

] [ α β
−β α

]
.

It implies that R
(
[ y z ]

)
is an eigenspace of A.
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Definitions

Theorem
Let X be an eigenspace of A and let X be a basis for X . Then
there is a unique matrix L such that

AX = XL.

The matrix L is given by

L = XIAX,

where XI is a matrix satisfying XIX = I.
If (λ, x) is an eigenpair of A with x ∈ X , then (λ,XIx) is an
eigenpair of L. Conversely, if (λ, u) is an eigenpair of L, then
(λ,Xu) is an eigenpair of A.
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Definitions

Proof: Let

X = [x1 · · ·xk] and Y = AX = [y1 · · · yk] .

Since yi ∈ X and X is a basis for X , there is a unique vector `i
such that

yi = X`i.

If we set L = [`1 · · · `k], then AX = XL and

L = XIXL = XIAX.

Now let (λ, x) be an eigenpair of A with x ∈ X . Then there is a
unique vector u such that x = Xu. However, u = XIx. Hence

λx = Ax = AXu = XLu ⇒ λu = λXIx = Lu.

Conversely, if Lu = λu, then

A(Xu) = (AX)u = (XL)u = X(Lu) = λ(Xu),

so that (λ,Xu) is an eigenpair of A.
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Definitions

Definition

Let A be of order n. For X ∈ Cn×k and L ∈ Ck×k, we say that
(L,X) is an eigenpair of order k or right eigenpair of order k of
A if

1. X is of full rank,
2. AX = XL.

The matrices X and L are called eigenbasis and eigenblock,
respectively. If X is orthonormal, we say that the eigenpair
(L,X) is orthonormal.
If Y ∈ Cn×k has linearly independent columns and
Y HA = LY H , we say that (L, Y ) is a left eigenpair of order k of
A.
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Definitions

Question
How eigenpairs transform under change of basis and
similarities?

Theorem
Let (L,X) be an eigenpair of A. If U is nonsingular, then the
pair (U−1LU,XU) is also eigenpair of A. If W is nonsingular,
then (L,W−1X) is an eigenpair of W−1AW .

proof:

A(XU) = (AX)U = (XL)U = (XU)(U−1LU),
(W−1AW )(W−1X) = W−1AX = (W−1X)L.

The eigenvalues of L of an eigenspace with respect to a basis
are independent of the choices of the basis.
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Definitions

Theorem
Let L = {λ1, . . . , λk} ⊂ Λ(A) be a multisubset of the
eigenvalues of A. Then there is an eigenspace X of A whose
eigenvalues are λ1, . . . , λk.

Proof: Let

A[ U1 U2 ] = [ U1 U2 ]
[
T11 T12

0 T22

]
be a partitioned Schur decomposition of A in which T11 is of
order k and has the members of L on its diagonal. Then

AU1 = U1T11.

Hence the column space of U1 is an eigenspace of A whose
eigenvalues are the members of L.
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Simple eigenspaces

Definition
An eigenvalue whose geometric multiplicity is less than its
algebraic multiplicity is defective.

Definition
Let X be an eigenspace of A with eigenvalues L. Then X is a
simple eigenspace of A if

L ∩ [Λ(A) \ L] = ∅.

In the other words, an eigenspace is simple if its eigenvalues
are disjoint from the other eigenvalues of A.
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Simple eigenspaces

Theorem

Let (L1, X1) be a simple orthonormal eigenpairs of A and let
(X1, Y2) be unitary so that[

XH
1

Y H
2

]
A
[
X1 Y2

]
=
[
L1 H
0 L2

]
.

Then there is a matrix Q satisfying the Sylvester equation

L1Q−QL2 = −H

such that if we set

X =
[
X1 X2

]
and Y =

[
Y1 Y2

]
,

where

X2 = Y2 +X1Q and Y1 = X1 − Y2Q
H ,
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Simple eigenspaces

then

Y HX = I and Y HAX = diag(L1, L2).

Proof: Since (L1, X1) is a simple eigenpairs of A, it implies that

Λ(L1) ∩ λ(L2) = ∅.
By Theorem 1.18 in Chapter 1, there is a unique matrix Q
satisfying

L1Q−QL2 = −H
such that[

I −Q
0 I

] [
L1 H
0 L2

] [
I Q
0 I

]
= diag(L1, L2).

That is[
I −Q
0 I

] [
XH

1

Y H
2

]
A
[
X1 Y2

] [ I Q
0 I

]
= diag(L1, L2).
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Simple eigenspaces

Therefore,[
XH

1 −QY H
2

Y H
2

]
A
[
X1 X1Q+ Y2

]
= diag(L1, L2).

Observations
1 X and Y are said to be biorthogonal.
2 Since

A
[
X1 X2

]
=
[
X1 X2

]
diag(L1, L2),

we see that

AX2 = X2L2,

so that (L2, X2) is an eigenpair of A. Likewise (L1, Y1) is a
left eigenpair of A.
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Canonical angles

Let x and y be nonzero vectors. Then the angle ∠(x, y) of x
and y is defined as

cos ∠(x, y) =
|xHy|

‖ x ‖2‖ y ‖2
.

Extend this definition to subspaces in Cn. Let X and Y be
subspaces of the same dimension. Let X and Y be
orthonormal bases for X and Y, respectively, and define
C = Y HX. We have

‖ C ‖2≤‖ X ‖2‖ Y ‖2= 1.

Hence all the singular value of C lie in [0, 1] and can be
regarded as cosine of angles.
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Canonical angles

Definition
Let X and Y be subspaces of Cn of dimension p and let X and
Y be orthonormal bases for X and Y, respectively. Then the
canonical angles between X and Y are

θi(X ,Y) = cos−1 γi, (1)

with

θ1(X ,Y) ≥ θ2(X ,Y) ≥ · · · ≥ θp(X ,Y),

where γi are the singular values of Y HX.
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Canonical angles

If the canonical angle is small, then the computation of (1)
will give inaccurate results.
For small θ, cos(θ) ∼= 1− 1

2θ
2. If θ ≤ 10−8, then cos(θ) will

evaluate to 1 in IEEE double-precision arithmetic, and we
will conclude that θ = 0.
The cure for this problem is to compute the sine of the
canonical angles.

Theorem

Let X and Y be orthonormal bases for X and Y, and let Y⊥ be
an orthonormal basis for the orthogonal complement of Y.
Then the singular values of Y H

⊥ X are the sines of the canonical
angles between X and Y.
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Canonical angles

Proof: Let [
Y H

Y H
⊥

]
X =

[
C
S

]
.

By the orthonormality, we have

I = CHC + SHS.

Let

V H(CHC)V = Γ2 ≡ diag(γ2
1 , · · · , γ2

p)

be the spectral decomposition of CHC. Then by the definition
of canonical angle θi in (1), we have

θi = cos−1 γi.

But

I = V H(CHC + SHS)V = Γ2 + V H(SHS)V ≡ Γ2 + Σ2.
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Canonical angles

It follows that

Σ2 ≡ diag(σ2
1, · · · , σ2

p) = diag(1− γ2
1 , · · · , 1− γ2

p),

where σi are singular values of S = Y H
⊥ X. Therefore,

σ2
i = 1− γ2

i = 1− cos2 θi = sin2 θi ⇒ θi = sin−1 σi.

Theorem

Let x be a vector with ‖ x ‖2= 1 and let Y be a subspace. Then

sin ∠(x,Y) = min
y∈Y
‖ x− y ‖2 .
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Canonical angles

Proof: Let (Y, Y⊥) be unitary with R(Y ) = Y. Let y ∈ Y, then[
Y H

Y H
⊥

]
(x− y) =

[
x̂
x̂⊥

]
−
[
ŷ
0

]
=
[
x̂− ŷ
x̂⊥

]
.

It implies that

‖ x− y ‖2=
∥∥∥∥[ Y H

Y H
⊥

]
(x− y)

∥∥∥∥
2

=
∥∥∥∥[ x̂− ŷx̂⊥

]∥∥∥∥
2

and hence

min
y∈Y
‖x− y‖ = ‖x̂⊥‖2 = ‖Y H

⊥ x‖2. (2)

By Theorem 10 and (2), we have

sin ∠(x,Y) = ‖Y H
⊥ x‖2 = min

y∈Y
‖x− y‖.
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Canonical angles

Theorem

Let X and Y be orthonormal matrices with XHY = 0 and let
Z = X + Y Q. Let

σ1 ≥ σ2 ≥ · · · ≥ σk > 0 and ζ1 ≥ ζ2 ≥ · · · ≥ ζk > 0

denote the nonzero singular values of Z and Q, respectively.
Set

θ1 ≥ θ2 ≥ · · · ≥ θk

to be the nonzero canonical angle between R(X) and R(Z).
Then

σi = sec θi and ζi = tan θi, for i = 1, . . . , k.
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Canonical angles

Proof: Since

XHX = I, Y HY = I, XHY = 0 and Z = X + Y Q,

we have

ZHZ = (XH +QHY H)(X + Y Q) = I +QHQ.

This implies that

σ2
i = 1 + ζ2

i , for i = 1, . . . , k. (3)

Define

Ẑ ≡ Z(ZHZ)−1/2 = (X + Y Q)(I +QHQ)−1/2,

where (I +QHQ)−1/2 is the inverse of the positive definite
square root of I +QHQ. Then Ẑ is an orthonormal basis for
R(Z) and

XHẐ = (I +QQH)−1/2.
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Canonical angles

Hence the singular values γi of XHẐ are

γi =
(√

1 + ζ2
i

)−1

for i = 1, . . . , k. Using (3) and the definition of canonical angles
θi between R(X) and R(Z), we have

cos θi = γi = σ−1
i .

That is

σi =
1

cos θi
= sec θi.

The relation tan θi = ζi now follows from (3).
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Canonical angles

Let (L1, X1) be a simple right orthonormal eigenpair of A and
let (X1, Y2) be unitary. From Theorem 8, (L1, Y1 ≡ X1 − Y2Q

H)
is left eigenpair of A and Y H

1 X1 = I. By Theorem 12, we obtain
the following corollary.

Corollary
Let X be an orthonormal basis for a simple eigenspace X of A
and let Y be a basis for the corresponding left eigenspace Y of
A normalized so that Y HX = I. Then the singular values of Y
are the secants of the canonical angles between X and Y. In
particular,

‖Y ‖2 = sec θ1(X ,Y).
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Residual analysis

Theorem

Let [X X⊥] be unitary. Let R = AX −XL and
SH = XHA− LXH . Then ‖R‖ and ‖S‖ are minimized when

L = XHAX,

in which case

‖R‖ = ‖XH
⊥AX‖ and ‖S‖ = ‖XHAX⊥‖.

Proof: Set [
XH

XH
⊥

]
A
[
X X⊥

]
=
[
L̂ H
G M

]
.

Then[
XH

XH
⊥

]
R =

[
L̂ H
G M

] [
XH

XH
⊥

]
X −

[
XH

XH
⊥

]
XL =

[
L̂− L
G

]
.
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Residual analysis

It implies that

‖R‖ =
∥∥∥∥[ XH

XH
⊥

]
R

∥∥∥∥ =
∥∥∥∥[ L̂− LG

]∥∥∥∥ ,
which is minimized when L = XHAX and

min ‖R‖ = ‖G‖ = ‖XH
⊥AX‖.

The proof for S is similar.

Definition

Let X be of full column rank and let XI be a left inverse of X.
Then XIAX is a Rayleigh quotient of A.
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Residual analysis

Theorem
Let X be orthonormal and let

R = AX −XL.

Let `1, . . . , `k be the eigenvalues of L. Then there are
eigenvalues λj1 , . . . , λjk of A such that

|`i − λji | ≤ ‖R‖2

and √√√√ k∑
i=1

(`i − λji)2 ≤
√

2‖R‖F .
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Krylov sequences and Krylov spaces

Power method: compute the dominant eigenpair
Disadvantage: at each step it considers only the single
vector Aku, which amounts to throwing away the
information contained in u,Au,A2u, . . . , Ak−1u.

Definition
Let A be of order n and let u 6= 0 be an n vector. Then

{u,Au,A2u,A3u, . . .}

is a Krylov sequence based on A and u. We call the matrix

Kk(A, u) =
[
u Au A2u · · · Ak−1u

]
the kth Krylov matrix. The space

Kk(A, u) = R[Kk(A, u)]

is called the kth Krylov subspace.
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Krylov sequences and Krylov spaces

Theorem
Let A and u 6= 0 be given. Then

1 The sequence of Krylov subspaces satisfies

Kk(A, u) ⊂ Kk+1(A, u), AKk(A, u) ⊂ Kk+1(A, u).

2 If σ 6= 0, then

Kk(A, u) = Kk(σA, u) = Kk(A, σu).

3 For any κ,

Kk(A, u) = Kk(A− κI, u).

4 If W is nonsingular, then

Kk(W−1AW,W−1u) = W−1Kk(A, u).
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Krylov sequences and Krylov spaces

A Krylov sequence terminates at ` if ` is the smallest integer
such that

K`+1(A, u) = K`(A, u).

Theorem
A Krylov sequence terminates based on A and u at ` if and only
if ` is the smallest integer for which

dim[K`+1] = dim[K`].

If the Krylov sequence terminates at `, then K` is an
eigenspace of A of dimension `. On the other hand, if u lies in
an eigenspace of dimension m, then for some ` ≤ m, the
sequence terminates at `.
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Krylov sequences and Krylov spaces

Proof:
If K`+1 = K`, then dim[K`+1] =dim[K`]. On the other hand,
if dim[K`+1] =dim[K`], then K`+1 = K` because K` ⊂ K`+1.
If the sequence terminates at `, then

AK` ⊂ K`+1 = K`,

so that K` is an invariant subspace of A.
Let X be an invariant subspace with dimension m. If
u ∈ X , then Aiu ∈ X for all i. That is Ki ⊂ X and
dim(Ki) ≤ m for all i. If the sequence terminates at ` > m,
then K` is an invariant subspace and dim(K`) >
dim(Km) = dim(X ), which is impossible.
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Convergence

By the definition of Kk(A, u), for any vector v ∈ Kk(A, u) can be
written in the form

v = γ1u+ γ2Au+ · · ·+ γkA
k−1u ≡ p(A)u,

where

p(A) = γ1I + γ2A+ γ3A
2 + · · ·+ γkA

k−1.

Assume that A is Hermitian and has an orthonormal eigenpairs
(λi, xi) for i = 1, . . . , n. Write u in the form

u = α1x1 + α2x2 + · · ·+ αnxn,

where αi = xHi u. Since p(A)xi = p(λi)xi, we have

p(A)u = α1p(λ1)x1 + α2p(λ2)x2 + · · ·+ αnp(λn)xn. (4)

If p(λi) is large compared with p(λj) for j 6= i, then p(A)u is a
good approximation to xi.
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Convergence

Theorem

If xHi u 6= 0 and p(λi) 6= 0, then

tan ∠(p(A)u, xi) ≤ max
j 6=i

|p(λj)|
|p(λi)|

tan ∠(u, xi).

Proof: From (4), we have

cos ∠(p(A)u, xi) =
|xHi p(A)u|
‖p(A)u‖2‖xi‖2

=
|αip(λi)|√∑n
j=1 |αjp(λj)|2

and

sin ∠(p(A)u, xi) =

√∑
j 6=i |αjp(λj)|2√∑n
j=1 |αjp(λj)|2
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Convergence

Hence

tan2 ∠(p(A)u, xi) =
∑
j 6=i

|αjp(λj)|2

|αip(λi)|2

≤ max
j 6=i

|p(λj)|2

|p(λi)|2
∑
j 6=i

|αj |2

|αi|2

= max
j 6=i

|p(λj)|2

|p(λi)|2
tan2 ∠(u, xi).

Assume that p(λi) = 1, then

tan ∠(p(A)u, xi) ≤ max
j 6=i,p(λi)=1

|p(λj)| tan ∠(u, xi) ∀ p(A)u ∈ Kk.

Hence

tan ∠(xi,Kk) ≤ min
deg(p)≤k−1,p(λi)=1

max
j 6=i
|p(λj)| tan ∠(u, xi).
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Convergence

Assume that

λ1 > λ2 ≥ · · · ≥ λn
and that our interest is in the eigenvector x1. Then

tan ∠(x1,Kk) ≤ min
deg(p)≤k−1,p(λ1)=1

max
λ∈[λn,λ2]

|p(λ)| tan ∠(u, x1).

Question
How to compute

min
deg(p)≤k−1,p(λ1)=1

max
λ∈[λn,λ2]

|p(λ)|?

Definition
The Chebyshev polynomials are defined by

ck(t) =
{

cos(k cos−1 t), |t| ≤ 1,
cosh(k cosh−1 t), |t| ≥ 1.
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Convergence

Theorem

(a) c0(t) = 1, c1(t) = t and

ck+1(t) = 2ck(t)− ck−1(t), k = 1, 2, . . . .

(b) For |t| > 1,

ck(t) = (1 +
√
t2 − 1)k + (1 +

√
t2 − 1)−k.

(c) For t ∈ [−1, 1], |ck(t)| ≤ 1. Moreover, if

tik = cos
(k − i)π

k
, i = 0, 1, . . . , k,

then

ck(tik) = (−1)k−i.
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Convergence

(d) For s > 1,

min
deg(p)≤k,p(s)=1

max
t∈[0,1]

|p(t)| = 1
ck(s)

, (5)

and the minimum is obtained only for p(t) = ck(t)/ck(s).

For applying (5), we define

λ = λ2 + (µ− 1)(λ2 − λn)

to transform interval [λn, λ2] to [0, 1]. Then the value of µ at λ1 is

µ1 = 1 +
λ1 − λ2

λ2 − λn
and

min
deg(p)≤k−1,p(λ1)=1

max
λ∈[λn,λ2]

|p(λ)|

= min
deg(p)≤k−1,p(µ1)=1

max
µ∈[0,1]

|p(µ)| = 1
ck−1(µ1)

.
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Convergence

Theorem

Let the Hermitian matrix A have an orthonormal eigenpair
(λi, xi) with

λ1 > λ2 ≥ · · · ≥ λn.

Let

η =
λ1 − λ2

λ2 − λn
.

Then

tan ∠[x1,Kk(A, u)] ≤ tan ∠(x1, u)
ck−1(1 + η)

=
tan ∠(x1, u)

(1 +
√

2η + η2)k−1 + (1 +
√

2η + η2)1−k
.
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Convergence

Remark

For k large, we have

tan ∠[x1,Kk(A, u)] .
tan ∠(x1, u)

(1 +
√

2η + η2)k−1
.

For k large and if η is small, then the bound becomes

tan ∠[x1,Kk(A, u)] .
tan ∠(x1, u)

(1 +
√

2η)k−1
.

Compare it with power method:
If |λ1| > |λ2| ≥ · · · ≥ |λn|, then the convergence of the
power method is |λ2/λ1|k.
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Convergence

For example, let

λ1 = 1, λ2 = 0.95, λ3 = 0.952, · · · , λ100 = 0.9599

be the eigenvalues of 100-by-100 matrix A. Then
η = 0.0530 and the bound on the convergence rate is
1/(1 +

√
2η) = 0.7544. Thus the square root effect gives a

great improvement over the rate of 0.95 for the power
method.
Replaced A by −A, then the Krylov sequence converges
to the eigenvector corresponding to the smallest
eigenvalue of A. However, the smallest eigenvalues of a
matrix – particularly a positive definite matrix – often tend
to cluster together, so that the bound will be unfavorable.
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Convergence

The hypothesis λ1 > λ2 can be relaxed. Suppose that
λ1 = λ2 > λ3. Expand u in the form

u = α1x1 + α2x2 + α3x3 + · · ·+ αnxn.

Then

Aku = λk1(α1x1 + α2x2) + α3λ
k
3x3 + · · ·+ αnλ

k
nxn.

This shows that the spaces Kk(A, u) contain only
approximations to α1x1 + α2x2.
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Convergence

Theorem
Let λ be a simple eigenvalue of A and let

A =
[
x X

] [ λ 0
0 L

] [
yH

Y H

]
= λxyH +XLY H

be a spectral representation. Let

u = αx+Xa,

where

α = yHu and a = Y Hu.

Then

sin ∠[x,Kk(A, u)] ≤ |α|−1 min
deg(p)≤k−1,p(λ)=1

‖Xp(L)a‖2.
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Convergence

Proof: From Theorem 11,

sin ∠[x,Kk(A, u)] = |α|−1 min
y∈Kk(A,u)

‖αx− y‖2

= |α|−1 min
deg(p)≤k−1

‖αx− p(A)u‖2

≤ |α|−1 min
deg(p)≤k−1,p(λ)=1

‖αx− p(A)u‖2.

Since

p(λ) = 1 and AX = XL,

we have

p(A)u = p(A)(αx+Xa) = αp(λ)x+Xp(L)a = αx+Xp(L)a.

Hence

sin ∠[x,Kk(A, u)] ≤ |α|−1 min
deg(p)≤k−1,p(λ)=1

‖αx− (αx+Xp(L)a)‖2

= |α|−1 min
deg(p)≤k−1,p(λ)=1

‖Xp(L)a‖2.
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Block Krylov spaces

Let (λi, xi) be an eigenpair of A for i = 1, . . . , n. Write vector u
in the form

u = α1x1 + α2x2 + · · ·+ αnxn.

Assume that λ1 is double, i.e., λ1 = λ2. Then

Aku = λk1(α1x1 + α2x2) + λk3α3x3 + · · ·+ λknαnxn.

Hence the Krylov sequence can only produce the
approximation α1x1 + α2x2 to a vector in the eigenspace of λ1.
Let U be a matrix with linearly independent columns. Then the
sequence

{U,AU,A2U, . . .}

is called a block Krylov sequence and the space Kk(A,U) is
called the k-th block Krylov space.
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Block Krylov spaces

Gaol: passing to block Krylov sequence improves the
convergence bound.

Theorem
Let A be Hermitian and let (λi, xi) be a complete system (n
eigenvectors are linearly independent) of orthonormal
eigenpairs of A with

λ1 ≥ λ2 ≥ · · · ≥ λn,

and assume that the multiplicity of λ1 is not greater than m. If

B =

 xH1
...
xHm

U
is nonsingular and we set

v = UB−1e1,
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Block Krylov spaces

then

tan ∠[x1,Kk(A,U)] ≤ tan ∠(x1, v)
ck−1(1 + 2η)

=
tan ∠(x1, v)

(1 + 2
√
η + η2)k−1 + (1 + 2

√
η + η2)1−k

,(6)

where

η =
λ1 − λm+1

λm+1 − λn
.

Proof: Since v ∈ R(U), we have Kk(A, v) ⊂ Kk(A,U). By
Theorem 11,

sin ∠[x1,Kk(A,U)] = min
y∈Kk(A,U)

‖x1 − y‖2

≤ min
y∈Kk(A,v)

‖x1 − y‖2 = sin ∠[x1,Kk(A, v)].
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Block Krylov spaces

This implies that

∠[x1,Kk(A,U)] ≤ ∠[x1,Kk(A, v)].

By the definition of B, we have xH1
...
xHn

UB−1 = I ⇒ xHi UB
−1 = eTi for i = 1, . . . ,m.

By the definition of v,

xHi v = xHi UB
−1e1 = 0 for i = 2, . . . ,m.

On the other hand, (λi, xi) is an eigenpair of Hermitian A, i.e.,
xHi A = λix

H
i . Hence

xHi A
jv = λjix

H
i v = 0 for i = 2, . . . ,m.
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Block Krylov spaces

This implies that x2, . . . , xm are not contained in Kk(A, v). That
is

Ajv = α1λ
j
1x1 + αm+1λ

j
m+1xm+1 + · · ·+ αnλ

j
nxn

for j = 1, . . . , k − 1. We may now apply Theorem 23 to get (6).
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Rayleigh-Ritz methods

Theorem
Let U be a subspace and let U be a basis for U . Let V be a left
inverse of U and set

B = V HAU.

If X ⊂ U is an eigenspace of A, then there is an eigenpair
(L,W ) of B such that (L,UW ) is an eigenpair of A with
R(UW ) = X .

Proof: Let (L,X) be an eigenpair of A and let X = UW . Then
from the relation

AUW = UWL

we obtain

BW = V HAUW = V HUWL = WL,

so that (L,W ) is an eigenpair of B.
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Rayleigh-Ritz methods

We can find exact eigenspaces contained in U by looking at
eigenpairs of the Rayleigh quotient B.

Algorithm (Rayleigh-Ritz procedure)

1 Let U be a basis for U and let V H be a left inverse of U .
2 Form the Rayleigh quotient B = V HAU .
3 Let (M,W ) be a suitable eigenpair of B.
4 Return (M,UW ) as an approximate eigenpair of A.

(M,UW ) is called a Ritz pair. Written Ritz pair in the form
(λ,Uw), we will call λ a Ritz value and Uw a Ritz vector.
Two difficulties for Rayleigh-Ritz procedure: (i) how to
choose the eigenpair (M,W ) in statement 3. (ii) no
guarantee that the result approximates the desired
eigenpair of A.
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Rayleigh-Ritz methods

Example

Let A = diag(0, 1,−1) and suppose we interested in
approximating the eigenpair (0, e1). Assume

U =

 1 0
0 1/

√
2

0 1/
√

2

 .
Then

B = UHAU =
[

0 0
0 0

]
and any nonzero vector p is an eigenvector of B. If we take
p = [1, 1]T , then Up = [1, 1/

√
2, 1/
√

2] is an approximate
eigenvector of A, which is completely wrong. Thus the method
can fail, even though the space U contains the desired
eigenvector.
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Rayleigh-Ritz methods

The matrices U and V in Algorithm 1 satisfy the condition
V HU = I and they can differ. Hence Algorithm 1 is called
an oblique Rayleigh-Ritz method.
If the matrix U is taken to be orthonormal and V = U . In
addition, W is taken to be orthonormal, so that X̂ ≡ UW is
also orthonormal. We call this procedure the orthogonal
Rayleigh-Rite method.

Theorem

Let (M, X̂ ≡ UW ) be an orthogonal Rayleigh-Rite pair. Then

R = AX̂ − X̂M

is minimal in any unitarily invariant norm.
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Rayleigh-Ritz methods

Proof: By Theorem 14, we need to show M = X̂HAX̂. Since
(M,W ) is an eigenpair of B and W is orthonormal, we have

M = WHBW

and

X̂HAX̂ = WHUHAUW = WHBW = M.
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Convergence

Let (λ, x) be the desired eigenpair of A and Uθ be an
orthonormal basis for which θ = ∠(x, Uθ) is small.

Theorem
Let

Bθ = UHθ AUθ.

Then there is a matrix Eθ satisfying

‖Eθ‖2 ≤
sin θ√

1− sin2 θ
‖A‖2

such that λ is an eigenvalue of Bθ + Eθ.

Proof. Let (Uθ, U⊥) be unitary and set

y = UHθ x and z = UH⊥ x.
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Convergence

From Theorem 10, we have

‖z‖2 = sin θ and ‖y‖2 =
√

1− sin2 θ.

Since Ax− λx = 0, we have

UHθ A[Uθ, U⊥]
[
UHθ
UH⊥

]
x− λUHθ x = 0,

or

Bθy + UHθ AU⊥z − λy = 0.

Let ŷ = y/‖y‖2 = y/
√

1− sin2 θ. If

r ≡ Bθŷ − λŷ =
−1√

1− sin2 θ
UHθ AU⊥z,

it follows that

‖r‖2 ≤
sin θ√

1− sin2 θ
‖A‖2.
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Convergence

Now define

Eθ = −rŷH .

Then

‖Eθ‖2 =
√
λ1((rŷH)(ŷrH)) =

√
λ1(rrH) = ‖r‖2 ≤

sin θ√
1− sin2 θ

‖A‖2

and

(Bθ + Eθ)ŷ = Bθŷ − (rŷH)ŷ = Bθŷ − r = λŷ.

Therefore, (λ, ŷ) is an eigenpair of Bθ + Eθ.

Corollary

There is an eigenvalue µθ of Bθ such that

|µθ − λ| ≤ 4(2‖A‖2 + ‖Eθ‖2)1−1/m‖Eθ‖
1/m
2 ,

where m is the order of Bθ.
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Convergence

Theorem

Let (µθ, wθ) be an eigenpair of Bθ and let
[
wθ Wθ

]
be

unitary, so that[
wHθ
WH
θ

]
Bθ
[
wθ Wθ

]
=
[
µθ hHθ
0 Nθ

]
.

Then

sin ∠(x, Uθwθ) ≤ sin θ

√
1 +

‖hθ‖22
sep(λ,Nθ)2

,

where sep(λ,Nθ) = ‖(λI −Nθ)−1‖−1.
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Convergence

By the continuity of sep, we have

|sep(λ,Nθ)− sep(µθ, Nθ)| ≤ |µθ − λ|
⇒ sep(λ,Nθ) ≥ sep(µθ, Nθ)− |µθ − λ|.

Suppose µθ → λ and sep(µθ, Nθ) is bounded below. Then
sep(λ,Nθ) is also bounded below. Since ‖hθ‖2 ≤ ‖A‖2, we
have sin ∠(x, Uθwθ)→ 0 along with θ.

Corollary

Let (µθ, Uθwθ) be a Ritz pair for which µθ → λ. If there is a
constant α > 0 such that

sep(µθ, Nθ) ≥ α > 0, (7)

then

sin ∠(x, Uθwθ) . sin θ

√
1 +
‖A‖2
α2

.
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Convergence

This corollary justifies that eigenvalue convergence plus
separation equals eigenvector convergence.
The condition (7) is called the uniform separation condition.
Let (µθ, xθ) with ‖xθ‖2 = 1 be the Ritz approximation to (λ, x).
Then by construction, we have

µθ = xHθ Axθ. (8)

Write

xθ = γx+ σy, (9)

where y⊥x and ‖y‖2 = 1. Then

|γ| = |xHxθ| = cos ∠(xθ, x) and |σ| = |yHxθ| = sin ∠(xθ, x).

If the uniform separation is satisfied, we have

|σ| = sin ∠(xθ, x) = O(θ).
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Convergence

Substituting (9) into (8) and using the facts of Ax = λx and
yHx = 0, we find that

µθ = (γ̄xH + σ̄yH)(γλx+ σAy)
= |γ|2λ+ σxHθ Ay.

Hence

|µθ − λ| = |(|γ|2 − 1)λ+ σxHθ Ay|
≤ |σ|2|λ|+ |σ|‖xθ‖2‖A‖2‖y‖2
≤ |σ|(1 + |σ|)‖A‖2
= O(θ).

Thus the Ritz value converges at least as fast as the
eigenvector approximation of x in U(Uθ).
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Convergence

If A is Hermitian, then

µθ = (γ̄xH + σ̄yH)(γλx+ σAy)
= |γ|2λ+ r̄σxHAy + |σ|2yHAy = |γ|2λ+ r̄σλ̄xHy + |σ|2yHAy
= |γ|2λ+ |σ|2yHAy

and

|µθ − λ| = |(|γ|2 − 1)λ+ |σ|2yHAy|
≤ |σ|2|λ|+ |σ|2‖y‖2‖A‖2‖y‖2
≤ 2|σ|2‖A‖2
= O(θ2).

Since the angle θ = ∠(x, Uθ) cannot be known and hence
cannot compute error bounds. Thus, we must look to the
residual as an indication of convergence.
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Convergence

Theorem
Let A have the spectral representation

A = λxyH +XLY H ,

where ‖x‖2 = 1 and Y is orthonormal. Let (µ, x̃) be an
approximation to (λ, x) and let

ρ = ‖Ax̃− µx̃‖2.

Then

sin ∠(x̃, x) ≤ ρ

sep(µ,L)
≤ ρ

sep(λ, L)− |µ− λ|
.
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Convergence

Proof: Since Y Hx = 0, we have that Y is an orthonormal basis
for the orthogonal complement of the space span{x} and then
sin ∠(x̃, x) = ‖Y H x̃‖2. Let r = Ax̃− µx̃. Then

Y Hr = Y HAx̃− µY H x̃ = (L− µI)Y H x̃.

It follows that

sin ∠(x̃, x) = ‖(L− µI)−1Y Hr‖2 ≤
‖r‖2

sep(µ,L)
.

By the fact that sep(µ,L) ≥ sep(λ, L)− |µ− λ|, the second
inequality is obtained.
Since λ is assumed to be simple, this theorem says that:
Sufficient condition for x̃ to converge to x is for µ to converge to
λ and for the residual to converge to zero.
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Refined Ritz vectors

Definition
Let µθ be a Ritz value associated with Uθ. A refined Ritz vector
is a solution of the problem

min ‖Ax̂θ − µθx̂θ‖2
subject to x̂θ ∈ Uθ, ‖x̂θ‖2 = 1.

Theorem

Let A have the spectral representation

A = λxyH +XLY H ,

where ‖x‖2 = 1 and Y is orthonormal. Let µθ be a Ritz value
and x̂θ the corresponding refined Ritz vector. If
sep(λ, L)− |µθ − λ| > 0, then

sin ∠(x, x̂θ) ≤
‖A− µθI‖2 sin θ + |λ− µθ|√

1− sin2 θ[sep(λ, L)− |λ− µθ|]
.
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Refined Ritz vectors

Proof: Let U be an orthonormal basis for Uθ and let x = y + z,
where z = UUHx. Then

‖z‖2 = ‖UHx‖2 = sin θ.

Moreover, since y and x are orthogonal,

‖z‖22 = ‖x− y‖22 = (xH − yH)(x− y)
= ‖x‖22 + ‖y‖22 = 1 + ‖y‖22
⇒ ‖y‖22 = 1− ‖z‖22 = 1− sin2 θ.

Let

ŷ =
y√

1− sin2 θ
,

we have

(A− µθI)ŷ =
(A− µθI)y√

1− sin2 θ
=

(A− µθI)(x− z)√
1− sin2 θ

=
(λ− µθ)x− (A− µθI)z√

1− sin2 θ
.
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Refined Ritz vectors

Hence

‖(A− µθI)ŷ‖2 ≤
|λ− µθ|+ ‖A− µθI‖ sin θ√

1− sin2 θ
.

By the definition of a refined Ritz vector we have

‖(A− µθI)x̂‖2 ≤
|λ− µθ|+ ‖A− µθI‖ sin θ√

1− sin2 θ
.

The result now follows from Theorem 35.

Remark

By Corollary 30, µθ → λ. It follows that sin ∠(x, x̂θ)→ 0. In
other words, refined Ritz vectors are guaranteed to
converge.
µ̂θ = x̂Hθ Ax̂θ is more accurate than µθ and ‖Ax̂θ − µ̂θx̂θ‖2
is optimal.
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Refined Ritz vectors

The computation of a refined Ritz vector amounts to solve

min ‖Ax̂− µx̂‖2
subject to x̂ ∈ U , ‖x̂‖2 = 1.

(10)

Let U be an orthonormal basis for U . Then (10) is equivalent to

min ‖(A− µI)Uz‖2
subject to ‖z‖2 = 1.

The solution of this problem is the right singular vector of
(A− µI)U corresponding to its smallest singular value. Thus
refined Ritz vector can be computed by the following algorithm.

1 V = AU
2 W = V − µU
3 Compute the smallest singular value of W and its right

singular vector z
4 x̂ = Uz
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Harmonic Ritz vectors

Exterior eigenvalues are easily convergent than interior
eigenvalues by Rayleigh quotient. The quality of the refined
Ritz vector depends on the accuracy of the Ritz value µ and
each refined Ritz vector must be calculated independently from
its own distinct value of µ.

Definition
Let U be an orthonormal basis for subspace U . Then
(κ+ δ, Uw) is a Harmonic Ritz pair with shift κ if

UH(A− κI)H(A− κI)Uw = δUH(A− κI)HUw. (11)

Given shift κ, (11) is a generalized eigenvalue problem with
eigenvalue δ.

Theorem
Let (λ, x) be an eigenpair of A with x = Uw. Then (λ,Uw) is a
harmonic Ritz pair.



師
大

Eigenspaces Perturbation Theory Krylov subspaces Rayleigh-Ritz Approximation

Harmonic Ritz vectors

Proof: Since (λ, x) is an eigenpair of A with x = Uw, we have

Ax = λx ⇒ AUw = λUw.

It implies that

UH(A− κI)H(A− κI)Uw = (λ− κ)UH(A− κI)HUw.

Taking eigenvalue δ = λ− κ, we obtain

UH(A− κI)H(A− κI)Uw = δUH(A− κI)HUw.

That is (κ+ δ, Uw) = (λ,Uw) is a harmonic Ritz pair.
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Harmonic Ritz vectors

Given a shift κ, if we want to compute the eigenvalue λ of A
which is closest to κ, then we need to compute the eigenvalue δ
of (11) such that |δ| is the smallest value of all of the absolute
values for the eigenvalues of (11).

Expect
If x is approximately represented in U , then the harmonic
Rayleigh-Ritz will produce an approximation to x.

Question
How to compute the eigenpair (δ, w) of (11)?
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Harmonic Ritz vectors

Let

(A− κI)U = QR

be the QR factorization of (A− κI)U . Then (11) can be
rewritten as

RHRw = δRHQHUw.

That is

(QHU)w = δ−1Rw.

This eigenvalue can be solved by the QZ algorithm. The
harmonic Ritz vector x̂ = Uw and the corresponding harmonic
Ritz value is µ = x̂HAx̂.
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