Eigenspaces and their Approximation

Tsung-Ming Huang

Department of Mathematics National Taiwan Normal University, Taiwan

April 8, 2009

(日)

Krylov subspaces

Rayleigh-Ritz Approximation

Outline

- Definitions
- Simple eigenspaces
- Perturbation Theory
 - Canonical angles
 - Residual analysis
- 3 Krylov subspaces
 - Krylov sequences and Krylov spaces
 - Convergence
 - Block Krylov spaces
- 4 Rayleigh-Ritz Approximation
 - Rayleigh-Ritz methods
 - Convergence
 - Refined Ritz vectors
 - Harmonic Ritz vectors

										4	
•	Þ	< 🗗	•	•	÷.	Þ	•	÷.	•	2	990

Krylov subspaces

Rayleigh-Ritz Approximation

Definitions

Definition

Let A be of order n and let \mathcal{X} be a subspace of \mathbb{C}^n . Then \mathcal{X} is an eigenspace or invariant subspace of A if

$$A\mathcal{X} = \{Ax; x \in \mathcal{X}\} \subset \mathcal{X}.$$

If $(\lambda,x)\equiv(\alpha+\imath\beta,y+\imath z)$ is a complex eigenpair of a real matrix A, i.e.,

$$A(y+\imath z) = (\alpha+\imath\beta)(y+\imath z) = (\alpha y - \beta z) + \imath(\beta y + \alpha z)$$

$$\Rightarrow \begin{cases} Ay = \alpha y - \beta z, \\ Az = \beta y + \alpha z, \end{cases}$$

then

$$A\begin{bmatrix} y & z \end{bmatrix} = \begin{bmatrix} y & z \end{bmatrix} \begin{bmatrix} \alpha & \beta \\ -\beta & \alpha \end{bmatrix}.$$

It implies that $\mathcal{R}\left(\begin{bmatrix} y & z \end{bmatrix}\right)$ is an eigenspace of A_{z}

(日)

Definitions

Theorem

Let \mathcal{X} be an eigenspace of A and let X be a basis for \mathcal{X} . Then there is a unique matrix L such that

AX = XL.

The matrix L is given by

$$L = X^I A X,$$

where X^{I} is a matrix satisfying $X^{I}X = I$. If (λ, x) is an eigenpair of A with $x \in \mathcal{X}$, then $(\lambda, X^{I}x)$ is an eigenpair of L. Conversely, if (λ, u) is an eigenpair of L, then (λ, Xu) is an eigenpair of A.

Definitions

Proof: Let

$$X = [x_1 \cdots x_k]$$
 and $Y = AX = [y_1 \cdots y_k]$.

Since $y_i \in \mathcal{X}$ and X is a basis for \mathcal{X} , there is a unique vector ℓ_i such that

$$y_i = X\ell_i.$$

If we set $L = [\ell_1 \cdots \ell_k]$, then AX = XL and

$$L = X^I X L = X^I A X.$$

Now let (λ, x) be an eigenpair of A with $x \in \mathcal{X}$. Then there is a unique vector u such that x = Xu. However, $u = X^{I}x$. Hence

$$\lambda x = Ax = AXu = XLu \quad \Rightarrow \quad \lambda u = \lambda X^{I}x = Lu.$$

Conversely, if $Lu = \lambda u$, then

$$A(Xu) = (AX)u = (XL)u = X(Lu) = \lambda(Xu),$$

so that (λ, Xu) is an eigenpair of A.

A D > A D > A D > A D > A D

Definitions

Definition

Let A be of order n. For $X \in \mathbb{C}^{n \times k}$ and $L \in \mathbb{C}^{k \times k}$, we say that (L, X) is an eigenpair of order k or right eigenpair of order k of A if

1. X is of full rank,

2.
$$AX = XL$$
.

The matrices X and L are called eigenbasis and eigenblock, respectively. If X is orthonormal, we say that the eigenpair (L, X) is orthonormal. If $Y \in \mathbb{C}^{n \times k}$ has linearly independent columns and $Y^H A = LY^H$, we say that (L, Y) is a left eigenpair of order k of A.

Krylov subspaces

Rayleigh-Ritz Approximation

Definitions

Question

How eigenpairs transform under change of basis and similarities?

Theorem

Let (L, X) be an eigenpair of A. If U is nonsingular, then the pair $(U^{-1}LU, XU)$ is also eigenpair of A. If W is nonsingular, then $(L, W^{-1}X)$ is an eigenpair of $W^{-1}AW$.

proof:

$$\begin{split} A(XU) &= (AX)U = (XL)U = (XU)(U^{-1}LU), \\ (W^{-1}AW)(W^{-1}X) &= W^{-1}AX = (W^{-1}X)L. \end{split}$$

The eigenvalues of L of an eigenspace with respect to a basis are independent of the choices of the basis.

Definitions

Theorem

Let $\mathcal{L} = {\lambda_1, \ldots, \lambda_k} \subset \Lambda(A)$ be a multisubset of the eigenvalues of A. Then there is an eigenspace \mathcal{X} of A whose eigenvalues are $\lambda_1, \ldots, \lambda_k$.

Proof: Let

$$A[\begin{array}{cc} U_1 & U_2 \end{array}] = [\begin{array}{cc} U_1 & U_2 \end{array}] \begin{bmatrix} T_{11} & T_{12} \\ 0 & T_{22} \end{bmatrix}$$

be a partitioned Schur decomposition of A in which T_{11} is of order k and has the members of \mathcal{L} on its diagonal. Then

$$AU_1 = U_1 T_{11}.$$

Hence the column space of U_1 is an eigenspace of A whose eigenvalues are the members of \mathcal{L} .

(日)

・ロット (雪) (日) (日)

Simple eigenspaces

Definition

An eigenvalue whose geometric multiplicity is less than its algebraic multiplicity is defective.

Definition

Let $\mathcal X$ be an eigenspace of A with eigenvalues $\mathcal L.$ Then $\mathcal X$ is a simple eigenspace of A if

$$\mathcal{L} \cap [\Lambda(A) \setminus \mathcal{L}] = \emptyset.$$

In the other words, an eigenspace is simple if its eigenvalues are disjoint from the other eigenvalues of A.

Krylov subspaces

Rayleigh-Ritz Approximation

Simple eigenspaces

Theorem

Let (L_1, X_1) be a simple orthonormal eigenpairs of A and let (X_1, Y_2) be unitary so that

$$\begin{bmatrix} X_1^H \\ Y_2^H \end{bmatrix} A \begin{bmatrix} X_1 & Y_2 \end{bmatrix} = \begin{bmatrix} L_1 & H \\ 0 & L_2 \end{bmatrix}$$

Then there is a matrix Q satisfying the Sylvester equation

$$L_1Q - QL_2 = -H$$

such that if we set

$$X = \begin{bmatrix} X_1 & X_2 \end{bmatrix} \quad \text{and} \quad Y = \begin{bmatrix} Y_1 & Y_2 \end{bmatrix},$$

where

 $X_2 = Y_2 + X_1 Q$ and $Y_1 = X_1 - Y_2 Q^H$,

 Eigenspaces
 Perturbation Theory
 Krylov subspaces
 Rayleigh-Ritz Approximation

 Simple eigenspaces
 Simple eigenspaces
 Rayleigh-Ritz Approximation

 Simple eigenspaces
 Then
 $Y^HX = I$ and $Y^HAX = diag(L_1, L_2)$.

 Proof: Since (L_1, X_1) is a simple eigenpairs of A, it implies that $\Lambda(L_1) \cap \lambda(L_2) = \emptyset$.

 By Theorem 1.18 in Chapter 1, there is a unique matrix Q

satisfying

$$L_1Q - QL_2 = -H$$

such that

$$\begin{bmatrix} I & -Q \\ 0 & I \end{bmatrix} \begin{bmatrix} L_1 & H \\ 0 & L_2 \end{bmatrix} \begin{bmatrix} I & Q \\ 0 & I \end{bmatrix} = \operatorname{diag}(L_1, L_2).$$

That is

$$\begin{bmatrix} I & -Q \\ 0 & I \end{bmatrix} \begin{bmatrix} X_1^H \\ Y_2^H \end{bmatrix} A \begin{bmatrix} X_1 & Y_2 \end{bmatrix} \begin{bmatrix} I & Q \\ 0 & I \end{bmatrix} = \operatorname{diag}(L_1, L_2).$$

Krylov subspaces

Rayleigh-Ritz Approximation

Simple eigenspaces

Therefore,

$$\begin{bmatrix} X_1^H - QY_2^H \\ Y_2^H \end{bmatrix} A \begin{bmatrix} X_1 & X_1Q + Y_2 \end{bmatrix} = \operatorname{diag}(L_1, L_2).$$

Observations

• X and Y are said to be biorthogonal.

2 Since

$$A\begin{bmatrix} X_1 & X_2 \end{bmatrix} = \begin{bmatrix} X_1 & X_2 \end{bmatrix} \operatorname{diag}(L_1, L_2),$$

we see that

$$AX_2 = X_2L_2,$$

so that (L_2, X_2) is an eigenpair of A. Likewise (L_1, Y_1) is a left eigenpair of A.

Canonical angles

Let x and y be nonzero vectors. Then the angle $\angle(x,y)$ of x and y is defined as

$$\cos \angle (x, y) = \frac{|x^H y|}{\|x\|_2 \|y\|_2}.$$

Extend this definition to subspaces in \mathbb{C}^n . Let \mathcal{X} and \mathcal{Y} be subspaces of the same dimension. Let X and Y be orthonormal bases for \mathcal{X} and \mathcal{Y} , respectively, and define $C = Y^H X$. We have

$$|| C ||_2 \le || X ||_2 || Y ||_2 = 1.$$

Hence all the singular value of C lie in [0, 1] and can be regarded as cosine of angles.

A D > A P > A D > A D >

Definition

Let \mathcal{X} and \mathcal{Y} be subspaces of \mathbb{C}^n of dimension p and let X and Y be orthonormal bases for \mathcal{X} and \mathcal{Y} , respectively. Then the canonical angles between \mathcal{X} and \mathcal{Y} are

$$\theta_i(\mathcal{X}, \mathcal{Y}) = \cos^{-1} \gamma_i,$$
(1)

with

$$\theta_1(\mathcal{X}, \mathcal{Y}) \ge \theta_2(\mathcal{X}, \mathcal{Y}) \ge \cdots \ge \theta_p(\mathcal{X}, \mathcal{Y}),$$

where γ_i are the singular values of $Y^H X$.

(日)

Eigenspaces

Perturbation Theory

Krylov subspaces

Rayleigh-Ritz Approximation

Canonical angles

- If the canonical angle is small, then the computation of (1) will give inaccurate results.
- For small θ , $\cos(\theta) \cong 1 \frac{1}{2}\theta^2$. If $\theta \le 10^{-8}$, then $\cos(\theta)$ will evaluate to 1 in IEEE double-precision arithmetic, and we will conclude that $\theta = 0$.
- The cure for this problem is to compute the sine of the canonical angles.

Theorem

Let *X* and *Y* be orthonormal bases for \mathcal{X} and \mathcal{Y} , and let Y_{\perp} be an orthonormal basis for the orthogonal complement of \mathcal{Y} . Then the singular values of $Y_{\perp}^{H}X$ are the sines of the canonical angles between \mathcal{X} and \mathcal{Y} . Eigenspaces

Perturbation Theory

Krylov subspaces

Rayleigh-Ritz Approximation

Canonical angles

Proof: Let

$$\left[\begin{array}{c} Y^H \\ Y^H_{\perp} \end{array}\right] X = \left[\begin{array}{c} C \\ S \end{array}\right].$$

By the orthonormality, we have

$$I = C^H C + S^H S.$$

Let

$$V^H(C^HC)V = \Gamma^2 \equiv \operatorname{diag}(\gamma_1^2, \cdots, \gamma_p^2)$$

be the spectral decomposition of $C^H C$. Then by the definition of canonical angle θ_i in (1), we have

$$\theta_i = \cos^{-1} \gamma_i.$$

But

$$I = V^H (C^H C + S^H S) V = \Gamma^2 + V^H (S^H S) V \equiv \Gamma^2 + \Sigma^2.$$

(日)

It follows that

$$\Sigma^2 \equiv \mathsf{diag}(\sigma_1^2, \cdots, \sigma_p^2) = \mathsf{diag}(1 - \gamma_1^2, \cdots, 1 - \gamma_p^2),$$

where σ_i are singular values of $S = Y_{\perp}^H X$. Therefore,

$$\sigma_i^2 = 1 - \gamma_i^2 = 1 - \cos^2 \theta_i = \sin^2 \theta_i \quad \Rightarrow \quad \theta_i = \sin^{-1} \sigma_i.$$

Theorem

Let x be a vector with $|| x ||_2 = 1$ and let \mathcal{Y} be a subspace. Then

$$\sin \angle (x, \mathcal{Y}) = \min_{y \in \mathcal{Y}} \| x - y \|_2.$$

Krylov subspaces

Rayleigh-Ritz Approximation

Canonical angles

Proof: Let (Y, Y_{\perp}) be unitary with $\mathcal{R}(Y) = \mathcal{Y}$. Let $y \in \mathcal{Y}$, then

$$\begin{bmatrix} Y^H \\ Y^H_{\perp} \end{bmatrix} (x-y) = \begin{bmatrix} \hat{x} \\ \hat{x}_{\perp} \end{bmatrix} - \begin{bmatrix} \hat{y} \\ 0 \end{bmatrix} = \begin{bmatrix} \hat{x} - \hat{y} \\ \hat{x}_{\perp} \end{bmatrix}.$$

It implies that

$$\parallel x - y \parallel_2 = \left\| \left[\begin{array}{c} Y^H \\ Y^H_{\perp} \end{array} \right] (x - y) \right\|_2 = \left\| \left[\begin{array}{c} \hat{x} - \hat{y} \\ \hat{x}_{\perp} \end{array} \right] \right\|_2$$

and hence

$$\min_{y \in \mathcal{Y}} \|x - y\| = \|\hat{x}_{\perp}\|_2 = \|Y_{\perp}^H x\|_2.$$
(2)

By Theorem 10 and (2), we have

$$\sin \angle (x, \mathcal{Y}) = \|Y_{\perp}^H x\|_2 = \min_{y \in \mathcal{Y}} \|x - y\|.$$

・ロット (雪) (日) (日)

・ロット (雪) (日) (日)

Canonical angles

Theorem

Let *X* and *Y* be orthonormal matrices with $X^H Y = 0$ and let Z = X + YQ. Let

 $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_k > 0$ and $\zeta_1 \ge \zeta_2 \ge \cdots \ge \zeta_k > 0$

denote the nonzero singular values of Z and Q, respectively. Set

 $\theta_1 \ge \theta_2 \ge \cdots \ge \theta_k$

to be the nonzero canonical angle between $\mathcal{R}(X)$ and $\mathcal{R}(Z)$. Then

$$\sigma_i = \sec \theta_i$$
 and $\zeta_i = \tan \theta_i$, for $i = 1, \dots, k$.

Krylov subspaces

Rayleigh-Ritz Approximation

Canonical angles

Proof: Since

$$X^HX=I, \quad Y^HY=I, \quad X^HY=0 \quad \text{ and } \quad Z=X+YQ,$$

we have

$$Z^H Z = (X^H + Q^H Y^H)(X + YQ) = I + Q^H Q.$$

This implies that

$$\sigma_i^2 = 1 + \zeta_i^2$$
, for $i = 1, \dots, k$. (3)

Define

$$\hat{Z} \equiv Z(Z^H Z)^{-1/2} = (X + YQ)(I + Q^H Q)^{-1/2},$$

where $(I + Q^H Q)^{-1/2}$ is the inverse of the positive definite square root of $I + Q^H Q$. Then \hat{Z} is an orthonormal basis for $\mathcal{R}(Z)$ and

$$X^H \hat{Z} = (I + QQ^H)^{-1/2}.$$

A D > A P > A D > A D >

Krylov subspaces

Rayleigh-Ritz Approximation

Canonical angles

Hence the singular values γ_i of $X^H \hat{Z}$ are

$$\gamma_i = \left(\sqrt{1+\zeta_i^2}\right)^{-1}$$

for i = 1, ..., k. Using (3) and the definition of canonical angles θ_i between $\mathcal{R}(X)$ and $\mathcal{R}(Z)$, we have

$$\cos \theta_i = \gamma_i = \sigma_i^{-1}.$$

That is

$$\sigma_i = \frac{1}{\cos \theta_i} = \sec \theta_i.$$

The relation $\tan \theta_i = \zeta_i$ now follows from (3).

(日)

(日)

Canonical angles

Let (L_1, X_1) be a simple right orthonormal eigenpair of A and let (X_1, Y_2) be unitary. From Theorem 8, $(L_1, Y_1 \equiv X_1 - Y_2Q^H)$ is left eigenpair of A and $Y_1^H X_1 = I$. By Theorem 12, we obtain the following corollary.

Corollary

Let *X* be an orthonormal basis for a simple eigenspace \mathcal{X} of *A* and let *Y* be a basis for the corresponding left eigenspace \mathcal{Y} of *A* normalized so that $Y^H X = I$. Then the singular values of *Y* are the secants of the canonical angles between \mathcal{X} and \mathcal{Y} . In particular,

$$||Y||_2 = \sec \theta_1(\mathcal{X}, \mathcal{Y}).$$

Krylov subspaces

Rayleigh-Ritz Approximation

Residual analysis

Theorem

Let $[X X_{\perp}]$ be unitary. Let R = AX - XL and $S^{H} = X^{H}A - LX^{H}$. Then ||R|| and ||S|| are minimized when

$$L = X^H A X,$$

in which case

$$||R|| = ||X_{\perp}^{H}AX||$$
 and $||S|| = ||X^{H}AX_{\perp}||.$

Proof: Set

$$\left[\begin{array}{c} X^H \\ X^H_{\perp} \end{array}\right] A \left[\begin{array}{cc} X & X_{\perp} \end{array}\right] = \left[\begin{array}{cc} \hat{L} & H \\ G & M \end{array}\right].$$

Then

$$\begin{bmatrix} X^{H} \\ X^{H}_{\perp} \end{bmatrix} R = \begin{bmatrix} \hat{L} & H \\ G & M \end{bmatrix} \begin{bmatrix} X^{H} \\ X^{H}_{\perp} \end{bmatrix} X - \begin{bmatrix} X^{H} \\ X^{H}_{\perp} \end{bmatrix} X L = \begin{bmatrix} \hat{L} - L \\ G \end{bmatrix}$$

<ロト < 回 > < 回 > < 回 > < 回 >

It implies that

$$\|R\| = \left\| \left[\begin{array}{c} X^H \\ X^H_{\perp} \end{array} \right] R \right\| = \left\| \left[\begin{array}{c} \hat{L} - L \\ G \end{array} \right] \right\|,$$

which is minimized when $L = X^H A X$ and

$$\min \|R\| = \|G\| = \|X_{\perp}^{H}AX\|.$$

The proof for S is similar.

Definition

Let X be of full column rank and let X^{I} be a left inverse of X. Then $X^{I}AX$ is a Rayleigh quotient of A.

(日)

Residual analysis

Theorem

Let X be orthonormal and let

$$R = AX - XL.$$

Let ℓ_1, \ldots, ℓ_k be the eigenvalues of *L*. Then there are eigenvalues $\lambda_{j_1}, \ldots, \lambda_{j_k}$ of *A* such that

 $|\ell_i - \lambda_{j_i}| \le ||R||_2$

and

$$\sqrt{\sum_{i=1}^{k} (\ell_i - \lambda_{j_i})^2} \le \sqrt{2} \|R\|_F.$$

Krylov subspaces

Rayleigh-Ritz Approximation

Krylov sequences and Krylov spaces

- Power method: compute the dominant eigenpair
- Disadvantage: at each step it considers only the single vector $A^k u$, which amounts to throwing away the information contained in $u, Au, A^2u, \ldots, A^{k-1}u$.

Definition

Let A be of order n and let $u \neq 0$ be an n vector. Then

$$\{u, Au, A^2u, A^3u, \ldots\}$$

is a Krylov sequence based on A and u. We call the matrix

$$K_k(A, u) = \begin{bmatrix} u & Au & A^2u & \cdots & A^{k-1}u \end{bmatrix}$$

the kth Krylov matrix. The space

$$\mathcal{K}_k(A, u) = \mathcal{R}[K_k(A, u)]$$

is called the *k*th Krylov subspace.

Krylov sequences and Krylov spaces

Theorem

Let A and
$$u \neq 0$$
 be given. Then
The sequence of Krylov subspaces satisfies
 $\mathcal{K}_k(A, u) \subset \mathcal{K}_{k+1}(A, u), \quad A\mathcal{K}_k(A, u) \subset \mathcal{K}_{k+1}(A, u).$
If $\sigma \neq 0$, then
 $\mathcal{K}_k(A, u) = \mathcal{K}_k(\sigma A, u) = \mathcal{K}_k(A, \sigma u).$
For any κ ,
 $\mathcal{K}_k(A, u) = \mathcal{K}_k(A - \kappa I, u).$
If W is nonsingular, then

$$\mathcal{K}_k(W^{-1}AW, W^{-1}u) = W^{-1}\mathcal{K}_k(A, u).$$

Krylov sequences and Krylov spaces

A Krylov sequence terminates at ℓ if ℓ is the smallest integer such that

$$\mathcal{K}_{\ell+1}(A, u) = \mathcal{K}_{\ell}(A, u).$$

Theorem

A Krylov sequence terminates based on A and u at ℓ if and only if ℓ is the smallest integer for which

 $dim[\mathcal{K}_{\ell+1}] = dim[\mathcal{K}_{\ell}].$

If the Krylov sequence terminates at ℓ , then \mathcal{K}_{ℓ} is an eigenspace of A of dimension ℓ . On the other hand, if u lies in an eigenspace of dimension m, then for some $\ell \leq m$, the sequence terminates at ℓ .

Proof:

Krylov sequences and Krylov spaces

- If $\mathcal{K}_{\ell+1} = \mathcal{K}_{\ell}$, then dim $[\mathcal{K}_{\ell+1}] = \text{dim}[\mathcal{K}_{\ell}]$. On the other hand, if dim $[\mathcal{K}_{\ell+1}] = \text{dim}[\mathcal{K}_{\ell}]$, then $\mathcal{K}_{\ell+1} = \mathcal{K}_{\ell}$ because $\mathcal{K}_{\ell} \subset \mathcal{K}_{\ell+1}$.
- If the sequence terminates at ℓ , then

$$A\mathcal{K}_{\ell} \subset \mathcal{K}_{\ell+1} = \mathcal{K}_{\ell},$$

so that \mathcal{K}_{ℓ} is an invariant subspace of A.

Let X be an invariant subspace with dimension m. If u ∈ X, then Aⁱu ∈ X for all i. That is K_i ⊂ X and dim(K_i) ≤ m for all i. If the sequence terminates at l > m, then K_l is an invariant subspace and dim(K_l) > dim(K_m) = dim(X), which is impossible.

A D > A P > A D > A D >

Convergence

By the definition of $\mathcal{K}_k(A, u)$, for any vector $v \in \mathcal{K}_k(A, u)$ can be written in the form

$$v = \gamma_1 u + \gamma_2 A u + \dots + \gamma_k A^{k-1} u \equiv p(A)u,$$

where

$$p(A) = \gamma_1 I + \gamma_2 A + \gamma_3 A^2 + \dots + \gamma_k A^{k-1}.$$

Assume that A is Hermitian and has an orthonormal eigenpairs (λ_i, x_i) for i = 1, ..., n. Write u in the form

$$u = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n,$$

where $\alpha_i = x_i^H u$. Since $p(A)x_i = p(\lambda_i)x_i$, we have

$$p(A)u = \alpha_1 p(\lambda_1) x_1 + \alpha_2 p(\lambda_2) x_2 + \dots + \alpha_n p(\lambda_n) x_n.$$

If $p(\lambda_i)$ is large compared with $p(\lambda_j)$ for $j \neq i$, then p(A)u is a good approximation to x_i .

Krylov subspaces

Rayleigh-Ritz Approximation

Convergence

Theorem

If
$$x_i^H u \neq 0$$
 and $p(\lambda_i) \neq 0$, then

$$\tan \angle (p(A)u, x_i) \le \max_{j \ne i} \frac{|p(\lambda_j)|}{|p(\lambda_i)|} \tan \angle (u, x_i).$$

Proof: From (4), we have

$$\cos \angle (p(A)u, x_i) = \frac{|x_i^H p(A)u|}{\|p(A)u\|_2 \|x_i\|_2} = \frac{|\alpha_i p(\lambda_i)|}{\sqrt{\sum_{j=1}^n |\alpha_j p(\lambda_j)|^2}}$$

and

$$\sin \angle (p(A)u, x_i) = \frac{\sqrt{\sum_{j \neq i} |\alpha_j p(\lambda_j)|^2}}{\sqrt{\sum_{j=1}^n |\alpha_j p(\lambda_j)|^2}}$$

ヘロア ヘロア ヘビア ヘビア

Krylov subspaces

Rayleigh-Ritz Approximation

Convergence

Hence

t

$$\begin{aligned} \operatorname{an}^{2} \angle (p(A)u, x_{i}) &= \sum_{j \neq i} \frac{|\alpha_{j}p(\lambda_{j})|^{2}}{|\alpha_{i}p(\lambda_{i})|^{2}} \\ &\leq \max_{j \neq i} \frac{|p(\lambda_{j})|^{2}}{|p(\lambda_{i})|^{2}} \sum_{j \neq i} \frac{|\alpha_{j}|^{2}}{|\alpha_{i}|^{2}} \\ &= \max_{j \neq i} \frac{|p(\lambda_{j})|^{2}}{|p(\lambda_{i})|^{2}} \tan^{2} \angle (u, x_{i}). \end{aligned}$$

Assume that $p(\lambda_i) = 1$, then

 $\tan \angle (p(A)u, x_i) \le \max_{j \ne i, p(\lambda_i) = 1} |p(\lambda_j)| \tan \angle (u, x_i) \quad \forall \quad p(A)u \in \mathcal{K}_k.$

Hence

$$\tan \angle (x_i, \mathcal{K}_k) \le \min_{deg(p) \le k-1, p(\lambda_i) = 1} \max_{j \ne i} |p(\lambda_j)| \tan \angle (u, x_i).$$

Krylov subspaces

Rayleigh-Ritz Approximation

Convergence

Assume that

$$\lambda_1 > \lambda_2 \ge \cdots \ge \lambda_n$$

and that our interest is in the eigenvector x_1 . Then

$$\tan \angle (x_1, \mathcal{K}_k) \le \min_{deg(p) \le k-1, p(\lambda_1) = 1} \max_{\lambda \in [\lambda_n, \lambda_2]} |p(\lambda)| \tan \angle (u, x_1).$$

Question

How to compute

$$\min_{deg(p) \le k-1, p(\lambda_1)=1} \max_{\lambda \in [\lambda_n, \lambda_2]} |p(\lambda)|$$

Definition

The Chebyshev polynomials are defined by

$$c_k(t) = \begin{cases} \cos(k \cos^{-1} t), & |t| \le 1, \\ \cosh(k \cosh^{-1} t), & |t| \ge 1. \end{cases}$$

Krylov subspaces

Rayleigh-Ritz Approximation

Convergence

Theorem

(a)
$$c_0(t) = 1, c_1(t) = t$$
 and
 $c_{k+1}(t) = 2c_k(t) - c_{k-1}(t), \quad k = 1, 2, \dots$
(b) For $|t| > 1$,
 $c_k(t) = (1 + \sqrt{t^2 - 1})^k + (1 + \sqrt{t^2 - 1})^{-k}$.
(c) For $t \in [-1, 1], \quad |c_k(t)| \le 1$. Moreover, if
 $t_{ik} = \cos \frac{(k - i)\pi}{k}, \quad i = 0, 1, \dots, k$,

then

$$c_k(t_{ik}) = (-1)^{k-i}.$$

$$= \min_{\substack{\deg(p) \le k-1, p(\mu_1)=1}} \max_{\lambda \in [\lambda_n, \lambda_2]} |p(\lambda)| = \frac{1}{c_k - 1(\mu_1)}.$$

Krylov subspaces

Rayleigh-Ritz Approximation

Convergence

Theorem

Let the Hermitian matrix A have an orthonormal eigenpair (λ_i, x_i) with

$$\lambda_1 > \lambda_2 \ge \cdots \ge \lambda_n.$$

Let

$$\eta = \frac{\lambda_1 - \lambda_2}{\lambda_2 - \lambda_n}$$

Then

$$\tan \angle [x_1, \mathcal{K}_k(A, u)] \leq \frac{\tan \angle (x_1, u)}{c_{k-1}(1+\eta)} \\ = \frac{\tan \angle (x_1, u)}{(1+\sqrt{2\eta+\eta^2})^{k-1} + (1+\sqrt{2\eta+\eta^2})^{1-k}}.$$

(日)

Convergence

Remark

• For k large, we have

$$\tan \angle [x_1, \mathcal{K}_k(A, u)] \lesssim \frac{\tan \angle (x_1, u)}{(1 + \sqrt{2\eta + \eta^2})^{k-1}}.$$

For k large and if η is small, then the bound becomes

$$\tan \angle [x_1, \mathcal{K}_k(A, u)] \lesssim \frac{\tan \angle (x_1, u)}{(1 + \sqrt{2\eta})^{k-1}}.$$

Compare it with power method:
 If |λ₁| > |λ₂| ≥ · · · ≥ |λ_n|, then the convergence of the power method is |λ₂/λ₁|^k.

• For example, let

$$\lambda_1 = 1, \lambda_2 = 0.95, \lambda_3 = 0.95^2, \cdots, \lambda_{100} = 0.95^{96}$$

be the eigenvalues of 100-by-100 matrix A. Then $\eta = 0.0530$ and the bound on the convergence rate is $1/(1 + \sqrt{2\eta}) = 0.7544$. Thus the square root effect gives a great improvement over the rate of 0.95 for the power method.

 Replaced A by -A, then the Krylov sequence converges to the eigenvector corresponding to the smallest eigenvalue of A. However, the smallest eigenvalues of a matrix – particularly a positive definite matrix – often tend to cluster together, so that the bound will be unfavorable.

Convergence

• The hypothesis $\lambda_1 > \lambda_2$ can be relaxed. Suppose that $\lambda_1 = \lambda_2 > \lambda_3$. Expand u in the form

$$u = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \dots + \alpha_n x_n.$$

Then

$$A^{k}u = \lambda_{1}^{k}(\alpha_{1}x_{1} + \alpha_{2}x_{2}) + \alpha_{3}\lambda_{3}^{k}x_{3} + \dots + \alpha_{n}\lambda_{n}^{k}x_{n}.$$

This shows that the spaces $\mathcal{K}_k(A, u)$ contain only approximations to $\alpha_1 x_1 + \alpha_2 x_2$.

(日)

Krylov subspaces

Rayleigh-Ritz Approximation

Convergence

Theorem

Let λ be a simple eigenvalue of A and let

$$A = \begin{bmatrix} x & X \end{bmatrix} \begin{bmatrix} \lambda & 0 \\ 0 & L \end{bmatrix} \begin{bmatrix} y^H \\ Y^H \end{bmatrix} = \lambda x y^H + X L Y^H$$

be a spectral representation. Let

$$u = \alpha x + Xa,$$

where

$$\alpha = y^H u$$
 and $a = Y^H u$.

Then

$$\sin \angle [x, \mathcal{K}_k(A, u)] \le |\alpha|^{-1} \min_{\deg(p) \le k-1, p(\lambda) = 1} \|Xp(L)a\|_2.$$

Krylov subspaces

Rayleigh-Ritz Approximation

Convergence

Proof: From Theorem 11,

$$\sin \angle [x, \mathcal{K}_{k}(A, u)] = |\alpha|^{-1} \min_{\substack{y \in \mathcal{K}_{k}(A, u)}} \|\alpha x - y\|_{2}$$

= $|\alpha|^{-1} \min_{\substack{deg(p) \le k-1}} \|\alpha x - p(A)u\|_{2}$
 $\le |\alpha|^{-1} \min_{\substack{deg(p) \le k-1, p(\lambda)=1}} \|\alpha x - p(A)u\|_{2}.$

Since

$$p(\lambda) = 1$$
 and $AX = XL$,

we have

$$p(A)u = p(A)(\alpha x + Xa) = \alpha p(\lambda)x + Xp(L)a = \alpha x + Xp(L)a.$$
 Hence

$$\sin \angle [x, \mathcal{K}_k(A, u)] \leq |\alpha|^{-1} \min_{\substack{\deg(p) \le k-1, p(\lambda) = 1 \\ \deg(p) \le k-1, p(\lambda) = 1 \\ }} \|\alpha x - (\alpha x + Xp(L)a)\|_2$$

Block Krylov spaces

Let (λ_i, x_i) be an eigenpair of A for i = 1, ..., n. Write vector u in the form

$$u = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n.$$

Assume that λ_1 is double, i.e., $\lambda_1 = \lambda_2$. Then

$$A^{k}u = \lambda_{1}^{k}(\alpha_{1}x_{1} + \alpha_{2}x_{2}) + \lambda_{3}^{k}\alpha_{3}x_{3} + \dots + \lambda_{n}^{k}\alpha_{n}x_{n}.$$

Hence the Krylov sequence can only produce the approximation $\alpha_1 x_1 + \alpha_2 x_2$ to a vector in the eigenspace of λ_1 . Let *U* be a matrix with linearly independent columns. Then the sequence

$$\{U, AU, A^2U, \ldots\}$$

is called a block Krylov sequence and the space $\mathcal{K}_k(A, U)$ is called the *k*-th block Krylov space.

Krylov subspaces

Rayleigh-Ritz Approximation

Block Krylov spaces

Gaol: passing to block Krylov sequence improves the convergence bound.

Theorem

Let *A* be Hermitian and let (λ_i, x_i) be a complete system (*n* eigenvectors are linearly independent) of orthonormal eigenpairs of *A* with

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n,$$

and assume that the multiplicity of λ_1 is not greater than m. If

$$B = \left[\begin{array}{c} x_1^H \\ \vdots \\ x_m^H \end{array} \right] U$$

is nonsingular and we set

$$v = UB^{-1}e_1.$$

Krylov subspaces

Rayleigh-Ritz Approximation

Block Krylov spaces

then

$$\tan \angle [x_1, \mathcal{K}_k(A, U)] \leq \frac{\tan \angle (x_1, v)}{c_{k-1}(1+2\eta)} \\ = \frac{\tan \angle (x_1, v)}{(1+2\sqrt{\eta+\eta^2})^{k-1} + (1+2\sqrt{\eta+\eta^2})^{1-k}}$$
(6)

where

$$\eta = \frac{\lambda_1 - \lambda_{m+1}}{\lambda_{m+1} - \lambda_n}$$

Proof: Since $v \in \mathcal{R}(U)$, we have $\mathcal{K}_k(A, v) \subset \mathcal{K}_k(A, U)$. By Theorem 11,

$$\sin \angle [x_1, \mathcal{K}_k(A, U)] = \min_{\substack{y \in \mathcal{K}_k(A, U)}} \|x_1 - y\|_2$$

$$\leq \min_{\substack{y \in \mathcal{K}_k(A, v)}} \|x_1 - y\|_2 = \sin \angle [x_1, \mathcal{K}_k(A, v)]$$

Krylov subspaces

Rayleigh-Ritz Approximation

Block Krylov spaces

This implies that

$$\angle [x_1, \mathcal{K}_k(A, U)] \le \angle [x_1, \mathcal{K}_k(A, v)].$$

By the definition of B, we have

$$\begin{bmatrix} x_1^H \\ \vdots \\ x_n^H \end{bmatrix} UB^{-1} = I \quad \Rightarrow \quad x_i^H UB^{-1} = e_i^T \text{ for } i = 1, \dots, m.$$

By the definition of v,

$$x_i^H v = x_i^H U B^{-1} e_1 = 0$$
 for $i = 2, \dots, m$.

On the other hand, (λ_i, x_i) is an eigenpair of Hermitian A, i.e., $x_i^HA=\lambda_i x_i^H.$ Hence

$$x_i^H A^j v = \lambda_i^j x_i^H v = 0$$
 for $i = 2, \dots, m$.

A D > A P > A D > A D >

Block Krylov spaces

This implies that x_2, \ldots, x_m are not contained in $\mathcal{K}_k(A, v)$. That

This implies that x_2, \ldots, x_m are not contained in $\mathcal{K}_k(A, v)$. That is

$$A^{j}v = \alpha_{1}\lambda_{1}^{j}x_{1} + \alpha_{m+1}\lambda_{m+1}^{j}x_{m+1} + \dots + \alpha_{n}\lambda_{n}^{j}x_{n}$$

for j = 1, ..., k - 1. We may now apply Theorem 23 to get (6).

Rayleigh-Ritz methods

Theorem

Let \mathcal{U} be a subspace and let U be a basis for \mathcal{U} . Let V be a left inverse of U and set

$$B = V^H A U.$$

If $\mathcal{X} \subset \mathcal{U}$ is an eigenspace of A, then there is an eigenpair (L, W) of B such that (L, UW) is an eigenpair of A with $\mathcal{R}(UW) = \mathcal{X}$.

Proof: Let (L, X) be an eigenpair of A and let X = UW. Then from the relation

$$AUW = UWL$$

we obtain

$$BW = V^H A U W = V^H U W L = W L,$$

so that (L, W) is an eigenpair of B.

(日)

・ロット (雪) (日) (日)

Rayleigh-Ritz methods

We can find exact eigenspaces contained in \mathcal{U} by looking at eigenpairs of the Rayleigh quotient B.

Algorithm (Rayleigh-Ritz procedure)

- Let U be a basis for \mathcal{U} and let V^H be a left inverse of U.
- **2** Form the Rayleigh quotient $B = V^H A U$.
- **3** Let (M, W) be a suitable eigenpair of B.
- **3** Return (M, UW) as an approximate eigenpair of A.
 - (M, UW) is called a Ritz pair. Written Ritz pair in the form (λ, Uw) , we will call λ a Ritz value and Uw a Ritz vector.
 - Two difficulties for Rayleigh-Ritz procedure: (i) how to choose the eigenpair (M, W) in statement 3. (ii) no guarantee that the result approximates the desired eigenpair of A.

Krylov subspaces

Rayleigh-Ritz Approximation

Rayleigh-Ritz methods

Example

Let A = diag(0, 1, -1) and suppose we interested in approximating the eigenpair $(0, e_1)$. Assume

$$U = \begin{bmatrix} 1 & 0\\ 0 & 1/\sqrt{2}\\ 0 & 1/\sqrt{2} \end{bmatrix}$$

Then

$$B = U^H A U = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right]$$

and any nonzero vector p is an eigenvector of B. If we take $p = [1,1]^T$, then $Up = [1,1/\sqrt{2},1/\sqrt{2}]$ is an approximate eigenvector of A, which is completely wrong. Thus the method can fail, even though the space \mathcal{U} contains the desired eigenvector.

Krylov subspaces

(日)

Rayleigh-Ritz methods

- The matrices U and V in Algorithm 1 satisfy the condition $V^H U = I$ and they can differ. Hence Algorithm 1 is called an oblique Rayleigh-Ritz method.
- If the matrix U is taken to be orthonormal and V = U. In addition, W is taken to be orthonormal, so that $\hat{X} \equiv UW$ is also orthonormal. We call this procedure the orthogonal Rayleigh-Rite method.

Theorem

Let $(M, \hat{X} \equiv UW)$ be an orthogonal Rayleigh-Rite pair. Then

$$R = A\hat{X} - \hat{X}M$$

is minimal in any unitarily invariant norm.

Rayleigh-Ritz methods

Proof: By Theorem 14, we need to show $M = \hat{X}^H A \hat{X}$. Since (M, W) is an eigenpair of *B* and *W* is orthonormal, we have

 $M = W^H B W$

and

$$\hat{X}^H A \hat{X} = W^H U^H A U W = W^H B W = M.$$

ヘロト ヘロト ヘビト ヘビト

Krylov subspaces

Rayleigh-Ritz Approximation

Convergence

Let (λ, x) be the desired eigenpair of A and U_{θ} be an orthonormal basis for which $\theta = \angle(x, U_{\theta})$ is small.

Theorem

Let

$$B_{\theta} = U_{\theta}^H A U_{\theta}.$$

Then there is a matrix E_{θ} satisfying

$$\|E_{\theta}\|_{2} \leq \frac{\sin\theta}{\sqrt{1-\sin^{2}\theta}} \|A\|_{2}$$

such that λ is an eigenvalue of $B_{\theta} + E_{\theta}$.

Proof. Let (U_{θ}, U_{\perp}) be unitary and set

$$y = U_{\theta}^H x$$
 and $z = U_{\perp}^H x$.

Krylov subspaces

Rayleigh-Ritz Approximation

Convergence

From Theorem 10, we have

$$||z||_2 = \sin \theta$$
 and $||y||_2 = \sqrt{1 - \sin^2 \theta}$.

Since $Ax - \lambda x = 0$, we have

$$U_{\theta}^{H}A[U_{\theta}, U_{\perp}] \begin{bmatrix} U_{\theta}^{H} \\ U_{\perp}^{H} \end{bmatrix} x - \lambda U_{\theta}^{H}x = 0,$$

or

$$B_{\theta}y + U_{\theta}^{H}AU_{\perp}z - \lambda y = 0.$$

Let $\hat{y} = y/||y||_{2} = y/\sqrt{1 - \sin^{2}\theta}$. If
 $r \equiv B_{\theta}\hat{y} - \lambda\hat{y} = \frac{-1}{\sqrt{1 - \sin^{2}\theta}}U_{\theta}^{H}AU_{\perp}z,$

it follows that

$$\|r\|_2 \le \frac{\sin\theta}{\sqrt{1-\sin^2\theta}} \|A\|_2.$$

ヘロト ヘ回ト ヘヨト ヘヨト

Krylov subspaces

Rayleigh-Ritz Approximation

Convergence

Now define

$$E_{\theta} = -r\hat{y}^H.$$

Then

$$||E_{\theta}||_{2} = \sqrt{\lambda_{1}((r\hat{y}^{H})(\hat{y}r^{H}))} = \sqrt{\lambda_{1}(rr^{H})} = ||r||_{2} \le \frac{\sin\theta}{\sqrt{1-\sin^{2}\theta}} ||A||_{2}$$

and

$$(B_{\theta} + E_{\theta})\hat{y} = B_{\theta}\hat{y} - (r\hat{y}^H)\hat{y} = B_{\theta}\hat{y} - r = \lambda\hat{y}.$$

Therefore, (λ, \hat{y}) is an eigenpair of $B_{\theta} + E_{\theta}$.

Corollary

There is an eigenvalue μ_{θ} of B_{θ} such that

$$|\mu_{\theta} - \lambda| \le 4(2||A||_2 + ||E_{\theta}||_2)^{1-1/m} ||E_{\theta}||_2^{1/m},$$

where *m* is the order of B_{θ} .

(日)

Theorem

Let $(\mu_{\theta}, w_{\theta})$ be an eigenpair of B_{θ} and let $\begin{bmatrix} w_{\theta} & W_{\theta} \end{bmatrix}$ be unitary, so that

$$\begin{bmatrix} w_{\theta}^{H} \\ W_{\theta}^{H} \end{bmatrix} B_{\theta} \begin{bmatrix} w_{\theta} & W_{\theta} \end{bmatrix} = \begin{bmatrix} \mu_{\theta} & h_{\theta}^{H} \\ 0 & N_{\theta} \end{bmatrix}$$

Then

$$\sin \angle (x, U_{\theta} w_{\theta}) \le \sin \theta \sqrt{1 + \frac{\|h_{\theta}\|_2^2}{\operatorname{sep}(\lambda, N_{\theta})^2}},$$

where $sep(\lambda, N_{\theta}) = ||(\lambda I - N_{\theta})^{-1}||^{-1}$.

Krylov subspaces

Convergence

By the continuity of sep, we have

$$|\operatorname{sep}(\lambda, N_{\theta}) - \operatorname{sep}(\mu_{\theta}, N_{\theta})| \le |\mu_{\theta} - \lambda|$$

$$\Rightarrow \operatorname{sep}(\lambda, N_{\theta}) > \operatorname{sep}(\mu_{\theta}, N_{\theta}) - |\mu_{\theta} - \lambda|.$$

Suppose $\mu_{\theta} \to \lambda$ and $\text{sep}(\mu_{\theta}, N_{\theta})$ is bounded below. Then $\text{sep}(\lambda, N_{\theta})$ is also bounded below. Since $\|h_{\theta}\|_{2} \leq \|A\|_{2}$, we have $\sin \angle (x, U_{\theta}w_{\theta}) \to 0$ along with θ .

Corollary

Let $(\mu_{\theta}, U_{\theta}w_{\theta})$ be a Ritz pair for which $\mu_{\theta} \rightarrow \lambda$. If there is a constant $\alpha > 0$ such that

$$sep(\mu_{\theta}, N_{\theta}) \ge \alpha > 0,$$
 (7)

then

$$\sin \angle (x, U_{\theta} w_{\theta}) \lesssim \sin \theta \sqrt{1 + \frac{\|A\|_2}{\alpha^2}}.$$

Krylov subspaces

Rayleigh-Ritz Approximation

Convergence

This corollary justifies that eigenvalue convergence plus separation equals eigenvector convergence. The condition (7) is called the uniform separation condition. Let $(\mu_{\theta}, x_{\theta})$ with $||x_{\theta}||_2 = 1$ be the Ritz approximation to (λ, x) . Then by construction, we have

$$\mu_{\theta} = x_{\theta}^{H} A x_{\theta}. \tag{8}$$

Write

$$x_{\theta} = \gamma x + \sigma y, \tag{9}$$

A D > A P > A B > A B >

where $y \perp x$ and $\|y\|_2 = 1$. Then

 $|\gamma| = |x^H x_{\theta}| = \cos \angle (x_{\theta}, x)$ and $|\sigma| = |y^H x_{\theta}| = \sin \angle (x_{\theta}, x).$

If the uniform separation is satisfied, we have

$$|\sigma| = \sin \angle (x_{\theta}, x) = O(\theta).$$

Convergence

Substituting (9) into (8) and using the facts of $Ax = \lambda x$ and $y^{H}x = 0$, we find that

$$\mu_{\theta} = (\bar{\gamma}x^{H} + \bar{\sigma}y^{H})(\gamma\lambda x + \sigma Ay) = |\gamma|^{2}\lambda + \sigma x_{\theta}^{H}Ay.$$

Hence

$$\begin{aligned} |\mu_{\theta} - \lambda| &= |(|\gamma|^2 - 1)\lambda + \sigma x_{\theta}^H A y| \\ &\leq |\sigma|^2 |\lambda| + |\sigma| \|x_{\theta}\|_2 \|A\|_2 \|y\|_2 \\ &\leq |\sigma|(1 + |\sigma|) \|A\|_2 \\ &= O(\theta). \end{aligned}$$

Thus the Ritz value converges at least as fast as the eigenvector approximation of x in $\mathcal{U}(U_{\theta})$.

A D > A B > A B > A B >

Krylov subspaces

Rayleigh-Ritz Approximation

Convergence

If A is Hermitian, then

$$\mu_{\theta} = (\bar{\gamma}x^{H} + \bar{\sigma}y^{H})(\gamma\lambda x + \sigma Ay)$$

= $|\gamma|^{2}\lambda + \bar{r}\sigma x^{H}Ay + |\sigma|^{2}y^{H}Ay = |\gamma|^{2}\lambda + \bar{r}\sigma\bar{\lambda}x^{H}y + |\sigma|^{2}y^{H}Ay$
= $|\gamma|^{2}\lambda + |\sigma|^{2}y^{H}Ay$

and

$$\begin{aligned} |\mu_{\theta} - \lambda| &= |(|\gamma|^2 - 1)\lambda + |\sigma|^2 y^H A y| \\ &\leq |\sigma|^2 |\lambda| + |\sigma|^2 ||y||_2 ||A||_2 ||y||_2 \\ &\leq 2|\sigma|^2 ||A||_2 \\ &= O(\theta^2). \end{aligned}$$

Since the angle $\theta = \angle(x, U_{\theta})$ cannot be known and hence cannot compute error bounds. Thus, we must look to the residual as an indication of convergence.

(日)

(日)

Convergence

Theorem

Let A have the spectral representation

$$A = \lambda x y^H + X L Y^H,$$

where $||x||_2 = 1$ and *Y* is orthonormal. Let (μ, \tilde{x}) be an approximation to (λ, x) and let

$$\rho = \|A\tilde{x} - \mu\tilde{x}\|_2.$$

Then

$$\sin \angle (\tilde{x}, x) \le \frac{\rho}{\operatorname{sep}(\mu, L)} \le \frac{\rho}{\operatorname{sep}(\lambda, L) - |\mu - \lambda|}.$$

Krylov subspaces

A D > A P > A D > A D >

Convergence

Proof: Since $Y^H x = 0$, we have that Y is an orthonormal basis for the orthogonal complement of the space span $\{x\}$ and then $\sin \angle (\tilde{x}, x) = \|Y^H \tilde{x}\|_2$. Let $r = A\tilde{x} - \mu \tilde{x}$. Then

$$Y^H r = Y^H A \tilde{x} - \mu Y^H \tilde{x} = (L - \mu I) Y^H \tilde{x}.$$

It follows that

$$\sin \angle (\tilde{x}, x) = \| (L - \mu I)^{-1} Y^H r \|_2 \le \frac{\| r \|_2}{\mathsf{sep}(\mu, L)}.$$

By the fact that $sep(\mu, L) \ge sep(\lambda, L) - |\mu - \lambda|$, the second inequality is obtained.

Since λ is assumed to be simple, this theorem says that: Sufficient condition for \tilde{x} to converge to x is for μ to converge to λ and for the residual to converge to zero.

Krylov subspaces

Refined Ritz vectors

Definition

Let μ_{θ} be a Ritz value associated with \mathcal{U}_{θ} . A refined Ritz vector is a solution of the problem

 $\begin{array}{ll} \mbox{min} & \|A\hat{x}_{\theta} - \mu_{\theta}\hat{x}_{\theta}\|_{2} \\ \mbox{subject to} & \hat{x}_{\theta} \in \mathcal{U}_{\theta}, \ \|\hat{x}_{\theta}\|_{2} = 1. \end{array}$

Theorem

Let A have the spectral representation

$$A = \lambda x y^H + X L Y^H,$$

where $||x||_2 = 1$ and *Y* is orthonormal. Let μ_{θ} be a Ritz value and \hat{x}_{θ} the corresponding refined Ritz vector. If $sep(\lambda, L) - |\mu_{\theta} - \lambda| > 0$, then

$$\sin \angle (x, \hat{x}_{\theta}) \leq \frac{\|A - \mu_{\theta}I\|_{2} \sin \theta + |\lambda - \mu_{\theta}|}{\sqrt{1 - \sin^{2} \theta} [sep(\lambda, L) - |\lambda - \mu_{\theta}|]}$$

Krylov subspaces

Rayleigh-Ritz Approximation

Refined Ritz vectors

Proof. Let U be an orthonormal basis for \mathcal{U}_{θ} and let x = y + z, where $z = UU^H x$. Then

$$||z||_2 = ||U^H x||_2 = \sin \theta.$$

Moreover, since y and x are orthogonal,

$$\begin{split} |z||_{2}^{2} &= \|x - y\|_{2}^{2} = (x^{H} - y^{H})(x - y) \\ &= \|x\|_{2}^{2} + \|y\|_{2}^{2} = 1 + \|y\|_{2}^{2} \\ &\Rightarrow \|y\|_{2}^{2} = 1 - \|z\|_{2}^{2} = 1 - \sin^{2}\theta. \end{split}$$

Let

$$\hat{y} = \frac{y}{\sqrt{1 - \sin^2 \theta}},$$

we have

$$(A - \mu_{\theta}I)\hat{y} = \frac{(A - \mu_{\theta}I)y}{\sqrt{1 - \sin^{2}\theta}} = \frac{(A - \mu_{\theta}I)(x - z)}{\sqrt{1 - \sin^{2}\theta}}$$
$$= \frac{(\lambda - \mu_{\theta})x - (A - \mu_{\theta}I)z}{\sqrt{1 - \sin^{2}\theta}}.$$

Refined Ritz vectors

Hence

$$\|(A - \mu_{\theta}I)\hat{y}\|_{2} \leq \frac{|\lambda - \mu_{\theta}| + \|A - \mu_{\theta}I\|\sin\theta}{\sqrt{1 - \sin^{2}\theta}}.$$

By the definition of a refined Ritz vector we have

$$\|(A - \mu_{\theta}I)\hat{x}\|_{2} \leq \frac{|\lambda - \mu_{\theta}| + \|A - \mu_{\theta}I\|\sin\theta}{\sqrt{1 - \sin^{2}\theta}}$$

The result now follows from Theorem 35.

Remark

- By Corollary 30, μ_θ → λ. It follows that sin ∠(x, x̂_θ) → 0. In other words, refined Ritz vectors are guaranteed to converge.
- $\hat{\mu}_{\theta} = \hat{x}_{\theta}^{H} A \hat{x}_{\theta}$ is more accurate than μ_{θ} and $\|A \hat{x}_{\theta} \hat{\mu}_{\theta} \hat{x}_{\theta}\|_{2}$ is optimal.

Eigenspaces

Perturbation Theory

Krylov subspaces

Rayleigh-Ritz Approximation

Refined Ritz vectors

The computation of a refined Ritz vector amounts to solve

min
$$||A\hat{x} - \mu \hat{x}||_2$$

subject to $\hat{x} \in \mathcal{U}, ||\hat{x}||_2 = 1.$ (10)

Let U be an orthonormal basis for \mathcal{U} . Then (10) is equivalent to

 $\begin{array}{ll} \min & \|(A-\mu I)Uz\|_2 \\ \text{subject to} & \|z\|_2 = 1. \end{array}$

The solution of this problem is the right singular vector of $(A - \mu I)U$ corresponding to its smallest singular value. Thus refined Ritz vector can be computed by the following algorithm.

$$V = AU$$

$$W = V - \mu U$$

Ocmpute the smallest singular value of W and its right singular vector z

$$4 \quad \hat{x} = Uz$$

A D > A P > A D > A D >

Krylov subspaces

Rayleigh-Ritz Approximation

Harmonic Ritz vectors

Exterior eigenvalues are easily convergent than interior eigenvalues by Rayleigh quotient. The quality of the refined Ritz vector depends on the accuracy of the Ritz value μ and each refined Ritz vector must be calculated independently from its own distinct value of μ .

Definition

Let *U* be an orthonormal basis for subspace \mathcal{U} . Then $(\kappa + \delta, Uw)$ is a Harmonic Ritz pair with shift κ if

$$U^{H}(A - \kappa I)^{H}(A - \kappa I)Uw = \delta U^{H}(A - \kappa I)^{H}Uw.$$
(11)

Given shift κ , (11) is a generalized eigenvalue problem with eigenvalue δ .

Theorem

Let (λ, x) be an eigenpair of A with x = Uw. Then (λ, Uw) is a harmonic Ritz pair.

Proof: Since (λ, x) is an eigenpair of A with x = Uw, we have

$$Ax = \lambda x \quad \Rightarrow \quad AUw = \lambda Uw.$$

It implies that

$$U^{H}(A - \kappa I)^{H}(A - \kappa I)Uw = (\lambda - \kappa)U^{H}(A - \kappa I)^{H}Uw.$$

Taking eigenvalue $\delta = \lambda - \kappa$, we obtain

$$U^{H}(A - \kappa I)^{H}(A - \kappa I)Uw = \delta U^{H}(A - \kappa I)^{H}Uw.$$

That is $(\kappa + \delta, Uw) = (\lambda, Uw)$ is a harmonic Ritz pair.

A D > A P > A D > A D >

Harmonic Ritz vectors

Given a shift κ , if we want to compute the eigenvalue λ of A which is closest to κ , then we need to compute the eigenvalue δ of (11) such that $|\delta|$ is the smallest value of all of the absolute values for the eigenvalues of (11).

Expect

If x is approximately represented in \mathcal{U} , then the harmonic Rayleigh-Ritz will produce an approximation to x.

Question

How to compute the eigenpair (δ, w) of (11)?

Let

Harmonic Ritz vectors

$$(A - \kappa I)U = QR$$

be the QR factorization of $(A - \kappa I)U$. Then (11) can be rewritten as

$$R^H R w = \delta R^H Q^H U w.$$

That is

$$(Q^H U)w = \delta^{-1} Rw.$$

This eigenvalue can be solved by the QZ algorithm. The harmonic Ritz vector $\hat{x} = Uw$ and the corresponding harmonic Ritz value is $\mu = \hat{x}^H A \hat{x}$.

