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Definitions

Definition

Let A be of order n and let X be a subspace of C"™. Then X' is
an eigenspace or invariant subspace of A if

AX ={Az;z e X} C X,

If (\,z) = (415, y +12) is a complex eigenpair of a real matrix
A, ie.,

Ay +12) = (a+10)(y +12) = (ay — Bz) + 10y + az)
Ay = ay — Bz,
T\ Az =By +az,

then
Aly =]=1v =1 5 2]

ltimplies that R ([ ¥ = ]) is an eigenspace of A.
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Definitions

Theorem

Let X be an eigenspace of A and let X be a basis for X. Then
there is a unique matrix L such that

AX = XL.
The matrix L is given by
L=X'AX,

where X' is a matrix satisfying X' X = I.

If (\, z) is an eigenpair of A with x € X, then (\, X'z) is an
eigenpair of L. Conversely, if (\,u) is an eigenpair of L, then
(A, Xu) is an eigenpair of A.




Eigenspaces

[e]e] lelele]

Definitions

Proof: Let

Since y; € X and X is a basis for X, there is a unique vector ¢;
such that

If we set L = [¢; - - {;], then AX = XL and
L=X'XL=X'AX.

Now let (A, z) be an eigenpair of A with x € X. Then there is a
unique vector u such that z = Xu. However, v = X'z. Hence

A=Az =AXu=XLu = Ju=IX'z=TLu
Conversely, if Lu = Au, then
A(Xu) = (AX)u = (XL)u = X(Lu) = A\(Xu),

so that (A, Xu) is an eigenpair of A. [ |
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Definitions

Definition

Let A be of order n. For X € C»** and L € C*** we say that
(L, X) is an eigenpair of order k or right eigenpair of order & of
Alif

1. X is of full rank,

2. AX =XL.

The matrices X and L are called eigenbasis and eigenblock,
respectively. If X is orthonormal, we say that the eigenpair
(L, X)) is orthonormal.

If Y € C™** has linearly independent columns and

YHA =LY, we say that (L,Y) is a left eigenpair of order k of
A.
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Definitions

How eigenpairs transform under change of basis and
similarities?

Theorem

Let (L, X) be an eigenpair of A. If U is nonsingular, then the
pair (U~LLU, XU) is also eigenpair of A. If W is nonsingular,
then (L, W~1X) is an eigenpair of W =1 AW .

proof.

A(XU) = (AX)U = (XL)U = (XU)(U'LU),
WAWY(W LX) =wlAX = (W IX)L.
|

The eigenvalues of L of an eigenspace with respect to a basis
are independent of the choices of the basis.
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Definitions

Let L ={)\1,...,\c} C A(A) be a multisubset of the
eigenvalues of A. Then there is an eigenspace X of A whose
eigenvalues are A1, . .., \g.

Proof: Let

AU, Uy ]=]U; UQ][T” Tn}

0 To

be a partitioned Schur decomposition of A in which Ti; is of
order k and has the members of £ on its diagonal. Then

AUl = U1T11.

Hence the column space of U; is an eigenspace of A whose
eigenvalues are the members of L. [ ]
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Simple eigenspaces

An eigenvalue whose geometric multiplicity is less than its
algebraic multiplicity is defective.

Definition
Let X be an eigenspace of A with eigenvalues £. Then X is a
simple eigenspace of A if

LN [A(A)\ £] = 0.

In the other words, an eigenspace is simple if its eigenvalues
are disjoint from the other eigenvalues of A.
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Simple eigenspaces

Let (Ly, X1) be a simple orthonormal eigenpairs of A and let
(X1, Y2) be unitary so that

ot -5 2]

Then there is a matrix Q) satisfying the Sylvester equation
LiQ —-QLy=-H
such that if we set
X=[X1 X2] and Y=[Y Yy ],

where

Xo=Yo+X1Q and Y =X;—YQ",
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Simple eigenspaces

then |

YAX =T and YH"AX =diag(Ly,Ls).

Proof: Since (L1, X1) is a simple eigenpairs of A, it implies that
A(L1) N A(Lg) = 0.
By Theorem 1.18 in Chapter 1, there is a unique matrix @

satisfying
LiQ—-QLy=-H
such that
I -Q1[L, H I Q1
{0 I ] [ 0 Ly ] [o I ] = diag(L, L).
That is

I o e[l ]
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Simple eigenspaces

Therefore,

{XF—QYQH

v ] Al X1 X1Q+Ys | =diag(Ly, Lo).
2

Observations

@ X and Y are said to be biorthogonal.
@ Since

Al X1 Xo ] =[ X1 X, |diag(Li,Lo),
we see that
AXy = XoLo,

so that (L2, X5) is an eigenpair of A. Likewise (L1,Y7) is a
left eigenpair of A.
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Canonical angles

Let x and y be nonzero vectors. Then the angle Z(z,y) of x
and y is defined as

Ex

cosZ(z,y) = —— .
) = T el v s

Extend this definition to subspaces in C*. Let X and )Y be
subspaces of the same dimension. Let X and Y be
orthonormal bases for X and ), respectively, and define
C =YH"X. We have

FC lo<ll X ]2l Y [l2= 1.

Hence all the singular value of C' lie in [0, 1] and can be
regarded as cosine of angles.
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Canonical angles

Definition

Let X and )Y be subspaces of C™ of dimension p and let X and
Y be orthonormal bases for X and ), respectively. Then the
canonical angles between X and Y are

0:;(X,Y) = cos™ 'y, (1)
with

el(Xay) ZHQ(Xay) Z Zep(X7y)?

where ~; are the singular values of Y7 X
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Canonical angles

@ If the canonical angle is small, then the computation of (1)
will give inaccurate results.

@ For small 6, cos(d) = 1 — 262, If 9 < 1078, then cos(6) will
evaluate to 1 in IEEE double-precision arithmetic, and we
will conclude that 6 = 0.

@ The cure for this problem is to compute the sine of the
canonical angles.

Let X andY be orthonormal bases for X and Y, and letY, be
an orthonormal basis for the orthogonal complement of ).
Then the singular values of Y X are the sines of the canonical
angles between X and ).




Perturbation Theory

000@000000

Canonical angles

Proof: Let
H
vz =[5
By the orthonormality, we have
I=c"C+8"s.
Let
VA(CHC)V =T? = diag(1}, -+ ,77)

be the spectral decomposition of C¥ C. Then by the definition
of canonical angle 6; in (1), we have

; = cos™! s
But
I=VHCHC +SHSYW =T? + VH(SHS)V =T2 + 2
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Canonical angles

It follows that
»? = diag(o?, - - ,012,) =diag(1—~%,---,1 - 75),
where o; are singular values of S = Y X. Therefore,

01-2 =1 —72-2 =1-——cos?0; =sin?6, = 6; =sin"'o;.

Let x be a vector with || x ||o= 1 and let Y be a subspace. Then

sinZ(z,Y)=min ||z —y ||2 .
yey
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Canonical angles

Proof. Let (Y, Y ) be unitary with R(Y) = Y. Lety € ), then

(2] (8]0

It implies that
yH i—@]
x_ = :I,’— - A~
o=y l= || yr | ), I 2
and hence
1 —_ = 7 = YH . 2
251”% yll =llzLllz =Y 22 (2)

By Theorem 10 and (2), we have

sin Z(z,Y) = ||V 2|2 = min ||z — .
yey
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Canonical angles

Theorem

Let X andY be orthonormal matrices with X* Y = 0 and let
Z=X+YQ. Let

op>2002>--20,>0 and (>C@>--->¢G >0

denote the nonzero singular values of Z and @), respectively.
Set

01>0>--->04

to be the nonzero canonical angle between R(X) and R(Z).
Then

o;=secl; and (; =tanb;, fori=1,... k.
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Canonical angles

Proof. Since
Xix =1 vHy=1 X"y=0 and Z=X+YQ,

we have
ZH7 = (X" + QYT (X +YQ) =1+ Q"Q.
This implies that
02 =14¢ fori=1,... k. (3)
Define
Z2=22"2)7"7 = (X +YQ)I+Q"Q)"'"?,

where (I +QQ)~'/? is the inverse of the positive definite
square root of I + QY Q. Then Z is an orthonormal basis for
R(Z) and

XHZ=(1+QQ") ™2
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Canonical angles

Hence the singular values ~; of X? Z are

w=(Viee)

fori=1,..., k. Using (3) and the definition of canonical angles
0; between R(X) and R(Z), we have

—my — ——1
cost; =v; =0, .

That is

o; = = secb;.

cos 0;

The relation tan 6; = ¢; now follows from (3). ]
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Canonical angles

Let (L1, X1) be a simple right orthonormal eigenpair of A and
let (X1, Y>) be unitary. From Theorem 8, (L1,Y; = X1 — Y2Q%)
is left eigenpair of A and Y{# X; = I. By Theorem 12, we obtain
the following corollary.

Corollary

Let X be an orthonormal basis for a simple eigenspace X of A
and letY be a basis for the corresponding left eigenspace Y of
A normalized so that Y X = I. Then the singular values of Y
are the secants of the canonical angles between X and ). In
particular,

1Y [|2 = secO1(X,)).
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Residual analysis

Let[X X ] be unitary. Let R = AX — XL and
SH = xHA— LXH Then ||R| and ||S| are minimized when

L=X"AX,

in which case

IRl = |IX{AX|| and ||| = [ X"AX,]|.

Proof: Set
XH L H
e Jatx x=[g ]

Then

o=l ) e[ = [P6t )
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Residual analysis

It implies that

= =1 e

which is minimized when L = X2 AX and

)

min |R|| = |G| = | X{AX].

The proof for S is similar. ]

Definition

Let X be of full column rank and let X! be a left inverse of X.
Then X' AX is a Rayleigh quotient of A.
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Residual analysis

Let X be orthonormal and let

R=AX — XL.
Lettq, ..., ¢ be the eigenvalues of L. Then there are
eigenvalues \;j,, ..., \;, of A such that

[€i = Xji| < [ Rll2

and

k
D (6= )2 < V2Rl

=1




Krylov subspaces

@000

Krylov sequences and Krylov spaces

@ Power method: compute the dominant eigenpair

@ Disadvantage: at each step it considers only the single
vector A*u, which amounts to throwing away the
information contained in u, Au, A%u, ..., A" lu.

Definition
Let A be of order n and let u ## 0 be an n vector. Then

{u, Au, A%u, A3u,...}
is a Krylov sequence based on A and . We call the matrix
Kp(Aju)=[u Au A%uw - AFly ]
the kth Krylov matrix. The space

Kr(A u) = R[Kk(A,u)]

is called the kth Krylov subspace.



Krylov subspaces

Oe@00

Krylov sequences and Krylov spaces

Let A andu # 0 be given. Then
@ The sequence of Krylov subspaces satisfies

Ki(A,0) C Krs1(Au), AKp(A,u) C Krp1(A, ).
Q Ifo #0, then
(A, u) = Ki(cA, u) = Ki(A, ou).
© Foranyk,
(A, u) = Ki(A — kI, ).

©Q I/fW is nonsingular, then

Kp(WLAW, W tu) = WLKL(A, u).
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Krylov sequences and Krylov spaces

A Krylov sequence terminates at / if 7 is the smallest integer
such that

’Cé-l-l(A? U) =Ky (Av u)

Theorem

A Krylov sequence terminates based on A and u at ¢ if and only
if ¢ is the smallest integer for which

dim[Kesq] = dim[iC].

If the Krylov sequence terminates at ¢, then I, is an
eigenspace of A of dimension ¢. On the other hand, if u lies in
an eigenspace of dimension m, then for some ¢ < m, the
sequence terminates at /.
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Krylov sequences and Krylov spaces

Proof.
@ If Koy = Ky, then dim[Cy4 1] =dim[K,]. On the other hand,
if dim[/Cy1] =dim[K], then ks = Ky because Ky C Kyyq.
@ If the sequence terminates at /, then

ARy C K1 = Ky,

so that K, is an invariant subspace of A.

@ Let X' be an invariant subspace with dimension m. If
u € X, then Ay € X for all i. Thatis K; ¢ X and
dim(K;) < m for all 7. If the sequence terminates at ¢ > m,
then Ky is an invariant subspace and dim(KCy) >
dim(K,,) = dim(X’), which is impossible. ]
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Convergence

By the definition of (A, u), for any vector v € Kr(A, u) can be
written in the form

v =+ ypAu+ - 4 A e = p(A)u,
where
p(A) =yl + ’YQA + 73_,42 4ot ,ykAkfl.

Assume that A is Hermitian and has an orthonormal eigenpairs
(Ai, ;) fori =1,...,n. Write w in the form

U= Q1T + Qs + -+ + Ty,
where o; = xu. Since p(A)z; = p(\i)z;, we have
p(A)u = arp(Ai)z1 + aop(A2)xa + - - - + anp(An) Tn. (4)

If p(\;) is large compared with p();) for j # i, then p(A)u is a
good approximation to x;.
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Convergence

If zu £ 0 and p(\;) # 0, then

lp(A;)]
tan Z(p(A)u, z;) < max tan Z(u, x;
(p(A)u, z;) S T (u, @)
Proof. From (4), we have
|z p(A)ul |aip(Ni)]

cos Z(p(A)u, x;) =

Ip(Aulallzills VI lagpOyg)

and

S a2
Ve lap() 2

sin Z(p(A)u, x;) =
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Convergence

Hence

tan? Z(p(A)u, x;)

|
39
3
|
_[Qv

Assume that p(\;) = 1, then

tan Z(p(A)u, ;) <  max |p(Aj)|tan Z(u,z;) YV p(A)u € K.
J#i,p(Ai)=1

Hence

tan Z(z;, Ki) < min max |[p(\:)| tan £ (u, z;).
( *) deg(p)<k—1,p(X;)=1 j#i Ip(A;)] ( )
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Convergence

Assume that
A > > 2>\,
and that our interest is in the eigenvector x;. Then

tan 2 (z1, Kp) < i A)| tan Z(u, 21).
an (e k)_deg(p)égilﬁp(hblkel[%\iff\z] P} ten £(u, 21)

Question
How to compute

min max [p(A)|?
deg(p) <k—1,p(A1)=1 A€[An,A2]

Definition
The Chebyshev polynomials are defined by

() = cos(kcos™1t), lt] <1,
F) =\ cosh(kcosh™ ), |¢| > 1.
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Convergence

(@) eo(t) =1, er(t) =t and

cr1(t) = 2¢(t) —cp—1(t), k=1,2,....

(b) Forlt| > 1,

a®)=0+vVe2-1DF+ 1 +vVE2-1)"

(c) Fort e [-1,1], |cx(t)] < 1. Moreover, if

(k—d)m

t;r = cos

then
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Convergence

(d) Fors >1,

min max = , 5
deg(p)<k,p(s)=1t€[0,1] ()] ck(s) ()

and the minimum is obtained only for p(t) = cx(t)/ck(s).

For applying (5), we define
A=+ (p—1)(A2 = Ap)
to transform interval [\,,, A2] to [0, 1]. Then the value of x at A is

A1 — A2
=1
%51 + N —
and
min max [p(A)]

deg(p)<k—1,p(A1)=1 AE[An,A2]

= min max |p = —.
deg(p)ék—lvp(m):lMG[OJ]‘ ()] ()
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Convergence

Let the Hermitian matrix A have an orthonormal eigenpair
()\i7 l‘z) with

A > Ay > >\,

Let
 a—Js
= o=
Then
tan Z(x1,u)
tan Z|z1, Ki(A, < —
an Z[x1, Kr(A, u)] (L)

tan Z(x1,u)

(1 + /20 + 72)F=1 + (1 + /20 + n2)1-H
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Convergence

@ Fork large, we have

tan Z[z1, Ki(A,u)] S tan Z(a1, v)

VR
@ For k large and ifn is small, then the bound becomes

tan Z (1, u)
V4 A < ——
tan [xlalck( ,’U,)] ~ (1+m)k,1
@ Compare it with power method:
If|\1| > |A2| > -+ > ||, then the convergence of the
power method is | A2/ |F.
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Convergence

@ For example, let
A =1, =0.95, X3 = 0.952,- -+, A0 = 0.95%

be the eigenvalues of 100-by-100 matrix A. Then

n = 0.0530 and the bound on the convergence rate is

1/(1 4 v/2n) = 0.7544. Thus the square root effect gives a
great improvement over the rate of 0.95 for the power
method.

@ Replaced A by — A, then the Krylov sequence converges
to the eigenvector corresponding to the smallest
eigenvalue of A. However, the smallest eigenvalues of a
matrix — particularly a positive definite matrix — often tend
to cluster together, so that the bound will be unfavorable.

v
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Convergence

@ The hypothesis A\; > )2 can be relaxed. Suppose that
A1 = A2 > \3. Expand w in the form

U= Q1T] + ey + a3xr3 + - + apy.
Then
Aly = )\If(alml + aoxa) + 013)\151'3 + -+ an)\ﬁxn.

This shows that the spaces i (A, ) contain only
approximations to a1 z1 + asxs.
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Convergence

Let )\ be a simple eigenvalue of A and let

H
iete A4 48]t

be a spectral representation. Let

u = ax+ Xa,
where
a=y"u and a=Y"u.
Then
sin Z[x, Kp(A,u)] < |of ™ min | Xp(L)al|2.

deg(p)<k—1,p(A\)=1
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Convergence

Proof. From Theorem 11,

in /[z, Ky (A, = -1 i —
sin Z[z, Ki (A, u)] laf jein laz —yll2
= -1 i —p(A
o™ o min, | llow = p(A)ul:
< -1 i — p(A)ulf2.
< Jaf deom laz — p(A)ull2
Since
p(A)=1 and AX =XIL,
we have
p(A)u = p(A)(ax + Xa) = ap(AN)z + Xp(L)a = ax + Xp(L)a.
Hence
sin Z[z, Kp(A,u)] < o™t mi |lox — (v + Xp(L)a)||2

in
deg(p)<k—1,p(\)=1

-1 .
= Xp(L)als.
|| deg(p)g%lirf,pm:l” p(L)al|2
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Block Krylov spaces

Let (\;, z;) be an eigenpair of A fori =1,...,n. Write vector u
in the form

U= Q1T1 + a2 + -+ ApTy.
Assume that \; is double, i.e., Ay = X5. Then
Aky = )\’f(alazl + agxo) + )\]?fagxg 4+ )\floznxn.

Hence the Krylov sequence can only produce the
approximation a;x; + asxs to @ vector in the eigenspace of A;.
Let U be a matrix with linearly independent columns. Then the
sequence

(U, AU, AU, .. .}

is called a block Krylov sequence and the space Ky (A,U) is
called the k-th block Krylov space.
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Block Krylov spaces

Gaol: passing to block Krylov sequence improves the
convergence bound.

Theorem

Let A be Hermitian and let (\;, x;) be a complete system (n
eigenvectors are linearly independent) of orthonormal
eigenpairs of A with

AL Z A2 > 2 Ay,
and assume that the multiplicity of A\, is not greater than m. If

H
Ly

is nonsingular and we set

nw—JTR1,



Krylov subspaces

Block Krylov spaces

then

tan Z(x1,v)
~ cp-1(1+2n)
tan Z(x1,v)

(I+2yvn+n2)E1+ (1 +2y/n+n?)!

tan Z[x1, Kr(A,U))

where
_ A=A
)\erl - )\n
Proof: Since v € R(U), we have Kr(A,v) C Kx(A,U). By
Theorem 11,
in /[z1, Kp(A,U)] = i —
sin Z[z1, K(A,U)] S 21 —yll2

< . o — 4 7](: A7 :
- yei]gil&,v)”m yll2 = sin L]y, Ky (4, v)]
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Block Krylov spaces

This implies that
Lz, Kp(A,U)] < L[z, Kip(A,v)].
By the definition of B, we have

H
T

. |UB'=1 = zHUB =€l fori=1,...,m.
ZEH
By the definition of v,

efv=20UB ey =0 for i=2,...,m

On the other hand, (\;, ;) is an eigenpair of Hermitian A4, i.e.,
oA = Nz Hence

el Ay = Nafv=0for i=2,...,m.
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Block Krylov spaces

This implies that z,, . .., z,, are not contained in (A, v). That
is

- j j )
Ay = 041)\1$1 + Oém+1)\m+133m+l + -+ Oln)\%,xn

forj=1,...,k—1. We may now apply Theorem 23 to get (6).
|
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Rayleigh-Ritz methods

LetU be a subspace and let U be a basis forlU. LetV be a left
inverse of U and set

B=VHAU.

If X C U is an eigenspace of A, then there is an eigenpair
(L,W) of B such that (L,UW) is an eigenpair of A with
R(UW) = X.

Proof. Let (L, X) be an eigenpair of A and let X = UW. Then
from the relation

AUW =UWL
we obtain
BW =V7AUW =VHUWL = WL,
so that (L, W) is an eigenpair of B. [ |
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Rayleigh-Ritz methods

We can find exact eigenspaces contained in U by looking at
eigenpairs of the Rayleigh quotient B.

Algorithm (Rayleigh-Ritz procedure)
@ LetU be a basis fori and let V! be a left inverse of U.
© Form the Rayleigh quotient B = V7 AU.
Q Let (M, W) be a suitable eigenpair of B.
©Q Return (M,UW) as an approximate eigenpair of A.

@ (M,UW) is called a Ritz pair. Written Ritz pair in the form
(A, Uw), we will call A a Ritz value and Uw a Ritz vector.

@ Two difficulties for Rayleigh-Ritz procedure: (i) how to
choose the eigenpair (M, W) in statement 3. (ii) no
guarantee that the result approximates the desired
eigenpair of A.
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Rayleigh-Ritz methods

T

Let A =diag(0,1,—1) and suppose we interested in
approximating the eigenpair (0, e;). Assume

U =

1 0
0 1/\/51.
0 1/v2
Then

o Harr |00
povia =] 9]

and any nonzero vector p is an eigenvector of B. If we take
p=[1,1]%, then Up = [1,1/v/2,1/+/2] is an approximate
eigenvector of A, which is completely wrong. Thus the method
can fail, even though the space U/ contains the desired
eigenvector. [ |
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Rayleigh-Ritz methods

@ The matrices U and V in Algorithm 1 satisfy the condition
VHU = I and they can differ. Hence Algorithm 1 is called
an oblique Rayleigh-Ritz method.

@ If the matrix U is taken to be orthonormaland V' =U. In
addition, W is taken to be orthonormal, so that X = UW is
also orthonormal. We call this procedure the orthogonal
Rayleigh-Rite method.

Let (M, X = UW) be an orthogonal Rayleigh-Rite pair. Then

R=AX — XM

is minimal in any unitarily invariant norm.
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Rayleigh-Ritz methods

Proof: By Theorem 14, we need to show M = X AX. Since
(M, W) is an eigenpair of B and W is orthonormal, we have

M =wHBw
and

XHAX = WHUHE AUW = WHBW = M.
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Convergence

Let (A, z) be the desired eigenpair of A and Uy be an
orthonormal basis for which 0 = Z(z, Uy) is small.

Let
By = UL AU,.

Then there is a matrix Ey satisfying

sin 6
[ Epll2 < — || All2

v/ 1 —sin“ 6

such that \ is an eigenvalue of By + Ey.

Proof. Let (Uy, U, ) be unitary and set

y=Ulz and z=U"z
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Convergence

From Theorem 10, we have
|2]]2 =sinf and |y[2 = V1 —sin?6.

Since Az — Az = 0, we have
H Uy’
UF AUy, U, ] [ U%g ] x— \UTz =0,
1
or
Bgy‘i‘UgI{AUJ_Z— Ay = 0.

Lety =y/llyll2 = y/m. If

-1

V1= sin?0

r= By — Aj = UM AU, z,

it follows that

sin 6
Irll < /Al

V1= sin?0
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Convergence

Now define
Ey = —rjtl.
Then
IBoll2 = A1) (5r1) =y M (o) —er<vqffz;29w4m
and
(Bo + Eg)j = By — (rg")j = Bo — 1 = Aj.
Therefore, (), y) is an eigenpair of By + Ep. |

Corollary

There is an eigenvalue 1y of By such that
m 1/m
o — Al < 4(2l|Allz + || Boll2) =™ | Eqlly ™,

where m is the order of By.
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Convergence

Theorem

Let (pg, wy) be an eigenpair of By and let [ wg Wy | be
unitary, so that

wH Lo hH
[ ool 1= [ 5

Then

| | E
sin Z(z, Ugwy) < s1n«9\/1 u W’

where sep(X, Ng) = ||(A — Ng) ||
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Convergence

By the continuity of sep, we have
Isep(A, Ng) — sep(ug, No)| < g — Al
= sep(A, Ng) = sep(ug, No) — 1o — Al.
Suppose g — A and sep(ug, Nyg) is bounded below. Then

sep(\, Ny) is also bounded below. Since ||hgll2 < || All2, we
have sin Z(x, Upwg) — 0 along with 6.

Corollary

Let (ug, Ugwy) be a Ritz pair for which iy — M. If there is a
constant o > 0 such that

sep(yig, No) > a > 0, (7)

/ A
sin Z(z, Upwy) < sinfy/ 1+ I H2
o2

then
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Convergence

This corollary justifies that eigenvalue convergence plus
separation equals eigenvector convergence.

The condition (7) is called the uniform separation condition.
Let (ug, zg) With ||zg||2 = 1 be the Ritz approximation to (), z).
Then by construction, we have

g = bl Az, (8)
Write

Ty = YT + oY, 9)
where y Lz and ||yl = 1. Then
Iy| = |z 2| = cos L(xg,z) and o] = [y xg| = sin L(xg, x).
If the uniform separation is satisfied, we have

|o| = sin Z(zg,x) = O(0).
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Convergence

Substituting (9) into (8) and using the facts of Ax = Az and
yHx =0, we find that

po = (2 +oy")(vAz + 0 Ay)
72X+ ozl Ay.
Hence
o= Al = (W = 1)A + oxg’ Ayl
oAl + |o|||zoll2 ]| All2]y]l2

o] (1 + [o])[|All2
0(6).

IN A

Thus the Ritz value converges at least as fast as the
eigenvector approximation of x in U(Uy).
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Convergence

If Ais Hermitian, then

po = (' +ay")(vAz + 0 Ay)
= |y + For Ay + |02y Ay = |7 °A + Foray + o] 2y Ay
= [yPA+ oy Ay

and

o = Al = |(7* = DA+ o]y Ayl
o *IA] + o Plly 12l All2llyll2
2o |*| All2
= 0.
Since the angle 6 = Z(x, Uy) cannot be known and hence

cannot compute error bounds. Thus, we must look to the
residual as an indication of convergence.
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Convergence

Let A have the spectral representation
A= ey + XLYH,

where ||z||2 = 1 and'Y is orthonormal. Let (11, ) be an
approximation to (A, xz) and let

p = ||AZ — pZ|.
Then

e p p
< < .
SIn AT 2) S Sopn D) = sepnE) — = A
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Convergence

Proof: Since Y1 = 0, we have that Y is an orthonormal basis
for the orthogonal complement of the space span{z} and then
sin Z(z,x) = [|[YH%|. Let r = AZ — p@. Then

YHr =YHAz — pYH% = (L — ul)YH37.

It follows that

sin Z(z,z) = |[(L — pI)~ 'Y Hy <ﬂ.
() = (L= D) Y rlle < s
By the fact that sep(u, L) > sep(\, L) — | — )|, the second
inequality is obtained. [ |

Since ) is assumed to be simple, this theorem says that:
Sufficient condition for & to converge to x is for u to converge to
A and for the residual to converge to zero.
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Refined Ritz vectors

Let 1y be a Ritz value associated with Uy. A refined Ritz vector
is a solution of the problem

min |Azg — poZall2

subjectto Zg € Uy, |Zgll2 = 1.

Theorem

Let A have the spectral representation
A=)y + XLYH,
where ||z|2 = 1 and Y is orthonormal. Let ug be a Ritz value

and zy the corresponding refined Ritz vector. If
sep(\, L) — |ug — A| > 0, then

sin Z(x, &) < |A — polll2sind + |\ — ugl

~ V1 —sin?[sep(\, L) — |A — pol]
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Refined Ritz vectors

Proof: Let U be an orthonormal basis for 4y and let x = y + z,
where z = UUz. Then

I2ll2 = |U" 2]|2 = sin 6.
Moreover, since y and z are orthogonal,
1213 = Nz =yl = @=" —y")(@ -y
= 3+ gl =1+ llyl3
= I3 =1—z[3=1—sin®6.

Let
Yy

1 —sin20

<,
I

9

we have

(A pol)j = (A—pol)y _ (A—pel)(x —2)
1 —sin?60 1 —sinZ6
(A= pp)r — (A — pgl)z
A1 — <«in2p
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Refined Ritz vectors

Hence

. A — gl + ||A — upl| siné
(A - oDy < At ¥ A~ polllsinf
1 —sin“ 6

By the definition of a refined Ritz vector we have

o =il + A= ol sin

1A = oDl !
1 —sin“6

The result now follows from Theorem 35. ]

@ By Corollary 30, g — X. It follows that sin Z(z, &9) — 0. In
other words, refined Ritz vectors are guaranteed to
converge.

@ [ig = xéf Aty is more accurate than py and ||Azg — fipZe]|2
is optimal.




Rayleigh-Ritz Approximation
ocooe

Refined Ritz vectors

The computation of a refined Ritz vector amounts to solve

min |AZ — pzl|2

subjectto z €U, ||z|]2 = 1. (10)

Let U be an orthonormal basis for ¢/. Then (10) is equivalent to

min (A — uI)U =]
subjectto ||z]|2 = 1.

The solution of this problem is the right singular vector of
(A — uI)U corresponding to its smallest singular value. Thus
refined Ritz vector can be computed by the following algorithm.

Q@ V=AU

QW=V-uU

© Compute the smallest singular value of W and its right
singular vector z

Q :=Uz
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Harmonic Ritz vectors

Exterior eigenvalues are easily convergent than interior
eigenvalues by Rayleigh quotient. The quality of the refined
Ritz vector depends on the accuracy of the Ritz value p and
each refined Ritz vector must be calculated independently from
its own distinct value of .

Definition

Let U be an orthonormal basis for subspace ¢/. Then
(k + 9, Uw) is a Harmonic Ritz pair with shift « if

UB(A— kD) (A - kD)Uw = 6UH (A - D) UwW. (11)

Given shift x, (11) is a generalized eigenvalue problem with
eigenvalue 6.

Let (\, x) be an eigenpair of A with x = Uw. Then (\,Uw) is a
harmonic Ritz pair.
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Harmonic Ritz vectors

Proof. Since (A, x) is an eigenpair of A with z = Uw, we have
Ar =X = AUw=AUw.
It implies that
UH(A - kD)H(A - kI)Uw = (A — x)UH(A - k)P Uw.
Taking eigenvalue 6 = A — k, we obtain
UH(A - kD) (A - kD)Uw = 0UH (A - k)P Uw.

That is (k + 6, Uw) = (A, Uw) is a harmonic Ritz pair. [ |
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Harmonic Ritz vectors

Given a shift , if we want to compute the eigenvalue A of A
which is closest to «, then we need to compute the eigenvalue ¢
of (11) such that |§| is the smallest value of all of the absolute
values for the eigenvalues of (11).

If z is approximately represented in i/, then the harmonic
Rayleigh-Ritz will produce an approximation to x.

How to compute the eigenpair (0, w) of (11)?
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Harmonic Ritz vectors

Let
(A—rl)U =QR

be the QR factorization of (A — kI)U. Then (11) can be
rewritten as

RTRw =R QU Uw.
That is
(QUU)Yw = 6 ' Rw.

This eigenvalue can be solved by the @ Z algorithm. The
harmonic Ritz vector 2 = Uw and the corresponding harmonic
Ritz value is 1 = 21 Az.
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