Eigenspaces and their Approximation

Tsung-Ming Huang

Department of Mathematics
National Taiwan Normal University, Taiwan
April 8, 2009

Outline

(1) Eigenspaces

- Definitions
- Simple eigenspaces
(2) Perturbation Theory
- Canonical angles
- Residual analysis
(3) Krylov subspaces
- Krylov sequences and Krylov spaces
- Convergence
- Block Krylov spaces

4. Rayleigh-Ritz Approximation

- Rayleigh-Ritz methods
- Convergence
- Refined Ritz vectors
- Harmonic Ritz vectors

Definitions

Definition

Let A be of order n and let \mathcal{X} be a subspace of \mathbb{C}^{n}. Then \mathcal{X} is an eigenspace or invariant subspace of A if

$$
A \mathcal{X}=\{A x ; x \in \mathcal{X}\} \subset \mathcal{X}
$$

If $(\lambda, x) \equiv(\alpha+\imath \beta, y+\imath z)$ is a complex eigenpair of a real matrix A, i.e.,

$$
\begin{aligned}
& A(y+\imath z)=(\alpha+\imath \beta)(y+\imath z)=(\alpha y-\beta z)+\imath(\beta y+\alpha z) \\
\Rightarrow & \left\{\begin{array}{l}
A y=\alpha y-\beta z, \\
A z=\beta y+\alpha z,
\end{array}\right.
\end{aligned}
$$

then

$$
A\left[\begin{array}{ll}
y & z
\end{array}\right]=\left[\begin{array}{ll}
y & z
\end{array}\right]\left[\begin{array}{cc}
\alpha & \beta \\
-\beta & \alpha
\end{array}\right]
$$

It implies that $\mathcal{R}\left(\left[\begin{array}{ll}y & z\end{array}\right]\right)$ is an eigenspace of A.

Theorem

Let \mathcal{X} be an eigenspace of A and let X be a basis for \mathcal{X}. Then there is a unique matrix L such that

$$
A X=X L
$$

The matrix L is given by

$$
L=X^{I} A X
$$

where X^{I} is a matrix satisfying $X^{I} X=I$. If (λ, x) is an eigenpair of A with $x \in \mathcal{X}$, then $\left(\lambda, X^{I} x\right)$ is an eigenpair of L. Conversely, if (λ, u) is an eigenpair of L, then $(\lambda, X u)$ is an eigenpair of A.

Definitions

Proof: Let

$$
X=\left[x_{1} \cdots x_{k}\right] \quad \text { and } \quad Y=A X=\left[y_{1} \cdots y_{k}\right]
$$

Since $y_{i} \in \mathcal{X}$ and X is a basis for \mathcal{X}, there is a unique vector ℓ_{i} such that

$$
y_{i}=X \ell_{i}
$$

If we set $L=\left[\ell_{1} \cdots \ell_{k}\right]$, then $A X=X L$ and

$$
L=X^{I} X L=X^{I} A X
$$

Now let (λ, x) be an eigenpair of A with $x \in \mathcal{X}$. Then there is a unique vector u such that $x=X u$. However, $u=X^{I} x$. Hence

$$
\lambda x=A x=A X u=X L u \quad \Rightarrow \quad \lambda u=\lambda X^{I} x=L u .
$$

Conversely, if $L u=\lambda u$, then

$$
A(X u)=(A X) u=(X L) u=X(L u)=\lambda(X u)
$$

so that $(\lambda, X u)$ is an eigenpair of A.

Definition

Let A be of order n. For $X \in \mathbb{C}^{n \times k}$ and $L \in \mathbb{C}^{k \times k}$, we say that (L, X) is an eigenpair of order k or right eigenpair of order k of A if

1. X is of full rank,
2. $A X=X L$.

The matrices X and L are called eigenbasis and eigenblock, respectively. If X is orthonormal, we say that the eigenpair (L, X) is orthonormal.
If $Y \in \mathbb{C}^{n \times k}$ has linearly independent columns and $Y^{H} A=L Y^{H}$, we say that (L, Y) is a left eigenpair of order k of A.

Question

How eigenpairs transform under change of basis and similarities?

Theorem

Let (L, X) be an eigenpair of A. If U is nonsingular, then the pair $\left(U^{-1} L U, X U\right)$ is also eigenpair of A. If W is nonsingular, then $\left(L, W^{-1} X\right)$ is an eigenpair of $W^{-1} A W$.
proof:

$$
\begin{aligned}
& A(X U)=(A X) U=(X L) U=(X U)\left(U^{-1} L U\right) \\
& \left(W^{-1} A W\right)\left(W^{-1} X\right)=W^{-1} A X=\left(W^{-1} X\right) L
\end{aligned}
$$

The eigenvalues of L of an eigenspace with respect to a basis are independent of the choices of the basis.

Theorem

Let $\mathcal{L}=\left\{\lambda_{1}, \ldots, \lambda_{k}\right\} \subset \Lambda(A)$ be a multisubset of the eigenvalues of A. Then there is an eigenspace \mathcal{X} of A whose eigenvalues are $\lambda_{1}, \ldots, \lambda_{k}$.

Proof: Let

$$
A\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right]=\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right]\left[\begin{array}{cc}
T_{11} & T_{12} \\
0 & T_{22}
\end{array}\right]
$$

be a partitioned Schur decomposition of A in which T_{11} is of order k and has the members of \mathcal{L} on its diagonal. Then

$$
A U_{1}=U_{1} T_{11}
$$

Hence the column space of U_{1} is an eigenspace of A whose eigenvalues are the members of \mathcal{L}.

Definition

An eigenvalue whose geometric multiplicity is less than its algebraic multiplicity is defective.

Definition

Let \mathcal{X} be an eigenspace of A with eigenvalues \mathcal{L}. Then \mathcal{X} is a simple eigenspace of A if

$$
\mathcal{L} \cap[\Lambda(A) \backslash \mathcal{L}]=\emptyset
$$

In the other words, an eigenspace is simple if its eigenvalues are disjoint from the other eigenvalues of A.

Theorem

Let $\left(L_{1}, X_{1}\right)$ be a simple orthonormal eigenpairs of A and let (X_{1}, Y_{2}) be unitary so that

$$
\left[\begin{array}{c}
X_{1}^{H} \\
Y_{2}^{H}
\end{array}\right] A\left[\begin{array}{ll}
X_{1} & Y_{2}
\end{array}\right]=\left[\begin{array}{cc}
L_{1} & H \\
0 & L_{2}
\end{array}\right] .
$$

Then there is a matrix Q satisfying the Sylvester equation

$$
L_{1} Q-Q L_{2}=-H
$$

such that if we set

$$
X=\left[\begin{array}{ll}
X_{1} & X_{2}
\end{array}\right] \quad \text { and } \quad Y=\left[\begin{array}{ll}
Y_{1} & Y_{2}
\end{array}\right],
$$

where

$$
X_{2}=Y_{2}+X_{1} Q \quad \text { and } \quad Y_{1}=X_{1}-Y_{2} Q^{H},
$$

then

$$
Y^{H} X=I \quad \text { and } \quad Y^{H} A X=\operatorname{diag}\left(L_{1}, L_{2}\right)
$$

Proof: Since $\left(L_{1}, X_{1}\right)$ is a simple eigenpairs of A, it implies that

$$
\Lambda\left(L_{1}\right) \cap \lambda\left(L_{2}\right)=\emptyset .
$$

By Theorem 1.18 in Chapter 1, there is a unique matrix Q satisfying

$$
L_{1} Q-Q L_{2}=-H
$$

such that

$$
\left[\begin{array}{cc}
I & -Q \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
L_{1} & H \\
0 & L_{2}
\end{array}\right]\left[\begin{array}{cc}
I & Q \\
0 & I
\end{array}\right]=\operatorname{diag}\left(L_{1}, L_{2}\right)
$$

That is

$$
\left[\begin{array}{cc}
I & -Q \\
0 & I
\end{array}\right]\left[\begin{array}{c}
X_{1}^{H} \\
Y_{2}^{H}
\end{array}\right] A\left[\begin{array}{ll}
X_{1} & Y_{2}
\end{array}\right]\left[\begin{array}{cc}
I & Q \\
0 & I
\end{array}\right]=\operatorname{diag}\left(L_{1}, L_{2}\right)
$$

Therefore,

$$
\left[\begin{array}{c}
X_{1}^{H}-Q Y_{2}^{H} \\
Y_{2}^{H}
\end{array}\right] A\left[\begin{array}{ll}
X_{1} & X_{1} Q+Y_{2}
\end{array}\right]=\operatorname{diag}\left(L_{1}, L_{2}\right) .
$$

Observations

(1) X and Y are said to be biorthogonal.
(2) Since

$$
A\left[\begin{array}{ll}
X_{1} & X_{2}
\end{array}\right]=\left[\begin{array}{ll}
X_{1} & X_{2}
\end{array}\right] \operatorname{diag}\left(L_{1}, L_{2}\right),
$$

we see that

$$
A X_{2}=X_{2} L_{2}
$$

so that $\left(L_{2}, X_{2}\right)$ is an eigenpair of A. Likewise $\left(L_{1}, Y_{1}\right)$ is a left eigenpair of A.

Let x and y be nonzero vectors. Then the angle $\angle(x, y)$ of x and y is defined as

$$
\cos \angle(x, y)=\frac{\left|x^{H} y\right|}{\|x\|_{2}\|y\|_{2}} .
$$

Extend this definition to subspaces in \mathbb{C}^{n}. Let \mathcal{X} and \mathcal{Y} be subspaces of the same dimension. Let X and Y be orthonormal bases for \mathcal{X} and \mathcal{Y}, respectively, and define $C=Y^{H} X$. We have

$$
\|C\|_{2} \leq\|X\|_{2}\|Y\|_{2}=1 .
$$

Hence all the singular value of C lie in $[0,1]$ and can be regarded as cosine of angles.

Definition

Let \mathcal{X} and \mathcal{Y} be subspaces of \mathbb{C}^{n} of dimension p and let X and Y be orthonormal bases for \mathcal{X} and \mathcal{Y}, respectively. Then the canonical angles between \mathcal{X} and \mathcal{Y} are

$$
\begin{equation*}
\theta_{i}(\mathcal{X}, \mathcal{Y})=\cos ^{-1} \gamma_{i}, \tag{1}
\end{equation*}
$$

with

$$
\theta_{1}(\mathcal{X}, \mathcal{Y}) \geq \theta_{2}(\mathcal{X}, \mathcal{Y}) \geq \cdots \geq \theta_{p}(\mathcal{X}, \mathcal{Y})
$$

where γ_{i} are the singular values of $Y^{H} X$.

- If the canonical angle is small, then the computation of (1) will give inaccurate results.
- For small $\theta, \cos (\theta) \cong 1-\frac{1}{2} \theta^{2}$. If $\theta \leq 10^{-8}$, then $\cos (\theta)$ will evaluate to 1 in IEEE double-precision arithmetic, and we will conclude that $\theta=0$.
- The cure for this problem is to compute the sine of the canonical angles.

Theorem

Let X and Y be orthonormal bases for \mathcal{X} and \mathcal{Y}, and let Y_{\perp} be an orthonormal basis for the orthogonal complement of \mathcal{Y}. Then the singular values of $Y_{\perp}^{H} X$ are the sines of the canonical angles between \mathcal{X} and \mathcal{Y}.

Canonical angles

Proof: Let

$$
\left[\begin{array}{c}
Y^{H} \\
Y_{\perp}^{H}
\end{array}\right] X=\left[\begin{array}{l}
C \\
S
\end{array}\right]
$$

By the orthonormality, we have

$$
I=C^{H} C+S^{H} S
$$

Let

$$
V^{H}\left(C^{H} C\right) V=\Gamma^{2} \equiv \operatorname{diag}\left(\gamma_{1}^{2}, \cdots, \gamma_{p}^{2}\right)
$$

be the spectral decomposition of $C^{H} C$. Then by the definition of canonical angle θ_{i} in (1), we have

$$
\theta_{i}=\cos ^{-1} \gamma_{i}
$$

But

$$
I=V^{H}\left(C^{H} C+S^{H} S\right) V=\Gamma^{2}+V^{H}\left(S^{H} S\right) V \equiv \Gamma^{2}+\Sigma^{2}
$$

It follows that

$$
\Sigma^{2} \equiv \operatorname{diag}\left(\sigma_{1}^{2}, \cdots, \sigma_{p}^{2}\right)=\operatorname{diag}\left(1-\gamma_{1}^{2}, \cdots, 1-\gamma_{p}^{2}\right)
$$

where σ_{i} are singular values of $S=Y_{\perp}^{H} X$. Therefore,

$$
\sigma_{i}^{2}=1-\gamma_{i}^{2}=1-\cos ^{2} \theta_{i}=\sin ^{2} \theta_{i} \quad \Rightarrow \quad \theta_{i}=\sin ^{-1} \sigma_{i}
$$

Theorem

Let x be a vector with $\|x\|_{2}=1$ and let \mathcal{Y} be a subspace. Then

$$
\sin \angle(x, \mathcal{Y})=\min _{y \in \mathcal{Y}}\|x-y\|_{2} .
$$

Canonical angles

Proof: Let $\left(Y, Y_{\perp}\right)$ be unitary with $\mathcal{R}(Y)=\mathcal{Y}$. Let $y \in \mathcal{Y}$, then

$$
\left[\begin{array}{c}
Y^{H} \\
Y_{\perp}^{H}
\end{array}\right](x-y)=\left[\begin{array}{c}
\hat{x} \\
\hat{x}_{\perp}
\end{array}\right]-\left[\begin{array}{c}
\hat{y} \\
0
\end{array}\right]=\left[\begin{array}{c}
\hat{x}-\hat{y} \\
\hat{x}_{\perp}
\end{array}\right] .
$$

It implies that

$$
\|x-y\|_{2}=\left\|\left[\begin{array}{c}
Y^{H} \\
Y_{\perp}^{H}
\end{array}\right](x-y)\right\|_{2}=\left\|\left[\begin{array}{c}
\hat{x}-\hat{y} \\
\hat{x}_{\perp}
\end{array}\right]\right\|_{2}
$$

and hence

$$
\begin{equation*}
\min _{y \in \mathcal{Y}}\|x-y\|=\left\|\hat{x}_{\perp}\right\|_{2}=\left\|Y_{\perp}^{H} x\right\|_{2} . \tag{2}
\end{equation*}
$$

By Theorem 10 and (2), we have

$$
\sin \angle(x, \mathcal{Y})=\left\|Y_{\perp}^{H} x\right\|_{2}=\min _{y \in \mathcal{Y}}\|x-y\| .
$$

Theorem

Let X and Y be orthonormal matrices with $X^{H} Y=0$ and let $Z=X+Y Q$. Let

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{k}>0 \quad \text { and } \quad \zeta_{1} \geq \zeta_{2} \geq \cdots \geq \zeta_{k}>0
$$

denote the nonzero singular values of Z and Q, respectively. Set

$$
\theta_{1} \geq \theta_{2} \geq \cdots \geq \theta_{k}
$$

to be the nonzero canonical angle between $\mathcal{R}(X)$ and $\mathcal{R}(Z)$. Then

$$
\sigma_{i}=\sec \theta_{i} \quad \text { and } \quad \zeta_{i}=\tan \theta_{i}, \text { for } i=1, \ldots, k
$$

Canonical angles

Proof: Since

$X^{H} X=I, \quad Y^{H} Y=I, \quad X^{H} Y=0 \quad$ and $\quad Z=X+Y Q$,
we have

$$
Z^{H} Z=\left(X^{H}+Q^{H} Y^{H}\right)(X+Y Q)=I+Q^{H} Q .
$$

This implies that

$$
\begin{equation*}
\sigma_{i}^{2}=1+\zeta_{i}^{2}, \text { for } i=1, \ldots, k \tag{3}
\end{equation*}
$$

Define

$$
\hat{Z} \equiv Z\left(Z^{H} Z\right)^{-1 / 2}=(X+Y Q)\left(I+Q^{H} Q\right)^{-1 / 2}
$$

where $\left(I+Q^{H} Q\right)^{-1 / 2}$ is the inverse of the positive definite square root of $I+Q^{H} Q$. Then \hat{Z} is an orthonormal basis for $\mathcal{R}(Z)$ and

$$
X^{H} \hat{Z}=\left(I+Q Q^{H}\right)^{-1 / 2} .
$$

Hence the singular values γ_{i} of $X^{H} \hat{Z}$ are

$$
\gamma_{i}=\left(\sqrt{1+\zeta_{i}^{2}}\right)^{-1}
$$

for $i=1, \ldots, k$. Using (3) and the definition of canonical angles θ_{i} between $\mathcal{R}(X)$ and $\mathcal{R}(Z)$, we have

$$
\cos \theta_{i}=\gamma_{i}=\sigma_{i}^{-1}
$$

That is

$$
\sigma_{i}=\frac{1}{\cos \theta_{i}}=\sec \theta_{i}
$$

The relation $\tan \theta_{i}=\zeta_{i}$ now follows from (3).

Let $\left(L_{1}, X_{1}\right)$ be a simple right orthonormal eigenpair of A and let (X_{1}, Y_{2}) be unitary. From Theorem 8, $\left(L_{1}, Y_{1} \equiv X_{1}-Y_{2} Q^{H}\right)$ is left eigenpair of A and $Y_{1}^{H} X_{1}=I$. By Theorem 12, we obtain the following corollary.

Corollary

Let X be an orthonormal basis for a simple eigenspace \mathcal{X} of A and let Y be a basis for the corresponding left eigenspace \mathcal{Y} of A normalized so that $Y^{H} X=I$. Then the singular values of Y are the secants of the canonical angles between \mathcal{X} and \mathcal{Y}. In particular,

$$
\|Y\|_{2}=\sec \theta_{1}(\mathcal{X}, \mathcal{Y}) .
$$

Theorem

Let $\left[X X_{\perp}\right]$ be unitary. Let $R=A X-X L$ and $S^{H}=X^{H} A-L X^{H}$. Then $\|R\|$ and $\|S\|$ are minimized when

$$
L=X^{H} A X,
$$

in which case

$$
\|R\|=\left\|X_{\perp}^{H} A X\right\| \quad \text { and } \quad\|S\|=\left\|X^{H} A X_{\perp}\right\| .
$$

Proof. Set

$$
\left[\begin{array}{c}
X^{H} \\
X_{\perp}^{H}
\end{array}\right] A\left[\begin{array}{ll}
X & X_{\perp}
\end{array}\right]=\left[\begin{array}{cc}
\hat{L} & H \\
G & M
\end{array}\right] .
$$

Then

$$
\left[\begin{array}{c}
X^{H} \\
X_{\perp}^{H}
\end{array}\right] R=\left[\begin{array}{cc}
\hat{L} & H \\
G & M
\end{array}\right]\left[\begin{array}{c}
X^{H} \\
X_{\perp}^{H}
\end{array}\right] X-\left[\begin{array}{c}
X^{H} \\
X_{\perp}^{H}
\end{array}\right] X L=\left[\begin{array}{c}
\hat{L}-L \\
G
\end{array}\right]
$$

It implies that

$$
\|R\|=\left\|\left[\begin{array}{c}
X^{H} \\
X_{\perp}^{H}
\end{array}\right] R\right\|=\left\|\left[\begin{array}{c}
\hat{L}-L \\
G
\end{array}\right]\right\|
$$

which is minimized when $L=X^{H} A X$ and

$$
\min \|R\|=\|G\|=\left\|X_{\perp}^{H} A X\right\| .
$$

The proof for S is similar.

Definition

Let X be of full column rank and let X^{I} be a left inverse of X. Then $X^{I} A X$ is a Rayleigh quotient of A.

Theorem

Let X be orthonormal and let

$$
R=A X-X L .
$$

Let $\ell_{1}, \ldots, \ell_{k}$ be the eigenvalues of L. Then there are eigenvalues $\lambda_{j_{1}}, \ldots, \lambda_{j_{k}}$ of A such that

$$
\left|\ell_{i}-\lambda_{j_{i}}\right| \leq\|R\|_{2}
$$

and

$$
\sqrt{\sum_{i=1}^{k}\left(\ell_{i}-\lambda_{j_{i}}\right)^{2}} \leq \sqrt{2}\|R\|_{F}
$$

- Power method: compute the dominant eigenpair
- Disadvantage: at each step it considers only the single vector $A^{k} u$, which amounts to throwing away the information contained in $u, A u, A^{2} u, \ldots, A^{k-1} u$.

Definition

Let A be of order n and let $u \neq 0$ be an n vector. Then

$$
\left\{u, A u, A^{2} u, A^{3} u, \ldots\right\}
$$

is a Krylov sequence based on A and u. We call the matrix

$$
K_{k}(A, u)=\left[\begin{array}{lllll}
u & A u & A^{2} u & \cdots & A^{k-1} u
\end{array}\right]
$$

the k th Krylov matrix. The space

$$
\mathcal{K}_{k}(A, u)=\mathcal{R}\left[K_{k}(A, u)\right]
$$

is called the k th Krylov subspace.

Theorem

Let A and $u \neq 0$ be given. Then
(1) The sequence of Krylov subspaces satisfies

$$
\mathcal{K}_{k}(A, u) \subset \mathcal{K}_{k+1}(A, u), \quad A \mathcal{K}_{k}(A, u) \subset \mathcal{K}_{k+1}(A, u)
$$

(2) If $\sigma \neq 0$, then

$$
\mathcal{K}_{k}(A, u)=\mathcal{K}_{k}(\sigma A, u)=\mathcal{K}_{k}(A, \sigma u)
$$

(3) For any κ,

$$
\mathcal{K}_{k}(A, u)=\mathcal{K}_{k}(A-\kappa I, u) .
$$

(4) If W is nonsingular, then

$$
\mathcal{K}_{k}\left(W^{-1} A W, W^{-1} u\right)=W^{-1} \mathcal{K}_{k}(A, u)
$$

A Krylov sequence terminates at ℓ if ℓ is the smallest integer such that

$$
\mathcal{K}_{\ell+1}(A, u)=\mathcal{K}_{\ell}(A, u)
$$

Theorem

A Krylov sequence terminates based on A and u at ℓ if and only if ℓ is the smallest integer for which

$$
\operatorname{dim}\left[\mathcal{K}_{\ell+1}\right]=\operatorname{dim}\left[\mathcal{K}_{\ell}\right]
$$

If the Krylov sequence terminates at ℓ, then \mathcal{K}_{ℓ} is an eigenspace of A of dimension ℓ. On the other hand, if u lies in an eigenspace of dimension m, then for some $\ell \leq m$, the sequence terminates at ℓ.

Proof:

- If $\mathcal{K}_{\ell+1}=\mathcal{K}_{\ell}$, then $\operatorname{dim}\left[\mathcal{K}_{\ell+1}\right]=\operatorname{dim}\left[\mathcal{K}_{\ell}\right]$. On the other hand, if $\operatorname{dim}\left[\mathcal{K}_{\ell+1}\right]=\operatorname{dim}\left[\mathcal{K}_{\ell}\right]$, then $\mathcal{K}_{\ell+1}=\mathcal{K}_{\ell}$ because $\mathcal{K}_{\ell} \subset \mathcal{K}_{\ell+1}$.
- If the sequence terminates at ℓ, then

$$
A \mathcal{K}_{\ell} \subset \mathcal{K}_{\ell+1}=\mathcal{K}_{\ell}
$$

so that \mathcal{K}_{ℓ} is an invariant subspace of A.

- Let \mathcal{X} be an invariant subspace with dimension m. If $u \in \mathcal{X}$, then $A^{i} u \in \mathcal{X}$ for all i. That is $\mathcal{K}_{i} \subset \mathcal{X}$ and $\operatorname{dim}\left(\mathcal{K}_{i}\right) \leq m$ for all i. If the sequence terminates at $\ell>m$, then \mathcal{K}_{ℓ} is an invariant subspace and $\operatorname{dim}\left(\mathcal{K}_{\ell}\right)>$ $\operatorname{dim}\left(\mathcal{K}_{m}\right)=\operatorname{dim}(\mathcal{X})$, which is impossible.

Convergence

By the definition of $\mathcal{K}_{k}(A, u)$, for any vector $v \in \mathcal{K}_{k}(A, u)$ can be written in the form

$$
v=\gamma_{1} u+\gamma_{2} A u+\cdots+\gamma_{k} A^{k-1} u \equiv p(A) u,
$$

where

$$
p(A)=\gamma_{1} I+\gamma_{2} A+\gamma_{3} A^{2}+\cdots+\gamma_{k} A^{k-1} .
$$

Assume that A is Hermitian and has an orthonormal eigenpairs $\left(\lambda_{i}, x_{i}\right)$ for $i=1, \ldots, n$. Write u in the form

$$
u=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{n} x_{n}
$$

where $\alpha_{i}=x_{i}^{H} u$. Since $p(A) x_{i}=p\left(\lambda_{i}\right) x_{i}$, we have

$$
\begin{equation*}
p(A) u=\alpha_{1} p\left(\lambda_{1}\right) x_{1}+\alpha_{2} p\left(\lambda_{2}\right) x_{2}+\cdots+\alpha_{n} p\left(\lambda_{n}\right) x_{n} . \tag{4}
\end{equation*}
$$

If $p\left(\lambda_{i}\right)$ is large compared with $p\left(\lambda_{j}\right)$ for $j \neq i$, then $p(A) u$ is a good approximation to x_{i}.

Convergence

Theorem

If $x_{i}^{H} u \neq 0$ and $p\left(\lambda_{i}\right) \neq 0$, then

$$
\tan \angle\left(p(A) u, x_{i}\right) \leq \max _{j \neq i} \frac{\left|p\left(\lambda_{j}\right)\right|}{\left|p\left(\lambda_{i}\right)\right|} \tan \angle\left(u, x_{i}\right)
$$

Proof: From (4), we have

$$
\cos \angle\left(p(A) u, x_{i}\right)=\frac{\left|x_{i}^{H} p(A) u\right|}{\|p(A) u\|_{2}\left\|x_{i}\right\|_{2}}=\frac{\left|\alpha_{i} p\left(\lambda_{i}\right)\right|}{\sqrt{\sum_{j=1}^{n}\left|\alpha_{j} p\left(\lambda_{j}\right)\right|^{2}}}
$$

and

$$
\sin \angle\left(p(A) u, x_{i}\right)=\frac{\sqrt{\sum_{j \neq i}\left|\alpha_{j} p\left(\lambda_{j}\right)\right|^{2}}}{\sqrt{\sum_{j=1}^{n}\left|\alpha_{j} p\left(\lambda_{j}\right)\right|^{2}}}
$$

Convergence

Hence

$$
\begin{aligned}
\tan ^{2} \angle\left(p(A) u, x_{i}\right) & =\sum_{j \neq i} \frac{\left|\alpha_{j} p\left(\lambda_{j}\right)\right|^{2}}{\left|\alpha_{i} p\left(\lambda_{i}\right)\right|^{2}} \\
& \leq \max _{j \neq i} \frac{\left|p\left(\lambda_{j}\right)\right|^{2}}{\left|p\left(\lambda_{i}\right)\right|^{2}} \sum_{j \neq i} \frac{\left|\alpha_{j}\right|^{2}}{\left|\alpha_{i}\right|^{2}} \\
& =\max _{j \neq i} \frac{\left|p\left(\lambda_{j}\right)\right|^{2}}{\left|p\left(\lambda_{i}\right)\right|^{2}} \tan ^{2} \angle\left(u, x_{i}\right)
\end{aligned}
$$

Assume that $p\left(\lambda_{i}\right)=1$, then
$\tan \angle\left(p(A) u, x_{i}\right) \leq \max _{j \neq i, p\left(\lambda_{i}\right)=1}\left|p\left(\lambda_{j}\right)\right| \tan \angle\left(u, x_{i}\right) \quad \forall \quad p(A) u \in \mathcal{K}_{k}$.

Hence

$$
\tan \angle\left(x_{i}, \mathcal{K}_{k}\right) \leq \min _{\operatorname{deg}(p) \leq k-1, p\left(\lambda_{i}\right)=1} \max _{j \neq i}\left|p\left(\lambda_{j}\right)\right| \tan \angle\left(u, x_{i}\right)
$$

Convergence

Assume that

$$
\lambda_{1}>\lambda_{2} \geq \cdots \geq \lambda_{n}
$$

and that our interest is in the eigenvector x_{1}. Then
$\tan \angle\left(x_{1}, \mathcal{K}_{k}\right) \leq \min _{\operatorname{deg}(p) \leq k-1, p\left(\lambda_{1}\right)=1} \max _{\lambda \in\left[\lambda_{n}, \lambda_{2}\right]}|p(\lambda)| \tan \angle\left(u, x_{1}\right)$.

Question

How to compute

$$
\min _{\operatorname{deg}(p) \leq k-1, p\left(\lambda_{1}\right)=1} \max _{\lambda \in\left[\lambda_{n}, \lambda_{2}\right]}|p(\lambda)| ?
$$

Definition

The Chebyshev polynomials are defined by

$$
c_{k}(t)= \begin{cases}\cos \left(k \cos ^{-1} t\right), & |t| \leq 1 \\ \cosh \left(k \cosh ^{-1} t\right), & |t| \geq 1\end{cases}
$$

Convergence

Theorem

(a) $c_{0}(t)=1, c_{1}(t)=t$ and

$$
c_{k+1}(t)=2 c_{k}(t)-c_{k-1}(t), \quad k=1,2, \ldots
$$

(b) For $|t|>1$,

$$
c_{k}(t)=\left(1+\sqrt{t^{2}-1}\right)^{k}+\left(1+\sqrt{t^{2}-1}\right)^{-k} .
$$

(c) For $t \in[-1,1], \quad\left|c_{k}(t)\right| \leq 1$. Moreover, if

$$
t_{i k}=\cos \frac{(k-i) \pi}{k}, \quad i=0,1, \ldots, k
$$

then

$$
c_{k}\left(t_{i k}\right)=(-1)^{k-i} .
$$

Convergence

(d) For $s>1$,

$$
\begin{equation*}
\min _{\operatorname{deg}(p) \leq k, p(s)=1} \max _{t \in[0,1]}|p(t)|=\frac{1}{c_{k}(s)}, \tag{5}
\end{equation*}
$$

and the minimum is obtained only for $p(t)=c_{k}(t) / c_{k}(s)$.
For applying (5), we define

$$
\lambda=\lambda_{2}+(\mu-1)\left(\lambda_{2}-\lambda_{n}\right)
$$

to transform interval $\left[\lambda_{n}, \lambda_{2}\right]$ to $[0,1]$. Then the value of μ at λ_{1} is

$$
\mu_{1}=1+\frac{\lambda_{1}-\lambda_{2}}{\lambda_{2}-\lambda_{n}}
$$

and

$$
\begin{aligned}
& \min _{\operatorname{deg}(p) \leq k-1, p\left(\lambda_{1}\right)=1} \max _{\lambda \in\left[\lambda_{n}, \lambda_{2}\right]}|p(\lambda)| \\
= & \min _{\operatorname{deg}(p) \leq k-1, p\left(\mu_{1}\right)=1} \max _{\mu \in[0,1]}|p(\mu)|=\frac{1}{e_{k-1}\left(\mu_{1}\right)} .
\end{aligned}
$$

Convergence

Theorem

Let the Hermitian matrix A have an orthonormal eigenpair $\left(\lambda_{i}, x_{i}\right)$ with

$$
\lambda_{1}>\lambda_{2} \geq \cdots \geq \lambda_{n}
$$

Let

$$
\eta=\frac{\lambda_{1}-\lambda_{2}}{\lambda_{2}-\lambda_{n}} .
$$

Then

$$
\begin{aligned}
\tan \angle\left[x_{1}, \mathcal{K}_{k}(A, u)\right] & \leq \frac{\tan \angle\left(x_{1}, u\right)}{c_{k-1}(1+\eta)} \\
& =\frac{\tan \angle\left(x_{1}, u\right)}{\left(1+\sqrt{2 \eta+\eta^{2}}\right)^{k-1}+\left(1+\sqrt{2 \eta+\eta^{2}}\right)^{1-k}}
\end{aligned}
$$

Remark

- For k large, we have

$$
\tan \angle\left[x_{1}, \mathcal{K}_{k}(A, u)\right] \lesssim \frac{\tan \angle\left(x_{1}, u\right)}{\left(1+\sqrt{2 \eta+\eta^{2}}\right)^{k-1}}
$$

- For k large and if η is small, then the bound becomes

$$
\tan \angle\left[x_{1}, \mathcal{K}_{k}(A, u)\right] \lesssim \frac{\tan \angle\left(x_{1}, u\right)}{(1+\sqrt{2 \eta})^{k-1}}
$$

- Compare it with power method: If $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{n}\right|$, then the convergence of the power method is $\left|\lambda_{2} / \lambda_{1}\right|^{k}$.
- For example, let

$$
\lambda_{1}=1, \lambda_{2}=0.95, \lambda_{3}=0.95^{2}, \cdots, \lambda_{100}=0.95^{99}
$$

be the eigenvalues of 100 -by- 100 matrix A. Then $\eta=0.0530$ and the bound on the convergence rate is $1 /(1+\sqrt{2 \eta})=0.7544$. Thus the square root effect gives a great improvement over the rate of 0.95 for the power method.

- Replaced A by $-A$, then the Krylov sequence converges to the eigenvector corresponding to the smallest eigenvalue of A. However, the smallest eigenvalues of a matrix - particularly a positive definite matrix - often tend to cluster together, so that the bound will be unfavorable.
- The hypothesis $\lambda_{1}>\lambda_{2}$ can be relaxed. Suppose that $\lambda_{1}=\lambda_{2}>\lambda_{3}$. Expand u in the form

$$
u=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} x_{3}+\cdots+\alpha_{n} x_{n}
$$

Then

$$
A^{k} u=\lambda_{1}^{k}\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}\right)+\alpha_{3} \lambda_{3}^{k} x_{3}+\cdots+\alpha_{n} \lambda_{n}^{k} x_{n}
$$

This shows that the spaces $\mathcal{K}_{k}(A, u)$ contain only approximations to $\alpha_{1} x_{1}+\alpha_{2} x_{2}$.

Theorem

Let λ be a simple eigenvalue of A and let

$$
A=\left[\begin{array}{ll}
x & X
\end{array}\right]\left[\begin{array}{ll}
\lambda & 0 \\
0 & L
\end{array}\right]\left[\begin{array}{c}
y^{H} \\
Y^{H}
\end{array}\right]=\lambda x y^{H}+X L Y^{H}
$$

be a spectral representation. Let

$$
u=\alpha x+X a,
$$

where

$$
\alpha=y^{H} u \quad \text { and } \quad a=Y^{H} u .
$$

Then

$$
\sin \angle\left[x, \mathcal{K}_{k}(A, u)\right] \leq|\alpha|^{-1} \min _{\operatorname{deg}(p) \leq k-1, p(\lambda)=1}\|X p(L) a\|_{2}
$$

Convergence

Proof: From Theorem 11,

$$
\begin{aligned}
\sin \angle\left[x, \mathcal{K}_{k}(A, u)\right] & =|\alpha|^{-1} \min _{y \in \mathcal{K}_{k}(A, u)}\|\alpha x-y\|_{2} \\
& =|\alpha|^{-1} \min _{\operatorname{deg}(p) \leq k-1}\|\alpha x-p(A) u\|_{2} \\
& \leq|\alpha|^{-1} \min _{\operatorname{deg}(p) \leq k-1, p(\lambda)=1}\|\alpha x-p(A) u\|_{2}
\end{aligned}
$$

Since

$$
p(\lambda)=1 \quad \text { and } \quad A X=X L
$$

we have
$p(A) u=p(A)(\alpha x+X a)=\alpha p(\lambda) x+X p(L) a=\alpha x+X p(L) a$.
Hence

$$
\begin{aligned}
\sin \angle\left[x, \mathcal{K}_{k}(A, u)\right] & \leq|\alpha|^{-1} \min _{\operatorname{deg}(p) \leq k-1, p(\lambda)=1}\|\alpha x-(\alpha x+X p(L) a)\|_{2} \\
& =|\alpha|^{-1} \min _{\operatorname{deg}(p) \leq k-1, p(\lambda)=1}\|X p(L) a\|_{2} .
\end{aligned}
$$

Let $\left(\lambda_{i}, x_{i}\right)$ be an eigenpair of A for $i=1, \ldots, n$. Write vector u in the form

$$
u=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{n} x_{n}
$$

Assume that λ_{1} is double, i.e., $\lambda_{1}=\lambda_{2}$. Then

$$
A^{k} u=\lambda_{1}^{k}\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}\right)+\lambda_{3}^{k} \alpha_{3} x_{3}+\cdots+\lambda_{n}^{k} \alpha_{n} x_{n} .
$$

Hence the Krylov sequence can only produce the approximation $\alpha_{1} x_{1}+\alpha_{2} x_{2}$ to a vector in the eigenspace of λ_{1}. Let U be a matrix with linearly independent columns. Then the sequence

$$
\left\{U, A U, A^{2} U, \ldots\right\}
$$

is called a block Krylov sequence and the space $\mathcal{K}_{k}(A, U)$ is called the k-th block Krylov space.

Gaol: passing to block Krylov sequence improves the convergence bound.

Theorem

Let A be Hermitian and let $\left(\lambda_{i}, x_{i}\right)$ be a complete system (n eigenvectors are linearly independent) of orthonormal eigenpairs of A with

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}
$$

and assume that the multiplicity of λ_{1} is not greater than m. If

$$
B=\left[\begin{array}{c}
x_{1}^{H} \\
\vdots \\
x_{m}^{H}
\end{array}\right] U
$$

is nonsingular and we set

$$
v=U B^{-1} e_{1}
$$

Block Krylov spaces

then

$$
\begin{aligned}
\tan \angle\left[x_{1}, \mathcal{K}_{k}(A, U)\right] & \leq \frac{\tan \angle\left(x_{1}, v\right)}{c_{k-1}(1+2 \eta)} \\
& =\frac{\tan \angle\left(x_{1}, v\right)}{\left(1+2 \sqrt{\eta+\eta^{2}}\right)^{k-1}+\left(1+2 \sqrt{\eta+\eta^{2}}\right)^{1-k}}
\end{aligned}
$$

where

$$
\eta=\frac{\lambda_{1}-\lambda_{m+1}}{\lambda_{m+1}-\lambda_{n}}
$$

Proof: Since $v \in \mathcal{R}(U)$, we have $\mathcal{K}_{k}(A, v) \subset \mathcal{K}_{k}(A, U)$. By Theorem 11,

$$
\begin{aligned}
\sin \angle\left[x_{1}, \mathcal{K}_{k}(A, U)\right] & =\min _{y \in \mathcal{K}_{k}(A, U)}\left\|x_{1}-y\right\|_{2} \\
& \leq \min _{y \in \mathcal{K}_{k}(A, v)}\left\|x_{1}-y\right\|_{2}=\sin \angle\left[x_{1}, \mathcal{K}_{k}(A, v)\right\}
\end{aligned}
$$

Block Krylov spaces

This implies that

$$
\angle\left[x_{1}, \mathcal{K}_{k}(A, U)\right] \leq \angle\left[x_{1}, \mathcal{K}_{k}(A, v)\right]
$$

By the definition of B, we have

$$
\left[\begin{array}{c}
x_{1}^{H} \\
\vdots \\
x_{n}^{H}
\end{array}\right] U B^{-1}=I \quad \Rightarrow \quad x_{i}^{H} U B^{-1}=e_{i}^{T} \text { for } i=1, \ldots, m .
$$

By the definition of v,

$$
x_{i}^{H} v=x_{i}^{H} U B^{-1} e_{1}=0 \text { for } i=2, \ldots, m
$$

On the other hand, $\left(\lambda_{i}, x_{i}\right)$ is an eigenpair of Hermitian A, i.e., $x_{i}^{H} A=\lambda_{i} x_{i}^{H}$. Hence

$$
x_{i}^{H} A^{j} v=\lambda_{i}^{j} x_{i}^{H} v=0 \text { for } i=2, \ldots, m .
$$

This implies that x_{2}, \ldots, x_{m} are not contained in $\mathcal{K}_{k}(A, v)$. That is

$$
A^{j} v=\alpha_{1} \lambda_{1}^{j} x_{1}+\alpha_{m+1} \lambda_{m+1}^{j} x_{m+1}+\cdots+\alpha_{n} \lambda_{n}^{j} x_{n}
$$

for $j=1, \ldots, k-1$. We may now apply Theorem 23 to get (6).

Theorem

Let \mathcal{U} be a subspace and let U be a basis for \mathcal{U}. Let V be a left inverse of U and set

$$
B=V^{H} A U .
$$

If $\mathcal{X} \subset \mathcal{U}$ is an eigenspace of A, then there is an eigenpair (L, W) of B such that $(L, U W)$ is an eigenpair of A with $\mathcal{R}(U W)=\mathcal{X}$.

Proof: Let (L, X) be an eigenpair of A and let $X=U W$. Then from the relation

$$
A U W=U W L
$$

we obtain

$$
B W=V^{H} A U W=V^{H} U W L=W L,
$$

so that (L, W) is an eigenpair of B.

We can find exact eigenspaces contained in \mathcal{U} by looking at eigenpairs of the Rayleigh quotient B.

Algorithm (Rayleigh-Ritz procedure)

(1) Let U be a basis for \mathcal{U} and let V^{H} be a left inverse of U.
(2) Form the Rayleigh quotient $B=V^{H} A U$.
(0) Let (M, W) be a suitable eigenpair of B.
(0) Return $(M, U W)$ as an approximate eigenpair of A.

- ($M, U W$) is called a Ritz pair. Written Ritz pair in the form $(\lambda, U w)$, we will call λ a Ritz value and $U w$ a Ritz vector.
- Two difficulties for Rayleigh-Ritz procedure: (i) how to choose the eigenpair (M, W) in statement 3 . (ii) no guarantee that the result approximates the desired eigenpair of A.

Example

Let $A=\operatorname{diag}(0,1,-1)$ and suppose we interested in approximating the eigenpair $\left(0, e_{1}\right)$. Assume

$$
U=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 / \sqrt{2} \\
0 & 1 / \sqrt{2}
\end{array}\right]
$$

Then

$$
B=U^{H} A U=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

and any nonzero vector p is an eigenvector of B. If we take $p=[1,1]^{T}$, then $U p=[1,1 / \sqrt{2}, 1 / \sqrt{2}]$ is an approximate eigenvector of A, which is completely wrong. Thus the method can fail, even though the space \mathcal{U} contains the desired eigenvector.

- The matrices U and V in Algorithm 1 satisfy the condition $V^{H} U=I$ and they can differ. Hence Algorithm 1 is called an oblique Rayleigh-Ritz method.
- If the matrix U is taken to be orthonormal and $V=U$. In addition, W is taken to be orthonormal, so that $\hat{X} \equiv U W$ is also orthonormal. We call this procedure the orthogonal Rayleigh-Rite method.

Theorem

Let $(M, \hat{X} \equiv U W)$ be an orthogonal Rayleigh-Rite pair. Then

$$
R=A \hat{X}-\hat{X} M
$$

is minimal in any unitarily invariant norm.

Proof: By Theorem 14, we need to show $M=\hat{X}^{H} A \hat{X}$. Since (M, W) is an eigenpair of B and W is orthonormal, we have

$$
M=W^{H} B W
$$

and

$$
\hat{X}^{H} A \hat{X}=W^{H} U^{H} A U W=W^{H} B W=M .
$$

Convergence

Let (λ, x) be the desired eigenpair of A and U_{θ} be an orthonormal basis for which $\theta=\angle\left(x, U_{\theta}\right)$ is small.

Theorem

Let

$$
B_{\theta}=U_{\theta}^{H} A U_{\theta} .
$$

Then there is a matrix E_{θ} satisfying

$$
\left\|E_{\theta}\right\|_{2} \leq \frac{\sin \theta}{\sqrt{1-\sin ^{2} \theta}}\|A\|_{2}
$$

such that λ is an eigenvalue of $B_{\theta}+E_{\theta}$.
Proof. Let $\left(U_{\theta}, U_{\perp}\right)$ be unitary and set

$$
y=U_{\theta}^{H} x \quad \text { and } \quad z=U_{\perp}^{H} x .
$$

Convergence

From Theorem 10, we have

$$
\|z\|_{2}=\sin \theta \quad \text { and } \quad\|y\|_{2}=\sqrt{1-\sin ^{2} \theta}
$$

Since $A x-\lambda x=0$, we have

$$
U_{\theta}^{H} A\left[U_{\theta}, U_{\perp}\right]\left[\begin{array}{c}
U_{\theta}^{H} \\
U_{\perp}^{H}
\end{array}\right] x-\lambda U_{\theta}^{H} x=0,
$$

or

$$
B_{\theta} y+U_{\theta}^{H} A U_{\perp} z-\lambda y=0
$$

Let $\hat{y}=y /\|y\|_{2}=y / \sqrt{1-\sin ^{2} \theta}$. If

$$
r \equiv B_{\theta} \hat{y}-\lambda \hat{y}=\frac{-1}{\sqrt{1-\sin ^{2} \theta}} U_{\theta}^{H} A U_{\perp} z
$$

it follows that

$$
\|r\|_{2} \leq \frac{\sin \theta}{\sqrt{1-\sin ^{2} \theta}}\|A\|_{2}
$$

Convergence

Now define

$$
E_{\theta}=-r \hat{y}^{H} .
$$

Then

$$
\left\|E_{\theta}\right\|_{2}=\sqrt{\lambda_{1}\left(\left(r \hat{y}^{H}\right)\left(\hat{y} r^{H}\right)\right)}=\sqrt{\lambda_{1}\left(r r^{H}\right)}=\|r\|_{2} \leq \frac{\sin \theta}{\sqrt{1-\sin ^{2} \theta}}\|A\|_{2}
$$ and

$$
\left(B_{\theta}+E_{\theta}\right) \hat{y}=B_{\theta} \hat{y}-\left(r \hat{y}^{H}\right) \hat{y}=B_{\theta} \hat{y}-r=\lambda \hat{y}
$$

Therefore, (λ, \hat{y}) is an eigenpair of $B_{\theta}+E_{\theta}$.

Corollary

There is an eigenvalue μ_{θ} of B_{θ} such that

$$
\left|\mu_{\theta}-\lambda\right| \leq 4\left(2\|A\|_{2}+\left\|E_{\theta}\right\|_{2}\right)^{1-1 / m}\left\|E_{\theta}\right\|_{2}^{1 / m}
$$

where m is the order of B_{θ}.

Theorem

Let $\left(\mu_{\theta}, w_{\theta}\right)$ be an eigenpair of B_{θ} and let $\left[\begin{array}{ll}w_{\theta} & W_{\theta}\end{array}\right]$ be unitary, so that

$$
\left[\begin{array}{c}
w_{\theta}^{H} \\
W_{\theta}^{H}
\end{array}\right] B_{\theta}\left[\begin{array}{ll}
w_{\theta} & W_{\theta}
\end{array}\right]=\left[\begin{array}{cc}
\mu_{\theta} & h_{\theta}^{H} \\
0 & N_{\theta}
\end{array}\right] .
$$

Then

$$
\sin \angle\left(x, U_{\theta} w_{\theta}\right) \leq \sin \theta \sqrt{1+\frac{\left\|h_{\theta}\right\|_{2}^{2}}{\operatorname{sep}\left(\lambda, N_{\theta}\right)^{2}}},
$$

where $\operatorname{sep}\left(\lambda, N_{\theta}\right)=\left\|\left(\lambda I-N_{\theta}\right)^{-1}\right\|^{-1}$.

Convergence

By the continuity of sep, we have

$$
\begin{aligned}
& \left|\operatorname{sep}\left(\lambda, N_{\theta}\right)-\operatorname{sep}\left(\mu_{\theta}, N_{\theta}\right)\right| \leq\left|\mu_{\theta}-\lambda\right| \\
\Rightarrow \quad & \operatorname{sep}\left(\lambda, N_{\theta}\right) \geq \operatorname{sep}\left(\mu_{\theta}, N_{\theta}\right)-\left|\mu_{\theta}-\lambda\right| .
\end{aligned}
$$

Suppose $\mu_{\theta} \rightarrow \lambda$ and $\operatorname{sep}\left(\mu_{\theta}, N_{\theta}\right)$ is bounded below. Then $\operatorname{sep}\left(\lambda, N_{\theta}\right)$ is also bounded below. Since $\left\|h_{\theta}\right\|_{2} \leq\|A\|_{2}$, we have $\sin \angle\left(x, U_{\theta} w_{\theta}\right) \rightarrow 0$ along with θ.

Corollary

Let $\left(\mu_{\theta}, U_{\theta} w_{\theta}\right)$ be a Ritz pair for which $\mu_{\theta} \rightarrow \lambda$. If there is a constant $\alpha>0$ such that

$$
\begin{equation*}
\operatorname{sep}\left(\mu_{\theta}, N_{\theta}\right) \geq \alpha>0 \tag{7}
\end{equation*}
$$

then

$$
\sin \angle\left(x, U_{\theta} w_{\theta}\right) \lesssim \sin \theta \sqrt{1+\frac{\|A\|_{2}}{\alpha^{2}}}
$$

Convergence

This corollary justifies that eigenvalue convergence plus separation equals eigenvector convergence.
The condition (7) is called the uniform separation condition. Let $\left(\mu_{\theta}, x_{\theta}\right)$ with $\left\|x_{\theta}\right\|_{2}=1$ be the Ritz approximation to (λ, x). Then by construction, we have

$$
\begin{equation*}
\mu_{\theta}=x_{\theta}^{H} A x_{\theta} . \tag{8}
\end{equation*}
$$

Write

$$
\begin{equation*}
x_{\theta}=\gamma x+\sigma y \tag{9}
\end{equation*}
$$

where $y \perp x$ and $\|y\|_{2}=1$. Then
$|\gamma|=\left|x^{H} x_{\theta}\right|=\cos \angle\left(x_{\theta}, x\right) \quad$ and $\quad|\sigma|=\left|y^{H} x_{\theta}\right|=\sin \angle\left(x_{\theta}, x\right)$.
If the uniform separation is satisfied, we have

$$
|\sigma|=\sin \angle\left(x_{\theta}, x\right)=O(\theta)
$$

Convergence

Substituting (9) into (8) and using the facts of $A x=\lambda x$ and $y^{H} x=0$, we find that

$$
\begin{aligned}
\mu_{\theta} & =\left(\bar{\gamma} x^{H}+\bar{\sigma} y^{H}\right)(\gamma \lambda x+\sigma A y) \\
& =|\gamma|^{2} \lambda+\sigma x_{\theta}^{H} A y .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left|\mu_{\theta}-\lambda\right| & =\left|\left(|\gamma|^{2}-1\right) \lambda+\sigma x_{\theta}^{H} A y\right| \\
& \leq|\sigma|^{2}|\lambda|+|\sigma|\left\|x_{\theta}\right\|_{2}\|A\|_{2}\|y\|_{2} \\
& \leq|\sigma|(1+|\sigma|)\|A\|_{2} \\
& =O(\theta) .
\end{aligned}
$$

Thus the Ritz value converges at least as fast as the eigenvector approximation of x in $\mathcal{U}\left(U_{\theta}\right)$.

Convergence

If A is Hermitian, then

$$
\begin{aligned}
\mu_{\theta} & =\left(\bar{\gamma} x^{H}+\bar{\sigma} y^{H}\right)(\gamma \lambda x+\sigma A y) \\
& =|\gamma|^{2} \lambda+\bar{r} \sigma x^{H} A y+|\sigma|^{2} y^{H} A y=|\gamma|^{2} \lambda+\bar{r} \sigma \bar{\lambda} x^{H} y+|\sigma|^{2} y^{H} A y \\
& =|\gamma|^{2} \lambda+|\sigma|^{2} y^{H} A y
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\mu_{\theta}-\lambda\right| & =\left|\left(|\gamma|^{2}-1\right) \lambda+|\sigma|^{2} y^{H} A y\right| \\
& \leq|\sigma|^{2}|\lambda|+|\sigma|^{2}\|y\|_{2}\|A\|_{2}\|y\|_{2} \\
& \leq 2|\sigma|^{2}\|A\|_{2} \\
& =O\left(\theta^{2}\right)
\end{aligned}
$$

Since the angle $\theta=\angle\left(x, U_{\theta}\right)$ cannot be known and hence cannot compute error bounds. Thus, we must look to the residual as an indication of convergence.

Theorem

Let A have the spectral representation

$$
A=\lambda x y^{H}+X L Y^{H},
$$

where $\|x\|_{2}=1$ and Y is orthonormal. Let (μ, \tilde{x}) be an approximation to (λ, x) and let

$$
\rho=\|A \tilde{x}-\mu \tilde{x}\|_{2} .
$$

Then

$$
\sin \angle(\tilde{x}, x) \leq \frac{\rho}{\operatorname{sep}(\mu, L)} \leq \frac{\rho}{\operatorname{sep}(\lambda, L)-|\mu-\lambda|} .
$$

Proof: Since $Y^{H} x=0$, we have that Y is an orthonormal basis for the orthogonal complement of the space span $\{x\}$ and then $\sin \angle(\tilde{x}, x)=\left\|Y^{H} \tilde{x}\right\|_{2}$. Let $r=A \tilde{x}-\mu \tilde{x}$. Then

$$
Y^{H} r=Y^{H} A \tilde{x}-\mu Y^{H} \tilde{x}=(L-\mu I) Y^{H} \tilde{x} .
$$

It follows that

$$
\sin \angle(\tilde{x}, x)=\left\|(L-\mu I)^{-1} Y^{H} r\right\|_{2} \leq \frac{\|r\|_{2}}{\operatorname{sep}(\mu, L)} .
$$

By the fact that $\operatorname{sep}(\mu, L) \geq \operatorname{sep}(\lambda, L)-|\mu-\lambda|$, the second inequality is obtained.
Since λ is assumed to be simple, this theorem says that:
Sufficient condition for \tilde{x} to converge to x is for μ to converge to λ and for the residual to converge to zero.

Refined Ritz vectors

Definition

Let μ_{θ} be a Ritz value associated with \mathcal{U}_{θ}. A refined Ritz vector is a solution of the problem

$$
\begin{array}{ll}
\min & \left\|A \hat{x}_{\theta}-\mu_{\theta} \hat{x}_{\theta}\right\|_{2} \\
\text { subject to } & \hat{x}_{\theta} \in \mathcal{U}_{\theta},\left\|\hat{x}_{\theta}\right\|_{2}=1
\end{array}
$$

Theorem

Let A have the spectral representation

$$
A=\lambda x y^{H}+X L Y^{H}
$$

where $\|x\|_{2}=1$ and Y is orthonormal. Let μ_{θ} be a Ritz value and \hat{x}_{θ} the corresponding refined Ritz vector. If $\operatorname{sep}(\lambda, L)-\left|\mu_{\theta}-\lambda\right|>0$, then

$$
\sin \angle\left(x, \hat{x}_{\theta}\right) \leq \frac{\left\|A-\mu_{\theta} I\right\|_{2} \sin \theta+\left|\lambda-\mu_{\theta}\right|}{\sqrt{1-\sin ^{2} \theta}\left[\operatorname{sep}(\lambda, L)-\left|\lambda-\mu_{\theta}\right|\right]}
$$

Refined Ritz vectors

Proof: Let U be an orthonormal basis for \mathcal{U}_{θ} and let $x=y+z$, where $z=U U^{H} x$. Then

$$
\|z\|_{2}=\left\|U^{H} x\right\|_{2}=\sin \theta .
$$

Moreover, since y and x are orthogonal,

$$
\begin{aligned}
\|z\|_{2}^{2} & =\|x-y\|_{2}^{2}=\left(x^{H}-y^{H}\right)(x-y) \\
& =\|x\|_{2}^{2}+\|y\|_{2}^{2}=1+\|y\|_{2}^{2} \\
& \Rightarrow\|y\|_{2}^{2}=1-\|z\|_{2}^{2}=1-\sin ^{2} \theta .
\end{aligned}
$$

Let

$$
\hat{y}=\frac{y}{\sqrt{1-\sin ^{2} \theta}},
$$

we have

$$
\begin{aligned}
\left(A-\mu_{\theta} I\right) \hat{y} & =\frac{\left(A-\mu_{\theta} I\right) y}{\sqrt{1-\sin ^{2} \theta}}=\frac{\left(A-\mu_{\theta} I\right)(x-z)}{\sqrt{1-\sin ^{2} \theta}} \\
& =\frac{\left(\lambda-\mu_{\theta}\right) x-\left(A-\mu_{\theta} I\right) z}{\sqrt{1-\sin ^{2} \theta}}
\end{aligned}
$$

Refined Ritz vectors

Hence

$$
\left\|\left(A-\mu_{\theta} I\right) \hat{y}\right\|_{2} \leq \frac{\left|\lambda-\mu_{\theta}\right|+\left\|A-\mu_{\theta} I\right\| \sin \theta}{\sqrt{1-\sin ^{2} \theta}}
$$

By the definition of a refined Ritz vector we have

$$
\left\|\left(A-\mu_{\theta} I\right) \hat{x}\right\|_{2} \leq \frac{\left|\lambda-\mu_{\theta}\right|+\left\|A-\mu_{\theta} I\right\| \sin \theta}{\sqrt{1-\sin ^{2} \theta}}
$$

The result now follows from Theorem 35.

Remark

- By Corollary 30, $\mu_{\theta} \rightarrow \lambda$. It follows that $\sin \angle\left(x, \hat{x}_{\theta}\right) \rightarrow 0$. In other words, refined Ritz vectors are guaranteed to converge.
- $\hat{\mu}_{\theta}=\hat{x}_{\theta}^{H} A \hat{x}_{\theta}$ is more accurate than μ_{θ} and $\left\|A \hat{x}_{\theta}-\hat{\mu}_{\theta} \hat{x}_{\theta}\right\|_{2}$ is optimal.

The computation of a refined Ritz vector amounts to solve

$$
\begin{array}{ll}
\min & \|A \hat{x}-\mu \hat{x}\|_{2} \tag{10}\\
\text { subject to } & \hat{x} \in \mathcal{U},\|\hat{x}\|_{2}=1 .
\end{array}
$$

Let U be an orthonormal basis for \mathcal{U}. Then (10) is equivalent to

$$
\begin{array}{ll}
\min & \|(A-\mu I) U z\|_{2} \\
\text { subject to } & \|z\|_{2}=1 .
\end{array}
$$

The solution of this problem is the right singular vector of $(A-\mu I) U$ corresponding to its smallest singular value. Thus refined Ritz vector can be computed by the following algorithm.
(1) $V=A U$
(2) $W=V-\mu U$
(0) Compute the smallest singular value of W and its right singular vector z
(1) $\hat{x}=U z$

Exterior eigenvalues are easily convergent than interior eigenvalues by Rayleigh quotient. The quality of the refined Ritz vector depends on the accuracy of the Ritz value μ and each refined Ritz vector must be calculated independently from its own distinct value of μ.

Definition

Let U be an orthonormal basis for subspace \mathcal{U}. Then $(\kappa+\delta, U w)$ is a Harmonic Ritz pair with shift κ if

$$
\begin{equation*}
U^{H}(A-\kappa I)^{H}(A-\kappa I) U w=\delta U^{H}(A-\kappa I)^{H} U w . \tag{11}
\end{equation*}
$$

Given shift κ, (11) is a generalized eigenvalue problem with eigenvalue δ.

Theorem

Let (λ, x) be an eigenpair of A with $x=U w$. Then $(\lambda, U w)$ is a harmonic Ritz pair.

Proof: Since (λ, x) is an eigenpair of A with $x=U w$, we have

$$
A x=\lambda x \quad \Rightarrow \quad A U w=\lambda U w .
$$

It implies that

$$
U^{H}(A-\kappa I)^{H}(A-\kappa I) U w=(\lambda-\kappa) U^{H}(A-\kappa I)^{H} U w .
$$

Taking eigenvalue $\delta=\lambda-\kappa$, we obtain

$$
U^{H}(A-\kappa I)^{H}(A-\kappa I) U w=\delta U^{H}(A-\kappa I)^{H} U w .
$$

That is $(\kappa+\delta, U w)=(\lambda, U w)$ is a harmonic Ritz pair.

Given a shift κ, if we want to compute the eigenvalue λ of A which is closest to κ, then we need to compute the eigenvalue δ of (11) such that $|\delta|$ is the smallest value of all of the absolute values for the eigenvalues of (11).

Expect

If x is approximately represented in \mathcal{U}, then the harmonic Rayleigh-Ritz will produce an approximation to x.

Question

How to compute the eigenpair (δ, w) of (11)?

Let

$$
(A-\kappa I) U=Q R
$$

be the $Q R$ factorization of $(A-\kappa I) U$. Then (11) can be rewritten as

$$
R^{H} R w=\delta R^{H} Q^{H} U w
$$

That is

$$
\left(Q^{H} U\right) w=\delta^{-1} R w
$$

This eigenvalue can be solved by the $Q Z$ algorithm. The harmonic Ritz vector $\hat{x}=U w$ and the corresponding harmonic Ritz value is $\mu=\hat{x}^{H} A \hat{x}$.

