Power and inverse power methods

Tsung-Ming Huang

Department of Mathematics
National Taiwan Normal University, Taiwan

February 15, 2011

Outline

(1) Power method
(2) Inverse power method

Definition 1

(1) An eigenvalue whose geometric multiplicity is less than its algebraic multiplicity is defective.
(2) The matrix $A \in \mathbb{C}^{n \times n}$ has a complete system of eigenvectors if it has n linearly independent eigenvectors.

Let A be a nondefective matrix and (λ_{i}, x_{i}) for $i=1, \cdots, n$ be a complete set of eigenpairs of A. That is $\left\{x_{1}, \cdots, x_{n}\right\}$ is linearly independent. Hence, for any $u_{0} \neq 0, \exists \alpha_{1}, \cdots, \alpha_{n}$ such that

$$
u_{0}=\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}
$$

Now $A^{k} x_{i}=\lambda_{i}^{k} x_{i}$, so that

$$
\begin{equation*}
A^{k} u_{0}=\alpha_{1} \lambda_{1}^{k} x_{1}+\cdots+\alpha_{n} \lambda_{n}^{k} x_{n} \tag{1}
\end{equation*}
$$

If $\left|\lambda_{1}\right|>\left|\lambda_{i}\right|$ for $i \geq 2$ and $\alpha_{1} \neq 0$, then

$$
\frac{1}{\lambda_{1}^{k}} A^{k} u_{0}=\alpha_{1} x_{1}+\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} \alpha_{2} x_{2}+\cdots+\alpha_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} x_{n} \rightarrow \alpha_{1} x_{1} \text { as } k \rightarrow \infty
$$

Algorithm 1 (Power Method with 2-norm)

Choose an initial $u \neq 0$ with $\|u\|_{2}=1$. Iterate until convergence Compute $v=A u ; k=\|v\|_{2} ; u:=v / k$

Theorem 2

The sequence defined by Algorithm 1 is satisfied

$$
\begin{aligned}
& \lim _{i \rightarrow \infty} k_{i}=\left|\lambda_{1}\right| \\
& \lim _{i \rightarrow \infty} \varepsilon^{i} u_{i}=\frac{x_{1}}{\left\|x_{1}\right\|} \frac{\alpha_{1}}{\left|\alpha_{1}\right|}, \text { where } \varepsilon=\frac{\left|\lambda_{1}\right|}{\lambda_{1}}
\end{aligned}
$$

Proof: It is obvious that

$$
\begin{equation*}
u_{s}=A^{s} u_{0} /\left\|A^{s} u_{0}\right\|, \quad k_{s}=\left\|A^{s} u_{0}\right\| /\left\|A^{s-1} u_{0}\right\| \tag{2}
\end{equation*}
$$

This follows from $\lambda_{1}{ }^{-s} A^{s} u_{0} \longrightarrow \alpha_{1} x_{1}$ that

$$
\begin{aligned}
\left|\lambda_{1}\right|^{-s}\left\|A^{s} u_{0}\right\| & \longrightarrow\left|\alpha_{1}\right|\left\|x_{1}\right\| \\
\left|\lambda_{1}\right|^{-s+1}\left\|A^{s-1} u_{0}\right\| & \longrightarrow\left|\alpha_{1}\right|\left\|x_{1}\right\|
\end{aligned}
$$

and then

$$
\left|\lambda_{1}\right|^{-1}\left\|A^{s} u_{0}\right\| /\left\|A^{s-1} u_{0}\right\|=\left|\lambda_{1}\right|^{-1} k_{s} \longrightarrow 1 .
$$

From (1) follows now for $s \rightarrow \infty$

$$
\begin{aligned}
\varepsilon^{s} u_{s} & =\varepsilon^{s} \frac{A^{s} u_{0}}{\left\|A^{s} u_{0}\right\|}=\frac{\alpha_{1} x_{1}+\sum_{i=2}^{n} \alpha_{i}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{s} x_{i}}{\left\|\alpha_{1} x_{1}+\sum_{i=2}^{n} \alpha_{i}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{s} x_{i}\right\|} \\
& \rightarrow \frac{\alpha_{1} x_{1}}{\left\|\alpha_{1} x_{1}\right\|}=\frac{x_{1}}{\left\|x_{1}\right\|} \frac{\alpha_{1}}{\left|\alpha_{1}\right|}
\end{aligned}
$$

Algorithm 2 (Power Method with Linear Function)

Choose an initial $u \neq 0$. Iterate until convergence

Compute $v=A u ; k=\ell(v) ; u:=v / k$ where $\ell(v)$, e.g. $e_{1}(v)$ or $e_{n}(v)$, is a linear functional.

Theorem 3
Suppose $\ell\left(x_{1}\right) \neq 0$ and $\ell\left(v_{i}\right) \neq 0, i=1,2, \ldots$, then

$$
\begin{aligned}
& \lim _{i \rightarrow \infty} k_{i}=\lambda_{1} \\
& \lim _{i \rightarrow \infty} u_{i}=\frac{x_{1}}{\ell\left(x_{1}\right)} .
\end{aligned}
$$

Proof: As above we show that

$$
u_{i}=A^{i} u_{0} / \ell\left(A^{i} u_{0}\right), \quad k_{i}=\ell\left(A^{i} u_{0}\right) / \ell\left(A^{i-1} u_{0}\right)
$$

From (1) we get for $i \rightarrow \infty$

$$
\begin{gathered}
\lambda_{1}^{-i} \ell\left(A^{i} u_{0}\right) \longrightarrow \alpha_{1} \ell\left(x_{1}\right), \\
\lambda_{1}^{-i+1} \ell\left(A^{i-1} u_{0}\right) \longrightarrow \alpha_{1} \ell\left(x_{1}\right),
\end{gathered}
$$

thus

$$
\lambda_{1}{ }^{-1} k_{i} \longrightarrow 1
$$

Similarly for $i \longrightarrow \infty$,

$$
u_{i}=\frac{A^{i} u_{0}}{\ell\left(A^{i} u_{0}\right)}=\frac{\alpha_{1} x_{1}+\sum_{j=2}^{n} \alpha_{j}\left(\frac{\lambda_{j}}{\lambda_{1}}\right)^{i} x_{j}}{\ell\left(\alpha_{1} x_{1}+\sum_{j=2}^{n} \alpha_{j}\left(\frac{\lambda_{j}}{\lambda_{1}}\right)^{i} x_{j}\right)} \longrightarrow \frac{\alpha_{1} x_{1}}{\alpha_{1} \ell\left(x_{1}\right)}
$$

- Note that:

$$
\begin{aligned}
k_{i} & =\frac{\ell\left(A^{i} u_{0}\right)}{\ell\left(A^{i-1} u_{0}\right)}=\lambda_{1} \frac{\alpha_{1} \ell\left(x_{1}\right)+\sum_{j=2}^{n} \alpha_{j}\left(\frac{\lambda_{j}}{\lambda_{1}}\right)^{i} \ell\left(x_{j}\right)}{\alpha_{1} \ell\left(x_{1}\right)+\sum_{j=2}^{n} \alpha_{j}\left(\frac{\lambda_{j}}{\lambda_{1}}\right)^{i-1} \ell\left(x_{j}\right)} \\
& =\lambda_{1}+O\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{i-1}\right) .
\end{aligned}
$$

That is the convergent rate is $\left|\frac{\lambda_{2}}{\lambda_{1}}\right|$.

Theorem 4

Let $u \neq 0$ and for any μ set $r_{\mu}=A u-\mu u$. Then $\left\|r_{\mu}\right\|_{2}$ is minimized when

$$
\mu=u^{*} A u / u^{*} u
$$

In this case $r_{\mu} \perp u$.
Proof: W.L.O.G. assume $\|u\|_{2}=1$. Let $\left(\begin{array}{ll}u & U\end{array}\right)$ be unitary and set

$$
\binom{u^{*}}{U^{*}} A\left(\begin{array}{cc}
u & U
\end{array}\right) \equiv\left(\begin{array}{cc}
\nu & h^{*} \\
g & B
\end{array}\right)=\left(\begin{array}{cc}
u^{*} A u & u^{*} A U \\
U^{*} A u & U^{*} A U
\end{array}\right) .
$$

Then

$$
\begin{aligned}
\binom{u^{*}}{U^{*}} r_{\mu} & =\binom{u^{*}}{U^{*}} A u-\mu\binom{u^{*}}{U^{*}} u \\
& =\binom{u^{*}}{U^{*}} A\left(\begin{array}{cc}
u & U
\end{array}\right)\binom{u^{*}}{U^{*}} u-\mu\binom{u^{*}}{U^{*}} u \\
& =\left(\begin{array}{cc}
\nu & h^{*} \\
g & B
\end{array}\right)\binom{u^{*}}{U^{*}} u-\mu\binom{u^{*}}{U^{*}} u \\
& =\left(\begin{array}{cc}
\nu & h^{*} \\
g & B
\end{array}\right)\binom{1}{0}-\mu\binom{1}{0}=\binom{\nu-\mu}{g}
\end{aligned}
$$

It follows that

$$
\left\|r_{\mu}\right\|_{2}^{2}=\left\|\binom{u^{*}}{U^{*}} r_{\mu}\right\|_{2}^{2}=\left\|\binom{\nu-\mu}{g}\right\|_{2}^{2}=|\nu-\mu|^{2}+\|g\|_{2}^{2}
$$

Hence

$$
\min _{\mu}\left\|r_{\mu}\right\|_{2}=\|g\|_{2}=\left\|r_{\nu}\right\|_{2}
$$

That is $\mu=\nu=u^{*} A u$. On the other hand, since

$$
u^{*} r_{\mu}=u^{*}(A u-\mu u)=u^{*} A u-\mu=0,
$$

it implies that $r_{\mu} \perp u$.

Definition 5 (Rayleigh quotient)

Let u and v be vectors with $v^{*} u \neq 0$. Then $v^{*} A u / v^{*} u$ is called a Rayleigh quotient.

If u or v is an eigenvector corresponding to an eigenvalue λ of A, then

$$
\frac{v^{*} A u}{v^{*} u}=\lambda \frac{v^{*} u}{v^{*} u}=\lambda
$$

Therefore, $u_{k}^{*} A u_{k} / u_{k}^{*} u_{k}$ provide a sequence of approximation to λ in the power method.

Inverse power method

Goal

Find the eigenpair (λ, x) of A where λ is belonged to a given region or closest to a certain scalar σ.

Let $\lambda_{1}, \cdots, \lambda_{n}$ be the eigenvalues of A. Suppose λ_{1} is simple and $\sigma \approx \lambda_{1}$. Then

$$
\mu_{1}=\frac{1}{\lambda_{1}-\sigma}, \mu_{2}=\frac{1}{\lambda_{2}-\sigma}, \cdots, \mu_{n}=\frac{1}{\lambda_{n}-\sigma}
$$

are eigenvalues of $(A-\sigma I)^{-1}$ and $\mu_{1} \rightarrow \infty$ as $\sigma \rightarrow \lambda_{1}$. Thus we transform λ_{1} into a dominant eigenvalue μ_{1}.
The inverse power method is simply the power method applied to $(A-\sigma I)^{-1}$.

Algorithm 3 (Inverse power method with a fixed shift)

Choose an initial $u_{0} \neq 0$.
For $i=0,1,2, \ldots$
Compute $v_{i+1}=(A-\sigma I)^{-1} u_{i}$ and $k_{i+1}=\ell\left(v_{i+1}\right)$.
Set $u_{i+1}=v_{i+1} / k_{i+1}$

- The convergence of Algorithm 3 is $\left|\frac{\lambda_{1}-\sigma}{\lambda_{2}-\sigma}\right|$ whenever λ_{1} and λ_{2} are the closest and the second closest eigenvalues to σ.
- Algorithm 3 is linearly convergent.

Let (λ, x) be an eigenpair of A, i.e.,

$$
A x=\lambda x \Rightarrow(A-\sigma I) x=(\lambda-\sigma) x \Rightarrow(A-\sigma I)^{-1} x=\frac{1}{\lambda-\sigma} x \equiv \mu x .
$$

It implies that

$$
\lambda=\sigma+\mu^{-1} .
$$

Algorithm 4 (Inverse power method with variant shifts)
Choose an initial $u_{0} \neq 0$. Given $\sigma_{0}=\sigma$.
For $i=0,1,2, \ldots$.
Compute $v_{i+1}=\left(A-\sigma_{i} I\right)^{-1} u_{i}$ and $k_{i+1}=\ell\left(v_{i+1}\right)$.
Set $u_{i+1}=v_{i+1} / k_{i+1}$ and $\sigma_{i+1}=\sigma_{i}+1 / k_{i+1}$.

- Above algorithm is locally quadratic convergent.

Connection with Newton method

Consider the nonlinear equations:

$$
F\left(\left[\begin{array}{l}
u \tag{3}\\
\lambda
\end{array}\right]\right) \equiv\left[\begin{array}{c}
A u-\lambda u \\
\ell^{T} u-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Newton method for (3): for $i=0,1,2, \ldots$

$$
\left[\begin{array}{c}
u_{i+1} \\
\lambda_{i+1}
\end{array}\right]=\left[\begin{array}{c}
u_{i} \\
\lambda_{i}
\end{array}\right]-\left[F^{\prime}\left(\left[\begin{array}{c}
u_{i} \\
\lambda_{i}
\end{array}\right]\right)\right]^{-1} F\left(\left[\begin{array}{c}
u_{i} \\
\lambda_{i}
\end{array}\right]\right)
$$

Since

$$
F^{\prime}\left(\left[\begin{array}{l}
u \\
\lambda
\end{array}\right]\right)=\left[\begin{array}{cc}
A-\lambda I & -u \\
\ell^{T} & 0
\end{array}\right]
$$

the Newton method can be rewritten by component-wise

$$
\begin{align*}
\left(A-\lambda_{i} I\right) u_{i+1} & =\left(\lambda_{i+1}-\lambda_{i}\right) u_{i} \tag{4}\\
\ell^{T} u_{i+1} & =1 \tag{5}
\end{align*}
$$

Let

$$
v_{i+1}=\frac{u_{i+1}}{\lambda_{i+1}-\lambda_{i}}
$$

Substituting v_{i+1} into (4), we get

$$
\left(A-\lambda_{i} I\right) v_{i+1}=u_{i} .
$$

By equation (5), we have

$$
k_{i+1}=\ell\left(v_{i+1}\right)=\frac{\ell\left(u_{i+1}\right)}{\lambda_{i+1}-\lambda_{i}}=\frac{1}{\lambda_{i+1}-\lambda_{i}} .
$$

It follows that

$$
\lambda_{i+1}=\lambda_{i}+\frac{1}{k_{i+1}} .
$$

Hence the Newton's iterations (4) and (5) are identified with Algorithm 4.

Algorithm 5 (Inverse power method with Rayleigh Quotient)

Choose an initial $u_{0} \neq 0$ with $\left\|u_{0}\right\|_{2}=1$.
Compute $\sigma_{0}=u_{0}^{T} A u_{0}$.
For $i=0,1,2, \ldots$.
Compute $v_{i+1}=\left(A-\sigma_{i} I\right)^{-1} u_{i}$. Set $u_{i+1}=v_{i+1} /\left\|v_{i+1}\right\|_{2}$ and $\sigma_{i+1}=u_{i+1}^{T} A u_{i+1}$.

- For symmetric A, Algorithm 5 is cubically convergent.

