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Introduction
The continuing revolution in computing is having a dramatic influence on
statistics. Exploratory analysis of data becomes easier as graphs and calcula-
tions are automated. Statistical study of very large and very complex data sets
becomes feasible. Another impact of fast and cheap computing is less obvious:
new methods that apply previously unthinkable amounts of computation to
small sets of data to produce confidence intervals and tests of significance in
settings that don’t meet the conditions for safe application of the usual meth-
ods of inference.

The most common methods for inference about means based on a single
sample, matched pairs, or two independent samples are the t procedures de-
scribed in Chapter 7. For relationships between quantitative variables, we
use other t tests and intervals in the correlation and regression setting (Chap-
ter 10). Chapters 11, 12, and 13 present inference procedures for more elab-
orate settings. All of these methods rest on the use of normal distributions
for data. No data are exactly normal. The t procedures are useful in prac-
tice because they are robust, quite insensitive to deviations from normality
in the data. Nonetheless, we cannot use t confidence intervals and tests if the
data are strongly skewed, unless our samples are quite large. Inference about
spread based on normal distributions is not robust and is therefore of little
use in practice. Finally, what should we do if we are interested in, say, a ratio
of means, such as the ratio of average men’s salary to average women’s salary?
There is no simple traditional inference method for this setting.

The methods of this chapter—bootstrap confidence intervals and permuta-
tion tests—apply computing power to relax some of the conditions needed for
traditional inference and to do inference in new settings. The big ideas of sta-
tistical inference remain the same. The fundamental reasoning is still based
on asking, “What would happen if we applied this method many times?” An-
swers to this question are still given by confidence levels and P-values based
on the sampling distributions of statistics. The most important requirement
for trustworthy conclusions about a population is still that our data can be
regarded as random samples from the population—not even the computer
can rescue voluntary response samples or confounded experiments. But the
new methods set us free from the need for normal data or large samples. They
also set us free from formulas. They work the same way (without formulas)
for many different statistics in many different settings. They can, with suffi-
cient computing power, give results that are more accurate than those from
traditional methods. What is more, bootstrap intervals and permutation tests
are conceptually simpler than confidence intervals and tests based on nor-
mal distributions because they appeal directly to the basis of all inference: the
sampling distribution that shows what would happen if we took very many
samples under the same conditions.

The new methods do have limitations, some of which we will illustrate.
But their effectiveness and range of use are so great that they are rapidly be-
coming the preferred way to do statistical inference. This is already true in
high-stakes situations such as legal cases and clinical trials.

Software
Bootstrapping and permutation tests are feasible in practice only with soft-
ware that automates the heavy computation that these methods require. If you
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are sufficiently expert, you can program at least the basic methods yourself. It
is easier to use software that offers bootstrap intervals and permutation tests
preprogrammed, just as most software offers the various t intervals and tests.
You can expect the new methods to become gradually more common in stan-
dard statistical software.

This chapter uses S-PLUS,1 the software choice of most statisticians do-
ing research on resampling methods. A free version of S-PLUS is available to
students. You will also need two free libraries that supplement S-PLUS: the
S+Resample library, which provides menu-driven access to the procedures de-
scribed in this chapter, and the IPSdata library, which contains all the data
sets for this text. You can find links for downloading this software on the text
Web site, www.whfreeman.com/ipsresample.

You will find that using S-PLUS is straightforward, especially if you have
experience with menu-based statistical software. After launching S-PLUS,
load the IPSdata library. This automatically loads the S+Resample library as
well. The IPSdata menu includes a guide with brief instructions for each
procedure in this chapter. Look at this guide each time you meet something
new. There is also a detailed manual for resampling under the Help menu.
The resampling methods you need are all in the Resampling submenu in the
Statistics menu in S-PLUS. Just choose the entry in that menu that de-
scribes your setting.

S-PLUS is highly capable statistical software that can be used for every-
thing in this text. If you use S-PLUS for all your work, you may want to obtain
a more detailed book on S-PLUS.

14.1 The Bootstrap Idea
Here is a situation in which the new computer-intensive methods are now be-
ing applied. We will use this example to introduce these methods.

EXAMPLE 14 . 1 In most of the United States, many different companies offer local
telephone service. It isn’t in the public interest to have all these com-

panies digging up streets to bury cables, so the primary local telephone company in
each region must (for a fee) share its lines with its competitors. The legal term for the
primary company is Incumbent Local Exchange Carrier, ILEC. The competitors are
called Competing Local Exchange Carriers, or CLECs.

Verizon is the ILEC for a large area in the eastern United States. As such, it must
provide repair service for the customers of the CLECs in this region. Does Verizon do
repairs for CLEC customers as quickly (on the average) as for its own customers? If
not, it is subject to fines. The local Public Utilities Commission requires the use of tests
of significance to compare repair times for the two groups of customers.

Repair times are far from normal. Figure 14.1 shows the distribution of a ran-
dom sample of 1664 repair times for Verizon’s own customers.2 The distribution has
a very long right tail. The median is 3.59 hours, but the mean is 8.41 hours and the
longest repair time is 191.6 hours. We hesitate to use t procedures on such data, es-
pecially as the sample sizes for CLEC customers are much smaller than for Verizon’s
own customers.
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FIGURE 14.1 (a) The distribution of 1664 repair times for Verizon cus-
tomers. (b) Normal quantile plot of the repair times. The distribution is
strongly right-skewed.
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The big idea: resampling and the bootstrap distribution
Statistical inference is based on the sampling distributions of sample statis-
tics. The bootstrap is first of all a way of finding the sampling distribution, at
least approximately, from just one sample. Here is the procedure:

Step 1: Resampling. A sampling distribution is based on many ran-
dom samples from the population. In Example 14.1, we have just one ran-
dom sample. In place of many samples from the population, create many
resamples by repeatedly sampling with replacement from this one randomresamples
sample. Each resample is the same size as the original random sample.

Sampling with replacement means that after we randomly draw an ob-sampling with
replacement servation from the original sample we put it back before drawing the next ob-

servation. Think of drawing a number from a hat, then putting it back before
drawing again. As a result, any number can be drawn more than once, or not
at all. If we sampled without replacement, we’d get the same set of numbers
we started with, though in a different order. Figure 14.2 illustrates three re-
samples from a sample of six observations. In practice, we draw hundreds or
thousands of resamples, not just three.

Step 2: Bootstrap distribution. The sampling distribution of a statistic
collects the values of the statistic from many samples. The bootstrap distri-bootstrap

distribution bution of a statistic collects its values from many resamples. The bootstrap
distribution gives information about the sampling distribution.

THE BOOTSTRAP IDEA

The original sample represents the population from which it was
drawn. So resamples from this sample represent what we would get
if we took many samples from the population. The bootstrap distribu-
tion of a statistic, based on many resamples, represents the sampling
distribution of the statistic, based on many samples.

1.57 0.22 19.67 0.00 0.22 3.12
mean = 4.13

0.00 2.20 2.20 2.20 19.67 1.57
mean = 4.64

3.12 0.00 1.57 19.67 0.22 2.20
  mean = 4.46

0.22 3.12 1.57 3.12 2.20 0.22
mean = 1.74

FIGURE 14.2 The resampling idea. The top box is a sample of size n = 6 from the Verizon
data. The three lower boxes are three resamples from this original sample. Some values from
the original are repeated in the resamples because each resample is formed by sampling with
replacement. We calculate the statistic of interest—the sample mean in this example—for the
original sample and each resample.
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EXAMPLE 14 . 2 In Example 14.1, we want to estimate the population mean repair time
µ, so the statistic is the sample mean x. For our one random sample of

1664 repair times, x = 8.41 hours. When we resample, we get different values of x, just
as we would if we took new samples from the population of all repair times.

Figure 14.3 displays the bootstrap distribution of the means of 1000 resamples
from the Verizon repair time data, using first a histogram and a density curve and then
a normal quantile plot. The solid line in the histogram marks the mean 8.41 of the
original sample, and the dashed line marks the mean of the bootstrap means. Accord-
ing to the bootstrap idea, the bootstrap distribution represents the sampling distribu-
tion. Let’s compare the bootstrap distribution with what we know about the sampling
distribution.

Shape: We see that the bootstrap distribution is nearly normal. The central
limit theorem says that the sampling distribution of the sample mean x is ap-
proximately normal if n is large. So the bootstrap distribution shape is close
to the shape we expect the sampling distribution to have.

Center: The bootstrap distribution is centered close to the mean of the orig-
inal sample. That is, the mean of the bootstrap distribution has little bias as
an estimator of the mean of the original sample. We know that the sampling
distribution of x is centered at the population mean µ, that is, that x is an un-
biased estimate of µ. So the resampling distribution behaves (starting from
the original sample) as we expect the sampling distribution to behave (start-
ing from the population).

Spread: The histogram and density curve in Figure 14.3 picture the varia-
tion among the resample means. We can get a numerical measure by calculat-
ing their standard deviation. Because this is the standard deviation of the 1000
values of x that make up the bootstrap distribution, we call it the bootstrapbootstrap

standard error standard error of x. The numerical value is 0.367. In fact, we know that the
standard deviation of x is σ/

√
n, where σ is the standard deviation of indi-

vidual observations in the population. Our usual estimate of this quantity is
the standard error of x, s/

√
n, where s is the standard deviation of our one

random sample. For these data, s = 14.69 and

s√
n

= 14.69√
1664

= 0.360

The bootstrap standard error 0.367 agrees closely with the theory-based esti-
mate 0.360.

In discussing Example 14.2, we took advantage of the fact that statistical
theory tells us a great deal about the sampling distribution of the sample
mean x. We found that the bootstrap distribution created by resampling
matches the properties of the sampling distribution. The heavy computa-
tion needed to produce the bootstrap distribution replaces the heavy theory
(central limit theorem, mean and standard deviation of x) that tells us about
the sampling distribution. The great advantage of the resampling idea is that it
often works even when theory fails. Of course, theory also has its advantages:
we know exactly when it works. We don’t know exactly when resampling
works, so that “When can I safely bootstrap?” is a somewhat subtle issue.
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FIGURE 14.3 (a) The bootstrap distribution for 1000 re-
samplemeans from the sample of Verizon repair times. The solid
line marks the original sample mean, and the dashed line marks
the average of the bootstrap means. (b) The normal quantile
plot confirms that the bootstrap distribution is nearly normal in
shape.
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Figure 14.4 illustrates the bootstrap idea by comparing three distribu-
tions. Figure 14.4(a) shows the idea of the sampling distribution of the sample
mean x: take many random samples from the population, calculate the mean
x for each sample, and collect these x-values into a distribution.

Figure 14.4(b) shows how traditional inference works: statistical theory
tells us that if the population has a normal distribution, then the sampling dis-
tribution of x is also normal. (If the population is not normal but our sample
is large, appeal instead to the central limit theorem.) If µ and σ are the mean
and standard deviation of the population, the sampling distribution of x has
mean µ and standard deviation σ/

√
n. When it is available, theory is wonder-

ful: we know the sampling distribution without the impractical task of actu-
ally taking many samples from the population.

Figure 14.4(c) shows the bootstrap idea: we avoid the task of taking many
samples from the population by instead taking many resamples from a single
sample. The values of x from these resamples form the bootstrap distribution.
We use the bootstrap distribution rather than theory to learn about the sam-
pling distribution.

Thinking about the bootstrap idea
It might appear that resampling creates new data out of nothing. This seems
suspicious. Even the name “bootstrap” comes from the impossible image of
“pulling yourself up by your own bootstraps.”3 But the resampled observa-
tions are not used as if they were new data. The bootstrap distribution of the
resample means is used only to estimate how the sample mean of the one ac-
tual sample of size 1664 would vary because of random sampling.

Using the same data for two purposes—to estimate a parameter and also to
estimate the variability of the estimate—is perfectly legitimate. We do exactly
this when we calculate x to estimate µ and then calculate s/

√
n from the same

data to estimate the variability of x.
What is new? First of all, we don’t rely on the formula s/

√
n to estimate the

standard deviation of x. Instead, we use the ordinary standard deviation of the
many x-values from our many resamples.4 Suppose that we take B resamples.
Call the means of these resamples x̄∗ to distinguish them from the mean x of
the original sample. Find the mean and standard deviation of the x̄∗’s in the
usual way. To make clear that these are the mean and standard deviation of
the means of the B resamples rather than the mean x and standard deviation s
of the original sample, we use a distinct notation:

meanboot = 1
B

∑
x̄∗

SEboot =
√

1
B − 1

∑
(x̄∗ − meanboot)

2

These formulas go all the way back to Chapter 1. Once we have the values x̄∗,
we just ask our software for their mean and standard deviation. We will of-
ten apply the bootstrap to statistics other than the sample mean. Here is the
general definition.



SRS of size n

(a)

SRS of size n

SRS of size n

Sampling distribution
POPULATION

unknown mean �

x–

x–

x–

·
·
·

·
·
·

(b)

Theory

Sampling distribution NORMAL POPULATION
unknown mean �

�

�

�/
0_

n

Resample of size n

Resample of size n

Resample of size n

(c)

One SRS of size n

Bootstrap distribution
POPULATION

unknown mean �

x–

x–

x–

·
·
·

·
·
·

FIGURE 14.4 (a) The idea of the sampling distribution of the sample mean x: take very
many samples, collect the x-values from each, and look at the distribution of these values.
(b) The theory shortcut: if we know that the population values follow a normal distribution,
theory tells us that the sampling distribution of x is also normal. (c) The bootstrap idea: when
theory fails and we can afford only one sample, that sample stands in for the population, and
the distribution of x in many resamples stands in for the sampling distribution.
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BOOTSTRAP STANDARD ERROR

The bootstrap standard error SEboot of a statistic is the standard de-
viation of the bootstrap distribution of that statistic.

Another thing that is new is that we don’t appeal to the central limit theo-
rem or other theory to tell us that a sampling distribution is roughly normal.
We look at the bootstrap distribution to see if it is roughly normal (or not). In
most cases, the bootstrap distribution has approximately the same shape and
spread as the sampling distribution, but it is centered at the original statistic
value rather than the parameter value. The bootstrap allows us to calculate
standard errors for statistics for which we don’t have formulas and to check
normality for statistics that theory doesn’t easily handle.

To apply the bootstrap idea, we must start with a statistic that estimates
the parameter we are interested in. We come up with a suitable statistic by
appealing to another principle that we have often applied without thinking
about it.

THE PLUG-IN PRINCIPLE

To estimate a parameter, a quantity that describes the population, use
the statistic that is the corresponding quantity for the sample.

The plug-in principle tells us to estimate a population mean µ by the
sample mean x and a population standard deviation σ by the sample stan-
dard deviation s. Estimate a population median by the sample median and a
population regression line by the least-squares line calculated from a sample.
The bootstrap idea itself is a form of the plug-in principle: substitute the data
for the population, then draw samples (resamples) to mimic the process of
building a sampling distribution.

Using software
Software is essential for bootstrapping in practice. Here is an outline of the
program you would write if your software can choose random samples from
a set of data but does not have bootstrap functions:

Repeat 1000 times {
Draw a resample with replacement from the data.
Calculate the resample mean.
Save the resample mean into a variable.

}
Make a histogram and normal quantile plot of the 1000 means.
Calculate the standard deviation of the 1000 means.
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Number of Replications: 1000

Percentiles:
            2.5%   5.0%   95.0%   97.5%
mean   7.717  7.814    9.028    9.114

Summary Statistics:

mean
Observed

8.412
Mean
8.395

SE
0.3672

Bias
–0.01698

FIGURE 14.5 S-PLUS output for the Verizon data boot-
strap, for Example 14.3.

EXAMPLE 14 . 3 S-PLUS has bootstrap commands built in. If the 1664 Verizon repair
times are saved as a variable, we can use menus to resample from the

data, calculate the means of the resamples, and request both graphs and printed out-
put. We can also ask that the bootstrap results be saved for later access.

The graphs in Figure 14.3 are part of the S-PLUS output. Figure 14.5 shows some
of the text output. The Observed entry gives the mean x = 8.412 of the original sample.
Mean is the mean of the resample means, meanboot. Bias is the difference between
the Mean and Observed values. The bootstrap standard error is displayed under SE. The
Percentiles are percentiles of the bootstrap distribution, that is, of the 1000 resample
means pictured in Figure 14.3. All of these values except Observed will differ a bit if
you repeat 1000 resamples, because resamples are drawn at random.

SECTION 14.1 Summary
To bootstrap a statistic such as the sample mean, draw hundreds of
resamples with replacement from a single original sample, calculate the
statistic for each resample, and inspect the bootstrap distribution of the
resampled statistics.

A bootstrap distribution approximates the sampling distribution of the statis-
tic. This is an example of the plug-in principle: use a quantity based on the
sample to approximate a similar quantity from the population.

A bootstrap distribution usually has approximately the same shape and spread
as the sampling distribution. It is centered at the statistic (from the original
sample) when the sampling distribution is centered at the parameter (of the
population).

Use graphs and numerical summaries to determine whether the bootstrap dis-
tribution is approximately normal and centered at the original statistic, and
to get an idea of its spread. The bootstrap standard error is the standard
deviation of the bootstrap distribution.

The bootstrap does not replace or add to the original data. We use the boot-
strap distribution as a way to estimate the variation in a statistic based on the
original data.
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SECTION 14.1 Exercises
Unless an exercise instructs you otherwise, use 1000 resamples for all bootstrap
exercises. S-PLUS uses 1000 resamples unless you ask for a different number.
Always save your bootstrap results so that you can use them again later.

14.1 To illustrate the bootstrap procedure, let’s bootstrap a small random subset of
the Verizon data:

3.12 0.00 1.57 19.67 0.22 2.20

(a) Sample with replacement from this initial SRS by rolling a die. Rolling a
1 means select the first member of the SRS, a 2 means select the second
member, and so on. (You can also use Table B of random digits, respond-
ing only to digits 1 to 6.) Create 20 resamples of size n = 6.

(b) Calculate the sample mean for each of the resamples.

(c) Make a stemplot of the means of the 20 resamples. This is the bootstrap
distribution.

(d) Calculate the bootstrap standard error.

Inspecting the bootstrap distribution of a statistic helps us judge whether the
sampling distribution of the statistic is close to normal. Bootstrap the sample
mean x for each of the data sets in Exercises 14.2 to 14.5. Use a histogram and
normal quantile plot to assess normality of the bootstrap distribution. On the
basis of your work, do you expect the sampling distribution of x to be close to
normal? Save your bootstrap results for later analysis.

14.2 The distribution of the 60 IQ test scores in Table 1.3 (page 14) is roughly nor-
mal (see Figure 1.5) and the sample size is large enough that we expect a nor-
mal sampling distribution.

14.3 The distribution of the 64 amounts of oil in Exercise 1.33 (page 37) is strongly
skewed, but the sample size is large enough that the central limit theorem may
(or may not) result in a roughly normal sampling distribution.

14.4 The amounts of vitamin C in a random sample of 8 lots of corn soy blend
(Example 7.1, page 453) are

26 31 23 22 11 22 14 31

The distribution has no outliers, but we cannot assess normality from so small
a sample.

14.5 The measurements of C-reactive protein in 40 children (Exercise 7.2, page
472) are very strongly skewed. We were hesitant to use t procedures for in-
ference from these data.

14.6 The “survival times” of machines before a breakdown and of cancer patients
after treatment are typically strongly right-skewed. Table 1.8 (page 38) gives
the survival times (in days) of 72 guinea pigs in a medical trial.5
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(a) Make a histogram of the survival times. The distribution is strongly
skewed.

(b) The central limit theorem says that the sampling distribution of the
sample mean x becomes normal as the sample size increases. Is the sam-
pling distribution roughly normal for n = 72? To find out, bootstrap these
data and inspect the bootstrap distribution of the mean. The central part
of the distribution is close to normal. In what way do the tails depart from
normality?

14.7 Here is an SRS of 20 of the guinea pig survival times from Exercise 14.6:

92 123 88 598 100 114 89 522 58 191
137 100 403 144 184 102 83 126 53 79

We expect the sampling distribution of x to be less close to normal for samples
of size 20 than for samples of size 72 from a skewed distribution. These data
include some extreme high outliers.

(a) Create and inspect the bootstrap distribution of the sample mean for these
data. Is it less close to normal than your distribution from the previous
exercise?

(b) Compare the bootstrap standard errors for your two runs. What accounts
for the larger standard error for the smaller sample?

14.8 We have two ways to estimate the standard deviation of a sample mean x: use
the formula s/

√
n for the standard error, or use the bootstrap standard error.

Find the sample standard deviation s for the 20 survival times in Exercise 14.7
and use it to find the standard error s/

√
n of the sample mean. How closely

does your result agree with the bootstrap standard error from your resam-
pling in Exercise 14.7?

14.2 First Steps in Using the Bootstrap
To introduce the big ideas of resampling and bootstrap distributions, we stud-
ied an example in which we knew quite a bit about the actual sampling dis-
tribution. We saw that the bootstrap distribution agrees with the sampling
distribution in shape and spread. The center of the bootstrap distribution is not
the same as the center of the sampling distribution. The sampling distribution
of a statistic used to estimate a parameter is centered at the actual value of the
parameter in the population, plus any bias. The bootstrap distribution is cen-
tered at the value of the statistic for the original sample, plus any bias. The
key fact is that two biases are similar even though the two centers may not
be.

The bootstrap method is most useful in settings where we don’t know the
sampling distribution of the statistic. The principles are:

• Shape: Because the shape of the bootstrap distribution approximates the
shape of the sampling distribution, we can use the bootstrap distribution
to check normality of the sampling distribution.
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• Center: A statistic is biased as an estimate of the parameter if its sam-
pling distribution is not centered at the true value of the parameter. We
can check bias by seeing whether the bootstrap distribution of the statis-
tic is centered at the value of the statistic for the original sample.
More precisely, the bias of a statistic is the difference between the meanbias
of its sampling distribution and the true value of the parameter. The boot-
strap estimate of bias is the difference between the mean of the bootstrapbootstrap

estimate of bias distribution and the value of the statistic in the original sample.

• Spread: The bootstrap standard error of a statistic is the standard devia-
tion of its bootstrap distribution. The bootstrap standard error estimates
the standard deviation of the sampling distribution of the statistic.

Bootstrap t confidence intervals
If the bootstrap distribution of a statistic shows a normal shape and small
bias, we can get a confidence interval for the parameter by using the boot-
strap standard error and the familiar t distribution. An example will show how
this works.

EXAMPLE 14 . 4 We are interested in the selling prices of residential real estate in
Seattle, Washington. Table 14.1 displays the selling prices of a ran-

dom sample of 50 pieces of real estate sold in Seattle during 2002, as recorded by the
county assessor.6 Unfortunately, the data do not distinguish residential property from
commercial property. Most sales are residential, but a few large commercial sales in
a sample can greatly increase the sample mean selling price.

Figure 14.6 shows the distribution of the sample prices. The distribution is far
from normal, with a few high outliers that may be commercial sales. The sample is
small, and the distribution is highly skewed and “contaminated” by an unknown num-
ber of commercial sales. How can we estimate the center of the distribution despite
these difficulties?

The first step is to abandon the mean as a measure of center in favor of a
statistic that is more resistant to outliers. We might choose the median, but
in this case we will use a new statistic, the 25% trimmed mean.

TAB LE 14 . 1

Selling prices for Seattle real estate, 2002 ($1000s)

142 175 197.5 149.4 705 232 50 146.5 155 1850
132.5 215 116.7 244.9 290 200 260 449.9 66.407 164.95
362 307 266 166 375 244.95 210.95 265 296 335
335 1370 256 148.5 987.5 324.5 215.5 684.5 270 330
222 179.8 257 252.95 149.95 225 217 570 507 190
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FIGURE 14.6 Graphical displays of the 50 selling prices in Table 14.1.
The distribution is strongly skewed, with high outliers.
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TRIMMED MEAN

A trimmed mean is the mean of only the center observations in a data
set. In particular, the 25% trimmed mean x25% ignores the smallest
25% and the largest 25% of the observations. It is the mean of the
middle 50% of the observations.

Recall that the median is the mean of the 1 or 2 middle observations. The
trimmed mean often does a better job of representing the average of typical
observations than does the median. Our parameter is the 25% trimmed mean
of the population of all real estate sales prices in Seattle in 2002. By the plug-in
principle, the statistic that estimates this parameter is the 25% trimmed mean
of the sample prices in Table 14.1. Because 25% of 50 is 12.5, we drop the 12
lowest and 12 highest prices in Table 14.1 and find the mean of the remaining
26 prices. The statistic is (in thousands of dollars)

x25% = 244.0019

We can say little about the sampling distribution of the trimmed mean
when we have only 50 observations from a strongly skewed distribution. For-
tunately, we don’t need any distribution facts to use the bootstrap. We boot-
strap the 25% trimmed mean just as we bootstrapped the sample mean: draw
1000 resamples of size 50 from the 50 selling prices in Table 14.1, calculate
the 25% trimmed mean for each resample, and form the bootstrap distribu-
tion from these 1000 values.

Figure 14.7 shows the bootstrap distribution of the 25% trimmed mean.
Here is the summary output from S-PLUS:

Number of Replications: 1000

Summary Statistics:
Observed Mean Bias SE

TrimMean 244 244.7 0.7171 16.83

What do we see? Shape: The bootstrap distribution is roughly normal. This
suggests that the sampling distribution of the trimmed mean is also roughly
normal. Center: The bootstrap estimate of bias is 0.7171, small relative to the
value 244 of the statistic. So the statistic (the trimmed mean of the sample)
has small bias as an estimate of the parameter (the trimmed mean of the pop-
ulation). Spread: The bootstrap standard error of the statistic is

SEboot = 16.83

This is an estimate of the standard deviation of the sampling distribution of
the trimmed mean.

Recall the familiar one-sample t confidence interval (page 452) for the
mean of a normal population:

x ± t∗SE = x ± t∗
s√
n

This interval is based on the normal sampling distribution of the sample mean
x and the formula SE = s/

√
n for the standard error of x. When a bootstrap
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FIGURE 14.7 The bootstrap distribution of the 25% trimmed
means of 1000 resamples from the data in Table 14.1. The boot-
strap distribution is roughly normal.

distribution is approximately normal and has small bias, we can use essen-
tially the same recipe with the bootstrap standard error to get a confidence
interval for any parameter.

BOOTSTRAP t CONFIDENCE INTERVAL

Suppose that the bootstrap distribution of a statistic from an SRS of
size n is approximately normal and that the bootstrap estimate of bias
is small. An approximate level C confidence interval for the parameter
that corresponds to this statistic by the plug-in principle is

statistic ± t∗SEboot
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where SEboot is the bootstrap standard error for this statistic and t∗ is
the critical value of the t(n − 1) distribution with area C between −t∗
and t∗.

EXAMPLE 14 . 5 We want to estimate the 25% trimmed mean of the population of all
2002 Seattle real estate selling prices. Table 14.1 gives an SRS of size

n = 50. The software output above shows that the trimmed mean of this sample is
x25% = 244 and that the bootstrap standard error of this statistic is SEboot = 16.83. A
95% confidence interval for the population trimmed mean is therefore

x25% ± t∗SEboot = 244 ± (2.009)(16.83)

= 244 ± 33.81

= (210.19, 277.81)

Because Table D does not have entries for n − 1 = 49 degrees of freedom, we used
t∗ = 2.009, the entry for 50 degrees of freedom.

We are 95% confident that the 25% trimmed mean (the mean of the middle 50%)
for the population of real estate sales in Seattle in 2002 is between $210,190 and
$277,810.

Bootstrapping to compare two groups
Two-sample problems (Section 7.2) are among the most common statistical
settings. In a two-sample problem, we wish to compare two populations, such
as male and female college students, based on separate samples from each
population. When both populations are roughly normal, the two-sample t pro-
cedures compare the two population means. The bootstrap can also compare
two populations, without the normality condition and without the restriction
to comparison of means. The most important new idea is that bootstrap re-
sampling must mimic the “separate samples” design that produced the origi-
nal data.

BOOTSTRAP FOR COMPARING TWO POPULATIONS

Given independent SRSs of sizes n and m from two populations:

1. Draw a resample of size n with replacement from the first sample
and a separate resample of size m from the second sample. Compute a
statistic that compares the two groups, such as the difference between
the two sample means.

2. Repeat this resampling process hundreds of times.

3. Construct the bootstrap distribution of the statistic. Inspect its
shape, bias, and bootstrap standard error in the usual way.
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EXAMPLE 14 . 6 We saw in Example 14.1 that Verizon is required to perform repairs for
customers of competing providers of telephone service (CLECs) within

its region. How do repair times for CLEC customers compare with times for Veri-
zon’s own customers? Figure 14.8 shows density curves and normal quantile plots for
the service times (in hours) of 1664 repair requests from customers of Verizon and
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FIGURE 14.8 Density curves and normal quantile plots
of the distributions of repair times for Verizon customers
and customers of a CLEC. (The density curves extend below
zero because they smooth the data. There are no negative
repair times.)
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23 requests from customers of a CLEC during the same time period. The distributions
are both far from normal. Here are some summary statistics:

Service provider n x̄ s

Verizon 1664 8.4 14.7
CLEC 23 16.5 19.5
Difference −8.1

The data suggest that repair times may be longer for CLEC customers. The mean
repair time, for example, is almost twice as long for CLEC customers as for Verizon
customers.

In the setting of Example 14.6 we want to estimate the difference of pop-
ulation means, µ1 − µ2. We are reluctant to use the two-sample t confidence
interval because one of the samples is both small and very skewed. To com-
pute the bootstrap standard error for the difference in sample means x1 − x2,
resample separately from the two samples. Each of our 1000 resamples con-
sists of two group resamples, one of size 1664 drawn with replacement from
the Verizon data and one of size 23 drawn with replacement from the CLEC
data. For each combined resample, compute the statistic x1 − x2. The 1000
differences form the bootstrap distribution. The bootstrap standard error is
the standard deviation of the bootstrap distribution.

S-PLUS automates the proper bootstrap procedure. Here is some of the
S-PLUS output:

Number of Replications: 1000

Summary Statistics:
Observed Mean Bias SE

meanDiff -8.098 -8.251 -0.1534 4.052

Figure 14.9 shows that the bootstrap distribution is not close to normal. It
has a short right tail and a long left tail, so that it is skewed to the left. Because

CA
UTION

the bootstrap distribution is nonnormal, we can’t trust the bootstrap t confidence
interval. When the sampling distribution is nonnormal, no method based on
normality is safe. Fortunately, there are more general ways of using the boot-
strap to get confidence intervals that can be safely applied when the bootstrap
distribution is not normal. These methods, which we discuss in Section 14.4,
are the next step in practical use of the bootstrap.

BEYOND THE BASICS The bootstrap for a
scatterplot smoother

The bootstrap idea can be applied to quite complicated statistical methods,
such as the scatterplot smoother illustrated in Chapter 2 (page 110).
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FIGURE 14.9 The bootstrap distribution of the differ-
ence in means for the Verizon and CLEC repair time data.

EXAMPLE 14 . 7 The New Jersey Pick-It Lottery is a daily numbers game run by the
state of New Jersey. We’ll analyze the first 254 drawings after the lottery

was started in 1975.7 Buying a ticket entitles a player to pick a number between 000
and 999. Half of the money bet each day goes into the prize pool. (The state takes the
other half.) The state picks a winning number at random, and the prize pool is shared
equally among all winning tickets.
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FIGURE 14.10 The first 254 winning numbers in the New Jersey Pick-
It Lottery and the payoffs for each. To see patterns we use least-squares
regression (line) and a scatterplot smoother (curve).

Although all numbers are equally likely to win, numbers chosen by fewer people
have bigger payoffs if they win because the prize is shared among fewer tickets. Fig-
ure 14.10 is a scatterplot of the first 254 winning numbers and their payoffs. What pat-
terns can we see?

The straight line in Figure 14.10 is the least-squares regression line. The
line shows a general trend of higher payoffs for larger winning numbers. The
curve in the figure was fitted to the plot by a scatterplot smoother that follows
local patterns in the data rather than being constrained to a straight line. The
curve suggests that there were larger payoffs for numbers in the intervals 000
to 100, 400 to 500, 600 to 700, and 800 to 999. When people pick “random”
numbers, they tend to choose numbers starting with 2, 3, 5, or 7, so these num-
bers have lower payoffs. This pattern disappeared after 1976; it appears that
players noticed the pattern and changed their number choices.

Are the patterns displayed by the scatterplot smoother just chance? We
can use the bootstrap distribution of the smoother’s curve to get an idea of
how much random variability there is in the curve. Each resample “statistic”
is now a curve rather than a single number. Figure 14.11 shows the curves that
result from applying the smoother to 20 resamples from the 254 data points in
Figure 14.10. The original curve is the thick line. The spread of the resample
curves about the original curve shows the sampling variability of the output
of the scatterplot smoother.

Nearly all the bootstrap curves mimic the general pattern of the original
smoother curve, showing, for example, the same low average payoffs for num-
bers in the 200s and 300s. This suggests that these patterns are real, not just
chance.
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FIGURE 14.11 The curves produced by the scatterplot smoother for
20 resamples from the data displayed in Figure 14.10. The curve for the
original sample is the heavy line.

SECTION 14.2 Summary
Bootstrap distributions mimic the shape, spread, and bias of sampling
distributions.

The bootstrap standard error SEboot of a statistic is the standard deviation
of its bootstrap distribution. It measures how much the statistic varies under
random sampling.

The bootstrap estimate of the bias of a statistic is the mean of the bootstrap
distribution minus the statistic for the original data. Small bias means that
the bootstrap distribution is centered at the statistic of the original sample
and suggests that the sampling distribution of the statistic is centered at the
population parameter.

The bootstrap can estimate the sampling distribution, bias, and standard er-
ror of a wide variety of statistics, such as the trimmed mean, whether or not
statistical theory tells us about their sampling distributions.

If the bootstrap distribution is approximately normal and the bias is small,
we can give a bootstrap t confidence interval, statistic ± t∗SEboot, for the
parameter. Do not use this t interval if the bootstrap distribution is not normal
or shows substantial bias.

SECTION 14.2 Exercises
14.9 Return to or re-create the bootstrap distribution of the sample mean for the

72 guinea pig lifetimes in Exercise 14.6.
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(a) What is the bootstrap estimate of the bias? Verify from the graphs of the
bootstrap distribution that the distribution is reasonably normal (some
right skew remains) and that the bias is small relative to the observed x.
The bootstrap t confidence interval for the population mean µ is therefore
justified.

(b) Give the 95% bootstrap t confidence interval for µ.

(c) The only difference between the bootstrap t and usual one-sample t con-
fidence intervals is that the bootstrap interval uses SEboot in place of the
formula-based standard error s/

√
n. What are the values of the two stan-

dard errors? Give the usual t 95% interval and compare it with your inter-
val from (b).

14.10 Bootstrap distributions and quantities based on them differ randomly when
we repeat the resampling process. A key fact is that they do not differ very
much if we use a large number of resamples. Figure 14.7 shows one bootstrap
distribution for the trimmed mean selling price for Seattle real estate. Repeat
the resampling of the data in Table 14.1 to get another bootstrap distribution
for the trimmed mean.

(a) Plot the bootstrap distribution and compare it with Figure 14.7. Are the
two bootstrap distributions similar?

(b) What are the values of the mean statistic, bias, and bootstrap standard
error for your new bootstrap distribution? How do they compare with the
previous values given on page 14-16?

(c) Find the 95% bootstrap t confidence interval based on your bootstrap dis-
tribution. Compare it with the previous result in Example 14.5.

14.11 For Example 14.5 we bootstrapped the 25% trimmed mean of the 50 selling
prices in Table 14.1. Another statistic whose sampling distribution is unfa-
miliar to us is the standard deviation s. Bootstrap s for these data. Discuss
the shape and bias of the bootstrap distribution. Is the bootstrap t confidence
interval for the population standard deviation σ justified? If it is, give a 95%
confidence interval.

14.12 We will see in Section 14.3 that bootstrap methods often work poorly for the
median. To illustrate this, bootstrap the sample median of the 50 selling prices
in Table 14.1. Why is the bootstrap t confidence interval not justified?

14.13 We have a formula (page 488) for the standard error of x1 − x2. This formula
does not depend on normality. How does this formula-based standard error
for the data of Example 14.6 compare with the bootstrap standard error?

14.14 Table 7.4 (page 491) gives the scores on a test of reading ability for two groups
of third-grade students. The treatment group used “directed reading ac-
tivities” and the control group followed the same curriculum without the
activities.

(a) Bootstrap the difference in means x̄1 − x̄2 and report the bootstrap stan-
dard error.
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(b) Inspect the bootstrap distribution. Is a bootstrap t confidence interval ap-
propriate? If so, give a 95% confidence interval.

(c) Compare the bootstrap results with the two-sample t confidence interval
reported on page 492.

14.15 Table 7.6 (page 512) contains the ratio of current assets to current liabilities
for random samples of healthy firms and failed firms. Find the difference in
means (healthy minus failed).

(a) Bootstrap the difference in means x̄1 − x̄2 and look at the bootstrap distri-
bution. Does it meet the conditions for a bootstrap t confidence interval?

(b) Report the bootstrap standard error and the 95% bootstrap t confidence
interval.

(c) Compare the bootstrap results with the usual two-sample t confidence
interval.

14.16 Explain the difference between the standard deviation of a sample and the
standard error of a statistic such as the sample mean.

14.17 The following data are “really normal.” They are an SRS from the standard
normal distribution N(0, 1), produced by a software normal random number
generator.

0.01 −0.04 −1.02 −0.13 −0.36 −0.03 −1.88 0.34 −0.00
1.21 −0.02 −1.01 0.58 0.92 −1.38 −0.47 −0.80 0.90

−1.16 0.11 0.23 2.40 0.08 −0.03 0.75 2.29 −1.11
−2.23 1.23 1.56 −0.52 0.42 −0.31 0.56 2.69 1.09

0.10 −0.92 −0.07 −1.76 0.30 −0.53 1.47 0.45 0.41
0.54 0.08 0.32 −1.35 −2.42 0.34 0.51 2.47 2.99

−1.56 1.27 1.55 0.80 −0.59 0.89 −2.36 1.27 −1.11
0.56 −1.12 0.25 0.29 0.99 0.10 0.30 0.05 1.44

−2.46 0.91 0.51 0.48 0.02 −0.54

(a) Make a histogram and normal quantile plot. Do the data appear to be
“really normal”? From the histogram, does the N(0, 1) distribution ap-
pear to describe the data well? Why?

(b) Bootstrap the mean. Why do your bootstrap results suggest that t confi-
dence intervals are appropriate?

(c) Give both the bootstrap and the formula-based standard errors for x. Give
both the bootstrap and usual t 95% confidence intervals for the population
mean µ.

14.18 Because the shape and bias of the bootstrap distribution approximate the
shape and bias of the sampling distribution, bootstrapping helps check
whether the sampling distribution allows use of the usual t procedures. In
Exercise 14.4 you bootstrapped the mean for the amount of vitamin C in a
random sample of 8 lots of corn soy blend. Return to or re-create your work.

(a) The sample is very small. Nonetheless, the bootstrap distribution suggests
that t inference is justified. Why?
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(b) Give SEboot and the bootstrap t 95% confidence interval. How do these
compare with the formula-based standard error and usual t interval given
in Example 7.1 (page 453)?

14.19 Exercise 7.5 (page 473) gives data on 60 children who said how big a part they
thought luck played in solving a puzzle. The data have a discrete 1 to 10 scale.
Is inference based on t distributions nonetheless justified? Explain your an-
swer. If t inference is justified, compare the usual t and bootstrap t 95% con-
fidence intervals.

14.20 Your company sells exercise clothing and equipment on the Internet. To de-
sign clothing, you collect data on the physical characteristics of your cus-
tomers. Here are the weights in kilograms for a sample of 25 male runners.
Assume these runners are a random sample of your potential male customers.

67.8 61.9 63.0 53.1 62.3 59.7 55.4 58.9 60.9
69.2 63.7 68.3 92.3 64.7 65.6 56.0 57.8 66.0
62.9 53.6 65.0 55.8 60.4 69.3 61.7

Because your products are intended for the “average male runner,” you are
interested in seeing how much the subjects in your sample vary from the av-
erage weight.

(a) Calculate the sample standard deviation s for these weights.

(b) We have no formula for the standard error of s. Find the bootstrap stan-
dard error for s.

(c) What does the standard error indicate about how accurate the sample
standard deviation is as an estimate of the population standard
deviation?

(d) Would it be appropriate to give a bootstrap t interval for the population
standard deviation? Why or why not?

14.21 Each year, the business magazine Forbes publishes a list of the world’s billion-

CH

ALLENGE

aires. In 2002, the magazine found 497 billionaires. Here is the wealth, as es-
timated by Forbes and rounded to the nearest $100 million, of an SRS of 20
of these billionaires:8

8.6 1.3 5.2 1.0 2.5 1.8 2.7 2.4 1.4 3.0
5.0 1.7 1.1 5.0 2.0 1.4 2.1 1.2 1.5 1.0

You are interested in (vaguely) “the wealth of typical billionaires.” Bootstrap
an appropriate statistic, inspect the bootstrap distribution, and draw conclu-
sions based on this sample.

14.22 Why is the bootstrap distribution of the difference in mean Verizon and CLEC
repair times in Figure 14.9 so skewed? Let’s investigate by bootstrapping the
mean of the CLEC data and comparing it with the bootstrap distribution for
the mean for Verizon customers. The 23 CLEC repair times (in hours) are

26.62 8.60 0 21.15 8.33 20.28 96.32 17.97
3.42 0.07 24.38 19.88 14.33 5.45 5.40 2.68
0 24.20 22.13 18.57 20.00 14.13 5.80
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(a) Bootstrap the mean for the CLEC data. Compare the bootstrap distribu-
tion with the bootstrap distribution of the Verizon repair times in Fig-
ure 14.3.

(b) Based on what you see in (a), what is the source of the skew in the boot-
strap distribution of the difference in means x1 − x2?

14.3 How Accurate Is a Bootstrap
Distribution?∗

We said earlier that “When can I safely bootstrap?” is a somewhat subtle issue.
Now we will give some insight into this issue.

We understand that a statistic will vary from sample to sample, so that in-
ference about the population must take this random variation into account.
The sampling distribution of a statistic displays the variation in the statistic
due to selecting samples at random from the population. For example, the
margin of error in a confidence interval expresses the uncertainty due to sam-
pling variation. Now we have used the bootstrap distribution as a substitute
for the sampling distribution. This introduces a second source of random vari-
ation: resamples are chosen at random from the original sample.

SOURCES OF VARIATION AMONG BOOTSTRAP
DISTRIBUTIONS

Bootstrap distributions and conclusions based on them include two
sources of random variation:

1. Choosing an original sample at random from the population.

2. Choosing bootstrap resamples at random from the original sample.

A statistic in a given setting has only one sampling distribution. It has
many bootstrap distributions, formed by the two-step process just described.
Bootstrap inference generates one bootstrap distribution and uses it to tell us
about the sampling distribution. Can we trust such inference?

Figure 14.12 displays an example of the entire process. The population dis-
tribution (top left) has two peaks and is far from normal. The histograms in
the left column of the figure show five random samples from this population,
each of size 50. The line in each histogram marks the mean x of that sample.
These vary from sample to sample. The distribution of the x-values from all
possible samples is the sampling distribution. This sampling distribution ap-
pears to the right of the population distribution. It is close to normal, as we
expect because of the central limit theorem.

Now draw 1000 resamples from an original sample, calculate x for each
resample, and present the 1000 x’s in a histogram. This is a bootstrap distri-
bution for x. The middle column in Figure 14.12 displays five bootstrap dis-
tributions based on 1000 resamples from each of the five samples. The right

*This section is optional.
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FIGURE 14.12 Five random samples (n = 50) from the same population, with a bootstrap
distribution for the sample mean formed by resampling from each of the five samples. At the
right are five more bootstrap distributions from the first sample.
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column shows the results of repeating the resampling from the first sample
five more times. Compare the five bootstrap distributions in the middle col-
umn to see the effect of the random choice of the original samples. Compare
the six bootstrap distributions drawn from the first sample to see the effect of
the random resampling. Here’s what we see:

• Each bootstrap distribution is centered close to the value of x for its origi-
nal sample. That is, the bootstrap estimate of bias is small in all five cases.
Of course, the five x-values vary, and not all are close to the population
mean µ.

• The shape and spread of the bootstrap distributions in the middle column
vary a bit, but all five resemble the sampling distribution in shape and
spread. That is, the shape and spread of a bootstrap distribution do de-
pend on the original sample, but the variation from sample to sample is
not great.

• The six bootstrap distributions from the same sample are very similar in
shape, center, and spread. That is, random resampling adds very little vari-
ation to the variation due to the random choice of the original sample from
the population.

Figure 14.12 reinforces facts that we have already relied on. If a bootstrap
distribution is based on a moderately large sample from the population, its
shape and spread don’t depend heavily on the original sample and do mimic
the shape and spread of the sampling distribution. Bootstrap distributions do
not have the same center as the sampling distribution; they mimic bias, not
the actual center. The figure also illustrates a fact that is important for prac-
tical use of the bootstrap: the bootstrap resampling process (using 1000 or
more resamples) introduces very little additional variation. We can rely on a
bootstrap distribution to inform us about the shape, bias, and spread of the
sampling distribution.

Bootstrapping small samples
We now know that almost all of the variation among bootstrap distributions
for a statistic such as the mean comes from the random selection of the orig-
inal sample from the population. We also know that in general statisticians
prefer large samples because small samples give more variable results. This
general fact is also true for bootstrap procedures.

Figure 14.13 repeats Figure 14.12, with two important differences. The five
original samples are only of size n = 9, rather than the n = 50 of Figure 14.12.
The population distribution (top left) is normal, so that the sampling distri-
bution of x is normal despite the small sample size. The bootstrap distribu-
tions in the middle column show much more variation in shape and spread
than those for larger samples in Figure 14.12. Notice, for example, how the
skewness of the fourth sample produces a skewed bootstrap distribution. The
bootstrap distributions are no longer all similar to the sampling distribution
at the top of the column. We can’t trust a bootstrap distribution from a very

CA
UTION

small sample to closely mimic the shape and spread of the sampling distribu-
tion. Bootstrap confidence intervals will sometimes be too long or too short,
or too long in one direction and too short in the other. The six bootstrap dis-
tributions based on the first sample are again very similar. Because we used
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FIGURE 14.13 Five random samples (n = 9) from the same population, with a bootstrap
distribution for the sample mean formed by resampling from each of the five samples. At the
right are five more bootstrap distributions from the first sample.
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1000 resamples, resampling adds very little variation. There are subtle effects
that can’t be seen from a few pictures, but the main conclusions are clear.

VARIATION IN BOOTSTRAP DISTRIBUTIONS

For most statistics, almost all the variation among bootstrap distribu-
tions comes from the selection of the original sample from the popu-
lation. You can reduce this variation by using a larger original sample.

Bootstrapping does not overcome the weakness of small samples as a
basis for inference. We will describe some bootstrap procedures that
are usually more accurate than standard methods, but even they may
not be accurate for very small samples. Use caution in any inference—
including bootstrap inference—from a small sample.

The bootstrap resampling process using 1000 or more resamples in-
troduces very little additional variation.

Bootstrapping a sample median
In dealing with the real estate sales prices in Example 14.4, we chose to boot-
strap the 25% trimmed mean rather than the median. We did this in part be-
cause the usual bootstrapping procedure doesn’t work well for the median
unless the original sample is quite large. Now we will bootstrap the median
in order to understand the difficulties.

Figure 14.14 follows the format of Figures 14.12 and 14.13. The popula-
tion distribution appears at top left, with the population median M marked.
Below in the left column are five samples of size n = 15 from this population,
with their sample medians m marked. Bootstrap distributions for the me-
dian based on resampling from each of the five samples appear in the middle
column. The right column again displays five more bootstrap distributions
from resampling the first sample. The six bootstrap distributions from the
same sample are once again very similar to each other—resampling adds
little variation—so we concentrate on the middle column in the figure.

Bootstrap distributions from the five samples differ markedly from each
other and from the sampling distribution at the top of the column. Here’s why.
The median of a resample of size 15 is the 8th-largest observation in the re-
sample. This is always one of the 15 observations in the original sample and is
usually one of the middle observations. Each bootstrap distribution therefore
repeats the same few values, and these values depend on the original sample.
The sampling distribution, on the other hand, contains the medians of all pos-
sible samples and is not confined to a few values.

The difficulty is somewhat less when n is even, because the median is then
the average of two observations. It is much less for moderately large samples,
say n = 100 or more. Bootstrap standard errors and confidence intervals from
such samples are reasonably accurate, though the shapes of the bootstrap dis-
tributions may still appear odd. You can see that the same difficulty will occur
for small samples with other statistics, such as the quartiles, that are calcu-
lated from just one or two observations from a sample.
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FIGURE 14.14 Five random samples (n = 15) from the same population, with a bootstrap
distribution for the sample median formed by resampling from each of the five samples. At
the right are five more bootstrap distributions from the first sample.
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There are more advanced variations of the bootstrap idea that improve
performance for small samples and for statistics such as the median and quar-
tiles. Unless you have expert advice or undertake further study, avoid bootstrap-

CA
UTION

ping the median and quartiles unless your sample is rather large.

SECTION 14.3 Summary
Almost all of the variation among bootstrap distributions for a statistic is due
to the selection of the original random sample from the population. Resam-
pling introduces little additional variation.

Bootstrap distributions based on small samples can be quite variable. Their
shape and spread reflect the characteristics of the sample and may not accu-
rately estimate the shape and spread of the sampling distribution. Bootstrap
inference from a small sample may therefore be unreliable.

Bootstrap inference based on samples of moderate size is unreliable for statis-
tics like the median and quartiles that are calculated from just a few of the
sample observations.

SECTION 14.3 Exercises
14.23 Most statistical software includes a function to generate samples from normal

distributions. Set the mean to 8.4 and the standard deviation to 14.7. You can
think of all the numbers that would be produced by this function if it ran for-
ever as a population that has the N(8.4, 14.7) distribution. Samples produced
by the function are samples from this population.

(a) What is the exact sampling distribution of the sample mean x for a sample
of size n from this population?

(b) Draw an SRS of size n = 10 from this population. Bootstrap the sample
mean x using 1000 resamples from your sample. Give a histogram of the
bootstrap distribution and the bootstrap standard error.

(c) Repeat the same process for samples of sizes n = 40 and n = 160.

(d) Write a careful description comparing the three bootstrap distributions
and also comparing them with the exact sampling distribution. What are
the effects of increasing the sample size?

14.24 The data for Example 14.1 are 1664 repair times for customers of Verizon,
the local telephone company in their area. In that example, these observations
formed a sample. Now we will treat these 1664 observations as a population.
The population distribution is pictured in Figures 14.1 and 14.8. It is very non-
normal. The population mean is µ = 8.4, and the population standard devia-
tion is σ = 14.7.

(a) Although we don’t know the shape of the sampling distribution of the
sample mean x for a sample of size n from this population, we do know
the mean and standard deviation of this distribution. What are they?



14-34 CHAPTER 14 Bootstrap Methods and Permutation Tests

(b) Draw an SRS of size n = 10 from this population. Bootstrap the sample
mean x using 1000 resamples from your sample. Give a histogram of the
bootstrap distribution and the bootstrap standard error.

(c) Repeat the same process for samples of sizes n = 40 and n = 160.

(d) Write a careful description comparing the three bootstrap distributions.
What are the effects of increasing the sample size?

14.25 The populations in the two previous exercises have the same mean and stan-
dard deviation, but one is very close to normal and the other is strongly non-
normal. Based on your work in these exercises, how does nonnormality of the
population affect the bootstrap distribution of x? How does it affect the boot-
strap standard error? Does either of these effects diminish when we start with
a larger sample? Explain what you have observed based on what you know
about the sampling distribution of x and the way in which bootstrap distri-
butions mimic the sampling distribution.

14.4 Bootstrap Confidence Intervals
To this point, we have met just one type of inference procedure based on re-
sampling, the bootstrap t confidence intervals. We can calculate a bootstrap
t confidence interval for any parameter by bootstrapping the corresponding
statistic. We don’t need conditions on the population or special knowledge
about the sampling distribution of the statistic. The flexible and almost auto-
matic nature of bootstrap t intervals is appealing—but there is a catch. These
intervals work well only when the bootstrap distribution tells us that the sam-
pling distribution is approximately normal and has small bias. How well must
these conditions be met? What can we do if we don’t trust the bootstrap t in-
terval? In this section we will see how to quickly check t confidence intervals
for accuracy and learn alternative bootstrap confidence intervals that can be
used more generally than the bootstrap t.

Bootstrap percentile confidence intervals
Confidence intervals are based on the sampling distribution of a statistic. If a
statistic has no bias as an estimator of a parameter, its sampling distribution
is centered at the true value of the parameter. We can then get a 95% con-
fidence interval by marking off the central 95% of the sampling distribution.
The t critical values in a t confidence interval are a shortcut to marking off the
central 95%. The shortcut doesn’t work under all conditions—it depends both
on lack of bias and on normality. One way to check whether t intervals (using
either bootstrap or formula-based standard errors) are reasonable is to com-
pare them with the central 95% of the bootstrap distribution. The 2.5% and
97.5% percentiles mark off the central 95%. The interval between the 2.5%
and 97.5% percentiles of the bootstrap distribution is often used as a confi-
dence interval in its own right. It is known as a bootstrap percentile confidence
interval.
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BOOTSTRAP PERCENTILE CONFIDENCE INTERVALS

The interval between the 2.5% and 97.5% percentiles of the bootstrap
distribution of a statistic is a 95% bootstrap percentile confidence
interval for the corresponding parameter. Use this method when the
bootstrap estimate of bias is small.

The conditions for safe use of bootstrap t and bootstrap percentile inter-
vals are a bit vague. We recommend that you check whether these intervals are
reasonable by comparing them with each other. If the bias of the bootstrap
distribution is small and the distribution is close to normal, the bootstrap t
and percentile confidence intervals will agree closely. Percentile intervals, un-
like t intervals, do not ignore skewness. Percentile intervals are therefore usu-
ally more accurate, as long as the bias is small. Because we will soon meet
much more accurate bootstrap intervals, our recommendation is that whenCA

UTION

bootstrap t and bootstrap percentile intervals do not agree closely, neither type of
interval should be used.

EXAMPLE 14 . 8 In Example 14.5 (page 14-18) we found that a 95% bootstrap t confi-
dence interval for the 25% trimmed mean of Seattle real estate sales

prices is 210.2 to 277.8. The bootstrap distribution in Figure 14.7 shows a small bias
and, though roughly normal, is a bit skewed. Is the bootstrap t confidence interval ac-
curate for these data?

The S-PLUS bootstrap output includes the 2.5% and 97.5% percentiles of the
bootstrap distribution. They are 213.1 and 279.4. These are the endpoints of the 95%
bootstrap percentile confidence interval. This interval is quite close to the bootstrap t
interval. We conclude that both intervals are reasonably accurate.

The bootstrap t interval for the trimmed mean of real estate sales in Ex-
ample 14.8 is

x25% ± t∗SEboot = 244 ± 33.81

We can learn something by also writing the percentile interval starting at the
statistic x25% = 244. In this form, it is

244.0 − 30.9, 244.0 + 35.4

Unlike the t interval, the percentile interval is not symmetric—its endpoints
are different distances from the statistic. The slightly greater distance to the
97.5% percentile reflects the slight right skewness of the bootstrap
distribution.

Confidence intervals for the correlation
The bootstrap allows us to find standard errors and confidence intervals for
a wide variety of statistics. We have done this for the mean and the trimmed
mean. We also learned how to find the bootstrap distribution for a differ-
ence of means, but that distribution for the Verizon data (Example 14.6,
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page 14-19) is so far from normal that we are reluctant to use the bootstrap t
or percentile confidence intervals. Now we will bootstrap the correlation co-
efficient. This is our first use of the bootstrap for a statistic that depends on
two related variables. As with the difference of means, we must pay attention
to how we should resample.

EXAMPLE 14 . 9 Major League Baseball (MLB) owners claim they need limitations on
player salaries to maintain competitiveness among richer and poorer

teams. This argument assumes that higher salaries attract better players. Is there a
relationship between an MLB player’s salary and his performance?

Table 14.2 contains the names, 2002 salaries, and career batting averages of 50
randomly selected MLB players (excluding pitchers).9 The scatterplot in Figure 14.15
suggests that the relationship between salary and batting average is weak. The sample
correlation is r = 0.107. Is this small correlation significantly different from 0? To find
out, we can calculate a 95% confidence interval for the population correlation and see
whether or not it covers 0. If the confidence interval does not cover 0, the observed
correlation is significant at the 5% level.

TAB LE 14 . 2

Major League Baseball salaries and batting averages

Name Salary Average Name Salary Average

Matt Williams $9,500,000 0.269 Greg Colbrunn $1,800,000 0.307
Jim Thome $8,000,000 0.282 Dave Martinez $1,500,000 0.276
Jim Edmonds $7,333,333 0.327 Einar Diaz $1,087,500 0.216
Fred McGriff $7,250,000 0.259 Brian L. Hunter $1,000,000 0.289
Jermaine Dye $7,166,667 0.240 David Ortiz $950,000 0.237
Edgar Martinez $7,086,668 0.270 Luis Alicea $800,000 0.202
Jeff Cirillo $6,375,000 0.253 Ron Coomer $750,000 0.344
Rey Ordonez $6,250,000 0.238 Enrique Wilson $720,000 0.185
Edgardo Alfonzo $6,200,000 0.300 Dave Hansen $675,000 0.234
Moises Alou $6,000,000 0.247 Alfonso Soriano $630,000 0.324
Travis Fryman $5,825,000 0.213 Keith Lockhart $600,000 0.200
Kevin Young $5,625,000 0.238 Mike Mordecai $500,000 0.214
M. Grudzielanek $5,000,000 0.245 Julio Lugo $325,000 0.262
Tony Batista $4,900,000 0.276 Mark L. Johnson $320,000 0.207
Fernando Tatis $4,500,000 0.268 Jason LaRue $305,000 0.233
Doug Glanville $4,000,000 0.221 Doug Mientkiewicz $285,000 0.259
Miguel Tejada $3,625,000 0.301 Jay Gibbons $232,500 0.250
Bill Mueller $3,450,000 0.242 Corey Patterson $227,500 0.278
Mark McLemore $3,150,000 0.273 Felipe Lopez $221,000 0.237
Vinny Castilla $3,000,000 0.250 Nick Johnson $220,650 0.235
Brook Fordyce $2,500,000 0.208 Thomas Wilson $220,000 0.243
Torii Hunter $2,400,000 0.306 Dave Roberts $217,500 0.297
Michael Tucker $2,250,000 0.235 Pablo Ozuna $202,000 0.333
Eric Chavez $2,125,000 0.277 Alexis Sanchez $202,000 0.301
Aaron Boone $2,100,000 0.227 Abraham Nunez $200,000 0.224
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FIGURE 14.15 Career batting average and 2002 salary for a random
sample of 50 Major League Baseball players.

How shall we resample from Table 14.2? Because each observation con-
sists of the batting average and salary for one player, we resample players (that
is, observations). Resampling batting averages and salaries separately would
lose the tie between a player’s batting average and his salary. Software such
as S-PLUS automates proper resampling. Once we have produced a bootstrap
distribution by resampling, we can examine the distribution and form a con-
fidence interval in the usual way. We need no special formulas or procedures
to handle the correlation.

Figure 14.16 shows the bootstrap distribution and normal quantile plot for
the sample correlation for 1000 resamples from the 50 players in our sample.
The bootstrap distribution is close to normal and has small bias, so a 95%
bootstrap t confidence interval appears reasonable.

The bootstrap standard error is SEboot = 0.125. The t interval using the
bootstrap standard error is

r ± t∗SEboot = 0.107 ± (2.009)(0.125)

= 0.107 ± 0.251

= (−0.144, 0.358)

The 95% bootstrap percentile interval is

(2.5% percentile, 97.5% percentile) = (−0.128, 0.356)

= (0.107 − 0.235, 0.107 + 0.249)

The two confidence intervals are in reasonable agreement.
The confidence intervals give a wide range for the population correlation,

and both include 0. These data do not provide significant evidence that there
is a relationship between salary and batting average. A larger sample might
result in a significant relationship, but the evidence from this sample suggests
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FIGURE 14.16 The bootstrap distribution and normal quan-
tile plot for the correlation r for 1000 resamples from the baseball
player data in Table 14.2. The solid double-ended arrow below the
distribution is the t interval, and the dashed arrow is the percentile
interval.

that any relationship is quite weak. Of course, batting average is only one facet
of a player’s performance. It is possible that there may be a significant salary-
performance relationship if we include several measures of performance.

More accurate bootstrap confidence intervals:
BCa and tilting
Any method for obtaining confidence intervals requires some conditions in
order to produce exactly the intended confidence level. These conditions (for
example, normality) are never exactly met in practice. So a 95% confidence in-
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terval in practice will not capture the true parameter value exactly 95% of the
time. In addition to “hitting” the parameter 95% of the time, a good confidence
interval should divide its 5% of “misses” equally between high misses and low
misses. We will say that a method for obtaining 95% confidence intervals is
accurate in a particular setting if 95% of the time it produces intervals thataccurate
capture the parameter and if the 5% misses are equally shared between high
and low misses. Perfect accuracy isn’t available in practice, but some methods
are more accurate than others.

One advantage of the bootstrap is that we can to some extent check the ac-
curacy of the bootstrap t and percentile confidence intervals by examining the
bootstrap distribution for bias and skewness and by comparing the two inter-
vals with each other. The intervals in Examples 14.8 and 14.9 reveal some right
skewness, but not enough to invalidate inference. The bootstrap distribution
in Figure 14.9 (page 14-21) for comparing two means, on the other hand, is
so skewed that we hesitate to use the t or percentile intervals. In general, the
t and percentile intervals may not be sufficiently accurate when

• the statistic is strongly biased, as indicated by the bootstrap estimate of
bias;

• the sampling distribution of the statistic is clearly skewed, as indicated by
the bootstrap distribution and by comparing the t and percentile intervals;
or

• we require high accuracy because the stakes are high (large sums of money
or public welfare).

Most confidence interval procedures are more accurate for larger sample
sizes. The t and percentile procedures improve only slowly: they require 100
times more data to improve accuracy by a factor of 10. (Recall the

√
n in the

formula for the usual one-sample t interval.) These intervals may not be very
accurate except for quite large sample sizes. There are more elaborate boot-
strap procedures that improve faster, requiring only 10 times more data to im-
prove accuracy by a factor of 10. These procedures are quite accurate unless
the sample size is very small.

BCa AND TILTING CONFIDENCE INTERVALS

The bootstrap bias-corrected accelerated (BCa) interval is a modi-
fication of the percentile method that adjusts the percentiles to correct
for bias and skewness.

The bootstrap tilting interval adjusts the process of randomly form-
ing resamples (though a clever implementation allows use of the same
resamples as other bootstrap methods).

These two methods are accurate in a wide variety of settings, have reason-
able computation requirements (by modern standards), and do not produce
excessively wide intervals. The BCa intervals are more widely used. Both are
based on the big ideas of resampling and the bootstrap distribution. Now that
you understand the big ideas, you should always use one of these more ac-
curate methods if your software offers them. We did not meet them earlier
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because the details of producing the confidence intervals are quite technical.10

The BCa method requires more than 1000 resamples for high accuracy. Use
5000 or more resamples if the accuracy of inference is very important. Tilting
is more efficient, so that 1000 resamples are generally enough. Don’t forget
that even BCa and tilting confidence intervals should be used cautiously whenCA

UTION

sample sizes are small, because there are not enough data to accurately determine
the necessary corrections for bias and skewness.

EXAMPLE 14 . 10 The 2002 Seattle real estate sales data are strongly skewed (Fig-
ure 14.6). Figure 14.17 shows the bootstrap distribution of the

sample mean x. We see that the skewness persists in the bootstrap distribution and
therefore in the sampling distribution. Inference based on a normal sampling distri-
bution is not appropriate.

We generally prefer resistant measures of center such as the median or trimmed
mean for skewed data. Accordingly, in Example 14.5 (page 14-18) we bootstrapped
the 25% trimmed mean. However, the mean is easily understood by the public and is
needed for some purposes, such as projecting taxes based on total sales value.

The bootstrap t and percentile intervals aren’t reliable when the sampling distribu-
tion of the statistic is skewed. Figure 14.18 shows software output that includes all four
of the confidence intervals we have mentioned, along with the traditional one-sample
t interval. The BCa interval is

(329.3 − 62.2, 329.3 + 127.0) = (267.1, 456.3)

200 300 400 500

Observed
Mean

Resample means, $1000s

FIGURE 14.17 The bootstrap distribution of the sample means of 5000 resamples from
the data in Table 14.1, for Example 14.10. The bootstrap distribution is right-skewed, so we
conclude that the sampling distribution of x is right-skewed as well.
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One -sample t -Test  

data:  Price in Seattle2002 
t = 7.3484, df = 49, p-value = 0 
alternative hypothesis:  mean is not equal to 0 
95 percent confidence interval:
 239.2150 419.2992 
sample estimates:
 mean of x 
  329.2571
 
 
Number of Replications: 5000
 
Summary Statistics:
     Observed   Mean      Bias     SE 
mean    329.3  328.4 –0.8679   43.68
 
Percentiles:
         2.5%       5%      95%   97.5%
mean 253.5264 263.1985 406.4151 425.513
 
BCa Confidence Intervals:
         2.5%       5%      95%    97.5%
mean 267.0683 275.5542 433.4044 456.2938
 
Tilting Confidence Intervals:
         2.5%       5%      95%    97.5% 
mean 263.1428 272.4917 430.7042 455.2483
 
T Confidence Intervals using Bootstrap Standard Errors:
         2.5%       5%     95%    97.5% 
mean 241.4652 256.0183 402.496 417.0491

FIGURE 14.18 S-PLUS output for bootstrapping the mean of the Seattle real
estate selling price data, for Example 14.10. The output includes four types of con-
fidence intervals for the population mean.

and the tilting interval is

(329.3 − 66.2, 329.3 + 125.9) = (263.1, 455.2)

These intervals agree closely. Both are strongly asymmetrical: the upper endpoint is
about twice as far from the sample mean as the lower endpoint. This reflects the strong
right skewness of the bootstrap distribution.

The output in Figure 14.18 also shows that both endpoints of the less-
accurate intervals (one-sample t, bootstrap t, and percentile) are too low.
These intervals miss the population mean on the low side too often (more
than 2.5%) and miss on the high side too seldom. They give a biased picture
of where the true mean is likely to be.
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While the BCa and tilting calculations are radically different, the results
tend to be about the same, except for random variation in the BCa if the num-
ber of resamples is less than about 5000. Both procedures are accurate, so we
expect them to produce similar results unless a small sample size makes any
inference dubious.

SECTION 14.4 Summary
Both bootstrap t and (when they exist) traditional z and t confidence intervals
require statistics with small bias and sampling distributions close to normal.
We can check these conditions by examining the bootstrap distribution for
bias and lack of normality.

The bootstrap percentile confidence interval for 95% confidence is the in-
terval from the 2.5% percentile to the 97.5% percentile of the bootstrap dis-
tribution. Agreement between the bootstrap t and percentile intervals is an
added check on the conditions needed by the t interval. Do not use t or per-
centile intervals if these conditions are not met.

When bias or skewness is present in the bootstrap distribution, use either a
BCa or bootstrap tilting interval. The t and percentile intervals are inaccu-
rate under these circumstances unless the sample sizes are very large. The
tilting and BCa confidence intervals adjust for bias and skewness and are
generally accurate except for small samples.

SECTION 14.4 Exercises
Many of these exercises require software that will calculate accurate bootstrap
confidence intervals. If your software finds BCa but not tilting intervals, ignore
requests for tilting intervals. S-PLUS supplies both types.

14.26 What percentiles of the bootstrap distribution are the endpoints of a 90%
bootstrap percentile confidence interval?

14.27 In Exercise 14.17 (page 14-25) you bootstrapped the mean of a simulated SRS
from the standard normal distribution N(0, 1) and found the standard t and
bootstrap t 95% confidence intervals for the mean.

(a) Find the bootstrap percentile 95% confidence interval. Does this interval
confirm that the t intervals are acceptable?

(b) We know that the population mean is 0. Do the confidence intervals cap-
ture this mean?

14.28 Bootstrapping is a good way to check if traditional inference methods are ac-
curate for a given sample. Consider the following data:

109 123 118 99 121 134 126 114 129 123 171 124
111 125 128 154 121 123 118 106 108 112 103 125
137 121 102 135 109 115 125 132 134 126 116 105
133 111 112 118 117 105 107
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(a) Examine the data graphically. Do they appear to violate any of the condi-
tions needed to use the one-sample t confidence interval for the popula-
tion mean?

(b) Calculate the 95% one-sample t confidence interval for this sample.

(c) Bootstrap the data, and inspect the bootstrap distribution of the mean.
Does it suggest that a t interval should be reasonably accurate? Calculate
the bootstrap t 95% interval.

(d) Find the 95% bootstrap percentile interval. Does it agree with the two t
intervals? What do you conclude about the accuracy of the one-sample t
interval here?

14.29 The graphs in Figure 14.16 do not appear to show any important skewness in
the bootstrap distribution of the correlation for Example 14.9. Compare the
bootstrap percentile and bootstrap t intervals for the correlation, given in the
discussion of Example 14.9. Does the comparison suggest any skewness?

14.30 Continue to work with the data given in Exercise 14.28.

(a) Find the bootstrap BCa or tilting 95% confidence interval. We believe that
these intervals are quite accurate.

(b) Does your opinion of the robustness of the one-sample t confidence inter-
val change when comparing it to the BCa or tilting interval?

(c) To check the accuracy of the one-sample t confidence interval, would you
generally use the bootstrap percentile or BCa (or tilting) interval?

14.31 Find the BCa and tilting 95% confidence intervals for the correlation between
baseball salaries and batting averages, from the data in Table 14.2. Are these
more accurate intervals in general agreement with the bootstrap t and per-
centile intervals? Do you still agree with the judgment in the discussion of
Example 14.9 that the simpler intervals are adequate?

14.32 The distribution of the 60 IQ test scores in Table 1.3 (page 14) is roughly
normal (see Figure 1.5), and the sample size is large enough that we expect
a normal sampling distribution. We will compare confidence intervals for the
population mean IQ µ based on this sample.

(a) Use the formula s/
√

n to find the standard error of the mean. Give the 95%
t confidence interval based on this standard error.

(b) Bootstrap the mean of the IQ scores. Make a histogram and normal quan-
tile plot of the bootstrap distribution. Does the bootstrap distribution ap-
pear normal? What is the bootstrap standard error? Give the bootstrap t
95% confidence interval.

(c) Give the 95% confidence percentile, BCa, and tilting intervals. Make a
graphical comparison by drawing a vertical line at the original sample
mean x and displaying the five intervals horizontally, one above the other.
How well do your five confidence intervals agree? Was bootstrapping
needed to find a reasonable confidence interval, or was the formula-based
confidence interval good enough?
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14.33 The distribution of the 72 guinea pig lifetimes in Table 1.8 (page 38) is strongly
skewed. In Exercise 14.9 (page 14-23) you found a bootstrap t confidence in-
terval for the population mean µ, even though some skewness remains in the
bootstrap distribution. Bootstrap the mean lifetime and give all four boot-
strap 95% confidence intervals: t, percentile, BCa, and tilting. Make a graph-
ical comparison by drawing a vertical line at the original sample mean x and
displaying the four intervals horizontally, one above the other. Discuss what
you see: Do bootstrap t and percentile agree? Do the more accurate intervals
agree with the two simpler methods?

14.34 We would like a 95% confidence interval for the standard deviation σ of
Seattle real estate prices. Your work in Exercise 14.11 probably suggests
that it is risky to bootstrap the sample standard deviation s from the sample
in Table 14.1 and use the bootstrap t interval. Now we have more accurate
methods. Bootstrap s and report all four bootstrap 95% confidence intervals:
t, percentile, BCa, and tilting. Make a graphical comparison by drawing a ver-
tical line at the original s and displaying the four intervals horizontally, one
above the other. Discuss what you see: Do bootstrap t and percentile agree?
Do the more accurate intervals agree with the two simpler methods? What
interval would you use in a report on real estate prices?

14.35 Exercise 14.7 (page 14-13) gives an SRS of 20 of the 72 guinea pig survival
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times in Table 1.8. The bootstrap distribution of x from this sample is clearly
right-skewed. Give a 95% confidence interval for the population mean µ based
on these data and a method of your choice. Describe carefully how your result
differs from the intervals in Exercise 14.33, which use the full sample of 72
lifetimes.

14.36 The CLEC data for Example 14.6 are strongly skewed to the right. The 23
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CLEC repair times appear in Exercise 14.22 (page 14-26).

(a) Bootstrap the mean of the data. Based on the bootstrap distribution,
which bootstrap confidence intervals would you consider for use? Ex-
plain your answer.

(b) Find all four bootstrap confidence intervals. How do the intervals com-
pare? Briefly explain the reasons for any differences. In particular, what
kind of errors would you make in estimating the mean repair time for all
CLEC customers by using a t interval or percentile interval instead of a
tilting or BCa interval?

14.37 Example 14.6 (page 14-19) considers the mean difference between repair
times for Verizon (ILEC) customers and customers of competing carriers
(CLECs). The bootstrap distribution is nonnormal with strong left skewness,
so that any t confidence interval is inappropriate. Give the BCa 95% confi-
dence interval for the mean difference in service times for all customers. In
practical terms, what kind of error would you make by using a t interval or
percentile interval instead of a BCa interval?

14.38 Figure 2.3 (page 108) is a scatterplot of field versus laboratory measurements
of the depths of 100 defects in the Trans-Alaska Oil Pipeline. The correlation
is r = 0.944. Bootstrap the correlation for these data. (The data are in the file
ex14 038.dat.)
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(a) Describe the shape and bias of the bootstrap distribution. Do the simpler
bootstrap confidence intervals (t and percentile) appear to be justified?

(b) Find all four bootstrap 95% confidence intervals: t, percentile, BCa, and
tilting. Make a graphical comparison by drawing a vertical line at the orig-
inal correlation r and displaying the four intervals horizontally, one above
the other. Discuss what you see. Does it still appear that the simpler inter-
vals are justified? What confidence interval would you include in a report
comparing field and laboratory measurements?

14.39 Figure 2.7 (page 114) shows a very weak relationship between returns on Trea-
sury bills and returns on common stocks. The correlation is r = −0.113. We
wonder if this is significantly different from 0. To find out, bootstrap the cor-
relation. (The data are in the file ex14 039.dat.)

(a) Describe the shape and bias of the bootstrap distribution. It appears that
even simple bootstrap inference (t and percentile confidence intervals) is
justified. Explain why.

(b) Give the BCa and bootstrap percentile 95% confidence intervals for the
population correlation. Do they (as expected) agree closely? Do these in-
tervals provide significant evidence at the 5% level that the population cor-
relation is not 0?

14.40 Describe carefully how to resample from data on an explanatory variable x
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and a response variable y to create a bootstrap distribution for the slope b1

of the least-squares regression line. (Software such as S-PLUS automates re-
sampling methods for regression inference.)

14.41 Continue your study of historical returns on Treasury bills and common
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stocks, begun in Exercise 14.39, by regressing stock returns on T-bill returns.

(a) Request a plot of the residuals against the explanatory variable and a nor-
mal quantile plot of the residuals. The residuals are somewhat nonnor-
mal. In what way? It is hard to predict the accuracy of the usual t confi-
dence interval for the slope β1 of the population regression line.

(b) Examine the shape and bias of the bootstrap distribution of the slope b1

of the least-squares line. The distribution suggests that even the bootstrap
t interval will be accurate. Why?

(c) Give the standard t confidence interval for β1 and also the BCa, boot-
strap t, and bootstrap percentile 95% confidence intervals. What do you
conclude about the accuracy of the two t intervals? Do the data provide
evidence at the 5% level that the population slope β1 is not 0?

14.42 Continue your study of field measurements versus laboratory measurements

CH

ALLENGE

of defects in the Trans-Alaska Oil Pipeline, begun in Exercise 14.38, by regress-
ing field measurement result on laboratory measurement result.

(a) Request a plot of the residuals against the explanatory variable and a nor-
mal quantile plot of the residuals. These plots suggest that inference based
on the usual simple linear regression model (Chapter 10, page 638) may
be inaccurate. Why?
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(b) Examine the bootstrap distribution of the slope b1 of the least-squares re-
gression line. The distribution shows some departures from normality. In
what way is the bootstrap distribution nonnormal? What is the bootstrap
estimate of bias? Based on what you see, would you consider use of boot-
strap t or bootstrap percentile intervals?

(c) Give the BCa 95% confidence interval for the slope β1 of the population
regression line. Compare this with the standard 95% confidence interval
based on normality, the bootstrap t interval, and the bootstrap percentile
interval. Using the BCa interval as a standard, which of the other intervals
are adequately accurate for practical use?

14.43 Table 14.2 gives data on a sample of 50 baseball players.

(a) Find the least-squares regression line for predicting salary from batting
average.

(b) Bootstrap the regression line and give a 95% confidence interval for the
slope of the population regression line.

(c) In the discussion of Example 14.9 we found bootstrap confidence inter-
vals for the correlation between salary and batting average. Does your in-
terval for the slope of the population line agree with the conclusion of that
example that there may be no relation between salary and batting aver-
age? Explain.

14.44 We know that outliers can strongly influence statistics such as the mean and
the least-squares line. Example 7.7 (page 459) describes a matched pairs study
of disruptive behavior by dementia patients. The differences in Table 7.2 show
several low values that may be considered outliers.

(a) Bootstrap the mean of the differences with and without the three low val-
ues. How do these values influence the shape and bias of the bootstrap
distribution?

(b) Give the BCa or tilting confidence interval from both bootstrap distribu-
tions. Discuss the differences.

14.5 Significance Testing Using
Permutation Tests

Significance tests tell us whether an observed effect, such as a difference be-
tween two means or a correlation between two variables, could reasonably
occur “just by chance” in selecting a random sample. If not, we have evidence
that the effect observed in the sample reflects an effect that is present in the
population. The reasoning of tests goes like this:

1. Choose a statistic that measures the effect you are looking for.

2. Construct the sampling distribution that this statistic would have if the ef-
fect were not present in the population.

3. Locate the observed statistic on this distribution. A value in the main body
of the distribution could easily occur just by chance. A value in the tail would
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Sampling
distribution

when H0 is true

P-value

Observed statistic

FIGURE14.19 The P-value of a statistical test is found from
the sampling distribution the statistic would have if the null hy-
pothesis were true. It is the probability of a result at least as
extreme as the value we actually observed.

rarely occur by chance and so is evidence that something other than chance
is operating.

The statement that the effect we seek is not present in the population is the
null hypothesis, H0. The probability, calculated taking the null hypothesis tonull hypothesis
be true, that we would observe a statistic value as extreme or more extreme
than the one we did observe is the P-value. Figure 14.19 illustrates the ideaP-value
of a P-value. Small P-values are evidence against the null hypothesis and in
favor of a real effect in the population. The reasoning of statistical tests is in-
direct and a bit subtle but is by now familiar. Tests based on resampling don’t
change this reasoning. They find P-values by resampling calculations rather
than from formulas and so can be used in settings where traditional tests
don’t apply.

Because P-values are calculated acting as if the null hypothesis were true,
we cannot resample from the observed sample as we did earlier. In the absence
of bias, resampling from the original sample creates a bootstrap distribution
centered at the observed value of the statistic. If the null hypothesis is in fact
not true, this value may be far from the parameter value stated by the null
hypothesis. We must estimate what the sampling distribution of the statistic
would be if the null hypothesis were true. That is, we must obey this rule:

RESAMPLING FOR SIGNIFICANCE TESTS

To estimate the P-value for a test of significance, estimate the sam-
pling distribution of the test statistic when the null hypothesis is true
by resampling in a manner that is consistent with the null hypothesis.

EXAMPLE 14 . 11 Do new “directed reading activities” improve the reading ability of
elementary school students, as measured by their Degree of Reading

Power (DRP) scores? A study assigns students at random to either the new method
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TAB LE 14 . 3

Degree of Reading Power scores for third-graders

Treatment group Control group

24 61 59 46 43 53 42 33 46 37 62 20
43 44 52 43 57 49 43 41 10 42 53 48
58 67 62 57 56 33 55 19 17 55 37 85
71 49 54 26 54 60 28 42

(treatment group, 21 students) or traditional teaching methods (control group, 23 stu-
dents). The DRP scores at the end of the study appear in Table 14.3.11 In Example 7.14
(page 489) we applied the two-sample t test to these data.

To apply resampling, we will start with the difference between the sample means
as a measure of the effect of the new activities:

statistic = xtreatment − xcontrol

The null hypothesis H0 for the resampling test is that the teaching method has no effect
on the distribution of DRP scores. If H0 is true, the DRP scores in Table 14.3 do not
depend on the teaching method. Each student has a DRP score that describes that child
and is the same no matter which group the child is assigned to. The observed difference
in group means just reflects the accident of random assignment to the two groups.

Now we can see how to resample in a way that is consistent with the null hypoth-
esis: imitate many repetitions of the random assignment of students to treatment and
control groups, with each student always keeping his or her DRP score unchanged.
Because resampling in this way scrambles the assignment of students to groups, tests
based on resampling are called permutation tests, from the mathematical name forpermutation tests
scrambling a collection of things.

Here is an outline of the permutation test procedure for comparing the
mean DRP scores in Example 14.11:

• Choose 21 of the 44 students at random to be the treatment group; the
other 23 are the control group. This is an ordinary SRS, chosen without re-
placement. It is called a permutation resample. Calculate the mean DRPpermutation

resample score in each group, using the individual DRP scores in Table 14.3. The
difference between these means is our statistic.

• Repeat this resampling from the 44 students hundreds of times. The dis-
tribution of the statistic from these resamples estimates the sampling dis-
tribution under the condition that H0 is true. It is called a permutationpermutation

distribution distribution.

• The value of the statistic actually observed in the study was

xtreatment − xcontrol = 51.476 − 41.522 = 9.954

Locate this value on the permutation distribution to get the P-value.
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24, 61   |   42, 33, 46, 37
x1 – x2 = 42.5 – 39.5 = 3.0

33, 61   |   24, 42, 46, 37
x1 – x2 = 47 – 37.25 = 9.75

37, 42   |   24, 61, 33, 46
x1 – x2 = 39.5 – 41 = –1.5

33, 46   |   24, 61, 42, 37
x1 – x2 = 39.5 – 41 = –1.5

FIGURE 14.20 The idea of permutation resampling. The top box shows the outcomes of a
study with four subjects in one group and two in the other. The boxes below show three per-
mutation resamples. The values of the statistic for many such resamples form the permutation
distribution.

Figure 14.20 illustrates permutation resampling on a small scale. The top
box shows the results of a study with four subjects in the treatment group and
two subjects in the control group. A permutation resample chooses an SRS
of four of the six subjects to form the treatment group. The remaining two
are the control group. The results of three permutation resamples appear be-
low the original results, along with the statistic (difference of group means)
for each.

EXAMPLE 14 . 12 Figure 14.21 shows the permutation distribution of the difference of
means based on 999 permutation resamples from the DRP data in

Table 14.3. This is a resampling estimate of the sampling distribution of the statistic

–15 –5–10 0 5 10 15

P-value

Observed
Mean

FIGURE 14.21 The permutation distribution of the statistic
xtreatment − xcontrol based on the DRP scores of 44 students. The dashed
line marks the mean of the permutation distribution: it is very close
to zero, the value specified by the null hypothesis. The solid vertical
line marks the observed difference in means, 9.954. Its location in the
right tail shows that a value this large is unlikely to occur when the null
hypothesis is true.
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when the null hypothesis H0 is true. As H0 suggests, the distribution is centered at 0
(no effect). The solid vertical line in the figure marks the location of the statistic for
the original sample, 9.954. Use the permutation distribution exactly as if it were the
sampling distribution: the P-value is the probability that the statistic takes a value at
least as extreme as 9.954 in the direction given by the alternative hypothesis.

We seek evidence that the treatment increases DRP scores, so the alternative hy-
pothesis is that the distribution of the statistic xtreatment − xcontrol is centered not at 0
but at some positive value. Large values of the statistic are evidence against the null
hypothesis in favor of this one-sided alternative. The permutation test P-value is the
proportion of the 999 resamples that give a result at least as great as 9.954. A look at
the resampling results finds that 14 of the 999 resamples gave a value 9.954 or larger,
so the estimated P-value is 14/999, or 0.014.

Here is a last refinement. Recall from Chapter 8 that we can improve the estimate
of a population proportion by adding two successes and two failures to the sample.
It turns out that we can similarly improve the estimate of the P-value by adding one
sample result more extreme than the observed statistic. The final permutation test es-
timate of the P-value is

14 + 1
999 + 1

= 15
1000

= 0.015

The data give good evidence that the new method beats the standard method.

Figure 14.21 shows that the permutation distribution has a roughly nor-
mal shape. Because the permutation distribution approximates the sampling
distribution, we now know that the sampling distribution is close to normal.
When the sampling distribution is close to normal, we can safely apply the
usual two-sample t test. The t test in Example 7.14 gives P = 0.013, very close
to the P-value from the permutation test.

Using software
In principle, you can program almost any statistical software to do a permu-
tation test. It is more convenient to use software that automates the process
of resampling, calculating the statistic, forming the permutation distribution,
and finding the P-value. The menus in S-PLUS allow you to request permuta-
tion tests along with standard tests whenever they make sense. The permuta-
tion distribution in Figure 14.21 is one output. Another is this summary of the
test results:

Number of Replications: 999

Summary Statistics:
Observed Mean SE alternative p.value

score 9.954 0.07153 4.421 greater 0.015

By giving “greater” as the alternative hypothesis, the output makes it clear that
0.015 is the one-sided P-value.

Permutation tests in practice
Permutation tests versus t tests. We have analyzed the data in Table
14.3 both by the two-sample t test (in Chapter 7) and by a permutation test.
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Comparing the two approaches brings out some general points about permu-
tation tests versus traditional formula-based tests.

• The hypotheses for the t test are stated in terms of the two population
means,

H0: µtreatment − µcontrol = 0

Ha: µtreatment − µcontrol > 0

The permutation test hypotheses are more general. The null hypothesis is
“same distribution of scores in both groups,” and the one-sided alternative
is “scores in the treatment group are systematically higher.” These more
general hypotheses imply the t hypotheses if we are interested in mean
scores and the two distributions have the same shape.

• The plug-in principle says that the difference of sample means estimates
the difference of population means. The t statistic starts with this differ-
ence. We used the same statistic in the permutation test, but that was a
choice: we could use the difference of 25% trimmed means or any other
statistic that measures the effect of treatment versus control.

• The t test statistic is based on standardizing the difference of means in
a clever way to get a statistic that has a t distribution when H0 is true.
The permutation test works directly with the difference of means (or some
other statistic) and estimates the sampling distribution by resampling. No
formulas are needed.

• The t test gives accurate P-values if the sampling distribution of the differ-
ence of means is at least roughly normal. The permutation test gives accu-
rate P-values even when the sampling distribution is not close to normal.

The permutation test is useful even if we plan to use the two-sample t
test. Rather than relying on normal quantile plots of the two samples and the
central limit theorem, we can directly check the normality of the sampling
distribution by looking at the permutation distribution. Permutation tests
provide a “gold standard” for assessing two-sample t tests. If the two P-values
differ considerably, it usually indicates that the conditions for the two-sample
t don’t hold for these data. Because permutation tests give accurate P-values
even when the sampling distribution is skewed, they are often used when
accuracy is very important. Here is an example.

EXAMPLE 14 . 13 In Example 14.6, we looked at the difference in means between re-
pair times for 1664 Verizon (ILEC) customers and 23 customers of

competing companies (CLECs). Figure 14.8 (page 14-19) shows both distributions.
Penalties are assessed if a significance test concludes at the 1% significance level that
CLEC customers are receiving inferior service. The alternative hypothesis is one-sided
because the Public Utilities Commission wants to know if CLEC customers are
disadvantaged.

Because the distributions are strongly skewed and the sample sizes are very differ-
ent, two-sample t tests are inaccurate. An inaccurate testing procedure might declare
3% of tests significant at the 1% level when in fact the two groups of customers are
treated identically, so that only 1% of tests should in the long run be significant. Errors
like this would cost Verizon substantial sums of money.
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Verizon performs permutation tests with 500,000 resamples for high accuracy, us-
ing custom software based on S-PLUS. Depending on the preferences of each state’s
regulators, one of three statistics is chosen: the difference in means, x1 − x2; the pooled-
variance t statistic; or a modified t statistic in which only the standard deviation of
the larger group is used to determine the standard error. The last statistic prevents the
large variation in the small group from inflating the standard error.

To perform a permutation test, we randomly regroup the total set of repair times
into two groups that are the same sizes as the two original samples. This is consistent
with the null hypothesis that CLEC versus ILEC has no effect on repair time. Each
repair time appears once in the data in each resample, but some repair times from
the ILEC group move to CLEC, and vice versa. We calculate the test statistic for each
resample and create its permutation distribution. The P-value is the proportion of the
resamples with statistics that exceed the observed statistic.

Here are the P-values for the three tests on the Verizon data, using 500,000
permutations. The corresponding t test P-values, obtained by comparing the
t statistic with t critical values, are shown for comparison.

Test statistic t test P-value Permutation test P-value

x1 − x2 0.0183
Pooled t statistic 0.0045 0.0183
Modified t statistic 0.0044 0.0195

The t test results are off by a factor of more than 4 because they do not take
skewness into account. The t test suggests that the differences are significant
at the 1% level, but the more accurate P-values from the permutation test in-
dicate otherwise. Figure 14.22 shows the permutation distribution of the first

–15 –10 –5 0 5 7
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FIGURE 14.22 The permutation distribution of the difference of
means x1 − x2 for the Verizon repair time data.
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statistic, the difference in sample means. The strong skewness implies that t
tests will be inaccurate.

If you read Chapter 15, on nonparametric tests, you will find there more
comparison of permutation tests with rank tests as well as tests based on nor-
mal distributions.

Data from an entire population. A subtle difference between con-
fidence intervals and significance tests is that confidence intervals require
the distinction between sample and population, but tests do not. If we have
data on an entire population—say, all employees of a large corporation—we
don’t need a confidence interval to estimate the difference between the mean
salaries of male and female employees. We can calculate the means for all
men and for all women and get an exact answer. But it still makes sense to
ask, “Is the difference in means so large that it would rarely occur just by
chance?” A test and its P-value answer that question.

Permutation tests are a convenient way to answer such questions. In car-
rying out the test we pay no attention to whether the data are a sample or
an entire population. The resampling assigns the full set of observed salaries
at random to men and women and builds a permutation distribution from
repeated random assignments. We can then see if the observed difference in
mean salaries is so large that it would rarely occur if gender did not matter.

When are permutation tests valid? The two-sample t test starts from
the condition that the sampling distribution of x1 − x2 is normal. This is the
case if both populations have normal distributions, and it is approximately
true for large samples from nonnormal populations because of the central
limit theorem. The central limit theorem helps explain the robustness of the
two-sample t test. The test works well when both populations are symmetric,
especially when the two sample sizes are similar.

The permutation test completely removes the normality condition. But
resampling in a way that moves observations between the two groups requires

CA
UTION

that the two populations are identical when the null hypothesis is true—not
only are their means the same, but also their spreads and shapes. Our preferred
version of the two-sample t allows different standard deviations in the two
groups, so the shapes are both normal but need not have the same spread.

In Example 14.13, the distributions are strongly skewed, ruling out the
t test. The permutation test is valid if the repair time distributions for Veri-
zon customers and CLEC customers have the same shape, so that they are
identical under the null hypothesis that the centers (the means) are the same.
Fortunately, the permutation test is robust. That is, it gives accurate P-values
when the two population distributions have somewhat different shapes, say,
when they have slightly different standard deviations.

Sources of variation. Just as in the case of bootstrap confidence inter-
vals, permutation tests are subject to two sources of random variability: the
original sample is chosen at random from the population, and the resamples
are chosen at random from the sample. Again as in the case of the bootstrap,
the added variation due to resampling is usually small and can be made as
small as we like by increasing the number of resamples. For example, Veri-
zon uses 500,000 resamples.
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For most purposes, 999 resamples are sufficient. If stakes are high or
P-values are near a critical value (for example, near 0.01 in the Verizon case),
increase the number of resamples. Here is a helpful guideline: If the true
(one-sided) P-value is p, the standard deviation of the estimated P-value is
approximately

√
p(1 − p)/B, where B is the number of resamples. You can

choose B to obtain a desired level of accuracy.

Permutation tests in other settings
The bootstrap procedure can replace many different formula-based confi-
dence intervals, provided that we resample in a way that matches the setting.
Permutation testing is also a general method that we can adapt to various
settings.

GENERAL PROCEDURE FOR PERMUTATION TESTS

To carry out a permutation test based on a statistic that measures the
size of an effect of interest:

1. Compute the statistic for the original data.

2. Choose permutation resamples from the data without replacement
in a way that is consistent with the null hypothesis of the test and with
the study design. Construct the permutation distribution of the statis-
tic from its values in a large number of resamples.

3. Find the P-value by locating the original statistic on the permuta-
tion distribution.

Permutation test for matched pairs. The key step in the general pro-
cedure for permutation tests is to form permutation resamples in a way that is
consistent with the study design and with the null hypothesis. Our examples
to this point have concerned two-sample settings. How must we modify our
procedure for a matched pairs design?

EXAMPLE 14 . 14 Can the full moon influence behavior? A study observed 15 nursing
home patients with dementia. The number of incidents of aggressive

behavior was recorded each day for 12 weeks. Call a day a “moon day” if it is the day of
a full moon or the day before or after a full moon. Table 14.4 gives the average num-
ber of aggressive incidents for moon days and other days for each subject.12 These
are matched pairs data. In Example 7.7, the matched pairs t test found evidence that
the mean number of aggressive incidents is higher on moon days (t = 6.45, df = 14,
P < 0.001). The data show some signs of nonnormality. We want to apply a permuta-
tion test.

The null hypothesis says that the full moon has no effect on behavior. If this is true,
the two entries for each patient in Table 14.4 are two measurements of aggressive be-
havior made under the same conditions. There is no distinction between “moon days”
and “other days.” Resampling in a way consistent with this null hypothesis randomly
assigns one of each patient’s two scores to “moon” and the other to “other.” We don’t
mix results for different subjects, because the original data are paired.
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TAB LE 14 . 4

Aggressive behaviors of dementia patients

Patient Moon days Other days Patient Moon days Other days

1 3.33 0.27 9 6.00 1.59
2 3.67 0.59 10 4.33 0.60
3 2.67 0.32 11 3.33 0.65
4 3.33 0.19 12 0.67 0.69
5 3.33 1.26 13 1.33 1.26
6 3.67 0.11 14 0.33 0.23
7 4.67 0.30 15 2.00 0.38
8 2.67 0.40

The permutation test (like the matched pairs t test) uses the difference of means
xmoon − xother. Figure 14.23 shows the permutation distribution of this statistic from
9999 resamples. None of these resamples produces a difference as large as the observed
difference, xmoon − xother = 2.433. The estimated one-sided P-value is therefore

P = 0 + 1
9999 + 1

= 1
10,000

= 0.0001

There is strong evidence that aggressive behavior is more common on moon days.

–2.5

Observed
Mean

Difference of means

–0.5–1.0–1.5–2.0 0.0 0.5 1.0 1.5 2.0 2.5

FIGURE 14.23 The permutation distribution for the mean difference (moon days versus
other days) from 9999 paired resamples from the data in Table 14.5, for Example 14.14.
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The permutation distribution in Figure 14.23 is close to normal, as a nor-
mal quantile plot confirms. The paired sample t test is therefore reliable and
agrees with the permutation test that the P-value is very small.

Permutation test for the significance of a relationship. Permuta-
tion testing can be used to test the significance of a relationship between two
variables. For example, in Example 14.9 we looked at the relationship between
baseball players’ batting averages and salaries.

The null hypothesis is that there is no relationship. In that case, salaries
are assigned to players for reasons that have nothing to do with batting av-
erages. We can resample in a way consistent with the null hypothesis by per-
muting the observed salaries among the players at random.

Take the correlation as the test statistic. For every resample, calculate the
correlation between the batting averages (in their original order) and salaries
(in the reshuffled order). The P-value is the proportion of the resamples with
correlation larger than the original correlation.

When can we use permutation tests? We can use a permutation test
only when we can see how to resample in a way that is consistent with the
study design and with the null hypothesis. We now know how to do this for
the following types of problems:

• Two-sample problems when the null hypothesis says that the two pop-
ulations are identical. We may wish to compare population means, pro-
portions, standard deviations, or other statistics. You may recall from
Section 7.3 that traditional tests for comparing population standard devi-
ations work very poorly. Permutation tests are a much better choice.

• Matched pairs designs when the null hypothesis says that there are
only random differences within pairs. A variety of comparisons is again
possible.

• Relationships between two quantitative variables when the null hy-
pothesis says that the variables are not related. The correlation is the
most common measure of association, but not the only one.

These settings share the characteristic that the null hypothesis specifies a
simple situation such as two identical populations or two unrelated variables.
We can see how to resample in a way that matches these situations. Permu-
tation tests can’t be used for testing hypotheses about a single population, com-

CA
UTION

paring populations that differ even under the null hypothesis, or testing general
relationships. In these settings, we don’t know how to resample in a way that
matches the null hypothesis. Researchers are developing resampling methods
for these and other settings, so stay tuned.

When we can’t do a permutation test, we can often calculate a bootstrap
confidence interval instead. If the confidence interval fails to include the null
hypothesis value, then we reject H0 at the corresponding significance level.
This is not as accurate as doing a permutation test, but a confidence interval
estimates the size of an effect as well as giving some information about its
statistical significance. Even when a test is possible, it is often helpful to re-
port a confidence interval along with the test result. Confidence intervals don’t
assume that a null hypothesis is true, so we use bootstrap resampling with re-
placement rather than permutation resampling without replacement.
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SECTION 14.5 Summary
Permutation tests are significance tests based on permutation resamples
drawn at random from the original data. Permutation resamples are drawn
without replacement, in contrast to bootstrap samples, which are drawn
with replacement.

Permutation resamples must be drawn in a way that is consistent with the null
hypothesis and with the study design. In a two-sample design, the null hy-
pothesis says that the two populations are identical. Resampling randomly re-
assigns observations to the two groups. In a matched pairs design, randomly
permute the two observations within each pair separately. To test the hypoth-
esis of no relationship between two variables, randomly reassign values of
one of the two variables.

The permutation distribution of a suitable statistic is formed by the values
of the statistic in a large number of resamples. Find the P-value of the test by
locating the original value of the statistic on the permutation distribution.

When they can be used, permutation tests have great advantages. They do not
require specific population shapes such as normality. They apply to a variety
of statistics, not just to statistics that have a simple distribution under the null
hypothesis. They can give very accurate P-values, regardless of the shape and
size of the population (if enough permutations are used).

It is often useful to give a confidence interval along with a test. To create a
confidence interval, we no longer assume the null hypothesis is true, so we
use bootstrap resampling rather than permutation resampling.

SECTION 14.5 Exercises
The number of resamples on which a permutation test is based determines the
number of decimal places and accuracy in the resulting P-value. Tests based on
999 resamples give P-values to three places (multiples of 0.001), with a margin
of error 2

√
P(1 − P)/999 equal to 0.014 when the true one-sided P-value is 0.05.

If high accuracy is needed or your computer is sufficiently fast, you may choose
to use 9999 or more resamples.

14.45 To illustrate the process, let’s perform a permutation test by hand for a small
random subset of the DRP data (Example 14.12). Here are the data:

Treatment group 24 61
Control group 42 33 46 37

(a) Calculate the difference in means xtreatment − xcontrol between the two
groups. This is the observed value of the statistic.

(b) Resample: Start with the 6 scores and choose an SRS of 2 scores to form
the treatment group for the first resample. You can do this by labeling
the scores 1 to 6 and using consecutive random digits from Table B or
by rolling a die to choose from 1 to 6 at random. Using either method,
be sure to skip repeated digits. A resample is an ordinary SRS, without
replacement. The remaining 4 scores are the control group. What is the
difference of group means for this resample?
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(c) Repeat step (b) 20 times to get 20 resamples and 20 values of the statis-
tic. Make a histogram of the distribution of these 20 values. This is the
permutation distribution for your resamples.

(d) What proportion of the 20 statistic values were equal to or greater than the
original value in part (a)? You have just estimated the one-sided P-value
for the original 6 observations.

14.46 Table 14.1 contains the selling prices for a random sample of 50 Seattle real
estate transactions in 2002. Table 14.5 contains a similar random sample of
sales in 2001. Test whether the means of the two random samples of the 2001
and 2002 real estate sales data are significantly different.

TAB LE 14 . 5

Selling prices for Seattle real estate, 2001 ($1000s)

419 55.268 65 210 510.728 212.2 152.720 266.6 69.427 125
191 451 469 310 325 50 675 140 105.5 285
320 305 255 95.179 346 199 450 280 205.5 135
190 452.5 335 455 291.905 239.9 369.95 569 481 475
495 195 237.5 143 218.95 239 710 172 228.5 270

(a) State the null and alternative hypotheses.

(b) Perform a two-sample t test. What is the P-value?

(c) Perform a permutation test on the difference in means. What is the
P-value? Compare it with the P-value you found in part (b). What do
you conclude based on the tests?

(d) Find a bootstrap BCa 95% confidence interval for the difference in means.
How is the interval related to your conclusion in (c)?

14.47 Here are heights (inches) of professional female basketball players who are
centers and forwards. We wonder if the two positions differ in average height.

Forwards

69 72 71 66 76 74 71 66 68 67 70 65 72
70 68 73 66 68 67 64 71 70 74 70 75 75
69 72 71 70 71 68 70 75 72 66 72 70 69

Centers

72 70 72 69 73 71 72 68 68 71 66 68 71
73 73 70 68 70 75 68

(a) Make a back-to-back stemplot of the data. How do the two distributions
compare?

(b) State null and alternative hypotheses. Do a permutation test for the differ-
ence in means of the two groups. Give the P-value and draw a conclusion.

14.48 A customer complains to the owner of an independent fast-food restaurant
that the restaurant is discriminating against the elderly. The customer claims
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that people 60 years old and older are given fewer french fries than people un-
der 60. The owner responds by gathering data, collected without the knowl-
edge of the employees so as not to affect their behavior. Here are data on the
weight of french fries (grams) for the two groups of customers:

Age < 60: 75 77 80 69 73 76 78 74 75 81
Age ≥ 60: 68 74 77 71 73 75 80 77 78 72

(a) Display the two data sets in a back-to-back stemplot. Do they appear sub-
stantially different?

(b) If we perform a permutation test using the mean for “< 60” minus the
mean for “≥ 60,” should the alternative hypothesis be two-sided, greater,
or less? Explain.

(c) Perform a permutation test using the chosen alternative hypothesis and
give the P-value. What should the owner report to the customer?

14.49 Verizon uses permutation testing for hundreds of comparisons, such as be-
tween different time periods, between different locations, and so on. Here is
a sample from another Verizon data set, containing repair times in hours for
Verizon (ILEC) and CLEC customers.

ILEC

1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1
2 2 1 1 1 1 2 3 1 1 1 1 2 3 1 1
1 1 2 3 1 1 1 1 2 3 1 1 1 1 2 3
1 1 1 1 2 3 1 1 1 1 2 4 1 1 1 1
2 5 1 1 1 1 2 5 1 1 1 1 2 6 1 1
1 1 2 8 1 1 1 1 2 15 1 1 1 2 2

CLEC

1 1 5 5 5 1 5 5 5 5

(a) Choose and make data displays. Describe the shapes of the samples and
how they differ.

(b) Perform a t test to compare the population mean repair times. Give hy-
potheses, the test statistic, and the P-value.

(c) Perform a permutation test for the same hypotheses using the pooled-
variance t statistic. Why do the two P-values differ?

(d) What does the permutation test P-value tell you?

14.50 The estimated P-value for the DRP study (Example 14.12) based on 999 re-
samples is P = 0.015. For the Verizon study (Example 14.13) the estimated
P-value for the test based on x1 − x2 is P = 0.0183 based on 500,000 re-
samples. What is the approximate standard deviation of each of these es-
timated P-values? (Use each P as an estimate of the unknown true P-value p.)

14.51 You want to test the equality of the means of two populations. Sketch density
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curves for two populations for which
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(a) a permutation test is valid but a t test is not.

(b) both permutation and t tests are valid.

(c) a t test is valid but a permutation test is not.

Exercises 14.52 to 14.63 concern permutation tests for hypotheses stated in
terms of a variety of parameters. In some cases, there are no standard formula-
based tests for the hypotheses in question. These exercises illustrate the flexibility
of permutation tests.

14.52 Because distributions of real estate prices are typically strongly skewed, we of-
ten prefer the median to the mean as a measure of center. We would like to test
the null hypothesis that Seattle real estate sales prices in 2001 and 2002 have
equal medians. Sample data for these years appear in Tables 14.1 and 14.5.
Carry out a permutation test for the difference in medians, find the P-value,
and explain what the P-value tells us.

14.53 Exercise 7.41 (page 482) gives data on a study of the effect of a summer lan-
guage institute on the ability of high school language teachers to understand
spoken French. This is a matched pairs study, with scores for 20 teachers at
the beginning (pretest) and end (posttest) of the institute. We conjecture that
the posttest scores are higher on the average.

(a) Carry out the matched pairs t test. That is, state hypotheses, calculate the
test statistic, and give its P-value.

(b) Make a normal quantile plot of the gains: posttest score − pretest score.
The data have a number of ties and a low outlier. A permutation test can
help check the t test result.

(c) Carry out the permutation test for the difference of means in matched pairs,
using 9999 resamples. The normal quantile plot shows that the permuta-
tion distribution is reasonably normal, but the histogram looks a bit odd.
What explains the appearance of the histogram? What is the P-value for
the permutation test? Do your tests in (a) and (c) lead to the same practi-
cal conclusion?

14.54 Table 14.2 contains the salaries and batting averages of a random sample of 50
Major League Baseball players. Can we conclude that the correlation between
these variables is greater than 0 in the population of all players?

(a) State the null and alternative hypotheses.

(b) Perform a permutation test based on the sample correlation. Report the
P-value and draw a conclusion.

14.55 In Exercise 14.39, we assessed the significance of the correlation between re-
turns on Treasury bills and common stocks by creating bootstrap confidence
intervals. If a 95% confidence interval does not cover 0, the observed corre-
lation is significantly different from 0 at the α = 0.05 level. We would prefer
to do a test that gives us a P-value. Carry out a permutation test and give the
P-value. What do you conclude? Is your conclusion consistent with your work
in Exercise 14.39?
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14.56 The formal medical term for vitamin A in the blood is serum retinol. Serum
retinol has various beneficial effects, such as protecting against fractures.
Medical researchers working with children in Papua New Guinea asked
whether recent infections reduce the level of serum retinol. They classified
children as recently infected or not on the basis of other blood tests, then
measured serum retinol. Of the 90 children in the sample, 55 had been re-
cently infected. Table 14.6 gives the serum retinol levels for both groups, in
micromoles per liter.13

TAB LE 14 . 6

Serum retinol levels in two groups of children

Not infected Infected

0.59 1.08 0.88 0.62 0.46 0.39 0.68 0.56 1.19 0.41 0.84 0.37
1.44 1.04 0.67 0.86 0.90 0.70 0.38 0.34 0.97 1.20 0.35 0.87
0.35 0.99 1.22 1.15 1.13 0.67 0.30 1.15 0.38 0.34 0.33 0.26
0.99 0.35 0.94 1.00 1.02 1.11 0.82 0.81 0.56 1.13 1.90 0.42
0.83 0.35 0.67 0.31 0.58 1.36 0.78 0.68 0.69 1.09 1.06 1.23
1.17 0.35 0.23 0.34 0.49 0.69 0.57 0.82 0.59 0.24 0.41

0.36 0.36 0.39 0.97 0.40 0.40
0.24 0.67 0.40 0.55 0.67 0.52
0.23 0.33 0.38 0.33 0.31 0.35
0.82

(a) The researchers are interested in the proportional reduction in serum
retinol. Verify that the mean for infected children is 0.620 and that the
mean for uninfected children is 0.778.

(b) There is no standard test for the null hypothesis that the ratio of the pop-
ulation means is 1. We can do a permutation test on the ratio of sample
means. Carry out a one-sided test and report the P-value. Briefly describe
the center and shape of the permutation distribution. Why do you expect
the center to be close to 1?

14.57 In Exercise 14.56, we did a permutation test for the hypothesis “no difference
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between infected and uninfected children” using the ratio of mean serum
retinol levels to measure “difference.” We might also want a bootstrap confi-
dence interval for the ratio of population means for infected and uninfected
children. Describe carefully how resampling is done for the permutation test
and for the bootstrap, paying attention to the difference between the two
resampling methods.

14.58 Here is one conclusion from the data in Table 14.6, described in Exercise
14.56: “The mean serum retinol level in uninfected children was 1.255 times
the mean level in the infected children. A 95% confidence interval for the ratio
of means in the population of all children in Papua New Guinea is. . . .”

(a) Bootstrap the data and use the BCa method to complete this conclusion.
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(b) Briefly describe the shape and bias of the bootstrap distribution. Does the
bootstrap percentile interval agree closely with the BCa interval for these
data?

14.59 In Exercise 14.49 we compared the mean repair times for Verizon (ILEC) and
CLEC customers. We might also wish to compare the variability of repair
times. For the data in Exercise 14.49, the F statistic for comparing sample
variances is 0.869 and the corresponding P-value is 0.67. We know that this
test is very sensitive to lack of normality.

(a) Perform a two-sided permutation test on the ratio of standard deviations.
What is the P-value and what does it tell you?

(b) What does a comparison of the two P-values say about the validity of the
F test for these data?

14.60 Does added calcium intake reduce the blood pressure of black men? In a ran-
domized comparative double-blind trial, 10 men were given a calcium sup-
plement for twelve weeks and 11 others received a placebo. For each subject,
record whether or not blood pressure dropped. Here are the data:14

Treatment Subjects Successes Proportion

Calcium 10 6 0.60
Placebo 11 4 0.36

Total 21 10 0.48

We want to use these sample data to test equality of the population proportions
of successes. Carry out a permutation test. Describe the permutation distri-
bution. The permutation test does not depend on a “nice” distribution shape.
Give the P-value and report your conclusion.

14.61 We want a 95% confidence interval for the difference in the proportions of
reduced blood pressure between a population of black men given calcium and
a similar population given a placebo. Summary data appear in Exercise 14.60.

(a) Give the plus four confidence interval. Because the sample sizes are both
small, we may wish to use the bootstrap to check this interval.

(b) Bootstrap the sample data. We recommend tilting confidence intervals for
proportions based on small samples. Other bootstrap intervals may be in-
accurate. Give all four bootstrap confidence intervals (t, percentile, BCa,
tilting). How do the other three compare with tilting? How does the tilting
interval compare with the plus four interval?

14.62 We prefer measured data to the success/failure data given in Exercise 14.60.
Table 14.7 gives the actual values of seated systolic blood pressure for this
experiment. Example 7.20 (page 501) applies the pooled t test (a procedure
that we do not recommend) to these data. Carry out a permutation test to dis-
cover whether the calcium group had a significantly greater decrease in blood
pressure.
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TAB LE 14 . 7

Effect of calcium and placebo on blood pressure

Calcium group Placebo group

Begin End Decrease Begin End Decrease

107 100 7 123 124 −1
110 114 −4 109 97 12
123 105 18 112 113 −1
129 112 17 102 105 −3
112 115 −3 98 95 3
111 116 −5 114 119 −5
107 106 1 119 114 5
112 102 10 114 112 2
136 125 11 110 121 −11
102 104 −2 117 118 −1

130 133 −3

14.63 Are the variances of decreases in blood pressure equal in populations of black
men given calcium and given a placebo? Example 7.22 (page 518) applied the
F test for equality of variances to the data in Table 14.7. This test is unreliable
because it is sensitive to nonnormality in the data. The permutation test does
not suffer from this drawback.

(a) State the null and alternative hypotheses.

(b) Perform a permutation test using the F statistic (ratio of sample vari-
ances) as your statistic. What do you conclude?

(c) Compare the permutation test P-value with that in Example 7.22. What
do you conclude about the F test for equality of variances for these data?

14.64 Exercise 7.27 (page 478) gives these data on a delicate measurement of total
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body bone mineral content made by two operators on the same 8 subjects:15

Subject

Operator 1 2 3 4 5 6 7 8

1 1.328 1.342 1.075 1.228 0.939 1.004 1.178 1.286
2 1.323 1.322 1.073 1.233 0.934 1.019 1.184 1.304

Do permutation tests give good evidence that measurements made by the two
operators differ systematically? If so, in what way do they differ? Do two tests,
one that compares centers and one that compares spreads.

CHAPTER 14 Exercises
14.65 The bootstrap distribution of the 25% trimmed mean for the Seattle real es-

tate sales (Figure 14.7) is not strongly skewed. We were therefore willing in



14-64 CHAPTER 14 Bootstrap Methods and Permutation Tests

Examples 14.5 and 14.8 to use the bootstrap t and bootstrap percentile con-
fidence intervals for the trimmed mean of the population. Now we can check
these against more accurate intervals. Bootstrap the trimmed mean and give
all of the bootstrap 95% confidence intervals: t, percentile, BCa, and tilting.
Make a graphical comparison by drawing a vertical line at the original sample
mean x and displaying the four intervals horizontally, one above the other. De-
scribe how the intervals compare. Do you still regard the bootstrap t and per-
centile intervals as adequately accurate?

14.66 Exercise 7.29 (page 479) reports the changes in reasoning scores of 34 pre-
school children after six months of piano lessons. Here are the changes:

2 5 7 −2 2 7 4 1 0 7 3 4 3 4 9 4 5
2 9 6 0 3 6 −1 3 4 6 7 −2 7 −3 3 4 4

(a) Make a histogram and normal quantile plot of the data. Is the distribution
approximately normal?

(b) Find the sample mean and its standard error using formulas.

(c) Bootstrap the mean and find the bootstrap standard error. Does the boot-
strap give comparable results to theoretical methods?

14.67 Your software can generate random numbers that have the uniform distri-
bution on 0 to 1. Figure 4.9 (page 283) shows the density curve. Generate a
sample of 50 observations from this distribution.

(a) What is the population median? Bootstrap the sample median and de-
scribe the bootstrap distribution.

(b) What is the bootstrap standard error? Compute a bootstrap t 95% confi-
dence interval.

(c) Find the BCa or tilting 95% confidence interval. Compare with the interval
in (b). Is the bootstrap t interval reliable here?

14.68 A fitness center employs 20 personal trainers. Here are the ages in years of the
female and male personal trainers working at this center:

Male 25 26 23 32 35 29 30 28 31 32 29
Female 21 23 22 23 20 29 24 19 22

(a) Make a back-to-back stemplot. Do you think the difference in mean ages
will be significant?

(b) A two-sample t test gives P < 0.001 for the null hypothesis that the mean
age of female personal trainers is equal to the mean age of male personal
trainers. Do a two-sided permutation test to check the answer.

(c) What do you conclude about using the t test? What do you conclude about
the mean ages of the trainers?

14.69 Exercise 2.9 (page 116) describes a study that suggests that the “pain” caused
by social rejection really is pain, in the sense that it causes activity in brain
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areas known to be activated by physical pain. Here are data for 13 subjects
on degree of social distress and extent of brain activity:16

Social Brain Social Brain
Subject distress activity Subject distress activity

1 1.26 −0.055 8 2.18 0.025
2 1.85 −0.040 9 2.58 0.027
3 1.10 −0.026 10 2.75 0.033
4 2.50 −0.017 11 2.75 0.064
5 2.17 −0.017 12 3.33 0.077
6 2.67 0.017 13 3.65 0.124
7 2.01 0.021

Make a scatterplot of brain activity against social distress. There is a positive
linear association, with correlation r = 0.878. Is this correlation significantly
greater than 0? Use a permutation test.

14.70 Use the bootstrap to obtain a 95% confidence interval for the correlation in
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the population of all similar subjects from the data in the previous exercise.

(a) The permutation distribution in the previous exercise was reasonably nor-
mal, with somewhat short tails. The bootstrap distribution is very nonnor-
mal: most resample correlations are not far from 1, the largest value that a
correlation can have. Explain carefully why the two distributions differ in
shape. Also explain why we might expect a bootstrap distribution to have
this shape when the observed correlation is r = 0.878.

(b) Choose an appropriate bootstrap confidence interval for the population
correlation and state your conclusion.

14.71 We have compared the selling prices of Seattle real estate in 2002 (Table 14.1)
and 2001 (Table 14.5). Let’s compare 2001 and 2000. Here are the prices (thou-
sands of dollars) for 20 random sales in Seattle in the year 2000:

333 126.5 207.5 199.5 1836 360 175 133 1100 203
194.5 140 280 475 185 390 242 276 359 163.95

(a) Plot both the 2000 and the 2001 data. Explain what conditions needed for
a two-sample t test are violated.

(b) Perform a permutation test to find the P-value for the difference in means.
What do you conclude about selling prices in 2000 versus 2001?

14.72 Exercise 7.37 (page 481) gives the following readings for 12 home radon de-
tectors when exposed to 105 picocuries per liter of radon:

91.9 97.8 111.4 122.3 105.4 95.0
103.8 99.6 96.6 119.3 104.8 101.7
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Part (a) of Exercise 7.37 judges that a t confidence interval can be used despite
the skewness of the data.

(a) Give a formula-based 95% t interval for the population mean.

(b) Find the bootstrap 95% BCa or tilting interval for the mean.

(c) Look at the bootstrap distribution. Is it approximately normal in
appearance?

(d) Do you agree that the t interval is robust enough in this case? Why or why
not? Keep in mind that whether the confidence interval covers 105 is im-
portant for the study’s purposes.

14.73 The study described in the previous exercise used a one-sample t test to see if
the mean reading of all detectors of this type differs from the true value 105.
Can you replace this test by a permutation test? If so, carry out the test and
compare results. If not, explain why not.

14.74 In financial theory, the standard deviation of returns on an investment is used
to describe the risk of the investment. The idea is that an investment whose
returns are stable over time is less risky than one whose returns vary a lot. The
data file ex14 074.dat contains the returns (in percent) on 1129 consecutive
days for a portfolio that weights all U.S. common stocks according to their
market value.17

(a) What is the standard deviation of these returns?

(b) Bootstrap the standard deviation. What is its bootstrap standard error?

(c) Find the 95% bootstrap t confidence interval for the population standard
deviation.

(d) Find the 95% tilting or BCa confidence interval for the standard devia-
tion. Compare the confidence intervals and give your conclusions about
the appropriateness of the bootstrap t interval.

14.75 Nurses in an inner-city hospital were unknowingly observed on their use of
latex gloves during procedures for which glove use is recommended.18 The
nurses then attended a presentation on the importance of glove use. One
month after the presentation, the same nurses were observed again. Here are
the proportions of procedures for which each nurse wore gloves:

Nurse Before After Nurse Before After

1 0.500 0.857 8 0.000 1.000
2 0.500 0.833 9 0.000 0.667
3 1.000 1.000 10 0.167 1.000
4 0.000 1.000 11 0.000 0.750
5 0.000 1.000 12 0.000 1.000
6 0.000 1.000 13 0.000 1.000
7 1.000 1.000 14 1.000 1.000

(a) Why is a one-sided alternative proper here? Why must matched pairs
methods be used?



Chapter 14 Exercises 14-67

(b) Do a permutation test for the difference in means. Does the test indicate
that the presentation was helpful?

14.76 In the previous exercise, you did a one-sided permutation test to compare
means before and after an intervention. If you are mainly interested in whether
or not the effect of the intervention is significant at the 5% level, an alternative
approach is to give a bootstrap confidence interval for the mean difference
within pairs. If zero (no difference) falls outside the interval, the result is
significant. Do this and report your conclusion.

14.77 Examples 8.9 (page 557) and 8.11 (page 562) examine survey data on binge
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drinking among college students. Here are data on the prevalence of frequent
binge drinking among female and male students:19

Sample Binge
Gender size drinkers

Men 7,180 1,630
Women 9,916 1,684

Total 17,096 3,314

The sample is large, so that traditional inference should be accurate. Nonethe-
less, use resampling methods to obtain

(a) a 95% confidence interval for the proportion of all students who are fre-
quent binge drinkers.

(b) a test of the research hypothesis that men are more likely than women to
be frequent binge drinkers.

(c) a 95% confidence interval for the difference in the proportions of men and
of women who are frequent binge drinkers.

14.78 Is there a difference in the readability of advertisements in magazines aimed
at people with varying educational levels? Here are word counts in randomly
selected ads from magazines aimed at people with high and middle education
levels.20

Education level Word count

High 205 203 229 208 146 230 215 153 205
80 208 89 49 93 46 34 39 88

Medium 191 219 205 57 105 109 82 88 39
94 206 197 68 44 203 139 72 67

(a) Make histograms and normal quantile plots for both data sets. Do the dis-
tributions appear approximately normal? Find the means.

(b) Bootstrap the means of both data sets and find their bootstrap standard
errors.
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(c) Make histograms and normal quantile plots of the bootstrap distribu-
tions. What do the plots show?

(d) Find the 95% percentile and tilting intervals for both data sets. Do the
intervals for high and medium education level overlap? What does this
indicate?

(e) Bootstrap the difference in means and find a 95% percentile confidence
interval. Does it contain 0? What conclusions can you draw from your
confidence intervals?

14.79 The researchers in the study described in the previous exercise expected
higher word counts in magazines aimed at people with high education level.
Do a permutation test to see if the data support this expectation. State hy-
potheses, give a P-value, and state your conclusions. How do your conclusions
here relate to those from the previous exercise?

14.80 The following table gives the number of burglaries per month in the Hyde
Park neighborhood of Chicago for a period before and after the commence-
ment of a citizen-police program:21

Before

60 44 37 54 59 69 108 89 82 61 47
72 87 60 64 50 79 78 62 72 57 57
61 55 56 62 40 44 38 37 52 59 58
69 73 92 77 75 71 68 102

After

88 44 60 56 70 91 54 60 48 35 49
44 61 68 82 71 50

(a) Plot both sets of data. Are the distributions skewed or roughly normal?

(b) Perform a one-sided (which side?) t test on the data. Is there statistically
significant evidence of a decrease in burglaries after the program began?

(c) Perform a permutation test for the difference in means, using the same
alternative hypothesis as in part (b). What is the P-value? Is there a sub-
stantial difference between this P-value and the one in part (b)? Use the
shapes of the distributions to explain why or why not. What do you con-
clude from your tests?

(d) Now do a permutation test using the opposite one-sided alternative hy-
pothesis. Explain what this is testing, why it is not of interest to us, and
why the P-value is so large.

14.81 The previous exercise applied significance tests to the Hyde Park burglary
data. We might also apply confidence intervals.

(a) Bootstrap the difference in mean monthly burglary counts. Make a his-
togram and a normal quantile plot of the bootstrap distribution and de-
scribe the distribution.
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(b) Find the bootstrap standard error, and use it to create a 95% bootstrap t
confidence interval.

(c) Find the 95% percentile confidence interval. Compare this with the t inter-
val. Does the comparison suggest that these intervals are accurate? How
do the intervals relate to the results of the tests in the previous exercise?

CHAPTER 14 Notes
1. S-PLUS is a registered trademark of Insightful Corporation.

2. Verizon repair time data used with the permission of Verizon.

3. The origin of this quaint phrase is Rudolph Raspe, The Singular Adventures of Baron
Munchausen, 1786. Here is the passage, from the edition by John Carswell, Heritage
Press, 1952: “I was still a couple of miles above the clouds when it broke, and with such
violence I fell to the ground that I found myself stunned, and in a hole nine fathoms un-
der the grass, when I recovered, hardly knowing how to get out again. Looking down, I
observed that I had on a pair of boots with exceptionally sturdy straps. Grasping them
firmly, I pulled with all my might. Soon I had hoist myself to the top and stepped out
on terra firma without further ado.”

4. In fact, the bootstrap standard error underestimates the true standard error. Boot-
strap standard errors are generally too small by a factor of roughly

√
1 − 1/n. This fac-

tor is about 0.95 for n = 10 and 0.98 for n = 25, so we ignore it in this elementary
exposition.

5. T. Bjerkedal, “Acquisition of resistance in guinea pigs infected with different doses
of virulent tubercle bacilli,” American Journal of Hygiene, 72 (1960), pp. 130–148.

6. Seattle real estate sales data provided by Stan Roe of the King County Assessor’s
Office.

7. The 254 winning numbers and their payoffs are republished here by permission of
the New Jersey State Lottery Commission.

8. From the Forbes Web site, www.forbes.com.

9. From www.espn.com, July 2, 2002.

10. The standard advanced introduction to bootstrap methods is B. Efron and R. Tib-
shirani, An Introduction to the Bootstrap, Chapman and Hall, 1993. For tilting inter-
vals, see B. Efron, “Nonparametric standard errors and confidence intervals” (with
discussion), Canadian Journal of Statistics, 36 (1981), pp. 369–401; and T. J. DiCiccio
and J. P. Romano, “Nonparametric confidence limits by resampling methods and least
favourable families,” International Statistical Review, 58 (1990), pp. 59–76.

11. This example is adapted from Maribeth C. Schmitt, “The effects of an elaborated
directed reading activity on the metacomprehension skills of third graders,” PhD dis-
sertation, Purdue University, 1987.

12. These data were collected as part of a larger study of dementia patients conducted
by Nancy Edwards, School of Nursing, and Alan Beck, School of Veterinary Medicine,
Purdue University.



14-70 CHAPTER 14 Bootstrap Methods and Permutation Tests

13. Data provided by Francisco Rosales of the Department of Nutritional Sciences,
Penn State University. See Rosales et al., “Relation of serum retinol to acute phase
proteins and malarial morbidity in Papua New Guinea children,” American Journal of
Clinical Nutrition, 71 (2000), pp. 1580–1588.

14. Roseann M. Lyle, et al., “Blood pressure and metabolic effects of calcium supple-
mentation in normotensive white and black men,” Journal of the American Medical As-
sociation, 257 (1987), pp. 1772–1776.

15. These data were collected in connection with a bone health study at Purdue Uni-
versity and were provided by Linda McCabe.

16. Data from a plot in Naomi I. Eisenberger, Matthew D. Lieberman, and Kipling
D. Williams, “Does rejection hurt? An fMRI study of social exclusion,” Science, 302
(2003), pp. 290–292.

17. These are daily returns from January 1990 through part of May 2004 for the
CREF Equity Index Fund, which is a good proxy for all U.S. common stocks. The
returns were calculated from net asset values appearing on the TIAA-CREF Web site,
www.tiaa-cref.org.

18. L. Friedland et al., “Effect of educational program on compliance with glove use
in a pediatric emergency department,” American Journal of Diseases of Childhood, 146
(1992), 1355–1358.

19. Results of this survey are reported in Henry Wechsler et al., “Health and behav-
ioral consequences of binge drinking in college,” Journal of the American Medical As-
sociation, 272 (1994), pp. 1672–1677.

20. F. K. Shuptrine and D. D. McVicker, “Readability levels of magazine ads,” Journal
of Advertising Research, 21, No. 5 (1981), p. 47.

21. G. V. Glass, V. L. Wilson, and J. M. Gottman, Design and Analysis of Time Series
Experiments, Colorado Associated University Press, 1975.


