101學年 統計學(I) 授課老師:蔡碧紋

Statistical Inference : Tests of Hypotheses

1

Scientific questions

- 1. Whether the true average lifetime of a certain brand of tire is at least 22,000 kilometers.
- whether fertilizer A produces a higher yield of soybeans than fertilizer B.
- 3. Pharmaceutical company: decide on the basis of samples whether at least 90% of all patients given a new medication will recover from a certain disease.
- 4. 廠商宣稱每杯citi coffee 重量至少 300 g.

Statistical Hypotheses testing

- 1. if the lifetime of the tire has pdf $f(x) = \lambda e^{-\lambda x}, x > 0$, then the expected lifetime, $\frac{1}{\lambda}$, is at least greater than 22000.
- 2. decide whether $\mu_A > \mu_B$, where μ_A , and μ_B are the means of the two populations
- 3. whether *p*, the parameter of a binomial distribution is greater or equal to 0.9.
- 4. whether $\mu > 300$.

In each case, it is assumed that the stated distribution correctly describes the experimental conditions, and the hypothesis concerns the parameter(s) of the distribution.

3

Hypotheses Testing

假設 (hypothesis) 就是我們對於母體參數的宣稱(claim, statement)

The Scientist formulates a statement concerning the value of a parameter.

A **test** of a statistical hypothesis is a procedure for deciding whether to "accept" or "reject" the hypothesis.

假設檢定 (hypothesis testing) 的目的就是要對這些宣稱提供統計上的檢驗, 以統計的檢定方法來推論假設的"真偽".

Terms you should know about hypotheses testing

- 1. Null and alternative hypotheses (H_0 vs H_1)
- 2. Test statistic, $T(\mathbf{X})$, and $T(\mathbf{x})$ (the distribution of $T(\mathbf{X})$)
- 3. Significance level of the test α
- 4. Rejection region (critical region) (RR) and acceptance region
- 5. Type I and Type II error probabilities.
- 6. *p*-value
- power

Null and Alternative Hypotheses

Assume that the form of the distribution for the population is known , $X \sim F(x; \theta)$ where $\theta \in \Omega$, where Ω is the set of all possible values of θ can take, and is called the parameter space.

The statistical hypothesis is a statement about the value of the parameter(s) of the distribution, such as

"
$$\theta \in \omega$$
"

ω be a subset of Ω.

This is a statistical hypothesis and is denoted by $H(H_0)$, called Null Hypothesis

Null and Alternative Hypotheses

On the other hand, the statement " $\theta \in \bar{\omega}$ " (where $\bar{\omega}$ is the complement of ω w.r.t Ω) is called the alternative to H_0 and is denoted by H_a (or H_1).

we write

$$H_0: \theta \in \omega$$
 and $H_a: \theta \in \bar{\omega} \text{ (or } \theta \notin \omega)$

7

H_0, H_1

ш.

 In some case, we want to know the mean of something is as what people stated (or represents the *status quo*) we put it in the null hypothesis H₀ 主計處調查國民平均月所得為20000元

ПО	vs гі	_
合歡山一月	平均降雪量為20 公分。	
H_0 :	vs H_1 :	

2. Often hypothesis arise in the form that we want to know if a new product, technique, teaching method, etc., is better than the existing one. In this context, *H*₀ is a statement that nullifies the theory and is sometimes called a null hypothesis. In this case, 我們把想要檢定的假設定為 *H*₁,*H*₀ 則為其相反之假設。

H_0, H_1

1.	if the lifetime of the tire has pdf $f(x) = \lambda e^{-\lambda x}, x > 0$ then the expected lifetime, $\frac{1}{\lambda}$, is at least greater that					
	22000.					
	<i>H</i> ₀ : vs <i>H</i> ₁ :					
2.	decide whether $\mu_A > \mu_B$, where μ_A , and μ_B are the					
	means of the two populations					
	<i>H</i> ₀ : vs <i>H</i> ₁ :					
3.	whether p , the parameter of a binomial distribution is					
greater or equal to 0.9.						
	<i>H</i> ₀ : vs <i>H</i> ₁ :					
4.	廠商宣稱每杯citi coffee 重量至少 300 g.					
	H_0 : vs H_1 :					

Hypotheses Testing

▶ 假設檢定係指在尚未蒐集樣本資料、進行推論之前, 就事先對母體的某種特徵性質作一合理的假設敘述, 再利用隨機抽出的樣本及抽樣分配,配合機率原理, 以判斷此項假設是否為真。

以統計方法進行決策的過程中,會提出兩個假設:

Ho: null hypothesis (虛無假設)。

 H_1 : alternative or research hypothesis(對立假設、研究假設)。

可能的結論:

- 1. 有足夠的統計證據可推論 H_1 為真 (reject H_0 and accept H_1)。
- 2. 沒有足夠的統計證據可推論 H₁ 為真 (do not reject (Fail to reject retain) H₂. The data doesn't provide

Hypotheses Testing

▶ 假設檢定的主要精神在於尋找證據來拒絕 H_0 而接 受 H_1 ,我們無法證明 H_0 為絕對正確,只有不能拒斥 它。

證據的角色: 假設 H_0 為真的情況下, 嘗試在其間找出矛盾, 然後進行推論。

假設 H_0 為真, 收集到此資料的可能性,如果是異常稀少事件(顯著的異常),則判定 H_0 的假設是錯誤,所以拒絕 H_0 .

因此假設檢定又稱為『顯著性檢定』(significant test)

simple and composite hypothesis

```
H_0: \mu = 166 vs H_1: \mu > 166, H_1: \mu < 166 or H_1: \mu \neq 166
```

If ω contains only **one point**, i.e., if $\omega = \{\theta : \theta = \theta_0\}$ then H_0 is called a **simple** hypothesis which completely specifies the null distribution. We write it as $H_0 : \theta = \theta_0$.

Otherwise, if it does not completely specify the distribution. It is called **composite** hypothesis.

Test Statistics

Test Statistics: T(X),

a function of a set of i.i.d. random variables X_1, \ldots, X_n which follow some distribution $F(x, \theta)$.

Such as \overline{X} or S^2 etc.

Or a pivotal quantity for the test statistic

Significance level of the test

We defined an event with samll probability.

When H_0 is true, the probability of an extreme event such as that $\{\overline{X} > c\}$ is very small. If $\{\overline{X} > c\}$, we will reject the null hypothesis.

This small probability is called the significance level of the test, denoted by α .

$$\mathbf{P}(\overline{X} > c | H_0 : \mu = 160) = \alpha$$

Thus the hypothesis testing is also called the test of significance.

Rejection Region

If $\overline{X} > c$, then we will reject H_0 . T

 $\{\overline{X} > c\}$ is called the **rejection region**, **RR** (or **critical region**) denoted by R.

Note that critical value is defined before (ex-ante) we collect the data.

We will make the decision by comparing \overline{x} with c

Decision rules

we use data (random sample) to test if the data provides significant evidence to reject the null hypothesis.

If
$$\overline{X} > c$$
 reject H_0

A test of hypotheses is a rule, or decision, based on a sample from a given distribution to show whether the data support our hypothesis.

Decision

Data:

If
$$\overline{x} > c$$
 reject H_0

Normally, the conclusion is either

- 1. Reject H_0 and conclude that H_1 is true, or
- 2. Do not reject H_0

Remark:

Note that, we don't say we "accept" H_0 , because it implies stronger action than is really warranted. We can't find enough evidence to reject H_0 but it does not mean that H_0 is absolutely true.

Example: 7.2-1

Test if X, the breaking strength of a steel bar.

 $X \sim \mathcal{N}(50,36)$ or $X \sim \mathcal{N}(55,36)$. We want to know if new method increases the mean of the strength to 55.

Draw sample and test if they are from normally distributed population with mean 55.

Example: 7.2-1

Test if X, the breaking strength of a steel bar.

 $X \sim \mathcal{N}(50,36)$ or $X \sim \mathcal{N}(55,36)$. We want to know if new method increases the mean of the strength to 55.

Draw sample and test if they are from normally distributed population with mean 55.

- 1. two hypotheses: H_0 : $\mu = 50$ vs H_a : $\mu = 55$
- 2. test statistic: \overline{X}
- 3. Decision rule: If $\overline{X} > 53$, we will reject H_0 . Rejection Region $R = {\overline{x} > 53}$

Example: 7.2-1

Test if X, the breaking strength of a steel bar.

 $X \sim \mathcal{N}(50,36)$ or $X \sim \mathcal{N}(55,36)$. We want to know if new method increases the mean of the strength to 55.

Draw sample and test if they are from normally distributed population with mean 55.

- 1. two hypotheses: H_0 : $\mu = 50$ vs H_a : $\mu = 55$
- 2. test statistic: \overline{X}
- 3. Decision rule: If $\overline{X} > 53$, we will reject H_0 . Rejection Region $R = {\overline{x} > 53}$

Data: 16 random samples are drawn.

We observed $\overline{x} = 53.75$, then we will reject H_0 .

Distribution for x.bar under H0

Example: The significance level of the test

The probability of a rare event when H_0 is true.

The significance level of the test is

$$\mathbf{P}(\overline{X} > 53 | H_0: X_i \sim \mathcal{N}(50, 36))$$

$$\mathbf{P}(\frac{X-50}{6/\sqrt{16}} > \frac{53-50}{6/\sqrt{16}}) = \mathbf{P}(Z > 12/3) = 0.023$$

The significance level of the test given $R = \{\overline{x} > 53\}$ is $\alpha = 0.02$.

Type I and Type II error probabilities

Probability of making a wrong decision:

There are two types of errors that can occurs.

		Our decision	
		Reject H ₀	Accept H ₀
Actual	H_0 is true	Type I error	good
situation	H_0 is false	good	Type II error

Probabilities associated with the two incorrect decisions are denoted by type I and type II error probabilities.

Type I and Type II error probabilities

1. Reject H_0 when it is true.

```
\alpha = \mathbf{P}(\text{ Type I error }) = \mathbf{P}(\text{ reject a true } H_0) = \mathbf{P}(\text{ reject } H_0 | H_0 \text{ is true})
```

2. Fail to reject H_0 when it is false (Fail to accept H_1 when H_1 is true)

```
\beta = \mathbf{P}(\text{ Type II error }) = \mathbf{P}(\text{ Retain a false } H_0) = \mathbf{P}(\text{ retain } H_0|H_1 \text{ is true})
```

Test statistics I

Often we work with the distribution of $T(\mathbf{X})$, pivotal quantity for the test statistic, such as a standard normal, t, χ^2 , or F.

Pivotal quantity: a function of (data) observations and unknown parameters whose distribution does not depend on the unknown parameters

Test statistics II

1. If $X_1, \dots X_n \sim \mathcal{N}(\mu, \sigma^2)$ with μ is the unknown parameter and σ^2 is some known constant, we have $\overline{X} \sim \mathcal{N}(\mu, \sigma^2/\sqrt{n})$,

$$rac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$$

2. If $X_1, \dots X_n \sim \mathcal{N}(\mu, \sigma^2)$ where μ and σ^2 are unknown parameters, we have

$$\frac{\overline{X}-\mu}{S/\sqrt{n}}\sim t(n-1)$$

Test statistics III

3. $X_1, \dots, X_n \sim \text{Bernoulli} p$ and $Y = X_1 + \dots + X_n$ we have

$$\frac{(Y/n)-p}{\sqrt{\frac{p(1-p)}{n}}}\to \mathcal{N}(0,1)$$

4. $X_1, \dots, X_n \sim \mathcal{N}(\mu, \sigma^2)$ where μ and σ^2 are unknown parameters and let $S^2 = \sum (X_i - \overline{X})^2/(n-1)$.

$$W = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

Test statistics IV

Based on the distribution of the test statistic we define the **Critical value** t^* , such as

$$z_{\alpha}, t_{\alpha}, \chi^{2}_{\alpha}, \, {\rm or} \, F_{\alpha} \, {\rm and}$$

construct the decision rule (rejection region) for a given the significance level of the test α .

Critical value for α =0.05

EX:
$$P(Z \ge 1.645) = 0.05$$
, $z_{0.05} = 1.645$

standard Normal

The procedure

- 1. Specify the null and alternative hypotheses.
- 2. Specify the significant level of the test α . (control the Type I error)
- 3. Define a test statistic $T(\mathbf{X})$ and its distribution under H_0
- 4. Decision rule: obtain the rejection region $R = \{\mathbf{x} : T(\mathbf{x}) \in R(\theta_0)\}.$
- 5. Obtain the data and calculate the value of the test statistic $T(\mathbf{x})$ (T_{obs})
- 6. Conclusion: If the test statistic $T(\mathbf{x}) \in R(\theta_0)$ reject H_0 and conclude that there is strong evidence to reject the null hypothesis at the significant level α

Example (n=16, $\bar{x} = 53.75$)

- 1. Hypotheses: H_0 : $\mu = 50$ vs H_a : $\mu = 55$
- 2. Given $\alpha = 0.05$ (Significance level of the test)
- 3. Test statistic:

$$Z = rac{\overline{X} - 50}{6/\sqrt{16}} \sim^{H_0} N(0, 1)$$

- 4. Decision rule: if $Z_{\rm obs} > Z_{0.05} = 1.645$ (critical value) Reject H_0
- 5. Data $\overline{x} = 53.75$ we have

$$z_{\text{obs}} = \frac{53.75 - 50}{6/4} = 2.5$$

6. Becuse $z_{\text{obs}} = 2.5 > 1.645$ Reject $H_0: \mu = 50$ at $\alpha = 0.05$.

Probability value (p-value) of the test

When H_0 is true, the probability that the test statistic is equal to or exceeds the actually observed value toward the direction of the alternative hypothesis.

Tail-end probability under H_0 toward H_1 .

$$\mathbf{P}(\overline{X} \ge 53.75 | H_0) = \mathbf{P}(Z \ge \frac{3.75}{6/4}) = \phi(2.5) = 0.006$$

$$\overline{X} \sim^{H_0} \mathcal{N}(50, 36/16)$$

The p-value of the test is 0.006.

Small p-value provides evidence to reject the null hypothesis H_0 given the data.

Decision rule

If the p-value of a thest if as small or smaller than the significance level of a test, α , we say the the data are statistically significant at an α significant level.

The *p*-values : if *p*-value < α reject H_0 at significance level α .

(We don't need to find different t^* for different significance level α .

Decision rule

If the p-value of a thest if as small or smaller than the significance level of a test, α , we say the the data are statistically significant at an α significant level.

The *p*-values : if *p*-value < α reject H_0 at significance level α .

(We don't need to find different t^* for different significance level α .

Recall: Decision rule by critical value

if $T(\mathbf{x}) \in R(\theta_0)$ reject H_0 at significance level α .

standard Normal

Power

Power= $\mathbf{P}(Accept H_1 \text{ when } H_1 \text{ is true})$

Power=1 $-\beta$, 1 $-\beta$ is defined as the **power** of the test.

α , β and Power

Example (Ex 7.2-1)

Let X be the breaking strength of a steel bar. $H_0: \mu = 50$ vs $H_a: \mu = 55$ Given $C = \{(x_1, \cdots, x_n) : \overline{x} \ge 53\}$ or $C = \{\overline{x} : \overline{x} \ge 53\}$ Data: n=16, what are the type I and type II error probabilities?

$$\overline{X} \sim N(50, 36/16)$$
 under $H_0: \mu = 50$
 $\overline{X} \sim N(55, 36/16)$ under $H_1: \mu = 55$

α , β and Power

Type I error rate = 0.0228

Type II error rate = 0.0912

The significance level of the test $\alpha = 0.0228$.

The power of the test is $1 - \beta = 0.9088$.

The relationship between α and β

