

Statistical Inference : Tests of Hypotheses

Scientific questions

- 1. Whether the true average lifetime of a certain brand of tire is at least 22,000 kilometers.
- 2. whether fertilizer A produces a higher yield of soybeans than fertilizer B.
- 3. Pharmaceutical company: decide on the basis of samples whether at least 90% of all patients given a new medication will recover from a certain disease.
- 4. ^廠商宣稱每杯citi coffee 重量至^少 300 g.

Statistical Hypotheses testing

- 1. if the lifetime of the tire has pdf $f(x) = \lambda e^{-\lambda x}, x > 0$, then the expected lifetime, $\frac{1}{\lambda}$, is at least greater than 22000.
- 2. decide whether $\mu_A > \mu_B$, where μ_A , and μ_B are the means of the two populations
- 3. whether *p*, the parameter of a binomial distribution is greater or equal to 0.9.
- 4. whether $\mu > 300$.

In each case, it is assumed that the stated distribution correctly describes the experimental conditions, and the hypothesis concerns the parameter(s) of the distribution.

Hypotheses Testing

^假^設 (hypothesis) ^就是我們對於母體參數的宣稱(claim, statement)

The Scientist formulates a statement concerning the value of a parameter.

A **test** of a statistical hypothesis is a procedure for deciding whether to "accept" or "reject" the hypothesis.

^假設檢^定 (hypothesis testing) 的目的就是要對這些宣稱^提 供統計上的檢驗, ^以統計的檢定方法來推論假設的"真偽".

Terms you should know about hypotheses testing

- 1. Null and alternative hypotheses $(H_0$ vs $H_1)$
- 2. Test statistic, $T(X)$, and $T(X)$ (the distribution of $T(X)$)
- 3. Significance level of the test α
- 4. Rejection region (critical region) (RR) and acceptance region
- 5. Type I and Type II error probabilities.
- 6. *p*-value
- 7. power

Null and Alternative Hypotheses

Assume that the form of the distribution for the population is known, $X \sim F(x; \theta)$ where $\theta \in \Omega$, where Ω is the set of all possible values of θ can take, and is called the parameter space.

The statistical hypothesis is a statement about the value of the parameter(s) of the distribution, such as

$$
``\theta\in\omega"
$$

 $ω$ be a subset of $Ω$.

This is a statistical hypothesis and is denoted by $H(H_0)$, called Null Hypothesis

Null and Alternative Hypotheses

On the other hand, the statement " $\theta \in \bar{\omega}$ " (where $\bar{\omega}$ is the complement of $ω$ w.r.t Ω) is called the alternative to H_0 and is denoted by H_a (or H_1).

we write

$$
H_0: \theta \in \omega
$$
 and $H_a: \theta \in \bar{\omega}$ (or $\theta \notin \omega$)

H_0 , H_1

- 1. In some case, we want to know the mean of something is as what people stated (or represents the *status quo*) we put it in the null hypothesis H_0 ^主計處調查國民平均月所得為20000^元 H_0 : vs H_1 : ^合歡山一月平均降雪量為²⁰ ^公分。 *H*₀ : vs *H*₁ :
- 2. Often hypothesis arise in the form that we want to know if a new product, technique, teaching method, etc., is better than the existing one. In this context, H_0 is a statement that nullifies the theory and is sometimes called a null hypothesis. In this case, 我^們 把想要檢定的假設定為 *H*1,*H*₀ 則為其相反之假設。 _。

H_0, H_1

1. if the lifetime of the tire has pdf $f(x) = \lambda e^{-\lambda x}, x > 0$, then the expected lifetime, $\frac{1}{\lambda}$, is at least greater than 22000.

$$
H_0: \underline{\hspace{2cm}} \text{vs } H_1: \underline{\hspace{2cm}} \underline{\hspace{2cm}} \text{vs } H_2: \underline{\hspace{2cm}} \underline{\hspace{2cm}} \underline{\hspace{2cm}} \text{vs } H_3: \underline{\hspace{2cm}} \underline{\hspace{2cm
$$

- 2. decide whether $\mu_A > \mu_B$, where μ_A , and μ_B are the means of the two populations H_0 : vs H_1 :
- 3. whether *p*, the parameter of a binomial distribution is greater or equal to 0.9.

$$
H_0: \underline{\hspace{2cm}} \text{vs } H_1: \underline{\hspace{2cm}} \underline{\hspace{2cm}} \text{vs } H_1: \underline{\hspace{2cm}} \underline{\hspace{2cm}} \qquad \qquad \underline{\hspace{2cm}} \text{vs } H_1: \underline{\hspace{2cm}} \underline{\hspace{2cm}} \qquad \qquad \underline{\hspace{2cm}} \qquad \q
$$

4. ^廠商宣稱每杯citi coffee 重量至^少 300 g. H_0 : vs H_1 :

Hypotheses Testing

▶ 假設檢定係指在尚未蒐集樣本資料、進行椎論之前, ^就事先對母體的某種特徵性質作一合理的假設敘述, ^再利用隨機抽出的樣本及抽樣分配,配合機率原理, ^以判斷此項假設是否為真。

^以統計方法進行決策的過程中,會提出兩個假設:

*H*0: null hypothesis (虛無假設)。

*H*1: alternative or research hypothesis(對立假設、研究假 設)。

可能的結論:

- 1. 有足夠的統計證據可推論 H₁ 為真 (reject H₀ and accept H_1) \circ
- 2. ^沒有足夠的統計證據可推^論 *^H*¹ ^為^真 (do not reject (Fail to reject, retain) *H*0. The data doesn't provide

Hypotheses Testing

▶ 假設檢定的主要精神在於尋找證據來拒絶*H*o而接 受H₁, 我們無法證明H.為絶對正確,只有不能拒斥 它。

^證據的角色: ^假^設 *^H*⁰ ^為真的情況下, ^嘗試在其間找出^矛 盾,然後進行推論。

假設 H₀為真, 收集到此資料的可能性, 如果是異常稀少事 件(顯著的異常),則判定Ho的假設是錯誤,所以拒絶Ho.

^因此假設檢定又稱為『顯著性檢定』(significant test)

simple and composite hypothesis

$$
H_0: \mu = 166 \text{ vs } H_1: \mu > 166,
$$

$$
H_1: \mu < 166 \text{ or }
$$

$$
H_1: \mu \neq 166
$$

If ω contains only **one point**, i.e., if $\omega = {\theta : \theta = \theta_0}$ then $H₀$ is called a **simple** hypothesis which completely specifies the null distribution. We write it as H_0 : $\theta = \theta_0$.

Otherwise, if it does not completely specify the distribution. It is called **composite** hypothesis.

Test Statistics

Test Statistics: *T*(**X**),

a function of a set of i.i.d. random variables X_1, \ldots, X_n which follow some distribution $F(x, \theta)$. Such as \overline{X} or S^2 etc.

Or a pivotal quantity for the test statistic

Significance level of the test

We defined an event with samll probability.

When H_0 is true, the probability of an extreme event such as that $\{\overline{X} > c\}$ is very small. If $\{\overline{X} > c\}$, we will reject the null hypothesis.

This small probability is called the significance level of the test, denoted by α .

$$
\mathbf{P}(\overline{X} > c | H_0 : \mu = 160) = \alpha
$$

Thus the hypothesis testing is also called the test of significance.

Rejection Region

- If $\overline{X} > c$, then we will reject H_0 . T
- $\{\overline{X} > c\}$ is called the **rejection region, RR** (or **critical region**) denoted by *R*.

Note that critical value is defined before (ex-ante) we collect the data.

We will make the decision by comparing \bar{x} with c

Decision rules

we use data (random sample) to test if the data provides significant evidence to reject the null hypothesis.

If $\overline{X} > c$ reject H_0

A test of hypotheses is a rule, or decision, based on a sample from a given distribution to show whether the data support our hypothesis.

Decision

Data:

If $\bar{x} > c$ reject H_0

Normally, the conclusion is either

- 1. Reject H_0 and conclude that H_1 is true, or
- 2. Do not reject H_0

Remark:

Note that, we don't say we accept" H_0 , because it implies stronger action than is really warranted. We can't find enough evidence to reject H_0 but it does not mean that H_0 is absolutely true.

Example: 7.2-1

Test if *X*, the breaking strength of a steel bar. $X \sim \mathcal{N}(50, 36)$ or $X \sim \mathcal{N}(55, 36)$. We want to know if new method increases the mean of the strength to 55.

Draw sample and test if they are from normally distributed populatioin with mean 55.

Example: 7.2-1

Test if *X*, the breaking strength of a steel bar. $X \sim \mathcal{N}(50, 36)$ or $X \sim \mathcal{N}(55, 36)$. We want to know if new method increases the mean of the strength to 55.

Draw sample and test if they are from normally distributed populatioin with mean 55.

- 1. two hypotheses: H_0 : $\mu = 50$ vs H_a : $\mu = 55$
- 2. test statistic: *X*
- 3. Decision rule: If $\overline{X} > 53$, we will reject H_0 . Rejection Region $R = \{x > 53\}$

Example: 7.2-1

Test if *X*, the breaking strength of a steel bar. $X \sim \mathcal{N}(50, 36)$ or $X \sim \mathcal{N}(55, 36)$. We want to know if new method increases the mean of the strength to 55.

Draw sample and test if they are from normally distributed populatioin with mean 55.

- 1. two hypotheses: H_0 : $\mu = 50$ vs H_a : $\mu = 55$
- 2. test statistic: *X*
- 3. Decision rule: If $\overline{X} > 53$, we will reject H_0 . Rejection Region $R = \{x > 53\}$

Data: 16 random samples are drawn. We observed \bar{x} = 53.75, then we will reject H_0 .

Distribution for x.bar under H0

Example: The significance level of the test

The probability of a rare event when H_0 is true.

The significance level of the test is

$$
\mathsf{P}\big(\overline{X} > 53 | H_0: X_i \sim \mathcal{N}(50, 36)\big)
$$

$$
\mathsf{P}(\frac{X-50}{6/\sqrt{16}} > \frac{53-50}{6/\sqrt{16}}) = \mathsf{P}(Z > 12/3) = 0.023
$$

The significance level of the test given $R = \{\overline{x} > 53\}$ is $\alpha = 0.02$.

Type I and Type II error probabilities

Probability of making a wrong decision:

There are two types of errors that can occurs.

Probabilities associated with the two incorrect decisions are denoted by type I and type II error probabilities.

Type I and Type II error probabilities

- 1. Reject H_0 when it is true. $\alpha = P$ (Type I error) = **P**(reject a true H₀) = **P**(reject H_0/H_0 is true)
- 2. Fail to reject H_0 when it is false (Fail to accept H_1 when H_1 is true) $β = P(T$ _V p e II error $) = P(R$ Retain a false H_0 $) =$ **P**(retain H_0/H_1 is true)

Test statistics I

Often we work with the distribution of $T(X)$, pivotal quantity for the test statistic, such as a standard normal, *t*, $\chi^{\mathsf{2}},$ or ${\mathsf{F}}.$

Pivotal quantity: a function of (data) observations and unknown parameters whose distribution does not depend on the unknown parameters

Test statistics II 1. If *X*1, · · · *Xⁿ* ∼ N (µ, σ²) with µ is the unknown parameter and σ^2 is some known constant, we have $\pmb{X} \sim \mathcal{N}(\mu, \sigma^2/2)$ √ *n*),

$$
\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)
$$

2. If $X_1, \cdots X_n \sim \mathcal{N}(\mu, \sigma^2)$ where μ and σ^2 are unknown parameters, we have

$$
\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)
$$

Test statistics III 3. $X_1, \dots, X_n \sim$ Bernoullip and $Y = X_1 + \dots + X_n$ we have (*Y*/*n*) − *p* $\frac{p(1-p)}{p(1-p)}$ $\rightarrow \mathcal{N}(0,1)$

n

4. $X_1,\cdots,X_n \sim \mathcal{N}(\mu,\sigma^2)$ where μ and σ^2 are unknown parameters and let $S^2 = \sum (X_i - \overline{X})^2/(n-1)$.

$$
W=\frac{(n-1)S^2}{\sigma^2}\sim \chi^2(n-1)
$$

Test statistics IV

Based on the distribution of the test statistic we define the **Critical value** *t* ∗ , such as

 $z_\alpha, t_\alpha, \chi_\alpha^2,$ or \mathcal{F}_α and

construct the decision rule (rejection region) for a given the significance level of the test α .

Critical value for α =0.05

EX: $P(Z \ge 1.645) = 0.05$, $z_{0.05} = 1.645$

standard Normal

The procedure

- 1. Specify the null and alternative hypotheses.
- 2. Specify the significant level of the test α . (control the Type I error)
- 3. Define a test statistic *T*(**X**) and its distribution under H_0
- 4. Decision rule: obtain the rejection region $R = \{ \mathbf{x} : T(\mathbf{x}) \in R(\theta_0) \}.$
- 5. Obtain the data and calculate the value of the test statistic $T(\mathbf{x})$ (T_{obs})
- 6. Conclusion: If the test statistic $T(\mathbf{x}) \in R(\theta_0)$ reject H_0 and conclude that there is strong evidence to reject the null hypothesis at the significant level α

Example (n=16, \bar{x} = 53.75)

- 1. Hypotheses: H_0 : $\mu = 50$ vs H_a : $\mu = 55$
- 2. Given $\alpha = 0.05$ (Significance level of the test)
- 3. Test statistic:

$$
Z=\frac{\overline{X}-50}{6/\sqrt{16}}\sim^{\mathcal{H}_0} N(0,1)
$$

- 4. Decision rule: if $Z_{obs} > Z_{0.05} = 1.645$ (critical value) Reject *H*₀
- 5. Data $\bar{x} = 53.75$ we have

$$
z_{\rm obs} = \frac{53.75 - 50}{6/4} = 2.5
$$

6. Becuse $z_{\text{obs}} = 2.5 > 1.645$ Reject H_0 : $\mu = 50$ at $\alpha = 0.05$.

Probability value (p-value) of the test

When H_0 is true, the probability that the test statistic is equal to or exceeds the actually observed value toward the direction of the alternative hypothesis.

Tail-end probability under H_0 toward H_1 .

$$
\mathbf{P}(\overline{X} \geq 53.75|H_0) = \mathbf{P}(Z \geq \frac{3.75}{6/4}) = \phi(2.5) = 0.006
$$

 \overline{X} ∼^H⁰ \mathcal{N} (50, 36/16)

The p-value of the test is 0.006.

Small *p*-value provides evidence to reject the null hypothesis H_0 given the data.

Decision rule

If the *p*-value of a thest if as small or smaller than the significance level of a test, α , we say the the data are statistically significant at an α significant level.

The *p*-values : if *p*-value $\lt \alpha$ reject H_0 at significance level α. (We don't need to find different *t* ∗ for different significance level α .

Decision rule

If the *p*-value of a thest if as small or smaller than the significance level of a test, α , we say the the data are statistically significant at an α significant level.

The *p*-values : if *p*-value $\lt \alpha$ reject H_0 at significance level α.

(We don't need to find different *t* ∗ for different significance level α .

Recall: Decision rule by critical value

if $T(\mathbf{x}) \in B(\theta_0)$ reject H_0 at significance level α .

standard Normal

x

Power

Power= P (Accept H_1 when H_1 is true)

Power=1 $-\beta$, 1 $-\beta$ is defined as the **power** of the test.

α , β and Power

Example (Ex 7.2-1)

Let *X* be the breaking strength of a steel bar. $H_0: \mu = 50$ vs *H_a* : μ = 55 Given *C* = {(*x*₁, ⋅ ⋅ ⋅ , *x*_{*n*}) : \bar{x} ≥ 53} or $C = \{\overline{x} : \overline{x} > 53\}$ Data: n=16, what are the type I and type II error probabilities?

X ∼ *N*(50, 36/16) under $H_0: \mu = 50$

 \overline{X} ∼ *N*(55, 36/16) under *H*₁ : μ = 55

α , β and Power

Type I error rate $= 0.0228$

```
Type II error rate = 0.0912
```
The significance level of the test $\alpha = 0.0228$.

The power of the test is $1 - \beta = 0.9088$.

The relationship between α and β

