

Statistical Inference : Confidence Intervals

Population: the form of the distribution is assumed known, but the parameter(s) which determines the distribution is unknown

Sample: Draw a set of random sample from the population (i.i.d)

Point estimation (MME, MLE) Confidence Intervals:

- \triangleright Confidence intervals for a population mean
- \triangleright Confidence intervals for difference between two means
- \blacktriangleright Confidence intervals for variances
- \triangleright Confidence intervals for proportions
- \blacktriangleright Sample Size

Confidence intervals for the mean of a single population

CI for μ

- 1. A set of random sample (i.i.d) from a normally distributed population.
	- (i) when the variance σ^2 is **known**.
	- (ii) when the variance σ^2 is **unknown**.
- 2. Sample is NOT from a normal distribution.
	- (a) When *n* is large (CLT $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \to N(0,1)$)
	- (b) When n is less than 30 and underlying distribution is less normal—Non-parameter methods

CIs for μ when the variance σ^2 is known

Assume the population $X \sim \mathcal{N}(\mu, \sigma^2)$ where σ^2 is known. We draw a set of random sample of size n, let \overline{X} be the sample average, and we can work out the probability that the random interval

$$
[\overline{X} - z_{\alpha/2}(\frac{\sigma}{\sqrt{n}}), \overline{X} + z_{\alpha/2}(\frac{\sigma}{\sqrt{n}})]
$$

contains the unknown mean μ is $1 - \alpha$, i.e.,

$$
\mathbf{P}(L \leq \mu \leq U) = 1 - \alpha
$$

[L, U] is a set of random intervals that contains μ with probability $1 - \alpha$;

If we replicate the sampling process 100 times, we have 100 different confidence intervals. It should be true that about 95% of them would contain the population mean μ .

Confidence intervals

U

Once the sample is observed and the sample average is computed to equal to \bar{x} , we call the interval

$$
[\overline{x} \pm z_{\alpha/2}(\frac{\sigma}{\sqrt{n}})]
$$

a 100(1 – α)% confidence intervals for the unknown mean μ . We are 100 $(1-\alpha)\%$ confidence that $[\overline{x}\pm z_{\alpha/2}(\frac{\sigma}{\sqrt{n}})]$ will contain μ

sample size n confidence coefficient $1 - \alpha$

Assume the population $X \sim \mathcal{N}(\mu, 81)$, we draw a set of random sample of size $n = 10$, and have

60.50 66.18 48.10 41.21 53.66 36.49 54.80 56.04 43.48 42.41

Find a 95% confidence interval for μ .

Assume the population $X \sim \mathcal{N}(\mu, 81)$, we draw a set of random sample of size $n = 10$, and have

60.50 66.18 48.10 41.21 53.66 36.49 54.80 56.04 43.48 42.41

Find a 95% confidence interval for μ .

 $[\overline{x} \pm 1.96 \bigl(\frac{\sigma}{\sqrt{n}}\bigr)] = [44.71, 55.87]$ is a 95% confidence interval for μ .

For a particular sample and \overline{x} was computed, the interval either does or does not contain the mean μ . We can't say there is 95% chance that the μ will fall between 44.71 and 55.87. We can only say that we have 95% confidence that the population mean will fall between [44.71, 55.87]. (we provide information about the uncertainty of the estimate)

CI for μ when σ^2 is also unknown.

Recall: T-distribution According to the definition of a T random variable: $Z \sim \mathcal{N}(0,1)$ and $V = \chi^2(r)$, $Z,$ V are independent

$$
T = \frac{Z}{\sqrt{V/r}}
$$

has a *t*-distribution with r degrees of freedom.

Recall: Normal and χ^2 distributions

Given X_1,\cdots,X_n is a random sample from a $\mathcal{N}(\mu,\sigma^2)$ distribution where μ and σ^2 are unknown parameters, let \overline{X} be the sample average, and $S^2 = \sum (X_i - \overline{X})^2/(n-1)$ the sample variance. Define $W=(n-1)S^2/\sigma^2$ (ie sum of squares divided by σ^2 , then W is a chi-square distribution with $r = n - 1$ degrees of freedom. That is

$$
W=\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)
$$

 $E(W) = 2(r/2) = r$, $Var(W) = 4(r/2) = 2r$. Thus a random variable $W\sim \chi^2({\rm \nu})$ have mean ${\rm \nu}$ and variance 2 ${\rm \nu}$ and the mgf of W is $M_{w}(t)=\Big(\frac{1}{1-t}\Big)$ $\left(\frac{1}{1-2t}\right)^{\frac{t}{2}}, t < 1/2$

CI for μ when σ^2 is also unknown. We have √

$$
T = \frac{\sqrt{n}(\overline{X} - \mu)/\sigma}{\sqrt{\frac{(n-1)S^2}{\sigma^2}}/(n-1)} = \frac{\overline{X} - \mu}{S/\sqrt{n}}
$$

have a t distribution with $r = n - 1$ degrees of freedom (recall many properties of t-distribution?)

Random Intervals

$$
\big[\overline{X}-t_{\alpha/2}(n-1)(\frac{S}{\sqrt{n}}), \overline{X}+t_{\alpha/2}(n-1)(\frac{S}{\sqrt{n}})\big]\big]
$$

CI for μ when σ^2 is also unknown. We have √

$$
T = \frac{\sqrt{n}(\overline{X} - \mu)/\sigma}{\sqrt{\frac{(n-1)S^2}{\sigma^2}/(n-1)}} = \frac{\overline{X} - \mu}{S/\sqrt{n}}
$$

have a t distribution with $r = n - 1$ degrees of freedom (recall many properties of t-distribution?)

Random Intervals

$$
\big[\overline{X}-t_{\alpha/2}(n-1)(\frac{S}{\sqrt{n}}),\overline{X}+t_{\alpha/2}(n-1)(\frac{S}{\sqrt{n}})\big]\big]
$$

Once a random sample is observed, we compute \overline{x} and s^2 and

$$
[\overline{x} \pm t_{\alpha/2}(n-1)(\frac{s}{\sqrt{n}})]
$$

is a 100 $(1 - \alpha)$ % confidence interval for μ .

CIs for difference of two means

Two independent normal distributions

- 1. When both variances are known.
- 2. If the variances are unknown and the sample sizes are large
- 3. If the variances are unknown
	- (a) assume common unknown equal variance
	- (b) unequal variance
		- (i) sample sizes are large
		- (ii) sample sizes are small

Paired data, Match data, dependent data

Both variances are known

Two independent random samples of sizes n and m from the two normal distributions

$$
X_1, \dots, X_n \sim \mathcal{N}(\mu_x, \sigma_X^2), \text{ and } Y_1, \dots, Y_m \sim \mathcal{N}(\mu_y, \sigma_Y^2).
$$

Then we have $\overline{X} \sim \mathcal{N}(\mu_X, \sigma_X^2/n)$, and $\overline{Y} \sim \mathcal{N}(\mu_Y, \sigma_Y^2/m)$.
Let $W = \overline{X} - \overline{Y}$, then

$$
W \sim \mathcal{N}(\mu_X - \mu_Y, \frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m})
$$

Both variances are known

Once the samples are drawn

$$
\overline{x} - \overline{y} \pm z_{\alpha/2} \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}
$$

is a 100(1- α)% CI for $\mu_X - \mu_Y$

Sample sizes are large and variances are unknown

We replace variances with the sample variances s_{χ}^2 , $s_{\rm Y}^2$ where they are the values of the respective unbiased estimates of the variances.

That is

$$
\overline{x} - \overline{y} \pm z_{\alpha/2} \sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}}
$$

is an approximate 100(1- α)% CI for $\mu_X - \mu_Y$

Sample sizes are small and variances are unknown

a. Assumed common variance

Estimate for the common variance: equal variance $\sigma_X^2 = \sigma_Y^2 = \sigma^2$

Denote

$$
S_p^2 = \frac{(n-1)S_X^2 + (m-1)S_Y^2}{n+m-2}
$$

which is an unbiased estimator for the common variance $\sigma^2.$

Estimate for the common variance

Since the random samples are from two independent normal distribution with common variance , we have

$$
\frac{(n-1)S_X^2}{\sigma^2} \sim \chi^2(n-1), \quad \frac{(m-1)S_Y^2}{\sigma^2} \sim \chi^2(m-1)
$$

and they are independent. Thus

$$
U = \frac{(n-1)S_X^2}{\sigma^2} + \frac{(m-1)S_Y^2}{\sigma^2} \sim \chi^2(n+m-2)
$$

and $\mathsf{E}(U)=n+m-2,$ thus we have $\mathsf{E}(\mathsf{S}^2_\rho) = \sigma^2$

(a). Common variance assumption

we have

$$
Z = \frac{\overline{X} - \overline{Y} - (\mu_{x} - \mu_{Y})}{\sqrt{\sigma^{2}(\frac{1}{n} + \frac{1}{m})}}
$$

but we don't know σ^2 so we have

$$
T = \frac{Z}{\sqrt{U/r}} = \frac{[\overline{X} - \overline{Y} - (\mu_x - \mu_Y)] / \sqrt{\sigma^2 (1/n + 1/m)}}{\sqrt{[\frac{(n-1)S_X^2}{\sigma^2} + \frac{(m-1)S_Y^2}{\sigma^2}] / (n + m - 2)}}
$$

$$
= \frac{\overline{X} - \overline{Y} - (\mu_x - \mu_Y)}{\sqrt{[\frac{(n-1)S_X^2 + (m-1)S_Y^2}{n + m - 2}][\frac{1}{n} + \frac{1}{m})}}
$$

has a *t*-distribution with $r = n + m - 2$ degrees of freedom.

A 00(1 -
$$
\alpha
$$
)% CI for $\mu_X - \mu_Y$ is

$$
\overline{x} - \overline{y} \pm t_{\alpha/2}(n + m - 2)\sqrt{s_{\beta}^2(\frac{1}{n} + \frac{1}{m})}
$$

(b) not equal variances

$$
W = \frac{\overline{X} - \overline{Y} - (\mu_x - \mu_Y)}{\sqrt{S_X^2/n + S_Y^2/m}}
$$

- 1. If n and m are large enough and the underlying distributions are close to normal \geq use normal distribution to construct a CI
- 2. $*$ If n and m are small -> approximating Student's t distribution has r degrees of freedom (Welch t) where

$$
\frac{1}{r} = \frac{c^2}{n-1} + \frac{(1-c)^2}{m-1} \text{ and } c = \frac{s_X^2/n}{s_X^2/n + s_Y^2/m}
$$

$$
r = \frac{(s_X^2/n + s_Y^2/m)^2}{\frac{1}{n-1}(s_X^2/n)^2 + \frac{1}{m-1}(s_Y^2/m)^2}
$$

If r is not an integer, then we use the greatest integer in r , i.e., $|r|$ the "floor" is the number of degrees of freedom

We have
\n
$$
\overline{x} - \overline{y} \pm t_{\alpha/2}(r) \sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}}
$$
\nis a 100(1- α)% CI for $\mu_X - \mu_Y$.

19

Paired (Match) samples

 X_i and Y_i are measurements taken from the same subject. X_i and Y_i are dependent random variables.

Let $(X_1, Y_1), \cdots, (X_n, Y_n)$ be *n* pairs of dependent measurements.

Let $D_i = X_i - Y_i$, $i = 1, \cdots, n$. Suppose D_i can be thought of as a random sample from $\mathcal{N}(\mu_D, \sigma_D^2)$, where μ_D and σ_D^2 are the mean and standard deviation of each difference.

To form a CI for $\mu_X - \mu_Y$, use

$$
T = \frac{\overline{D} - \mu_D}{S_D / \sqrt{n}}
$$

where \overline{D} and S_D are the sample mean and sample standard deviation of the *n* differences. T is a t statistic with $n - 1$ degrees of freedom.

Thus the CI for $\mu_D = \mu_X - \mu_Y$ is

$$
\overline{d} \;\pm\; t_{\alpha/2}(n-1) \frac{s_D}{\sqrt{n}}
$$

where \overline{d} and s_D are the observed mean and standard deviation of the sample. (this is the same as the CI for a single mean).

Confidence intervals for variances

Recall : Chi-Square distribution Given X_1,\cdots,X_n is a random sample from a $\mathcal{N}(\mu,\sigma^2)$ distribution where μ and σ^2 are unknown parameters and let $S^2 = \sum (X_i - \overline{X})^2 / (n-1).$

$$
W=\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)
$$

chi-squared R.V.s

Example: chi-squared distribution

Let S^2 be the sample variance of a random sample of size 6 is drawn from a $\mathcal{N}(\mu, 12)$ distribution. Find ${\sf P}(2.76 < S^2 < 22.2)$

Example: chi-squared distribution

Let S^2 be the sample variance of a random sample of size 6 is drawn from a $\mathcal{N}(\mu, 12)$ distribution. Find ${\sf P}(2.76 < S^2 < 22.2)$

Let
$$
W = \frac{(n-1)S^2}{\sigma^2}
$$
, then $W \sim \chi^2(5)$.
\nSo $\mathbf{P}(2.76 < S^2 < 22.2) = \mathbf{P}(\frac{5}{12}(2.76) < \frac{(n-1)S^2}{\sigma^2} < \frac{5}{12}(22.2)) = \mathbf{P}(1.15 < W < 9.25)$ and
\n $\mathbf{P}(2.76 < S^2 < 22.2) = \mathbf{P}(W < 9.25) - \mathbf{P}(W < 1.15) =$
\n $pehisq(9.25, 5) - pchisq(1.15, 5) = 0.85$.

CI for variance σ^2

Let X_1,\cdots,X_n is a random sample from a $\mathcal{N}(\mu,\sigma^2)$ distribution, find the $100(1-\alpha)\%$ CI for σ^2

CI for variance σ^2

Let X_1,\cdots,X_n is a random sample from a $\mathcal{N}(\mu,\sigma^2)$ distribution, find the $100(1-\alpha)\%$ CI for σ^2

Select constants \bm{s} and \bm{b} from $\chi^2(n-1)$ such that

$$
\mathsf{P}(a \leq \frac{(n-1)S^2}{\sigma^2} \leq b) = 1 - \alpha
$$

we select $\displaystyle{a=\chi^2_{1-\alpha/2}(n-1)}$ and $\displaystyle{b=\chi^2_{\alpha/2}(n-1)}$, and we have

$$
1 - \alpha = \mathbf{P}\left(\frac{a}{(n-1)S^2} \le \frac{1}{\sigma^2} \le \frac{b}{(n-1)S^2}\right)
$$

$$
= \mathbf{P}\left(\frac{(n-1)S^2}{b} \le \sigma^2 \le \frac{(n-1)S^2}{a}\right)
$$

The probability that the random interval $[(n-1)S^2/b,(n-1)S^2/a]$ contains the unknown σ^2 is $1-\alpha$.

Example: CI for variance

 $X_{1},\cdots,X_{13}\sim\mathcal{N}(\mu,\sigma^{2}),$ we have $\overline{x}=18.97$ and $\sum_{i=1}^{13} (x_i - \overline{x})^2 = 128.41$ find the 90% CIs for σ^2 .

From chi-squared table we have $\chi_{0.95}^2(12)=5.226$ and $\chi_{0.05}^2(12)=21.03$ (5 quantile and 95 quantile from a chi-squared distribution with 12 degrees of freedom respectively).

A 90% Cls for σ^2 is

$$
\left[\ \frac{128.4}{21.03}, \frac{128.4}{5.226} \ \right] = [6.11, 24.57]
$$

Given X_1, \dots, X_n is a random sample from a Exponential(λ) distribution (mean= $1/\lambda$).

1. Let
$$
W = 2\lambda \sum_{i=1}^{n} X_i
$$
, show $W \sim \chi^2(2n)$ (hint: use
Moment generating function)

2. Find a 90% CIs for λ .

CI for the ratio of variances

Recall: F distribution

 $W_1 \sim \chi^2(\nu_1)$, $W_2 \sim \chi^2(\nu_2)$ and W_1, W_2 are independent random variables. Then a random variable F which can be expressed as

$$
\digamma = \frac{W_1/v_1}{W_2/v_2}
$$

is said to be distributed as a F distribution with degrees of freedom v_1 and v_2 , denoted by $F(v_1, v_2)$ or F_{v_1, v_2}

F (d1, d2) distribution

x

F-distribution

Reciprocal of an F

Let the r.v. $F \sim F(v_1, v_2)$ and let $Y = 1/F$. Then Y has a pdf.

$$
f(y)^* = g(F)|\frac{dF}{dy}|
$$

=
$$
\frac{v_1^{v_1/2}y^{1-(v_1/2)}v_2^{v_2/2}y^{(v_1+v_2)/2}}{B(\frac{v_1}{2},\frac{v_2}{2})(v_2y+v_1)^{(v_1+v_2)/2}}\frac{1}{y^2}
$$

=
$$
\frac{v_1^{v_1/2}v_2^{v_2/2}y^{(v_2/2)-1}}{B(\frac{v_2}{2},\frac{v_1}{2})(v_1+v_2y)^{(v_1+v_2)/2}} y \in [0,\infty)
$$

That is if $F \sim F(v_1, v_2)$ and $Y = 1/F$, then $Y \sim F(v_2, v_1)$

CI for σ_{χ}^2 $\frac{2}{X}/\sigma_Y^2$ from two ind. Normal

Given S_X^2, S_Y^2 are unbiased estimates of σ_X^2, σ_Y^2 derived from samples of size n and m , respectively, from two independent normal populations. Find a 100 $(1-\alpha)\%$ CI for $\sigma_X^2/\sigma_Y^2.$

CI for σ_{χ}^2 $\frac{2}{X}/\sigma_Y^2$ from two ind. Normal

Given S_X^2, S_Y^2 are unbiased estimates of σ_X^2, σ_Y^2 derived from samples of size n and m , respectively, from two independent normal populations. Find a 100 $(1-\alpha)\%$ CI for σ_X^2/σ_Y^2 . $(n-1)S_X^2/\sigma_X^2 \sim \chi^2(n-1)$, $(m-1)S_Y^2/\sigma_Y^2 \sim \chi^2(m-1)$

$$
\frac{\frac{(m-1)S_Y^2}{\sigma_Y^2}/(m-1)}{\frac{(n-1)S_1^2}{\sigma_1^2}/(n-1)} = \frac{S_Y^2/\sigma_Y^2}{S_X^2/\sigma_X^2}
$$

follow a F distribution with degrees of freedom $(m-1)$ and $(n-1)$ i.e., 2

$$
\frac{S_Y^2/\sigma_Y^2}{S_X^2/\sigma_X^2} \sim F(m-1, n-1)
$$

$$
\frac{S_{\gamma}^2/\sigma_{\gamma}^2}{S_{\chi}^2/\sigma_{\chi}^2} \sim F(m-1,n-1)
$$

So we select
$$
c = F_{1-\alpha/2}(m-1, n-1)
$$
 and
\n $d = F_{\alpha/2}(m-1, n-1)$, and

$$
\mathsf{P}(c \leq \frac{S_Y^2/\sigma_Y^2}{S_X^2/\sigma_X^2} \leq d) = 1 - \alpha
$$

That is

$$
\mathbf{P}\big(c\;\frac{S_X^2}{S_Y^2}\leq\frac{\sigma_X^2}{\sigma_Y^2}\leq d\;\frac{S_X^2}{S_Y^2}\big)=1-\alpha
$$

$$
\frac{S_{\chi}^2/\sigma_{\chi}^2}{S_{\chi}^2/\sigma_{\chi}^2} \sim F(m-1,n-1)
$$

So we select $c = F_{1-\alpha/2}(m-1, n-1)$ and $d = F_{\alpha/2}(m-1, n-1)$, and

$$
\mathsf{P}(c \leq \frac{S_Y^2/\sigma_Y^2}{S_X^2/\sigma_X^2} \leq d) = 1 - \alpha
$$

That is

$$
\mathsf{P}\big(c\;\frac{S_X^2}{S_Y^2}\leq\frac{\sigma_X^2}{\sigma_Y^2}\leq d\;\frac{S_X^2}{S_Y^2}\big)=1-\alpha
$$

Often from table we have

 $c = F_{1-\alpha/2}(m-1, n-1) = 1/F_{\alpha/2}(n-1, m-1)$ and $d=F_{\alpha/2}(m-1,n-1)$, let s_{x}^{2} and s_{y}^{2} be the realization of S_{X}^{2} and S^2_Y , then a $100(1-\alpha)\%$ Cls for σ^2_X/σ^2_Y is

$$
\left[\ \frac{1}{F_{\alpha/2}(n-1,m-1)}\frac{s_X^2}{s_Y^2},\ F_{\alpha/2}(m-1,n-1)\frac{s_X^2}{s_Y^2}\ \right]
$$

From two ind Normal with unknown means and variances, we have $(12) s_X^2 = 128.4$ from a random sample of size 13 and (8) s $\frac{2}{Y}$ = 36.72 from a random sample of size 9. Find a 98% Cls for σ_X^2/σ_Y^2 .

From two ind Normal with unknown means and variances, we have $(12) s_X^2 = 128.4$ from a random sample of size 13 and (8) s $\frac{2}{Y}$ = 36.72 from a random sample of size 9. Find a 98% Cls for σ_X^2/σ_Y^2 .

$$
\frac{S_Y^2/\sigma_Y^2}{S_X^2/\sigma_X^2} \sim F(8, 12)
$$

From *F*-table we have $F_{0.01}(12, 8) = 5.67$ and $\mathcal{F}_{0.01}(8,12)=4.50$, so a 98% Cls for σ_X^2/σ_Y^2 is

$$
[\ (\frac{1}{5.67})\frac{128.4/12}{36.72/8}, (4.50)\frac{128.4/12}{36.72/8}]
$$

Confidence intervals for proportions (p) Estimate proportions. Construct a CI for p in the $\text{Bin}(n, p)$

distribution.

Assume that sampling is from a binomial population and hence that the problem is to estimate p in the $\text{Bin}(n, p)$ distribution where p is unknown.

recall:

Given Y is distributed as $Bin(n, p)$, an unbiased estimate of p is $\hat{p} = \frac{Y}{p}$ $\frac{\gamma}{n}$.

$$
E(\hat{p})=E(\frac{Y}{n})=p
$$

and

$$
Var(\hat{p}) = \frac{1}{n^2}Var(Y) = \frac{1}{n^2}np(1-p) = \frac{p(1-p)}{n}
$$

Confidence intervals for proportions (p) For large n,

$$
\frac{Y - np}{\sqrt{np(1-p)}} = \frac{(Y/n) - p}{\sqrt{p(1-p)/n}}
$$

can be approximated by the standard normal $\mathcal{N}(0, 1)$.

Thus an approximate $100(1 - \alpha)\%$ CI for p is obtained by considering

$$
\mathbf{P}(-z_{\alpha/2}<\frac{(Y/n)-p}{\sqrt{p(1-p)/n}}
$$

Confidence intervals for proportions (p) For large n,

$$
\frac{Y - np}{\sqrt{np(1-p)}} = \frac{(Y/n) - p}{\sqrt{p(1-p)/n}}
$$

can be approximated by the standard normal $\mathcal{N}(0, 1)$.

Thus an approximate $100(1 - \alpha)\%$ CI for p is obtained by considering

$$
\mathsf{P}(-z_{\alpha/2}<\frac{(Y/n)-p}{\sqrt{p(1-p)/n}}
$$

Replace the variance of $\hat{p} = Y/n$ by its estimate $\hat{p}(1-\hat{p})/n$, giving a simple expression for the CI for p is

$$
[\hat{p} \pm z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}] = [\frac{Y}{n} \pm z_{\alpha/2}\sqrt{\frac{(Y/n)(1-Y/n)}{n}}]
$$

Assume Y ~ Bin(n, p), we have $n = 36$ and $y/n = 0.222$, find an approximate 90% Cls for p

Poll $n = 351$ and $y = 185$ say yes, find 95% CI for p?

Assume Y ~ Bin(n, p), we have $n = 36$ and $y/n = 0.222$, find an approximate 90% Cls for p

$$
[0.222 \pm 1.645 \sqrt{\frac{(0.222)(1-0.222)}{36}}]
$$

$$
Poll n = 351 and y = 185 say yes, find 95% CI for p?
$$

Assume Y \sim Bin(n, p), we have $n = 36$ and $y/n = 0.222$, find an approximate 90% Cls for p

$$
[0.222 \pm 1.645 \sqrt{\frac{(0.222)(1-0.222)}{36}}]
$$

Example

Poll $n = 100$ and $y = 51$ say yes, find 95% CI for p .41, 0.61

Poll $n = 351$ and $y = 185$ say yes, find 95% CI for p?

CI for difference of two proportions

^民調的解^讀

「....施政滿意度4成4。本次調查是以台灣地區住宅電話簿 ^為抽樣清冊, 並以電話的後四碼進行隨機抽樣。共成功^訪 ^問1056位台灣地區20歲以上民眾。在95%的信心水準下, 抽樣誤差為正負3.0百分點。

- 1. ^這項民調的母體是什麼?樣本數為多少?
- 2. 受訪民眾中對施政滿意約有多少人?
- 3. ^算出這次調查的信賴區間?

^民調的解^讀

- 1. 在本次調查中,母體是台灣地區20歲以上的民衆,樣 本則是成功訪問的1056人,「滿意度4成4」表示 ^在1056位受訪者中,約有44%的人表示滿意(即^約 有456人回答滿^意
- 2. 區間[0.44 − 0.03, 0.44 + 0.03] = [0.41, 0.47],稱為信賴 區^間 (信賴區間:[估計值-最大誤^差 , 估計值+最大^誤 差]) ^假設母體真正的滿意比例是p,這次的調查推估p的值可

能會落在0.41到0.47的範圍內。

- 3. 95%的信心水準: p是不可知的,而抽樣都會有誤差, 並不能保證真正的比例p一定會在我們所推估的區^間 内。「如果我們抽樣很多次,每次都會得到一個信賴 區間,那麼這麼多的信賴區間中,約有95%的區間會 ^涵蓋真正的p值。
- 4. 而我們有95%的信心説,真正的滿意度會落在我們所
——得出的區間中。 ^得出的區間中。 39

某報對於台北市市長施政滿意程度進行民調,民調結果如 下: 「滿意度為六成三,本次民調共成功訪問n位台北 市20歲以上的成年民衆, 在95%的信心水準下, 抽樣誤差 ^為正負3.2百分點。」 ^求n?

某報對於台北市市長施政滿意程度進行民調,民調結果如 ^下: 「滿意度為六成三,本次民調共成功訪問n位台北 ^市20歲以上的成年民眾,在95%的信心水準下,抽樣誤^差 為正負3.2百分點。」 求n?

 $z_{0.025} = 1.96$ and $(1.96)\sqrt{\frac{(0.63)(1-0.63)}{n}} = 0.032$ we have $n = (0.63)(0.37)(1.96)^2/0.032^2 = 864$

某報對於台北市市長施政滿意程度進行民調,民調結果如 下: 「滿意度為六成三,本次民調共成功訪問n位台北 ^市20歲以上的成年民眾,在95%的信心水準下,抽樣誤^差 ^為正負3.2百分點。」 ^求n?

$$
z_{0.025} = 1.96 \text{ and } (1.96)\sqrt{\frac{(0.63)(1-0.63)}{n}} = 0.032
$$

we have $n = (0.63)(0.37)(1.96)^2/0.032^2 = 864$

The maximum error of the estimate for 98% confidence coefficient is 0.01 for $\hat{p} = 0.08$, find the *n*

某報對於台北市市長施政滿意程度進行民調,民調結果如 下: 「滿意度為六成三,本次民調共成功訪問n位台北 ^市20歲以上的成年民眾,在95%的信心水準下,抽樣誤^差 ^為正負3.2百分點。」 ^求n?

$$
z_{0.025} = 1.96 \text{ and } (1.96)\sqrt{\frac{(0.63)(1-0.63)}{n}} = 0.032
$$

we have $n = (0.63)(0.37)(1.96)^2/0.032^2 = 864$

The maximum error of the estimate for 98% confidence coefficient is 0.01 for $\hat{p} = 0.08$, find the *n*

$$
z_{0.01} = 2.326
$$
 and $(2.326)\sqrt{\frac{(0.08)(0.92)}{n}} = 0.01$
we have $n = (0.08)(0.92)(2.326)^2/0.01^2 = 3982$

unknown \hat{p}

For estimating ρ , we have $\rho^*(1-\rho^*)\leq 1/4.$ Hence we need

$$
n=2.326^2/(4*0.01^2)=13530
$$

for the maximum error of the estimate for 98% confidence coefficient is 0.01.

95% confidence coefficient for $\epsilon = 0.01$, we have $n = 9604$

95% confidence coefficient for $\epsilon = 0.03$, we have $n = 1067$

Sample Size and CIs for given \hat{p}

The 95% CI for the proportion of people of supporting A when there is 51% people support A in polls of 100, 400 or 10,000 sample.

```
[0.41, 0.61], [0.46, 0.56], [0.50, 0.52]
```

```
[0.51 \pm 0.1], [0.51 \pm 0.05], [0.51 \pm 0.01]
```
Sample Size for mean

100 $(1-\alpha)$ % CI for μ is $[\overline{x} \pm z_{\alpha/2}(\sigma/\sqrt{n})]$. Denote such $\int \text{div}(\mathbf{r} - \alpha) \cdot \mathbf{r} \cdot d\mathbf{r}$ is $[\mathbf{x} \pm \alpha/2(\sigma/\sqrt{n})]$. Denote such interval as $\overline{\mathbf{x}} \pm \epsilon$, we sometime call $\epsilon = z_{\alpha/2}(\sigma/\sqrt{n})$ the maximum error of the estimate

$$
n=\frac{(z_{\alpha/2})^2(\sigma)^2}{\epsilon^2}
$$

where it is assumed that σ^2 is known.

we want the 95% CIs for μ to be $\overline{x} \pm 1$ for a normal population with standard deviation $\sigma = 15$, find the sample size.

we want the 95% CIs for μ to be $\overline{x} \pm 1$ for a normal population with standard deviation $\sigma = 15$, find the sample size.

$$
1.96\bigl(\frac{15}{\sqrt{n}}\bigr)=1
$$

we have $n \approx 864.35 = 865$.

we want the 95% CIs for μ to be $\overline{x} \pm 1$ for a normal population with standard deviation $\sigma = 15$, find the sample size.

$$
1.96\bigl(\frac{15}{\sqrt{n}}\bigr)=1
$$

we have $n \approx 864.35 = 865$.

The 80% CIs for μ is $\overline{x} \pm 2$, then we have

$$
1.282\big(\frac{15}{\sqrt{n}}\big)=2
$$

where $z_{0,1} = 1.282$ and thus $n = 93$

Pivotal quantity I

A very useful method for finding confidence intervals uses a pivotal quantity.

What is a **pivotal quantity**? A pivotal quantity is a function of data and the unknown parameter, say $g(\mathbf{X}, \theta)$, and the distribution of $g(\mathbf{X}, \theta)$ does not depend on the unknown parameter.

Example

Given X_1,\cdots,X_n is a random sample from a $\mathcal{N}(\mu,\sigma^2)$ distribution.

Pivotal quantity II

\n- 1. When
$$
\sigma
$$
 is known, $Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}}$ is a pivotal quantity. $Z \sim \mathcal{N}(0, 1)$
\n- 2. When σ is unknown, $T = \frac{\overline{X} - \mu}{S/\sqrt{n}}$ is a pivotal quantity where S is the sample deviation. $T \sim t(n-1)$
\n- 3. $W = (n-1)S^2/\sigma^2$ is a pivotal quantity. $W \sim \chi^2(n-1)$
\n

$$
Y \sim \text{Bin}(n, p), \ \frac{(Y/n) - p}{\sqrt{\frac{p(1-p)}{n}}} \sim \mathcal{N}(0, 1)
$$