In this note, our ring is always a commutative ring. In other words, suppose that R is a ring. Then there exist two binary operations $+$ and \cdot such that:

1. $(R, +)$ is an abelian group;
2. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in R$;
3. $a \cdot (b + c) = a \cdot b + a \cdot c$ for all $a, b, c \in R$;
4. $a \cdot b = b \cdot a$ for all $a, b \in R$.

Moreover, we say R is an integral domain if R satisfies the following extra conditions:

- there exists $1 \in R$ such that $1 \cdot a = a \cdot 1 = a$ for all $a \in R$;
- if $a \neq 0$ and $b \neq 0$ in R, then $a \cdot b \neq 0$.

1. Euclidean Domain

Let \mathbb{N} be the set of nonnegative integers and R a ring. We say that R is a Euclidean Ring if there is a function $\phi : R \setminus \{0\} \to \mathbb{N}$ such that: if $a, b \in R$ and $b \neq 0$, then there exist $q, r \in R$ such that $a = bq + r$ with either $r = 0$ or $\phi(r) < \phi(b)$.

A Euclidean ring which is an integral domain is called a Euclidean domain.

Example 1.1. The Ring \mathbb{Z} of integers with $\phi(n) = |n|$ is a Euclidean domain.

Proof. For $x \in \mathbb{Q}$, denote $[x]$ the greatest integer less than or equal to x. Given $a, b \in \mathbb{Z}$, we claim that there exist $q, r \in \mathbb{Z}$ such that $a = bq + r$ with $r = 0$ or $|r| < |b|$.

We first consider the case that $b > 0$. Let $q = [a/b]$ and $r = a - b[a/b]$. Then $a = bq + r$.

It remains to show that $0 \leq r < b$. We have that

$$\frac{a}{b} - 1 < \left[\frac{a}{b}\right] \leq \frac{a}{b}.$$

Multiplying all terms of this inequality by $-b$, we obtain

$$b - a > -b \left[\frac{a}{b}\right] \geq -a$$

and hence

$$0 \leq a - b \left[\frac{a}{b}\right] < b,$$

which is precisely $0 \leq r < b$ as desired.

For the case $b < 0$, use the similar argument above for a and $-b$. We find that there exist q and $r \in \mathbb{Z}$ such that $a = (-b)q + r$ with $r = 0$ or $r < |b| = -b$; so $-q$ and r have the desired properties.

Example 1.2. If F is a field, then the ring of polynomials in one variable $F[x]$ is a Euclidean domain with $\phi(f) = \deg(f)$.

Proof. Given \(f, g \in F[x] \) with \(g \neq 0 \), if \(\deg(f) < \deg(g) \), then let \(q = 0 \) and \(r = f \). If \(\deg(f) \geq \deg(g) \), then we proceed by induction on \(\deg(f) \).

If \(\deg(f) = 0 \), then \(\deg(g) = 0 \). Thus \(f \) and \(g \) are in \(F \). Let \(q = f \cdot g^{-1} \) and \(r = 0 \). We have \(f = gq + r \) with \(r = 0 \) as desired.

Assume now that the property for Euclidean domain is true for polynomials of degree less than \(n = \deg(f) \). Suppose

\[
f = \sum_{i=0}^{n} a_i x^i, \quad g = \sum_{i=0}^{m} b_i x^i, \quad \text{with} \quad a_n \neq 0, b_m \neq 0.
\]

Let \(f_1 = f - (a_n b_m^{-1} x^{m-n}) g \). It is clear that \(\deg(f_1) \leq n - 1 \). By the induction hypothesis there are polynomials \(q_1 \) and \(r_1 \) such that \(f_1 = gq_1 + r_1 \) with \(r_1 = 0 \) or \(\deg(r_1) < \deg(g) \). Therefore, let \(q = a_n b_m^{-1} x^{n-m} + q' \) and \(r = r_1 \). Then

\[
f = f_1 + (a_n b_m^{-1} x^{m-n}) g = g(q_1 + a_n b_m^{-1} x^{n-m}) + r_1 = gq + r
\]

with \(r = 0 \) or \(\deg(r) < \deg(g) \) as desired. \(\square \)

Recall that the set of complex numbers \(\mathbb{C} \) consists of elements of the form \(x + yi \), with \(x, y \in \mathbb{R} \) where \(i \) satisfies \(i^2 = -1 \). For \(\alpha = x + yi \in \mathbb{C} \), we define the norm of \(\alpha \) by \(N(\alpha) = x^2 + y^2 \). Given \(\alpha = x + yi \) and \(\beta = u + vi \), we have that \(\alpha \beta = (xu - yv) + (xv + yu)i \) and

\[
N(\alpha\beta) = (xu - yv)^2 + (xv + yu)^2 = (x^2 + y^2)(u^2 + v^2) = N(\alpha)N(\beta).
\]

Example 1.3. Let \(\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\} \) be a subset of complex numbers. \(\mathbb{Z}[i] \) is an integral domain called the domain of Gaussian integers. Moreover, \(\mathbb{Z}[i] \) is a Euclidean domain with \(\phi(a + bi) = N(a + bi) = a^2 + b^2 \).

Proof. \(\mathbb{Z}[i] \) is clearly closed under addition and subtraction. Moreover, if \(a + bi, c + di \in \mathbb{Z}[i] \), then

\[
(a + bi)(c + di) = (ac - bd) + (ad + bc)i \in \mathbb{Z}[i].
\]

Thus \(\mathbb{Z}[i] \) is closed under multiplication and is a ring. Since \(\mathbb{Z}[i] \) is contained in the complex numbers it is an integral domain.

It is clear that the norm defines a map from \(\mathbb{Z}[i] \) to \(\mathbb{N} \). Let \(\alpha = a + bi, \beta = c + di \in \mathbb{Z}[i] \) and suppose that \(\beta \neq 0 \). Consider

\[
\frac{\alpha}{\beta} = \frac{a + bi}{c + di} = \frac{ac + bd}{c^2 + d^2} + \frac{bc - ad}{c^2 + d^2} i = s + ti.
\]

Choose integers \(m, n \in \mathbb{Z} \) such that \(|s - m| \leq 1/2 \) and \(|t - n| \leq 1/2 \). Set \(\delta = m + ni \) and \(\gamma = \alpha - \beta \delta \). Then \(\delta, \gamma \in \mathbb{Z}[i] \) and either \(\gamma = 0 \) or

\[
\phi(\gamma) = \phi(\beta(\frac{\alpha}{\beta} - \delta)) = \phi(\beta)\phi(\frac{\alpha}{\beta} - \delta) = \phi(\beta)((s - m)^2 + (t - n)^2) \leq \frac{1}{2}\phi(\beta) < \phi(\beta).
\]

Exercise 1. Let \(\omega = (-1 + \sqrt{-3})/2 \) and \(\mathbb{Z}[\omega] = \{a + b\omega \mid a, b \in \mathbb{Z}\} \). Show that \(\mathbb{Z}[\omega] \) is a Euclidean domain.

Example 1.4. Let \(\theta = (1 + \sqrt{-19})/2 \) and \(\mathbb{Z}[\theta] = \{a + b\theta \mid a, b \in \mathbb{Z}\} \). \(\mathbb{Z}[\theta] \) is an integral domain but is not a Euclidean domain.
Proof. \(\mathbb{Z}[\theta] \) is clearly closed under addition and substraction. Moreover, \(\theta^2 = \theta - 5 \). Hence, if \(a + b\theta, c + d\theta \in \mathbb{Z}[\theta] \), then
\[
(a + b\theta)(c + d\theta) = ac + (ad + bc)\theta + bd\theta^2 = (ac - 5bd) + (ad + bc + bd)\theta \in \mathbb{Z}[\theta].
\]
Thus \(\mathbb{Z}[\theta] \) is closed under multiplication and is a ring. Since \(\mathbb{Z}[\theta] \) is contained in the complex numbers it is an integral domain.

Suppose that \(\mathbb{Z}[\theta] \) is a Euclidean domain with \(\phi : \mathbb{Z}[\theta] \setminus \{0\} \to \mathbb{N} \) satisfies the Euclidean domain property. Let \(\alpha \in \mathbb{Z}[\theta] \) be an element such that
\[
\phi(\alpha) = \min\{\phi(\lambda) \mid \lambda \neq 0, 1, -1, \lambda \in \mathbb{Z}[\theta]\}.
\]
By the Euclidean domain property, there exist \(\delta, \gamma \in \mathbb{Z}[\theta] \) such that \(2 = \alpha \delta + \gamma \) with \(\gamma = 0 \) or \(\phi(\gamma) < \phi(\alpha) \). However, by the definition of \(\alpha \), this implies that \(\gamma = 0, 1 \) or \(-1\). In other words, \(\alpha \delta = 1, 2 \) or \(3 \).

Recall that if \(\beta = a + b\theta \in \mathbb{Z}[\theta] \), then \(N(\beta) = a^2 + ab + 5b^2 \in \mathbb{N} \). Moreover, suppose \(\beta \neq 0 \), \(1 \) or \(-1\). If \(a = 0 \) then \(N(\beta) = 5b^2 \geq 5 \) and if \(b = 0 \) then \(N(\beta) = a^2 \geq 4 \). If \(ab > 0 \), then
\[
N(\beta) = a^2 + ab + 5b^2 = (a - b)^2 + 4b^2 + 3ab \geq 4b^2 + 3ab \geq 7
\]
and if \(ab < 0 \), then
\[
N(\beta) = a^2 + ab + 5b^2 = (a + b)^2 + 4b^2 - ab \geq 4b^2 - ab \geq 5.
\]
In conclusion, if \(\beta \in \mathbb{Z}[\theta] \setminus \{0, 1, -1\} \) then \(N(\beta) \in \mathbb{N} \) and \(N(\beta) \geq 4 \).

Since \(N(\alpha \delta) = 1, 4 \) or \(9 \), and \(N(\alpha \delta) = N(\alpha)N(\delta) \), we have that \(N(\alpha) \mid 1, N(\alpha) \mid 4 \) or \(N(\alpha) \mid 9 \). The discussion above shows that \(N(\alpha) \neq 1, 2, 3 \). Hence we have that \(N(\alpha) = 4 \) or \(N(\alpha) = 9 \).

The Euclidean domain property shows that there exist \(\delta' \) and \(\gamma' \in \mathbb{Z}[\theta] \) such that \(\theta = \alpha \delta' + \gamma' \) with either \(\gamma' = 0 \) or \(\phi(\gamma') < \phi(\alpha) \). Again, the definition of \(\alpha \) implies that \(\alpha \delta' = \theta \), \(\theta - 1 \) or \(\theta + 1 \). Taking norms, we have \(N(\alpha)N(\theta), N(\alpha)N(\theta - 1) \) or \(N(\alpha)N(\theta + 1) \). However, \(N(\theta) = 5, N(\theta - 1) = 5 \) and \(N(\theta + 1) = 7 \). Neither one of them can be divided by 4 or 9. We get a contradiction. Hence \(\mathbb{Z}[\theta] \) is not a Euclidean domain. \(\square \)

Definition 1.5. A nonzero element \(a \) of a ring \(R \) is said to divide an element \(b \in R \) (notation:\(a \mid b \)) if there exists \(x \in R \) such that \(b = ax \). Elements \(a, b \) of \(R \) are said to be associates (notation: \(a \approx b \)) if \(a \mid b \) and \(b \mid a \).

Let \(S \) be a nonempty subset of \(R \). An element \(d \in R \) is a greatest common divisor of \(S \) provided:

1. \(d \mid a \) for all \(a \in S \);
2. If \(c \mid a \) for all \(a \in S \), then \(c \mid d \).

In general, greatest common divisors do not always exist. For example, in the ring \(2\mathbb{Z} \) of even integers, 2 has no divisor at all, whence 2, 4 has no greatest common divisor. Even when a greatest common divisor exists, it need not be unique. However, any two greatest common divisors of \(S \) are clearly associates by property (2). Furthermore any associate of a greatest common divisor of \(S \) is easily seen to be a greatest common divisor of \(S \).

In the following we provide some basic properties of greatest common divisor.

Lemma 1.6. Let \(R \) be a ring and \(a, b, c \in R \). Suppose that \(d \) is a greatest common divisor of \(a, b \).

1. Suppose that \(c = aq + b \) for some \(q \in R \). Then \(d \) is a greatest common divisor of \(a, c \).
(2) Suppose that d' is a greatest common divisor of d, c. Then d' is a greatest common divisor of a, b, c.

Proof. (proof of (1)) We first show that d divides a and c. We know d divides a by definition. Since $d | a$ and $d | b$, we have $a = dx$ and $b = dy$ for some $x, y \in \mathbb{R}$. Hence $c = dxq + dy = d(xq + y)$. This shows that $d | c$.

Suppose $e \in \mathbb{R}$ such that $e | a$ and $e | c$. Then there exist $u, v \in \mathbb{R}$ such that $a = eu$ and $c = ev$. Hence $b = c - aq = e(v - uq)$. This shows that $e | b$. Since e divides a and b, by the definition of greatest common divisors, we have $e | d$. □

Exercise 2. Prove (2) of Lemma 1.6.

Example 1.7 (The Euclidean Algorithm). Let $a, b \in \mathbb{Z}$. By Example 1.1, there exist $q_1, r_1 \in \mathbb{Z}$ such that

$$a = bq_1 + r_1, \quad 0 \leq r_1 < |b|.$$

If $r_1 > 0$, there exist $q_2, r_2 \in \mathbb{Z}$ such that

$$b = r_1q_2 + r_2, \quad 0 \leq r_2 < r_1.$$

If $r_2 > 0$, there exist $q_3, r_3 \in \mathbb{Z}$ such that

$$r_1 = r_2q_3 + r_3, \quad 0 \leq r_3 < r_2.$$

Continue this process. Then $r_n = 0$ for some $n \in \mathbb{N}$. If $n > 1$ then r_{n-1} is a greatest common divisor of a, b. If $n = 1$, then b is a greatest common divisor of a, b.

Proof. Note that $r_1 > r_2 > \ldots$. If $r_n \neq 0$ for all $n \in \mathbb{N}$, then r_1, r_2, r_3, \ldots is an infinite, strictly decreasing sequence of positive integers, which is impossible. So $r_n = 0$ for some n.

If $r_1 = 0$, then $a = bq_1$. So $b | a$ and of course $b | b$. If c divides both a and b, then of course $c | b$. Hence b is a greatest common divisor of a, b.

Now suppose $r_n = 0$ for $n > 1$. Then $r_{n-2} = r_{n-1}q_n$ (we set $r_0 = b$). By the argument above, we have that r_{n-1} is a greatest common divisor of r_{n-2}, r_{n-1}. However, $r_{n-3} = r_{n-2}q_{n-1} + r_{n-1}$ (we set $r_{-1} = a$). By Lemma 1.6 (1), we have r_{n-1} is a greatest common divisor of r_{n-2}, r_{n-3}. Continue this argument inductively. We have that r_{n-1} is a greatest common divisor of a, b. □

Exercise 3. Suppose R is a Euclidean domain and $a_1, \ldots, a_n \in R$. Show that there exists a greatest common divisor of a_1, \ldots, a_n.
2. Principle Ideal Domain

Given a ring R, a subring I of R is an ideal provided $rx \in I$ for $r \in R$, $x \in I$. A principal ideal ring is a ring in which every ideal is principle. In other words, for every ideal I of R, there exists $x \in I$ such that if $\lambda \in I$, $\lambda = rx$ for some $r \in R$. A principle ideal ring which is an integral domain is called a principle ideal domain.

Example 2.1. \mathbb{Z} is a principle ideal domain.

Proof. Given a nonzero ideal I of \mathbb{Z}. Consider $n \in \mathbb{Z}$ such that $|n| = \min \{|x| : x \in I \setminus \{0\}\}$.

Given $a \in I$, by Example 1.1, there exist $h, r \in \mathbb{Z}$ such that $a = nh + r$ with either $r = 0$ or $|r| < |n|$. Since $r = a - nh \in I$, by the definition of n, we conclude that $r = 0$ and hence $a = nh$. In other words, $I = (n)$. \square

Using similar argument we can show the following:

Theorem 2.2. Every Euclidean ring is a principle ideal ring.

Exercise 4. Prove Theorem 2.2.

From Theorem 2.2, the polynomial ring $F[x]$ in Example 1.2 and the Gaussian integers $\mathbb{Z}[i]$ in Example 1.3 are principle ideal domains.

In general, to prove a ring is a principle ideal ring is not easy. We can imitate the proof of Theorem 2.2 to show certain rings are principle ideal rings.

Theorem 2.3. Let R be a ring. Suppose that there is a function $\phi : R \setminus \{0\} \rightarrow \mathbb{N}$ such that given $\alpha, \beta \in R$, $\beta \neq 0$, if β does not divide α then there exist $\gamma, \delta \in R$ such that $\alpha \gamma - \beta \delta \neq 0$ and

$$\phi(\alpha \gamma - \beta \delta) < \phi(\beta).$$

Then R is a principle ideal ring.

Proof. Let I be a nonzero ideal of R. Let $\beta \in I$ be an element with the property that

$$\phi(\beta) = \min \{\phi(x) : x \in I \setminus \{0\}\}.$$

We claim that $I = (\beta)$. Given $\alpha \in I$, suppose that β does not divide α. By the hypothesis, there exist $\delta, \gamma \in R$ such that $\alpha \gamma - \beta \delta \neq 0$ and $\phi(\alpha \gamma - \beta \delta) < \phi(\beta)$. Since $\alpha \gamma - \beta \delta \in I$ and $\alpha \gamma - \beta \delta \neq 0$, this contradicts the assumption of β. Therefore β divides every element of I. \square

Example 2.4. Let $\theta = (1 + \sqrt{-19})/2$ and $\mathbb{Z}[\theta] = \{a + b\theta : a, b \in \mathbb{Z}\}$. $\mathbb{Z}[\theta]$ is a principle ideal domain.

Proof. Let $\phi(\alpha) = N(\alpha)$ for all $\alpha \in \mathbb{Z}[\theta] \setminus \{0\}$. We will show that $\mathbb{Z}[\theta]$ satisfies the condition in Theorem 2.3.

Given $\alpha, \beta \in \mathbb{Z}[\theta]$ with $\beta \neq 0$, if β does not divide α then a case by case consideration will lead to elements $\gamma, \delta \in \mathbb{Z}[\theta]$ such that

$$0 < N\left(\frac{\alpha}{\beta}\gamma - \delta\right) < 1,$$

whence $\alpha \gamma - \beta \delta \neq 0$ and $N(\alpha \gamma - \beta \delta) < N(\beta)$.

Write
\[\frac{\alpha}{\beta} = s + t\theta, \quad \text{with } s, t \in \mathbb{Q}. \]

(1) \(t \in \mathbb{Z} \): In this case, \(s \not\in \mathbb{Z} \). Let \(n \in \mathbb{Z} \) such that \(|s - n| \leq 1/2 \) and take \(\gamma = 1, \delta = n + t\theta \). Now,
\[0 < N \left(\frac{\alpha}{\beta} \gamma - \delta \right) = N(s - n) \leq \frac{1}{4} < 1. \]

(2) \(s \in \mathbb{Z} \):
(a) \(5t \in \mathbb{Z} \): Let \(m \in \mathbb{Z} \) such that \(|t - m| \leq 1/2 \). In fact, because \(5t \in \mathbb{Z} \), we have \(|t - m| \leq 2/5 \). Take \(\gamma = 1 \) and \(\delta = s + m\theta \). Now
\[0 < N \left(\frac{\alpha}{\beta} \gamma - \delta \right) = N((t - m)\theta) \leq \frac{4}{25} \times 5 < 1. \]
(b) \(5t \not\in \mathbb{Z} \): Consider
\[(s + t\theta)(1 - \theta) = s - s\theta + t\theta - t\theta^2 = s - s\theta + t\theta - t\theta + 5t = s + 5t - s\theta. \]
Let \(n \in \mathbb{Z} \) such that \(|s + 5t - n| \leq 1/2 \) and take \(\gamma = 1 - \theta, \delta = n - s\theta \). Now
\[0 < N \left(\frac{\alpha}{\beta} \gamma - \delta \right) = N(s + 5t - n) \leq \frac{1}{4} < 1. \]

(3) \(s, t \not\in \mathbb{Z} \):
(a) \(2s, 2t \in \mathbb{Z} \): Consider
\[(s + t\theta)\theta = s\theta + t\theta - 5t = -5t + (s + t)\theta. \]
Since \(s + t \in \mathbb{Z} \), letting \(n \in \mathbb{Z} \) such that \(|-5t - n| \leq 1/2 \), we can take \(\gamma = \theta \) and \(\delta = n + (s + t)\theta \). Now
\[0 < N \left(\frac{\alpha}{\beta} \gamma - \delta \right) = N(-5t - n) \leq \frac{1}{4} < 1. \]
(b) \(2s \not\in \mathbb{Z} \) and \(2t \in \mathbb{Z} \): Let \(n \in \mathbb{Z} \) such that \(|2s - n| \leq 1/2 \). Take \(\gamma = 2 \) and \(\delta = n + 2t\theta \). Now
\[0 < N \left(\frac{\alpha}{\beta} \gamma - \delta \right) = N(2s - n) \leq \frac{1}{4} < 1. \]
(c) \(2s \in \mathbb{Z} \) and \(2t \not\in \mathbb{Z} \): When \(10t \in \mathbb{Z} \), let \(m \in \mathbb{Z} \) such that \(|2t - m| \leq 1/2 \). In fact, because \(5 \times 2t \in \mathbb{Z} \), we have \(|2t - m| \leq 2/5 \). Take \(\gamma = 2 \) and \(\delta = 2s + m\theta \). Now
\[0 < N \left(\frac{\alpha}{\beta} \gamma - \delta \right) = N((2t - m)\theta) \leq \frac{4}{25} \times 5 < 1. \]
If \(10t \not\in \mathbb{Z} \), then consider
\[(s + t\theta)(2 - 2\theta) = 2s - 2s\theta + 2t\theta - 2t\theta^2 = 2s + 10t - 2s\theta. \]
Let \(n \in \mathbb{Z} \) such that \(|2s + 10t - n| \leq 1/2 \) (note that \(10t \not\in \mathbb{Z} \)) and take \(\gamma = 2 - \theta \), \(\delta = n - 2s\theta \). Now,
\[0 < N \left(\frac{\alpha}{\beta} \gamma - \delta \right) = N(2s + 10t - n) \leq \frac{1}{4} < 1. \]
Consider Proof. Suppose that \(R \) is a Euclidean ring, there exists a greatest common divisor of \(a_1, \ldots, a_n \). Prove that \(R[x] \) the polynomial ring over \(R \) is an integral domain but is not a Euclidean domain.

Finally we provide some basic properties of principle ideal rings.

Proposition 2.7. Every principle ideal ring is a ring with identity.

Exercise 6. Prove that every Euclidean ring is a ring with identity without using the fact that every Euclidean ring is a principle ideal ring.

Proposition 2.8. If \(R \) is a principle ideal ring, given \(a_1, \ldots, a_n \in R \), then a greatest common divisor of \(\{a_1, \ldots, a_n\} \) exists.

Exercise 5. Suppose that \(R \) is an integral domain. Suppose further that there exists \(a \in R \) such that \(a \neq 0 \) and \(a \) is not a unit in \(R \). Prove that \(R[x] \) the polynomial ring over \(R \) is an integral domain but is not a Euclidean domain.

Remark 2.5. The converse of Theorem 2.2 is false since \(\mathbb{Z}[\theta] \) is a principle ideal domain that is not a Euclidean domain (Example 1.4).

Example 2.6. Let \(\mathbb{Z}[x] \) be the ring of polynomials over \(\mathbb{Z} \). Then \(\mathbb{Z}[x] \) is an integral domain but is not a principle ideal domain.

Proof. Considering the leading coefficients of \(f(x) \) and \(g(x) \), we can easily conclude that if \(f(x) \neq 0 \) and \(g(x) \neq 0 \) in \(\mathbb{Z}[x] \), then \(f(x)g(x) \neq 0 \).

To show that \(\mathbb{Z}[x] \) is not a principle ideal domain, we consider the ideal \(I \) generated by 2 and \(x \) (i.e. \(I = (2, x) \)). We first claim that \(I \neq \mathbb{Z}[x] \). Otherwise there exist \(u(x), v(x) \in \mathbb{Z}[x] \) such that \(1 = 2u(x) + xv(x) \). Substitute \(x = 0 \) into the identity. We have that \(1 = 2u(0) \) which is absurd because \(u(0) \in \mathbb{Z} \).

Now, suppose that there exists \(f(x) \in \mathbb{Z}[x] \) such that \((f(x)) = I \). In other words, there exist \(g(x) \in \mathbb{Z}[x] \) and \(h(x) \in \mathbb{Z}[x] \) such that \(2 = g(x)f(x) \) and \(x = h(x)f(x) \). From 2 = \(g(x)f(x) \), we conclude that \(f(x) \in \mathbb{Z} \). Because \(I \neq \mathbb{Z}[x] \), \(f(x) \) can not be a unit, whence \(f(x) = \pm 2 \). On the other hand, by \(x = h(x)f(x) \), we have \(h(x) = ax + b \) for some \(a, b \in \mathbb{Z} \). Since \(\pm 2a \neq 1 \) for all \(a \in \mathbb{Z} \), we get a contradiction. \(\square \)

Exercise 5. Suppose that \(R \) is an integral domain. Suppose further that there exists \(a \in R \) such that \(a \neq 0 \) and \(a \) is not a unit in \(R \). Prove that \(R[x] \) the polynomial ring over \(R \) is an integral domain but is not a Euclidean domain.

Finally we provide some basic properties of principle ideal rings.

Proposition 2.7. Every principle ideal ring is a ring with identity.

Proof. Since \(R \) itself is an ideal of \(R \), \(R = (a) \) for some \(a \in R \). Consequently, \(a \in R \), so \(a = ea = ac \) for some \(e \in R \). If \(b \in R \), then \(b = xa \) for some \(x \in R \). Therefore, \(be = (xa)e = x(ae) = xa = b \), whence \(e \) is the identity of \(R \). \(\square \)

Exercise 6. Prove that every Euclidean ring is a ring with identity without using the fact that every Euclidean ring is a principle ideal ring.

Proposition 2.8. If \(R \) is a principle ideal ring, given \(a_1, \ldots, a_n \in R \), then a greatest common divisor of \(\{a_1, \ldots, a_n\} \) exists.

Proof. Consider \(I = (a_1, \ldots, a_n) \) the ideal generated by \(a_1, \ldots, a_n \). Since \(R \) is a principle ideal ring, there exists \(d \in R \) such that \(I = (d) \). We claim that \(d \) is a greatest common divisor of \(\{a_1, \ldots, a_n\} \).

(d) \(2s \notin \mathbb{Z} \) and \(2t \notin \mathbb{Z} \): Let \(m \in \mathbb{Z} \) such that \(|t - m| \leq 1/2 \). If \(|t - m| \leq 1/3 \), letting \(n \in \mathbb{Z} \) such that \(|s - n| \leq 1/2 \), then we can take \(\gamma = 1 \) and \(\delta = n + m\theta \). Now,

\[
0 < N \left(\frac{\alpha}{\beta} \gamma - \delta \right) = N((s - n) + (t - m)\theta) \leq \frac{1}{4} + \frac{1}{6} + \frac{1}{9} \times 5 = \frac{35}{36} < 1.
\]

If \(1/3 < |t - m| < 1/2 \), then \(2/3 < |2t - 2m| < 1 \). Let \(m' \in \mathbb{Z} \) such that \(|2t - m'| \leq 1/2 \). Then we have \(|2t - m'| < 1/3 \). Let \(n' \in \mathbb{Z} \) such that \(|2s - n'| \leq 1/2 \). Take \(\gamma = 2 \) and \(\delta = n' + m'\theta \). Now,

\[
0 < N \left(\frac{\alpha}{\beta} \gamma - \delta \right) = N((2s - n') + (2t - m')\theta) < \frac{1}{4} + \frac{1}{6} + \frac{1}{9} \times 5 = \frac{35}{36} < 1.
\]

\(\square \)
First, since $a_i \in I = (d)$, there exist $r_i \in R$ such that $a_i = r_i d$ for $i = 1, \ldots, n$. Hence $d \mid a_i$ for $i = 1, \ldots, n$.

Second, since $(a_1, \ldots, a_n) = (d)$, there exist $\lambda_i \in R$ such that $d = \sum_{i=1}^{n} \lambda_i a_i$. Suppose that $c \mid a_i$ for $i = 1, \ldots, n$. There exist $\gamma_i \in R$ such that $a_i = \gamma_i c$ for $i = 1, \ldots, n$. This implies that $d = \sum_{i=1}^{n} (\lambda_i \gamma_i)c$, whence $c \mid d$. □

Recall that a ring is Noetherian if it satisfies the ascending chain condition on ideals. It can be proved that R is Noetherian if and only if every ideal of R is finitely generated. We do not need this fact here. However, we can show that a principle ideal ring is Noetherian.

Lemma 2.9. If R is a principle ideal ring and

$$I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq \cdots$$

is a chain of ideals in R, then for some $n \in \mathbb{N}$, $I_j = I_n$ for all $j \geq n$.

Proof. Let $I = \cup_{i \in \mathbb{N}}I_i$. We claim that I is an ideal of R. If $b, c \in I$, then we have $b \in I_i$ and $c \in I_j$ for some $i, j \in \mathbb{N}$. Without loss of generality, we can assume that $i \geq j$. Consequently $I_j \subseteq I_i$, and hence $b, c \in I_i$. Therefore, $b - c \in I_i \subseteq I$. Similarly, if $r \in R$ and $b \in I_i$, then $b \in I_i$ for some $i \in \mathbb{N}$, whence $rb \in I_i \subseteq I$. Therefore, I is an ideal of R. By hypothesis I is principle, say $I = (a)$. Since $a \in I$, we have $a \in I_n$ for some $n \in \mathbb{N}$. Hence $(a) \subseteq I_n$. Therefore, for every $j \geq n$,

$$(a) \subseteq I_n \subseteq I_j \subseteq (a),$$

whence $I_j = I_n$. □

Exercise 7. Suppose that R is a principle ideal ring. Let a_1, \ldots, a_n, \ldots be (infinitely many) elements in R. Prove that there exists a greatest common divisor of $\{a_1, \ldots, a_n, \ldots\}$.
3. Unique Factorization Domain

3.1. General Properties. The Fundamental Theorem of Arithmetic says that any positive integer \(n > 1 \) can be written uniquely in the form \(n = p_1^{t_1} \cdots p_r^{t_r} \), where \(p_1 < \cdots < p_r \) are primes and \(t_i > 0 \) for all \(i \). In this section we study those integral domains in which an analogue of the fundamental theorem of arithmetic holds.

In \(\mathbb{Z} \), a prime number \(p \) has the following properties:

1. If \(p = ab \) then \(a \) or \(b \) is a unit.
2. If \(p \mid ab \) then \(p \mid a \) or \(p \mid b \).

For arbitrary ring, these are two different properties.

Definition 3.1. Let \(R \) be a ring with identity. An element \(\pi \in R \) is irreducible provided that \(\pi \) is not a unit and if \(\pi = ab \) for some \(a, b \in R \) then \(a \) or \(b \) is a unit.

An element \(p \in R \) is prime provided that \(p \) is not a unit and if \(p \mid ab \) then \(p \mid a \) or \(p \mid b \).

Example 3.2. In the ring \(\mathbb{Z}/6\mathbb{Z} = \{0, 1, 2, 3, 4, 5\} \), 2 is prime but it is not irreducible.

Proof. 2 does not divide \(1 \cdot 1 = 5 \cdot 5 = 1 \), \(1 \cdot 3 = 3 \cdot 3 = 3 \cdot 5 = 3 \), and \(1 \cdot 5 = 5 \). Hence 2 is prime. On the other hand, 2 is not irreducible because \(2 = 2 \cdot 4 \) and neither \(2 \) nor \(4 \) are units in \(\mathbb{Z}/6\mathbb{Z} \).

Example 3.3. In the ring \(\mathbb{Z}[\sqrt{10}] = \{a + b\sqrt{10} : a, b \in \mathbb{Z}\} \), 2 is irreducible but it is not prime.

Proof. Recall that the map \(\mathcal{N} : \mathbb{Z}[\sqrt{10}] \to \mathbb{Z} \) given by \(\mathcal{N}(a + b\sqrt{10}) = a^2 - 10b^2 \) has the properties that \(\mathcal{N}(\alpha \beta) = \mathcal{N}(\alpha)\mathcal{N}(\beta) \) for all \(\alpha, \beta \in \mathbb{Z}[\sqrt{10}] \) and \(\mathcal{N}(\alpha) = \pm 1 \) if and only if \(\alpha \) is a unit.

Suppose that there exist \(\alpha \) and \(\beta \) in \(\mathbb{Z}[\sqrt{10}] \) which are not units such that \(2 = \alpha \beta \). Then we have \(4 = \mathcal{N}(2) = \mathcal{N}(\alpha)\mathcal{N}(\beta) \). Since \(\alpha = a + b\sqrt{10} \) is not a unit, we have \(\mathcal{N}(\alpha) = a^2 - 10b^2 = \pm 2 \). This shows that \(a^2 \equiv \pm 2 \pmod{5} \). However, neither \(2 \) nor \(-2\) is a quadratic residue modulo 5. We get a contradiction. Hence 2 is irreducible.

On the other hand, since \(2 \cdot 3 = 6 = (4 + \sqrt{10})(4 - \sqrt{10}) \), we have that \(2 \mid (4 + \sqrt{10})(4 - \sqrt{10}) \). Suppose that \(2 \mid (4 + \sqrt{10}) \) or \(2 \mid (4 - \sqrt{10}) \). By taking \(\mathcal{N} \), we have that \(4 \mid 6 \) in \(\mathbb{Z} \), which is absurd. Hence 2 is not prime in \(\mathbb{Z}[\sqrt{10}] \).

From examples above, we know that in general prime elements and irreducible elements are distinct. However in some cases, they are related.

Lemma 3.4. Let \(R \) be an integral domain. Then every prime element of \(R \) is irreducible.

Proof. Suppose that \(p \) is prime. If \(p = ab \), then either \(p \mid a \) or \(p \mid b \); say \(p \mid a \). Thus there exist \(x \in R \) such that \(a = px \). Therefore, \(p = ab = pxb \), and hence \(p(1 - xb) = 0 \). Since \(R \) is an integral domain, this implies that \(1 = xb \). Therefore, \(b \) is a unit. Hence \(p \) is irreducible.

We include an important property for irreducible elements of an integral domain which is familiar for the integer ring \(\mathbb{Z} \).

Lemma 3.5. Let \(R \) be an integral domain. The only divisors of an irreducible element of \(R \) are its associates and the units of \(R \).

Proof. If \(\pi \) is irreducible and \(d \mid \pi \), then because \(\pi = dx \) for some \(x \in R \), this implies that either \(d \) or \(x \) is a unit. The second case implies that \(d \) and \(\pi \) are associates.
Exercise 8. Let R be an integral domain. Suppose that $a, b \in R$ are associates.

1. Prove that there exists an unit $u \in R$ such that $a = ub$.
2. Prove that a is irreducible if and only if b is irreducible.
3. Prove that a is prime if and only if b is prime.

Definition 3.6. An integral domain R is a unique factorization domain provided that:

1. Every nonzero element $a \in R$ which is not a unit can be written as $a = \alpha_1 \cdots \alpha_n$ with α_i irreducible.
2. If $a = \alpha_1 \cdots \alpha_n = \beta_1 \cdots \beta_m$ with α_i, β_j irreducible, then $n = m$ and for some permutation σ of $\{1, 2, \ldots, n\}$, α_i and $\beta_{\sigma(i)}$ are associates for every i.

Remark 3.7. From the definition, every irreducible element in a unique factorization domain is necessary prime. Consequently, prime elements and irreducible elements coincide in a unique factorization domain by Lemma 3.4.

Example 3.8. The polynomial ring $F[x]$ over a field F is a unique factorization domain.

Proof. Because every nonzero constant is a unit, we show first that every nonconstant polynomial can be written as a product of finitely many irreducible polynomials. It is to see that polynomials of degree 1 are irreducible. assume that we have proved the result for all polynomials of degree less than n and that $\text{deg}(f) = n$. If f is irreducible, we are done. Otherwise $f = gh$ where $1 \leq \text{deg}(g), \text{deg}(h) < n$. By the induction assumption both g and h can be written as products of finitely many irreducible polynomials. Thus so is f.

Next, we show that every irreducible polynomial is prime. Suppose that π is an irreducible polynomial and $\pi | fg$. Consider the ideal (f, π). Since $F[x]$ is a principal ideal domain (c.f. Theorem 2.2), we have $(f, \pi) = (d)$ for some $d \in F[x]$. $\pi \in (d)$ implies that $d | \pi$, and hence by Lemma 3.5, $(f, \pi) = (1)$ or (π). If $(f, \pi) = (\pi)$, then $\pi | f$. If $(f, \pi) = 1$, then there exist $l, h \in F[x]$ such that $\pi l + hf = 1$. Thus $l\pi g + hfg = g$. Since π divides the left-hand side of this equation, π must divide g.

Finally if $f = \pi_1 \cdots \pi_n = p_1 \cdots p_m$ with π_i, p_j irreducible, then since π_1 is prime, π_1 divides some p_j; say p_1. On the other hand, since p_1 is irreducible and π_1 is not a unit, by Lemma 3.5 π_1 and p_1 are associates; say $u\pi_1 = p_1$ for some unit u of R. Hence $\pi_2 \cdots \pi_n = (up_2) \cdots p_m$. By Exercise 8, up_2 is also irreducible, the proof of uniqueness is now completed by a routine inductive argument.

Exercise 9. Let R be an integral domain.

1. Prove that p is a prime element in R if and only if (p) is a prime ideal of R.
2. Suppose that R is a principle ideal domain. Prove that π is irreducible in R if and only if (π) is a maximal ideal of R.
3. Suppose that R is a principle ideal domain. Prove that an element in R is prime if and only if it is irreducible.
4. Show that $\mathbb{Z}[\sqrt{10}]$ is not a principle ideal domain.

In general, to show a ring is a unique factorization domain we only have to show the following:

1. using the irreducibility to show that in the specific ring every nonzero element which is not a unit can be written as a product of finitely many irreducible elements;
2. show that in the specific ring every irreducible element is prime. Then the proof of uniqueness can be completed by a routine inductive argument as in the proof of Example 3.8.
Theorem 3.9. Every principle ideal domain is a unique factorization domain.

Proof. Suppose that R is a principle ideal domain. We claim first that if $a \in R$, $a \neq 0$ and a is not a unit, then a can be written as a product of finitely many irreducible elements. If a can not be written as a product of finitely many irreducible elements, then a is not irreducible and hence $a = a_1b_1$ for some a_1, $b_1 \in R$ which are not units. By assumption, one of the a_1 or b_1 can not be written as a product of finitely many irreducible elements; say a_1. Then $a_1 = a_2b_2$ for some a_2, $b_2 \in R$ which are not units and a_2 can not be written as a product of finitely many irreducible elements. Continuing in this way, we construct infinitely many a_i with $a_i = a_{i+1}b_{i+1}$ where all the a_i and $b_i \in R$ are not units. Since $a = a_1b_1$ and b_1 is not a unit, we have that $(a) \subsetneq (a_1)$. Similarly, we have $(a_i) \subsetneq (a_{i+1})$. In other words we have a nonstop ascending chain of ideals

$$(a) \subsetneq (a_1) \subsetneq \cdots \subsetneq (a_i) \subsetneq \cdots,$$

contradicting Lemma 2.9.

For the uniqueness, exercise 9 says that every irreducible element of R is prime. This completes the proof.

Exercise 10. Suppose that R is a unique factorization domain. Let S be a set of primes in R such that every prime in R is associate to a prime in S and no two primes in S are associate.

1. If $a \in R$, $a \neq 0$, show that we can uniquely write

$$a = u \prod_{p \in S} P_{p(a)},$$

where u is a unit and $v_p(a)$ are nonnegative integers which are positive only for finitely many $p \in S$.

2. Prove that $v_p(ab) = v_p(a) + v_p(b)$ for all $p \in S$ and $a, b \in R$.

3. Given $a_1, \ldots, a_n \in R$, prove that there exists a greatest common divisor of a_1, \ldots, a_n.

By Theorem 3.9, we know that $\mathbb{Z}[i]$ and $\mathbb{Z}[\sqrt{-3}]$ are unique factorization domains. The converse of Theorem 3.9 is not always true. For example, we know that $\mathbb{Z}[x]$ is not a principle ideal domain (c.f. Example 2.6), but we will show later that $\mathbb{Z}[x]$ is a unique factorization domain.

3.2. Factorization in Polynomial Rings. In the rest of this section, we devote entirely to show that if R is a unique factorization domain, then $R[x]$, the polynomial ring over R is also a unique factorization domain.

Let F be the quotient field of R. In other words, every element of F can be written as a/b for some $a, b \in R$ with $b \neq 0$. Our strategy is using the fact that $F[x]$ is a unique factorization domain to show that $R[x]$ is a unique factorization domain.

Let $f = \sum_{i=0}^{n} a_i x^i$ be a nonzero polynomial in $R[x]$. Since R is a unique factorization domain, by Exercise 10 (3), a greatest common divisor of the coefficients a_0, a_1, \ldots, a_n exists. We call it a content of f and denotes it by $C(f)$. Strictly speaking, $C(f)$ is ambiguous since greatest common divisors are not unique. But any two contents of are necessarily associates. We shall write $b \approx c$ whenever b and c are associates in R. If $f \in R[x]$ and $C(f)$ is a unit in R, then f is said to be primitive.
Lemma 3.10. Let R be a unique factorization domain. $a \in R$ and $f, g \in R[x]$.

1. $C(af) \approx aC(f)$. In particular, $f = C(f)f_1$ with f_1 primitive in $R[x]$.
2. (Gauss) $C(fg) \approx C(f)C(g)$. In particular, the product of primitive polynomials in $R[x]$ is also primitive.

Proof. (1) Suppose that $f = \sum_{i=0}^{n} a_i x^i$ and $d = C(f)$ which is a greatest common divisor of a_0, a_1, \ldots, a_n. Then $af = \sum_{i=0}^{n} aa_i x^i$ and ad is a greatest common divisor of aa_0, aa_1, \ldots, aa_n. On the other hand, let $b_i = a_i/d \in R$. The greatest common divisor of b_0, b_1, \ldots, b_n is a unit. Hence $f = d \sum_{i=0}^{n} b_ix^i = C(f)f_1$ with $f_1 = \sum_{i=0}^{n} b_ix^i$ primitive.

(2) $f = C(f)f_1$ and $g = C(g)g_1$ with f_1, g_1 primitive, by (1). Consequently $C(fg) \approx C(f)C(g)C(f_1g_1)$. Hence it suffices to prove that if f and g are primitive then fg is primitive (i.e. $C(fg)$ is a unit). If $f = \sum_{i=0}^{n} a_i x^i$ and $g = \sum_{j=0}^{m} b_j x^j$, then $fg = \sum_{k=0}^{n+m} c_k x^k$ with $c_k = \sum_{i+j=k} a_i b_j$. If $C(fg)$ is not a unit, then since R is a unique factorization domain, there exists a prime element $p \in R$ such that $p | C(fg)$. That is, $p | c_k$ for all k. Since $C(f)$ is a unit, $p \nmid C(f)$. Hence there is an integer s such that $p | a_i$ for $i < s$ and $p \nmid a_s$. Similarly there is an integer t such that $p | b_j$ for $j < t$ and $p \nmid b_t$. Consider $c_{s+t} = a_0b_{s+t} + a_1b_{s+t-1} + \cdots + a_{s-1}b_{t+1} + a_s b_t + a_{s+1} b_{t-1} + \cdots + a_{s+t} b_0$.
p divides every term on the right-hand side of the equation except the term $a_s b_t$. Hence $p \nmid c_{s+t}$. This is a contradiction. Therefore fg is primitive. \hfill \qed

Now for study the irreducible elements in $R[x]$, we first notice that if $\alpha \in R$ is irreducible in R, then α is also irreducible in $R[x]$. Indeed, if $\alpha = f_1f_2$ for $f_1, f_2 \in R[x]$, then comparing the degrees of both side we have $f_1, f_2 \in R$. Since α is irreducible in R, either f_1 or f_2 is a unit in R and hence a unit in $R[x]$. Next, we compare elements in $R[x]$ and elements in $F[x]$. Suppose $f = \sum_{i=0}^{n} a_i x^i \in F[x]$. We can write $a_i = \alpha_i \beta_i^{-1}$ for some $\alpha_i, \beta_i \in R$ and $\beta_i \neq 0$. Let $\beta = \prod_{i=0}^{n} \beta_i$. We have $\beta a_i = \alpha_i \gamma_i$ for some $\gamma_i \in R$ and hence $\beta f = \sum_{i=0}^{n} \alpha_i \beta_i \gamma_i x^i \in R[x]$. In other word, every $f \in F[x]$ can always be written as $f = ab^{-1}f_1$ with $a, b \in R$, $b \neq 0$ and f_1 primitive in $R[x]$.

Lemma 3.11. Let f be a primitive polynomial in $R[x]$ and $g \in R[x]$. Then f divides g in $R[x]$ if and only if f divides g in $F[x]$.

Proof. If $f | g$ in $R[x]$, then $g = fh$ for some $h \in R[x] \subseteq F[x]$. Hence $f | g$ in $F[x]$.

On the other hand, if $f | g$ in $F[x]$, then $g = fh$ for some $h \in F[x]$. Because $h = ab^{-1}h_1$ with $a, b \in R$, $b \neq 0$ and h_1 primitive in $R[x]$, we have that $bh = ah_1$. Taking contents on both side, by Lemma 3.10 we have $bC(g) \approx C(bg) \approx C(afh_1) \approx aC(f)C(h_1) \approx a,$
because $C(f)$ and $C(h_1)$ are units in R. Hence $ab^{-1} \in R$. In other words, $h = ab^{-1}h_1 \in R[x]$ and hence $f | g$ in $R[x]$. \hfill \qed

Lemma 3.12. Let f be a primitive polynomial in $R[x]$. Then f is irreducible in $R[x]$ if and only if f is irreducible in $F[x]$.

Proof. Suppose f is irreducible in $F[x]$ and $f = gh$ with $g, h \in R[x]$. Then one of g and h is a unit in $F[x]$; say g and hence g is a constant. Thus $C(f) \approx gC(h)$. Since $C(f)$ is a unit in R, g must be a unit in R and hence $C(h) \approx gC(h)$. Therefore, f is irreducible in $R[x]$. \hfill \qed
Conversely, if \(f \) is irreducible in \(R[x] \) and \(f = gh \) with \(g, h \in F[x] \). We can write \(g = ab^{-1}g_1 \) with \(a, b \in R, b \neq 0 \) and \(g_1 \) primitive in \(R[x] \) and \(h = cd^{-1}h_1 \) with \(c, d \in R, d \neq 0 \) and \(h_1 \) primitive in \(R[x] \). Consequently, \(bdf = acg_1h_1 \). Since \(f \) and \(g_1h_1 \) are primitive, \(bd \approx bdC(f) \approx C(bdf) \approx C(acg_1h_1) \approx acC(g_1h_1) \approx ac \).

Thus \(bd \) and \(ac \) are associates and this implies that \(acb^{-1}d^{-1} = \alpha \in R \) is a unit. Hence \(f = \alpha g_1h_1 \) in \(R[x] \). By hypothesis, one of \(g_1, h_1 \) is a unit in \(R[x] \); say \(g_1 \). Hence \(g_1 \) is a constant and so is \(g = ab^{-1}g_1 \). This implies that \(f \) is irreducible in \(F[x] \).

Exercise 11. Let \(f \) be a primitive polynomial in \(R[x] \). Prove that \(f \) is prime in \(R[x] \) if and only if \(f \) is prime in \(F[x] \).

Theorem 3.13. If \(R \) is a unique factorization domain, then the polynomial ring \(R[x] \) is also a unique factorization domain.

Proof. Given \(f \in R[x] \), we can write \(f \) as \(f = C(f)f_1 \) with \(f_1 \) primitive in \(R[x] \). Since \(C(f) \in R \) and \(R \) is a unique factorization domain, if \(C(f) \) is not a unit, we can write \(C(f) \) as a product of finitely many irreducible elements in \(R \). Theses elements are also irreducible in \(R[x] \). Hence it is sufficient to show that every primitive polynomial of positive degree in \(R[x] \) can be written as a product of finitely many irreducible elements in \(R[x] \). Suppose \(f \) is a primitive polynomial in \(R[x] \). Since \(F[x] \) is a unique factorization domain (c.f. Example 3.8) which contains \(R[x] \), \(f = p_1 \cdots p_n \) with each \(p_i \) irreducible in \(F[x] \). Writing \(p_i = a_i b_i^{-1} q_i \) with \(a_i, b_i \in R, b_i \neq 0 \) and \(q_i \) primitive in \(R[x] \). Clearly each \(q_i \) is irreducible in \(F[x] \) and hence is irreducible in \(R[x] \) by Lemma 3.12. Let \(a = a_1 \cdots a_n \) and \(b = b_1 \cdots b_n \). Then \(bf = aq_1 \cdots q_n \).

Because \(C(f) \) and \(C(q_1 \cdots q_n) \) are units in \(R \), it follows that \(a \) and \(b \) are associates in \(R \). Thus \(a = bu \) with \(u \) a unit in \(R \). Therefore \(f = uq_1 \cdots q_n \) with \(uq_1 \) and \(q_2, \ldots, q_n \) irreducible in \(R[x] \).

To show the uniqueness, as in the proof of Theorem 3.9, we only have to show that every irreducible polynomial in \(R[x] \) is prime. Suppose \(f \) is irreducible in \(R[x] \). If \(f \in R \), then by \(R \) is a unique factorization domain, \(f \) is prime in \(R \). If \(f \mid gh \) for some \(g, h \in R[x] \), then \(lf = gh \) for some \(l \in R[x] \). By Lemma 3.10, we have

\[
fC(l) \approx C(fl) \approx C(gh) \approx C(g)C(h).
\]

This implies that \(f \mid C(g)C(h) \) in \(R \) and hence \(f \mid C(g) \) or \(f \mid C(h) \). Therefore, \(f \mid g \) or \(f \mid h \) in \(R[x] \). Therefore, \(f \) is prime in \(R[x] \). Now suppose that \(f \) is a polynomial of positive degree in \(R[x] \). \(f \) is irreducible in \(R[x] \) implies that \(f \) is a primitive polynomial in \(R[x] \). Lemma 3.12 says that \(f \) is irreducible in \(F[x] \) and hence \(f \) is prime in \(F[x] \) because \(F[x] \) is a unique factorization domain. By Exercise 11, \(f \) is prime in \(R[x] \).

Corollary 3.14. If \(R \) is a unique factorization domain, then the polynomial ring over \(R \) in \(n \) indeterminates, \(R[x_1, \ldots, x_n] \) is also a unique factorization domain.

Proof. By Theorem 3.13, \(R[x_1] \) is a unique factorization domain. Since \(R[x_1, \ldots, x_n] = R[x_1, \ldots, x_{n-1}][x_n] \), the proof is now completed by a routine inductive argument.