Bayesian Linear Regression

Sudipto Banerjee

1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A.

September 15, 2010
Linear regression models: a Bayesian perspective

- Linear regression is, perhaps, *the* most widely used statistical modelling tool.

- It addresses the following question: How does a quantity of primary interest, y, vary as (depend upon) another quantity, or set of quantities, x?

- The quantity y is called the *response* or *outcome variable*. Some people simply refer to it as the *dependent variable*.

- The variable(s) x are called *explanatory variables*, *covariates* or simply *independent variables*.

- In general, we are interested in the conditional distribution of y, given x, parametrized as $p(y \mid \theta, x)$.

Typically, we have a set of *units* or *experimental subjects* \(i = 1, 2, \ldots, n \).

For each of these units we have measured an outcome \(y_i \) and a set of explanatory variables \(\mathbf{x}_i' = (1, x_{i1}, x_{i2}, \ldots, x_{ip}) \).

The first element of \(\mathbf{x}_i' \) is often taken as 1 to signify the presence of an “intercept”.

We collect the outcome and explanatory variables into an \(n \times 1 \) vector and an \(n \times (p + 1) \) matrix:

\[
\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}; \quad \mathbf{x} = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix} = \begin{pmatrix} \mathbf{x}_1' \\ \mathbf{x}_2' \\ \vdots \\ \mathbf{x}_n' \end{pmatrix}.
\]
The linear model is the most fundamental of all serious statistical models underpinning:

- **ANOVA:** y_i is continuous, x_{ij}’s are all categorical
- **REGRESSION:** y_i is continuous, x_{ij}’s are continuous
- **ANCOVA:** y_i is continuous, x_{ij}’s are continuous for some j and categorical for others.
The Bayesian or hierarchical linear model is given by:

\[y_i \mid \mu_i, \sigma^2, \mathbf{X} \overset{ind}{\sim} N(\mu_i, \sigma^2); \quad i = 1, 2, \ldots, n; \]
\[\mu_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip} = \mathbf{x}_i' \boldsymbol{\beta}; \quad \boldsymbol{\beta} = (\beta_0, \beta_1, \ldots, \beta_p); \]
\[\beta, \sigma^2 \mid \mathbf{X} \sim p(\beta, \sigma^2 \mid \mathbf{X}). \]

Unknown parameters include the regression parameters and the variance, i.e. \(\theta = \{\beta, \sigma^2\} \).

\(p(\beta, \sigma^2 \mid \mathbf{X}) \equiv p(\theta \mid \mathbf{X}) \) is the joint prior on the parameters.

We assume \(\mathbf{X} \) is observed without error and all inference is conditional on \(\mathbf{X} \).

We suppress dependence on \(\mathbf{X} \) in subsequent notation.
• Specifying $p(\beta, \sigma^2)$ completes the hierarchical model.

• All inference proceeds from $p(\beta, \sigma^2 | y)$

• With no prior information, we specify

$$p(\beta, \sigma^2) \propto \frac{1}{\sigma^2} \text{ or equivalently } p(\beta) \propto 1; \ p(\log(\sigma^2)) \propto 1.$$

• The above is NOT a probability density (they do not integrate to any finite number). So why is it that we are even discussing them?

• Even if the priors are improper, as long as the resulting posterior distributions are valid we can still conduct legitimate statistical inference on them.
Computing the posterior distribution

- Strategy: Factor the joint posterior distribution for \(\beta \) and \(\sigma^2 \) as:

\[
p(\beta, \sigma^2 | y) = p(\beta | \sigma^2, y) \times p(\sigma^2 | y).
\]

- The \textit{conditional posterior} distribution of \(\beta \), given \(\sigma^2 \):

\[
\beta | \sigma^2, y \sim N(\hat{\beta}, \sigma^2 V_\beta),
\]

where, using some algebra, one finds

\[
\hat{\beta} = (X'X)^{-1}X'y \quad \text{and} \quad V_\beta = (X'X)^{-1}.
\]
The *marginal posterior* distribution of σ^2: Let $k = (p + 1)$ be the number of columns of X.

$$\sigma^2 \mid y \sim IG \left(\frac{n - k}{2}, \frac{(n - k) s^2}{2} \right),$$

where

$$s^2 = \frac{1}{n - k} (y - X\hat{\beta})' (y - X\hat{\beta})$$

is the classical unbiased estimate of σ^2 in the linear regression model.

The *marginal posterior* distribution $p(\beta \mid y)$, averaging over σ^2, is *multivariate t* with $n - k$ degrees of freedom. But we rarely use this fact in practice.

Instead, we *sample* from the posterior distribution.
Algorithm for sampling from the posterior distribution

We draw samples from $p(\beta, \sigma^2 | y)$ by executing the following steps:

Step 1: Compute \(\hat{\beta} \) and \(V_\beta \).

Step 2: Compute s^2.

Step 3: Draw M samples from $p(\sigma^2 | y)$:

\[
\sigma^2(j) \sim IG \left(\frac{n - k}{2}, \frac{(n - k)s^2}{2} \right), \quad j = 1, \ldots, M
\]

Step 4: For $j = 1, \ldots, M$, draw $\beta^{(j)}$ from $p(\beta | \sigma^2(j), y)$:

\[
\beta^{(j)} \sim N \left(\hat{\beta}, \sigma^2(j) V_\beta \right)
\]
The marginal distribution of each individual regression parameter β_j is a non-central univariate t_{n-p} distribution. In fact,

$$\frac{\beta_j - \hat{\beta}_j}{s\sqrt{V_{\beta;jj}}} \sim t_{n-p}.$$

The 95% credible interval for each β_j is constructed from the quantiles of the t-distribution. This exactly coincides with the 95% classical confidence intervals, but the interpretation is direct: the probability of β_j falling in that interval, given the observed data, is 0.95.

Note: an intercept only linear model reduces to the simple univariate $N(\bar{y} | \mu, \sigma^2/n)$ likelihood, for which the marginal posterior of μ is:

$$\frac{\mu - \bar{y}}{s/\sqrt{n}} \sim t_{n-1}.$$
Suppose we have observed the new predictors \tilde{X}, and we wish to predict the outcome \tilde{y}.

If β and σ^2 were known exactly, the random vector \tilde{y} would follow $\mathcal{N}(\tilde{X}\beta, \sigma^2 I)$.

But we do not know model parameters, which contribute to the uncertainty in predictions.

Predictions are carried out by sampling from the posterior predictive distribution, $p(\tilde{y} \mid y)$

1. Draw $\{\beta^{(j)}, \sigma^2^{(j)}\} \sim p(\beta, \sigma^2 \mid y)$, $j = 1, 2, \ldots, M$

2. Draw $\tilde{y}^{(j)} \sim \mathcal{N}(\tilde{X}\beta^{(j)}, \sigma^2^{(j)} I)$, $j = 1, 2, \ldots, M$.
Predictive Mean and Variance (conditional upon σ^2):

\[
E(\tilde{y} \mid \sigma^2, y) = \tilde{X}\hat{\beta}
\]

\[
\text{var}(\tilde{y} \mid \sigma^2, y) = (I + \tilde{X}V\beta\tilde{X}')\sigma^2.
\]

The posterior predictive distribution, $p(\tilde{y} \mid y)$, is a multivariate t distribution, $t_{n-p}(\tilde{X}\hat{\beta}, s^2(I + \tilde{X}V\beta\tilde{X}'))$.
Incorporating prior information

\[y_i \mid \mu_i, \sigma^2 \overset{ind}{\sim} N(\mu_i, \sigma^2); \quad i = 1, 2, \ldots, n; \]
\[\mu_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip} = \mathbf{x}_i' \beta; \quad \beta = (\beta_0, \beta_1, \ldots, \beta_p); \]
\[\beta \mid \sigma^2 \sim N(\beta_0, \sigma^2 \mathbf{R}_\beta); \quad \sigma^2 \sim IG(a_\sigma, b_\sigma), \]

where \(\mathbf{R}_\beta \) is a \textit{fixed} correlation matrix. Alternatively,

\[y_i \mid \mu_i, \sigma^2 \overset{ind}{\sim} N(\mu_i, \sigma^2); \quad i = 1, 2, \ldots, n; \]
\[\mu_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip} = \mathbf{x}_i' \beta; \quad \beta = (\beta_0, \beta_1, \ldots, \beta_p); \]
\[\beta \mid \Sigma_\beta \sim N(\beta_0, \Sigma_\beta); \quad \Sigma_\beta \sim IW(\nu, \mathbf{S}); \quad \sigma^2 \sim IG(a_\sigma, b_\sigma), \]

where \(\Sigma_\beta \) is a \textit{random} covariance matrix.
The Gibbs sampler: If $\theta = (\theta_1, \ldots, \theta_p)$ are the parameters in our model, we provide a set of initial values $\theta^{(0)} = (\theta_1^{(0)}, \ldots, \theta_p^{(0)})$ and then performs the j-th iteration, say for $j = 1, \ldots, M$, by updating successively from the full conditional distributions:

\begin{align*}
\theta_1^{(j)} &\sim p(\theta_1^{(j)} | \theta_2^{(j-1)}, \ldots, \theta_p^{(j-1)}, y) \\
\theta_2^{(j)} &\sim p(\theta_2 | \theta_1^{(j)}, \theta_3^{(j)}, \ldots, \theta_p^{(j-1)}, y) \\
&\vdots \\
(\text{the generic k^{th} element}) \\
\theta_k^{(j)} &\sim p(\theta_k | \theta_1^{(j)}, \ldots, \theta_{k-1}^{(j)}, \theta_{k+1}^{(j)}, \ldots, \theta_p^{(j-1)}, y) \\
&\vdots \\
\theta_p^{(j)} &\sim p(\theta_p | \theta_1^{(j)}, \ldots, \theta_{p-1}^{(j)}, y)
\end{align*}
In principle, the Gibbs sampler will work for extremely complex hierarchical models. The only issue is sampling from the full conditionals. They may not be amenable to easy sampling – when these are not in closed form. A more general and extremely powerful - and often easier to code - algorithm is the Metropolis-Hastings (MH) algorithm.

This algorithm also constructs a Markov Chain, but does not necessarily care about full conditionals.

Popular approach: Embed Metropolis steps within Gibbs to draw from full conditionals that are not accessible to directly generate from.