國 立台灣師範大學數 學系教學大綱

授課教師:蔡碧紋  

課程名稱 (中文):機率導論

(英文):Introduction to Probability

學年: 100學年 第二學期 授課班 級: 數學系二
全/半年: 半 必/選修:必 學分: 3
上課時間:星期五下午2:00 至 5:00 上課地點: C003
教師聯絡方式:數學館 M205 Office Hours: 週五 9-11
教學網頁:http://math.ntnu.edu.tw/~pwtsai/prob00/index.html
E-mail: pwtsai@math.ntnu.edu.tw
助教:

洪辰諭:jerry111076@gmail.com

蕭煜霖:understar17@hotmail.com.com

助教 Office Hours:星期二及三中午


學期成績已上網。不及格的同學,最後分數會再調整,雖還是不及格。

一、教學目標:

本課程介紹機率論的基本概念和基本極限理論,並引導學生發掘機率的奧秘。


二、教材內容及進度規劃:

書目: Ross, S. (2009) A First Course in Probability 8th ed. Pearson Prentice Hall (華泰書局代理);



 Lecture Notes
Problems
Theoretical
Exercises
Combinatorial Analysis
prob00_ch1.pdf
7, 26, 28, 31
10,13
9,10,16
Probability
prob00_ch2.pdf 2,3,4,8,15,27,37,45, 47,48,50
7, 11, 12, 13
14.
Conditional probability and Independence
prob00_ch3.pdf 1,4,14,26,29,47,56, 59,87
6,11
5,23


ch1-3_HW_sol.pdf
Discrete Random Variables
prob00_ch4.pdf 5, 8,17,18,21,25, 28, 37,38,50,55, 59,69, 75, 79
1,3,7,20
1,21


ch4_sol.pdf

Continuous Random Variables prob00_ch5a.pdf 2,4,11,
7
4


ch5_sol_1.pdf



4/13 期中考



prob00_ch5.pdf 8,17, 23,32, 36, 40

13, 29,30
ch5_sol.pdf


prob00_ch6.pdf 2,7,10,12,13,17,
20,27,29,38,39,
41,48,52,54,56

Buffon's needle, 9 16
ch6_sol.pdf


prob00_ch7.pdf 4,11,16,33,38,39, 50, 71, 72, 75, 76
22,48, 51,55
ch7_sol.pdf
ch7_sol_2.pdf


prob00_ch8.pdf 2,4,7,9,13, 14

ch8_sol.pdf

考古題:

    98mid1 9801  9802   9802mid   98final

Syllabus

1. Combinatorial Analysis

                        (a) Counting techniques: multiplication principle, permutations, combinations,

                        (b) Multinomial Coefficients
 

2. Probability: Set theory

                        (a) Probability set up: sample space, event

                        (b) axioms and some propositions

                        (c) What is probability? equally likely, relative frequency, a measure of belief. 

3. Conditional probability and Independence

                        (a) Conditional probability

                        (b) Bayes’ Formula

                        (c) Independent Events
 

4. Random variables

                        (a) What is random variables

                        (b) Cumulative distribution function

                        (c) Discrete R.V.s

                        (d) The Mean, variances and standard deviation

                        (e) Some discrete distributions:
                    Bernoulli trials, Binomial Distribution,
Poisson Distribution
                    Geometric Distribution, Negative Binomial Distribution,
                    Hypergeometric Distribution,

                        (f) Moment generating functions (7.7)

                        (g) Poisson approximation to the Binomial


 

5. Continuous Distribution

                        (a) Continuous-type data

                        (b) Some continuous distribution: Uniform Distribution,

                    Mid-term I

                        Exponential Distribution, Normal Distribution

                        (c) Gamma and Chi-square Distribution

                        (d) Normal approximation to the binomial

                        (e) Distributions of functions of a random variable: Normal Chi-square Distribution, Lognormal
   

                1 hour quiz                    

6. Jointly Distributed R.V.s

                        (a) Joint Distribution

                        (b) Independent r.v.s

                        (c) Sums of Independent r.v.s

                        (d) Conditional Distribution

                        (e) Joint Distribution of Functions of Random Variables

 
 
            1 hour quiz

7. Expectation

                        (a) Expectation of sums of r.v.s

                        (b) Moments

                        (c) Covariance, Variance of sums, Correlations

                        (d) Conditional expectation

                        (f) More one Normal Distribution

 

8. Limit laws

                        (a) Chebyshev’s inequality

                        (b) Strong law of large numbers, Weak law of large numbers

                        (c) The Central Limit Theorem

      
         Final exam

 
三、   實施方式:

課堂講授

 

四、   評量標準與成績計算方式:

二次考試 各佔 40%, 40%

助教時間 +隨 堂小考+平時成績 20%,

五、   參考 書目:

    Pitman, J. (1999) Probability, Springer.

陳旭昇(2007) 統計學:應用與進階 (東華出版)

   國內相 關網站

中山大學應用數學系機率網路學習館 http://eprob.math.nsysu.edu.tw/