1．Let A be an $n \times n$ matrix．Prove that

$$
\operatorname{dim}\left(\operatorname{span}\left(\left\{I_{n}, A, A^{2}, \ldots\right\}\right)\right) \leq n
$$

（10 pts）
2．For any two similar matices $A, B \in \mathbb{F}^{n \times n}$ ，prove that $f_{A}(t)=f_{B}(t)$ and $\operatorname{tr}(A)=\operatorname{tr}(B) .(10 \mathrm{pts})$

3．Let $A_{m} \in \mathbb{C}^{n \times p}$ and $B_{m} \in \mathbb{C}^{p \times s}$ for $m \geq 1$ ．Prove that if $\lim _{m \rightarrow \infty} A_{m}=L$ and $\lim _{m \rightarrow \infty} B_{m}=M$ ，then $\lim _{m \rightarrow \infty} A_{m} B_{m}=L M$ ．（10 pts）
4．Let $V=P_{2}(\mathbb{R})$ and define a linear operator T on V by

$$
T(f(x))=f(0)+f(1)\left(x+x^{2}\right), \quad f(x) \in V
$$

（a）Is T diagonalizable？Give your reasons．（ 10 pts ）
（b）If T is diagonalizable，find a basis β for V such that $[T]_{\beta}$ is a diagonal matrix．（10 pts）

5．Let T be a linear operator on a vector space V over the scalar field \mathbb{F} ， and let v be a nonzero vector in V ．Prove that
（a）If W is a T－cyclic subspace of V generated by v ，then it is con－ tained in any T－invariant subspace containing v ．（ 10 pts ）
（b）If v is an eigenvector of T corresponding to the eigenvalue $\lambda \in \mathbb{F}$ ， then $g(T)(v)=g(\lambda) v$ for any polynomial $g(t)$ ．（10 pts）

6．Let $A=\left[\begin{array}{cc}5 / 2 & -3 / 2 \\ 3 & -2\end{array}\right] \in \mathbb{R}^{2 \times 2}$ ．
（a）Find an invertible matrix Q and a diagonal matrix D such that $Q^{-1} A Q=D .(10 \mathrm{pts})$
（b）Find $\lim _{m \rightarrow \infty} A^{m}$ if the limit exists．（ 10 pts ）
7．State woithout proof the Gerschgorin＇s Disk Theorem．（10 pts）

