Chapter 2

Solutions of Equations in One
Variable
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Section 2.1
The Bisection Method
(Z5733%)
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Solutions of Nonlinear Equations

Root-Finding Problem (Ei1RfERE)

@ One of the most basic problems in numerical analysis.

@ Try to find a root (or solution) p of a nonlinear equation of
the form

given a real-valued function f, i.e. fi{p) = 0.

@ The root p is also called a zero (Z1R) of £.

Note: Three numerical methods will be discussed here:
@ Bisection method
e Newton's (or Newton-Raphson) method

@ Secant and False Position (or Regula Falsi) methods
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The Procedure of Bisection Method

Assume that fis well-defined on the interval [a, b].

@ Set a; = a and by = b. Find the midpoint p; of [a1, b1] by

by —ai1  a+b
2 2

p1 =a +

o If fip1) =0, set p = p1 and we are done.
e If fip1) # 0, then we have

flp1) - (a1) > 0= p € (p1,b1). Set ag = p1 and by = b;.
flip1) - fla1) <0 = p€ (a1, p1). Set az = a; and bz = p1.

@ Continue above process until convergence.
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lllustrative Diagram of Bisection Method
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Pseudocode of Bisection Method

Given fe€ (Cla, b] with fla) - f(b) <0 .

Algorithm 2.1: Bisection

INPUT endpoints a, b; tolerance TOL; max. no. of iter. N.
OUTPUT an approx. sol. p.
Step 1 Set i=1 and FA = f(a);
Step 2 While i < Ny do Steps 3—6
Step 3 Set p=a+ (b—a)/2; FP = f(p).
Step 4 If FP=0or (b— a)/2 < TOL then OUTPUT(p); STOP.
Step 5 Set i=i+ 1.
Step 6 If FP- FA > 0 then set a= p and FA = FP.
Else set b= p. (FA is unchanged)

Step 7 OUTPUT(‘Method failed after Ny iterations') and STOP.
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Stopping Criteria ({F1E%8l)

In Step 4, other stopping criteria can be used. Let € > 0 be a given
tolerance and py, p2, - .., pn be generated by Bisection method.

(1) low—pral <&

(2) % < e with py # 0,

3)  [flew)| <e.

Note: The stopping criterion (2) is preferred in practice.
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An Example for Bisection Method

Example 1, p. 50

(1) Show that the equation
fx) =x3+4x* —10=0

has exactly one root in [1,2].

(2) Use Bisection method to determine an approx. root which is
accurate to at least within 1074,

@ The root is p = 1.365230013 correct to 9 decimal places.
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(1) By IVT with A1)f(2) = (-5)(14) <0, I p€ (1,2) s.
flp) = 0. Since f/(x) = 3x* + 8x > 0 for x € (1,2), the root
must be unique in [1,2].

(2) After 13 iterations, since |a14| < |p|, we have

lp— p13] _ |bia — a4

< <9.0x107°.
|p| |aia]

Note that
[flpo)| < |f(p13)]

in the Table 2.1.
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Numerical Results for Example 1
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Convergence of the Bisection Method

Thm 2.1 (Z53EMNUHEIE)

Suppose that f€ Ca, b|] with f{a) - f{b) < 0. The Bisection method
generates a sequence {p,}°°, converging to a root p of fwith

b—a
’P—Pn‘§? Voin>1.

The rate of convergence is O(z).

pf: For each n > 1, p € (a,, bp) and

b, — an = o1 by induction.

Hence, we hve
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Is the error bound tight?

Applying Thm 2.1 to Example 1, we see that

2-1 _
|P_P9|§T%2X1O 3,

but the actual absolute value is |p — po| ~ 4.4 x 1078, In this case,
the error bound in Thm 2.1 is much larger than the actual error.

v
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Example 2, p. 52

As in Example 1, use Thm 2.1 to estimate the smallest number N
of iterations so that [p — py| < 1073.

Sol: Applying Thm 2.1, it follows that

2—1
lp—pnl < 5 < 1072 = 27N <1073,

or, equivalently, (—=N)log;p2 < -3 <= N> ﬁ ~ 9.96. So,
10 iterations will ensure the required accuracy. But, in fact, we
know that

lp— po| ~ 4.4 x 1076,
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Useful Suggestions for the Bisection Method

In Practical Computation...

@ To avoid the round-off errors in the computations, use

b, — b
n 3 instead of p,,:a"_g Ly

Pn = an+

@ To avoid the overflow or underflow of f{p,) - f(a,), use

sign(f(pn)) - sign(flan)) < 0 instead of f(p,) - fla,) <O.

Note: The sign function is defined by

1 if x>0,

sign(x) =< 0 ifx=0,
-1 ifx<0. A
YaV
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Section 2.2
Fixed-Point lteration

(BEIE#IZER)
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The number p is called a fixed point (EIZE#H) of a real-valued
function g if g(p) = p.

Note: A root-finding problem of the form

where p is a root of f, can be transformed to a fixed-point form

p=g(p),

for some suitable function g obtained by algebraic transposition.

(R g(x) RERREY fx KEBETE)
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Existence & Uniqueness of Fixed Points

Thm 2.3 (BIERMNFEMEEE—1)

(i) If ge Cla, b] and g([a, b]) C [a, b], then g has at least one
fixed point in [a, b.
(i) If, in addition, g’(x) exists on (a,b) and 3 0 < k < 1 s.t.

g'()| < k Vx€(ab),

then there is exactly one fixed point in [a, b|.
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lllustrative Diagram for Fixed Points

Geometrically, a fixed point p € [a, b] is just the point where the
curves y = g(x) and y = x intersect.
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Proof of Thm 2.3

(i) If g(a) = a or g(b) = b, we are done. If not, then g(a) > a
and g(b) < b, since g([a, b]) C [a, b|. Note that the function
h(x) = g(x) — x € C[a, b] and

h(a) =g(a) —a>0, h(b)=g(b)—b<D0.

By IVT, 3 p€ (a,b) s.t. h(p) =0 or g(p) = p.

(i) Suppose that 3 p# g € [a, b] s.t. g(p) = p and g(q) = g . By
MVT, 3 £ between p and g s.t.

lp—ql = lg(p) — &(@)] = 1&'(©)llp— al
< klp—ql<|p—d,

which is a contradiction! Hence, g must have a unique fixed
point in [a, b]. 5
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Example 3: Condition (ii) Is NOT Satisfied (1/2)

Example 3, p. 59

Although the sufficient conditions are NOT satisfied for g(x) = 37
on the interval [0, 1], there does exist a unique fixed point of g in
[0, 1].

37*In3 <0 Vxe|[0,1], gis strictly

1] nd hence

Sol: Since g'(x)
decreasing on |0,

=g(1) <g(x) <g(0)=1 Vxel0,1],

co\»—‘

i.e. g€ C[0,1] and g([0,1]) C [0, 1].
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Example 3: Condition (ii) Is NOT Satisfied (2/2)

But also note that

g(0) = —In3 ~ —1.0986,

thus |g'(x)| £ 1 on (0,1) and condition (ii) of Thm 2.3 is not
satisfied. Because g is strictly deceasing on [0, 1], its graph must
intersect the graph of y = x at exactly one fixed point p € (0,1).
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Fixed-Point Iteration ([&E®3EMN)

Functional (or Fixed-Point) Iteration

Assume that g € Cla, b] and g([a, b]) C [a, b]. The fixed-point
iteration generates a sequence {p,}°°,, with py € [a, b], defined by

pn=g(pn-1) Vn=>1

This method is also called the functional iteration. (;ZEK3%1K)

4
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[llustrative Diagrams

Starting wirh py € [a, b], we obtain a sequence of points

(Po, p1) = (p1,p1) = (p1,P2) = (P2, P2) = (P2,P3) = -+ (p. p)s

where p = g(p).
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Pseudocode of Functional Iteration

To find a sol. p to x = g(x) given an initial approx. py.

Algorithm 2.2: Fixed-Point Iteration
INPUT initial approx. pg; tolerance TOL; max. no. of iter. Nj.

OUTPUT approx. sol. p to x = g(x).
Step 1 Set i=1.
Step 2 While i < Ny do Steps 3—6

Step 3 Set p= g(po)-

Step 4 If |p— po| < TOL then OUTPUT(p); STOP.
Step 5 Set i=i+ 1.

Step 6 Set py = p. (Update py)

Step 7 OUTPUT(‘Method failed after Ny iterations'); STOP.
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An lllustrative Example

5 Possible Fixed-Point Forms

The root-finding problem

flx) =x* + 4 —10=0

can be transformed to the following 5 fixed-point forms:
Q) x=gi(x) =x—x -4 +10 (b) x=go(x) = (? — 4x)

(© x= 800 = 10— ) (@) x= g0 = ()

4+ x
© » X+ 4x32 —10
e) X = X =X——FF—""
&5 3x2 1 8x
N
R,
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Numerical Results with py = 1.5
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Some Questions

@ Under what conditions does the fixed-point iteration (FPI)

pn:g(pn—l); n:1727"'

converge for any py € [a, b]?
@ What is the error bound for the FPI?

@ In addition, what is the rate of convergence?
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Convergence of Functional lteration

Thm 2.4 (Fixed-Point Thm)

Suppose that g € C[a, b] and g([a, b]) C [a, b]. If g(x) exists on
(a,b) and 3 k€ (0,1) s.t.

g <k Vxe (ab),
then for any py € [a, b], the sequence {p,}°2, defined by
pn=g(pn-1) Vn=>1,

converges to the unique fixed point p € |[a, b] of g.
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Proof of Thm 2.4

@ Thm 2.3 ensure that 3!p € [a, b] s.t. g(p) = p.

@ For each n > 1, it follows from MVT that 3 &, between p,_1
and p s.t.

|pn— pl = |g(pn-1) — &(p)| = |& (€n)llPn—1 — Pl < Klpa—1 — pl.

e By induction = |p, — p| < k"|py — p| for n > 0.
@ Since 0 < k < 1, we see that

lim |pp,—p|=0<= lim p,=p
n—o0 n—o0
by the Sandwich Thm.

[Q]: What is the order of convergence for the FPI? AR\
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Error Bounds for Fixed-Point Iteration

Cor 2.5 (BEIERZERBRZLR)

If g satisfies the hypotheses of Thm 2.4, then we have
(1) |pn—pl < k*max{po — a,b—po} Yn>0,

(2) lpn—pl < 755 |1 — pol V1.

pf: Inequality (1) followss immediately from the proof of Thm 2.4.
For m > n>1, by MVT inductively, we obtain

‘pm - pn| < |pm - pm71| + |Pm71 - meQ‘ +--+ |Pn+1 - pn|
< K™ Hpr— pol + K21 — pol + -+ + K p1 — po
= K'(1+ k4K 4+ K" - |pr = pol.

Hence, by taking m — oo, we have

7
lp— pn| = Jim |pm — pn!<k”<zk’)|p1 pol = 7|p1 po!-
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Rate of Conv. for Functional lter.

@ The rate of convergence for the fixed-point iteration depends
on k" or %{

@ The smaller the value of k, the faster the convergence.

@ The convergence would be very slow if k~ 1.
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The lllustrative Example Revisited

5 Possible Fixed-Point Forms

The root-finding problem

flx) =x* + 4 —10=0

can be transformed to the following 5 fixed-point forms:
Q) x=gi(x) =x—x -4 +10 (b) x=go(x) = (? — 4x)

(© x= 800 = 10— ) (@) x= g0 = ()

4+ x
© » X+ 4x32 —10
e) X = X =X——FF—""
&5 3x2 1 8x
N
R,

Hung-Yuan Fan (32#i&), Dep. of Math., NTNU, Taiwan Chap . 2, Numerical Analysis (1) 32/108




[llustration

(a) g1([1,2]) € [1,2] and |g}(x)| > 1 for x € [1,2].

(b) g2([1,2]) € [1,2] and |g5(x)| £ 1 for any interval containing
p ~ 1.36523, since |gh(p)| ~ 3.4.

(c) Since pp = 1.5, 1 < 1.28 &~ g3(1.5) < g3(x) < g3(1) = 1.5
and hence g3([1,1.5]) C [1,1.5]. We also note that g
satisfies |g5(x)| < |g4(1.5)] = 0.66 for x € [1,1.5].

(d) gu([1,2]) C [1,2] and the derivative g satisfies

-5 5
V10 + 22| = VI0(5)372

(e) It is Newton’s method satisfying g5 (p) = 0 theoretically! A%

~ 0.1414.

184 (3)| =
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Section 2.3
Newton’s Method and Its Extensions

(FIRZRHEIER)
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Derivation of Newton's Method

e Suppose that f(p) =0, '(p) # 0 and fe C*[a, b).

e Given an initial approximation py € [a, b] with '(py) # 0 s.t.
|p — po| is sufficiently small.

@ By Taylor's Thm, 3 £{(p) between p and py s.t.

"(£(p)

0=flp) = flpo) + '(po)(p — po) + — (P~ po)*.

@ Since |p — po| is sufficiently small, it follows that

f(po)
f'(po)

@ This suggests the procedure of Newton's method:

0~ flpo) + f'(po)(p— po) <= p = po —

fl Pn—1
Pn = Pn-1 — f,((,D 11)) Vn>1 0{?@
"
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Newton's Method v.s. Functional lteration

Let g be a real-valued function defined by
g = x— A
@ Newton's method can be viewed as a fixed-point iteration
pn = &g(pn—1) Vn>1, where |po — p| is sufficiently small.
o If ip) =0, g(p) =p, i.e., pis a fixed-point of g.
@ g€ (la, b and its first derivative is given by

x € [a, b,

R ClC .
gJ(X)* [f/(X)}Z ) € [ b}
o If (p) =0, then g'(p) = 0 follows immediately. ;V
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Further Questions

@ Under what conditions does Newton's method converge to p?
@ What is the error bond for Newton’'s method?
@ How to choose a good initial guess py?

@ What is the rate of convergence for Newton's method?
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Pseudocode of Newton's Method

To find a sol. to f(x) = 0 given an initial approx. py.

Algorithm 2.3: Newton’s Method

INPUT initial approx. pg; tolerance TOL; max. no. of iter. Nj.
OUTPUT approx. sol. p to f{x) = 0.

Step 1 Set i=1.

Step 2 While i < Ny do Steps 3—6

Step 3 Set p= po — f(po)/f'(po)-

Step 4 If |p— po| < TOL then OUTPUT(p); STOP.
Step 5 Set i=i+ 1.

Step 6 Set py = p. (Update py)

Step 7 OUTPUT(‘Method failed after Ny iterations'); STOP.
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Example 1, p. 69

Use (a) fixed-point iteration and (b) Newton's method to find an
approximate root p of the nonlinear equation

fix) =cosx—x=0

with initial guess py = 7. The root is p~ 0.739085133215161.

v
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Solution (1/3)

(a) Consider the fixed-point form x = g(x), where

g(x) = cos(x) Vxelo, g]

Then it is easily seen that
Q g€ 0, 3],

(2] g([()? %]) - [07 1] - [07 %]v
Q [F(X¥)=]-sin(x)| <1 Vxe(0,3)
From Thm 2.4 = the fixed-point iteration
pn = &(pn-1) = cos(pp-1) Vn=>1

must converge to the unique fixed point p € (0, §) of g for
any initial pg € [0, 5! 3
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Solution (2/3)

us

7, we obtain the

Applying the FPI with an initial guess py =
following numerical results.

The root is p~ 0.739085133215161.
Note that only 2 significant digits!
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Solution (3/3)

(b) For the same initial approx. py = 7/4, applying Newton's
method

Pn = Pn—1— COS(.p”*l) " Pl oy 1,
—sin(pp—1) — 1

The actual root is p ~ 0.739085133215161.

we obtain the following numerical results
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Convergence Thm for Newton's Method

Thm 2.6 (FIEERIUNEEE)

Let f€ C?[a,b] and p € (a,b). If fip) =0 and f'(p) # 0, then
36 > 0 s.t. Newton's method generates a sequence {p,}°°,
defined by

f(pn—1>

f,(pn—l)
converging to p for any py € [p— d, p+ 4.

Pn = Pn—1 — Vn>1

Note: The local convergence of Newton's method is guaranteed
in Thm 2.6, but the order of convergence is NOT discussed here!
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Sketch of Proof (1/2)

@ Since f'(p) #0, 3 41 > 0 s.t.

f/(X)#O vxe(p_517p+51)7

and hence

is well-defined on (p — 01, p+ 01).

@ Moreover, since its derivative is given by

ICILICY)
gI(X) - [f/(x)]Q Vxe (p_61>p+51)7
it follows that g € C'(p — &1, p+ 1) because f€ C?[a, b).
@ Note that flp) =0 = g(p) = p and g'(p) = 0. )
Y
I
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Sketch of Proof (2/2)

@ Because g’ is conti. at p, for any k€ (0,1), 3 0 < < d; s.t.

g'(x)| <k Vx€[p—3d,p+d]

@ For xe [p—4,p+ 6], from MVT = 3¢ between x and p s.t.

lg(x) — pl = le(x) — &(p)| = &' ()| Ix—pl| < 6.

Hence, g([p—d,p+4]) € [p— 6, p+ 4]
@ From Thm 2.4 — the seq. generated by Newton's method

Pn=g(pn-1) Vn=>1

converges to p for any py € [p— 6, p+ 4] =

N
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@ How to guess a good initial approximation py?
@ How to estimate d > 0 derived in Thm 2.67
@ What is the order of convergence for Newton's method?

e How to modify Newton's method if f/(x) is difficult to be
evaluated in practice? Use Secant Method!
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Derivation of Secant Method (&l 4R)%)

@ In many applications, it is often difficult to evaluate the
derivative of f.

e Since f'(pp—1) = lim fI=fpn=1) "\ye have
X—>Pn—1 X=Pn-1
fpn— fpn— flpn—1) — fpn—
F(pn1) ~ (Pn—2) = flpn—1) _ flpn-1) = f(pn-2)
Pn—2 — Pn-1 Pn—1 — Pn-2
for any n > 2.

@ With above spprox. for the derivative, Neton's method is
rewritten as

flpn—1)(Pr—1 — pn—2)
f(pn—1) — f(Pn—2)

This is called the Secant method with initial apprOX|mat|ons
po and py.

Pn = Pn-1 — Vn>2.
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lllustrative Diagram for Secant Method
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Key Steps of Secant Method

Given two initial py and p; with qo < f{py) and g1 < f(p1), the
followings are performed repeatedly in the Secant method:

@ Compute the new approximation

~ qi(p1 — po)
q1 — 9o

p < p1

@ Update py < p1 and qo < q1; p1 < p and g1 < f(p).
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Pseudocode of Secant Method

To find a sol. to f(x) = 0 given initial approx. py and p;.

Algorithm 2.4: Secant Method

INPUT initial approx. pg, p1; tolerance TOL; max. no. of iter. Ny.
OUTPUT approx. sol. p to f{x) = 0.

Step 1 Set i=2; qo = f(po); g1 = flp1).
Step 2 While i < Ny do Steps 3—6
Step 3 Set p=p1 — qi(p1 — po)/(q1 — qo)-
Step 4 If [p— p1| < TOL then OUTPUT(p); STOP.
Step 5 Set i=i+ 1.
Step 6 Set po = p1; qo = qu;
pr=p;q = flp).

Step 7. OUTPUT(‘Method failed after N iterations'); STOP.
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Example 2, p. 72
Use the Secant method to find a sol. to

fix) =cosx—x=0

with initial approx. pp = 0.5 and p; = 7/4. Compare the results
with those of Newton's method obtained in Example 1.

Sol: Applying the Secant method

(COS Pn—1 — pn—l)(pn—l - pn—2)

Vn>2,
COS Pp—1 — Pn—1) — (€COS Pp—2 — Pn—2)

Pn = Pn-1 — (

we see that its approximation ps is accurate to 10 significant
digits, whereas Newton's method produced the same accuracy
after 3 iterations. A
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Numerical Results for Example 2

The Secant method is much faster than fixed-point iteration,
but slower than Newton’s method.
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Method of False Position (#5111)%)

@ The method of False Position is also called Regula Falsi

method. The root is always bracketed between successive
approximations.

o Firstly, find py using the Secant method . How to determine
the next approx. p3?

o If ip2) - flp1) < O (or sign(f(p2)) - sign(f(p1)) < 0), then p3
is the x-intercept of the line joining (p1,f(p1)) and
(P2, f(p2)).

o If not, ps is the x-intercept of the line joining (po, f(po)) and
(p2, f(p2)), and then interchange the indices on po and p;.

@ Continue above procedure until convergence. %
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Secant Method v.s. Method of False Position
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Key Steps of False Position Method

Given two initial py and p; with qo < f{py) and g1 < f(p1), the
followings are performed repeatedly in the False Position method:

@ Compute the new approximation

_ q1(p1 — Po)
a1 — qo

p < p1

@ Compute g < f(p);
Q If g- g1 <0, update pg < p1 and qo < q1;

@ Update p; < p and g; < q.
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Pseudocode for Method of False Position

To find a sol. to f(x) = 0 given initial approx. py and p;.

Algorithm 2.5: Method of False Position

INPUT initial approx. pg, p1; tolerance TOL; max. no. of iter. Ny.
OUTPUT approx. sol. p to f{x) = 0.

Step 1 Set i=2; qo = f(po); g1 = flp1).
Step 2 While i < Ny do Steps 3—7
Step 3 Set p=p1 — qi(p1 — po)/(q1 — qo)-
Step 4 If [p— p1| < TOL then OUTPUT(p); STOP.
Step5 Seti=i+1; g=f(p).
Step 6 If g- g1 <0 then py = p1; go = 1.
Step7 Setp1 =p; 1 = q.

Step 8 OUTPUT(‘Method failed after Ny iterations'); STOP.
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Example 3, p. 74
Use the method of False Position to find a sol. to

fix) =cosx—x=0

with pp = 0.5 and p; = 7/4. Compare the results with those
obtained by Newton's method and Secant method.
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Section 2.4
Error Analysis for Iterative Methods
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Order of Convergence (U BIFEE)

Def 2.7 (WHIPE R E SR

A sequence {p,}72, converges to p of order a, with asymptotic
error constant A if 3 & > 1 and A > 0 with

im [Pr1 =Pl _

n—oo |pp — p|*

(i) a=1land 0 < XA <1 = {pp}52, is linearly convergent.

n=

(i) a=1and A =0 = {pn}°2, is superlinearly convergent.

(i) o« =2 = {pn}52, is quadratically convergent.

Note: The higher-order convergence is always expected in -~
practical computation! L\
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Linear Convergence of Functional Iteration

Thm 2.8 (BIERZERVREURIE)

Suppose that g € C[a, b] and g([a, b]) C [a, b]. If & € C(a, b),
ke (0,1)st. |[d(x)| <k Vxe (ab)and g(p) # 0, then for
any po € [a, b], the sequence

Pn=&(pn-1) Vn=>1

converges only linearly to the unique fixed point p € |[a, b).
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Proof of Thm 2.8

@ Thm 2.4 (Fixed-Point Thm) ensures that the sequence pj
converges to the unique fixed point p € [a, b|.

@ For each n > 1, by MVT = 3£, between p, and p s.t.

|Pnt1 — bl = |g(pa) — &(p)| = |&'(€n)llPn — pI.

@ Since lim p,=p, & — p as n — oo. Thus,
n—o0

fim PPl i e = 1P > 0

n—00 ’pn — p| n—00

because g’ € ((a, b), i.e., the sequence p, converges to p only

linearly!
&
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Quadratic Convergence of Functional lteration

Thm 2.9 (BIERZERB ZRULRIE)

If g(p) = p, &(p) = 0 and 3 open interval [ containing p where
gedl) and |g'(X)|<M Vxel,
then 9 0 > 0 s.t. the sequence defined by
pn=8(Pn-1) VYn>1

converges at least quadratically to p for any py € [p— 6, p+ d].
Moreover, we have

M :
|pnt1 — p| < E\pn — p|? for sufficiently large values of n.
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Sketch of the Proof

For any k € (0,1), since lim g(x) = & (p) =0, 3§ > 0 s.t.

X—p

(x| <k<1 VYxel[p—0,p+0Cl. (1)

From (1) and MVT = |p, —p| <d VYV neNif |pg—p| <9,
and g([p— 0, p+0]) € [p—3,p+ 3] Hence, lim p, = p by
Fixed-Point Thm (Thm 2.4).

e For n> 1, from Taylor's Thm = 3 &, between p, and p s.t.

g’ (én
Pn+1— p = &(pn) — &(p) = (2 (o, — )2
e Taking || and n — oo = lim ‘ﬁ;’:_l;‘é" = |gﬂ2(p)|. (& —p)
n—o0 Q/E?\a
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Quadratic Convergence for Newton's Method

Corollary (4¥8AR9 " RUTE 1)

Let flp) =0, '(p) # 0 and define the real-valued function

V x €l

where [is an open interval containing p. If g’ € C(/) with
g’ (x)] < M Vxe& I then 36 > 0s.t. Newton's method generates
a sequence {pp}°°, converging at least quadratically to p for any

!
po € [p— 0, p+ d]. The asymptotic error constant is A = M

(BEIRE p ZOEEZR p, FEER—E - RUIHMEE!)
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Multiple Roots (E1R)

Def 2.10 (ZRIVER)

A number p is called a zero of multiplicity m € N (E#{) of f
if for any x = p, we can write

fix) = (x—p)"qg(x) with lim g(x) # 0.

X—p

Note: A root p of fis called simple (4R) if it is a zero of
multiplicity one, i.e., m = 1.
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Thm 2.11 (BERMF D DERHE)
fe C'la, b] has a simple zero at p € (a, b) <= f(p) = 0, but
f'(p) # 0.

Proof (1/2)
(=) If fhas a simple zero at p, then f(x) = (x — p)q(x) for
x € [a, b]\{p}. So, f{p) =0 and we also see that

(p) = lim £(x) = lim [g(x) + (x— P)d (x)] = lim q(x) #0,

X—p X—p X—p

since f€ Cl[a, b].
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(<=) Suppose that f€ C'[a, b] with (p) = 0 and f'(p) # O for
some p € (a, b).
e From Taylor's Thm = for any x € [a, b]\{p}, F&(x) between
x and p s.t.

fix) = flp) + f'(£(x)(x = p) = (x = p)a(x),
(f' 0 &)(x) = f'(£(x)) for x € [a, b]\{p}-

where g(x) =
@ Because £(x) — p as x — p and f’ is continuous at p,

lim g(x) = lim £(€(x)) = £ lim §<x)) = f(p) # 0.

X—p X—p (x—)p

Hence, f must have a simple zero at p by Def.
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Thm 2.12 (ERFE S DEFM)

fe C"a, b| has a zero of multiplicity m at p € (a, b)
< flp) = f(p) = "(p) = --- A7V (p) = 0, but A™(p) # 0.

Homework: do Exercise 12 for the proof.

Note: In practice, Newton's method usually converges linearly to
a zero p of multiplicity m > 2, even though an initial guess py is
chosen close to p.
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Linear Conv. of Newton's Method for m = 2

Example 1, p. 83

Consider fix) = e —x—1=0 for all xe R.

(a) Show that f has a zrero of multiplicity 2 at p = 0.

(b) Use Newton's method to compute an approximation to p with
Po=1.

Sol:
(a) Since

f0)=e®~0-1=0,f(0)=€e"~1=0,f"(0)=€"=1+#0,

it follows that p =0 is a zero of multiplicity 2 by Thm 2.12.
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Numerical Results with py = 1

(b) The following table shows the linear convergence of
Newton's method when a multiple zero occurs:

Hung-Yuan Fan (32#i&), Dep. of Math., NTNU, Taiwan Chap . 2, Numerical Analysis (1) 70/108



Improvement of Convergence (1/2)

Suppose that f€ C"[a, b] and consider j(x) = ;(52)
e If fhas a zero of multiplicity m(> 2) at p, then
fx) = (x— p)™q(x) and hence

o (x—p)"q(x)
pu(x) = m(x— p)™Lq(x) + (x— p)™q (x)
— (x=p) 7 = (x=p)30-

mq(x) + (x— p)q'(x)

@ Since q(p) # 0, u(p) = 0 and Ii_r)n g(x) = L #0. So, pu(x)
x—p
has a simple zero at p.
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Improvement of Convergence (2/2)

e Applying Newton's method for solving the problem u(x) = 0,
we obtain

P _ ) check)

W0 T PR — AN
e Modified Newton’s Method: ({81ERI4TE)X)

B B flpn—1)f'(Pn—1)
Pr = P TP (o) = Apa-0)F (Pr1)

for all n > 1.

gx) =x—
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Example 2, p. 84

Use the Modified Newton’s method for solving the multiple root

@ Both the numerator and the denominator approach 0 =
Loss of Significant Digits!
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The Convergence Order of Secant Method

Exercise 14, p. 86 (fHi7trE)

It is shown from pp. 228-229 of [DaB] that if f{p) = 0 and the
sequence {p,}>°, generated by Secant Method converges to p,
then 4 C > 0 s.t.

|Pnt1 — Pl = Clpn — pllPn—1 — P|

for sufficiently large values of n. Apply this fact to prove the order
of convergence for Secant Method is

145
2

a = ~ 1.62. (golden ratio; =ELLR)
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Proof of Exercise 14

Let ey = pn — p for n > 0. If p, — p of order o, then 3 X > 0 s.t.

jim [Pt =Pl ‘e”“’:A>0.

P [pa— Pt me [egl
Then for sufficiently large values of n, |ept1| = Alep|®. Thus,
len| & Alen—1]|® or |en—1| & A7 ey,
Using the hypothesis gives
Men|® % [ent1| & Clea| - [en—1] & CAT/ en|!H1/

for sufficiently large values of n. So, we further have
len|® & CA= Va1 e, |"t1/ Since the powers of |e,| must agree,

1
a=1+1/a or a=
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o From Exercise 14(a) of Section 2.5, p. 91, we see that if a
sequence p, — p of order a for v > 1, then it is superlinearly
convergent.

@ Thus, the Secant method must be superlinearly convergent!
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Section 2.5
Accelerating Convergence

(MNZRULEL 1)

20
YaV
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Acceleration of Linear Convergence

Objective

We try to develop some accelerating techniques for a linearly
convergent sequence {p,}°2, generated by the fixed-point
iteration.

@ Aitken's A? method (more rapid convergence)

@ Steffensen’s method (quadratic convergence)

Hung-Yuan Fan (32#i&), Dep. of Math., NTNU, Taiwan Chap . 2, Numerical Analysis (1) 78/108



The Difference Operator A

Def 2.13 (AFTZHETF)

Let {pn}2 be a sequence generated by some iterative method.

@ The forward difference operator A is defined by
App = Pm+1—Pn YV n2>0.
@ Higher powers of A is defined recursively by

Akp, = A(A1p,) Vk>2.

Note: For k= 2 in above Def., we have

A?py = A(ppt1 — Pn) = Appi1 — Apy
= (Pn+2 = Pnt1) — (Pnt+1 — Pn) 7N
= Pnt2 — 2Pn41 + Pa- Y
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Derivation of Aitken's A% Method (1/2)

Assume that p, — p and the signs of py1o — p, pre1 — P, Pn— P
are the same.

@ Moreover, suppose also that

Pnt1 — P _ Pnt+2 — P
Pn— P Pnt1 — P

if nis sufficiently large.

o Then (ppt1 — p)* = (Pa+2 — P)(Pn — P)
— p%+1 — 2pp+1p + P2 ~ Pnt2Pn — (Pnt2 + Pn)p+ P2

— (Pn+2 —2ppt1 + pn)p ~ Pn+2Pn — p%+1
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Derivation of Aitken's A% Method (2/2)

b Pri2Pn = for i
Pn+2 — 2Pn+1 + Pn
(PnPnt2—2PnPn+1 + p121) - (p%+1_2pn+1pn =+ ptzl)
Pn+2 — 2Pn+1 + Pn

(pn+1 - Pn)2 (Apn)Q
“— px D, — = p, — d for n > 0.
B P ot —2pmi+pn " A%p,
e Aitken’s A2 Method:
. App)? .
Pn = Pn — (Agp;z E{AZ}O)”) vnzo?

where the term p, = g(pn,—1) is often generated by the
fixed-point iteration for n > 1.
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Convergence Behavior for Aitken's Method

Thm 2.14 (Aitken FF5IBIULEIEIR)

Suppose that {p,}72, is a sequence converging linearly to the
limit p with
lim Pol = P

h—oo pp—p

< 1.

Then the Aitken's A sequence {p,}°°, converges to p faster than
{pn}s in the sense that

lim 22— P _ .

n—=o0 pp — p

Note: See Exercise 16 for the proof of this theorem.
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The Steffensen’s Method

Steffensen’s Sequences

@ Aitken's A2 method constructs the terms in order:

po, pP1=g(po), P2=g(p1), Po={A%}(po),
ps =g(p2), b1 =1{A%}(p1),...
o Steffensen’s method constructs the same first 4 terms and

every third term of the Steffensen sequence is generated by
the Aitken's A2 operator, i.e.

o PO =gp), B =g(p?), By = (a2},

) =gry)), Py = elpl), pSZ):{AQ}(po)),-..
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Pseudocode of Steffensen’s Method

To find a sol. to p = g(p) given initial approx. py.

Algorithm 2.6: Steffensen’s Method

INPUT initial approx. pp; tolerance TOL; max. no. of iter. Np.

OUTPUT approx. sol. p to x = g(x).

Step 1 Set i=1.

Step 2 While i < Ny do Steps 3—6
Step 3 Set p1 = g(po): p2 = g(p1):;

p=po—(p1—po)?/(P2—2p1 + po)-

Step 4 If |p— po| < TOL then OUTPUT(p); STOP.
Step 5 Set =i+ 1.
Step 6 Set py = p. (Update py)

Step 7 OUTPUT(‘Method failed after Ny iterations'); STOP.
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Example

Use the Steffensen’s method to accelerate the fixed-point iteration
Pn = &(pn—1),n > 1, where

i)lﬂ

g(x) = gu(x) = (4+X

)

for solving f{x) = x> + 4x* — 10 = 0 with py = 1.5.

Sol: The quadratic convergence of Steffensen’s method is
shown. The computed sol. is accurate to the9th decimal place as
Newton's method.
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Convergence Behavior for Steffensen’s Method

Thm 2.15 (Steffensen 5189 — RUTRIHE)

Suppose that x = g(x) has the solution p with g'(p) # 1. If 36 > 0
st. g€ Clp— 6, p+ 0], then Steffensen’s method gives quadratic
convergence for any py € [p— 0, p+ d].
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Section 2.6
Zeros of Polynomials and
Miiller’s Method
(ZIRTRIZIREL Miiller %)
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Thm 2.16 (Fundamental Theorem of Algebra; FTA)

Every poly. of degree n > 1 with real or complex coefficients

P(X) = anXp + dpn—1Xn—1 + e + ai Xq + ao

has exactly n roots (or zeros) in C.

| A

Two Questions

Q1 For any xp, how to evaluate P(x) efficiently and accurately in
practical computation?

Q2 How to find the complex zeros of P(x) numerically?
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Two Corollaries of FTA

Cor 2.17 (ZIEXHER 77 #7)

If P(x) is a poly. of degree n with real or complex coeffs., then 3
distinct zeros x1,x2, -+ ,xx € C and my, mo,--- ,my, € N s.t.

P(x) = an(x— x1)™ (x — x2)™ -+ (x — xx) ™.

Here, m; is the multiplicity of the zero x; for i=1,2,... k.

Cor 2.18 (ZIETNRYHEZE)

Let P(x) and Q(x) be pplys. of degree at most n. If 3 distinct
X1, ,xx € C with k> ns.t.

Pxi) = Q(xi), i=1,2,....k

then P(x) = Q(x), i.e.,, P(x) = Q(x) Vxe C.
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A Nested Technique for Evaluating P(x)

Thm 2.19 (Horner’s Method)

Let P(X) = apXp + apn_1Xp—1 + -+ a1xy + ag and xy € R.
Defineb, = a, and

by = ax + bky1x0, k=n—1,n—2,...,1,0.

We then have

(1) bg = P(xp) can be evaluated in a nested manner, i.e.,

P(X[)) = ap + ( c-ap—3 + (a,,,g + (a,,,l + a,,Xo)Xo)XO cee )Xo.

(2) If Q(x) = bpX""1 + bp_1x"72 + - + box + by, then

P(x) = (x— %) Q() + bo.
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Proof of Thm 2.19

e It suffices to prove Part (2), since Part (1) is easily seen from
the construction of by for k=n,n—1,...,1,0.

o For the Part (2), we see that

(x — x0) Q(x) + bo
=(x—x0)(bpX™ 1 4 by 1 X2 4 - box+ by) + by
=bpxX" 4 by X" - byx® o+ byix
— bpxoxX" "t = by_1xoxX"2 — - = baxox — bixo + by
=bX" 4 (bp_1 — bpxo)X™ ! + -+ + (b1 — baxo)x + (by — bixo)
—apX"+ ap 1 X" o+ aix+ ag

=P(x), since a, = b, and ax = by — byr1x0, k=n—1,....1,0.
Therefore, we have by = P(x). ngd
Ve
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Example 2, p. 93

Use Horner's Method to evaluate P(x) = 2x* — 3x* 4+ 3x — 4 at
xo = —2. The actual value is P(xp) = P(—2) = 10.

Sol: Try to construct a table as follows.

34:2 83:() 32:—3 81:3 30:—4
b4X0 =—4 b3XQ =38 b2X0 =—10 b1X0 =14

| bi=2 by=-4 by=5 b=-7 h—10

X0:—2

So, P(x) = (x+ 2)(2x® — 4x* + 5x— 7) + 10 and hence
P(—2) = by = 10 by using Horner's Metod.
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Newton's Method for Polynomials

@ From Thm 2.19, we obtain that
P(x) = (x— x0)Q(x) + by.
So, differentiating w.r.t. x gives
P (x) = Q) + (x — x0) Q' (x).

e For any xyp € R, we have P (xp) = Q(xp), which can be
evaluated efficiently using Horner's Method.

@ Newton's Method can be rewritten as

P(px—1)
— g — kU 19
Pk = Pk-1 Qlpir)
where py is a good initial approx. to the zero p of P(x). A
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Pseudocode of Horner's Method

To evaluate P(xg) and P'(xp) for an nth-degree polynomial P(x).

Algorithm 2.7: Horner’'s Method

INPUT degree n; coeff. ap, - -, a1, ao; xo.
OUTPUT y= P(x); z= P (x).

Step 1 Set y= ap; z= ap.

Step2 Forj=n—1,n—2,...,1

Set y=y- xo + aj; (Compute b; for P.)
z=12z-xp +y. (Compute b;_; for Q.)

Step 3 Set y =y xo + ap. (Compute by for P.)
Step 4 OUTPUT(y, z); STOP.
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N

Operation Counts (E& &)

@ The usual method for evaluating

P(x0) = anx + an_lxg‘l 4+ 4 agxg + a1xp + ao

=a, (0 - X+ +ax(x-x0)+ a1 X+ ao

requires 2n — 1 multiplications and n additions.

@ The Horner's Method for evaluating the value P(xp) requires
only n multiplications and n additions.

— This avoids the loss of significance!
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Example 3, p. 94

Find an approximation to a zero of

P(x) = 2x* —3x* +3x— 4

using Newton's method with xg = —2 and Horner’'s method.
Sol: Using Horner's Method with initial xg = —2, we have
-212 0 -3 3 —4
-4 8 —10 14
-212 -4 5 -7 10 = P(xp)
-4 16 —42
2 =8 21 —49= Q(x)
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Sol. of Example 3 (Conti'd)

Next, evaluate P(x;) and P'(x1) = Q(x1) =

~1.796 |2 0 -3 3 —4
—3.592  6.451 —6.197 5.742
~1.796 | 2 —3.592 3.451 —3.197 1.742 = P(x;)
—3.592 12.902 —29.368
2 —7.184 16.353 —32.565 = Q(x1)

— Xy = x| — S(&l)) = -1.796 — T2~ —1.7425.

Similarly, xg =~ —1.73897 and an actual zero to 5 decimal places
is —1.73896.
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Complex Zeros of P(x)

Thm 2.20 (EAHZEANERER)

If z= a+ biis a complex zero of multiplicity m of the poly. P(x)
with real coefficients, then

(1) z= a— biis also a complex zero of multiplicity m of P(x).
(2) P(x) = (x* — 2ax+ a® + b*)™Q(x), where Q(x) is some poly.
with Q(z) # 0.
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Secant Method v.s. Miller's Method

Basic ldeas

@ Secant Method: given py and p; = po is the x-intercept of
the line through (po, (po)) and (p1, f(p1)).

e Miiller’'s Method: given py, p1 and ps = ps is the
x-intercept of the parabola through (po, fipo)), (p1, flp1))

and (pz, f{p2))-
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Derivation of Miiller's Method (1/4)

o Consider the quadratic polynomial
P(x) = a(x — p2)> + b(x — p2) + ¢

passing through (po, f(po)), (p1,f(p1)) and (p2, f(p2)).
@ So, we obtain the following linear system

flpz) =a-0+b-0+c
flpo) = a(po — p2)* + b(po — p2) + ¢,
flp1) = a(p1 — Pz)2 + b(p1 — p2) + ¢

to determine the constants a, b and c uniquely.
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Derivation of Miiller's Method (2/4)

o It follows from Cramer’s Rule that

c= f(p2)7 (2)
(Po — p2)*[flp1) — fp2)] — (p1 — P2)*[fipo) — fip2)]

b= (Po — p2)(P1 — P2)(Po — P1)

5= PL=p2)[flpo) — flp2)] — (po — p2)[fp1) — flp2)] (4)

(Po — p2)(p1 — p2)(Po — p1)
@ Let hy, hy, 61 and J5 be defined by

hy =p1 ——po, h2=p2—p1,
61 = [flp1) — flpo)]/h1, 62 = [f(p2) — flp1)]/h2.  (5)
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Derivation of Miiller's Method (3/4)

@ Substituting (5) into (3)—(4) gives that

(—h2)(=h161 — h2d2) — [—(h1 + h2)](—h202)
—(h1 + h2)(—h2)(—h1)
_ hahi(62 —61) b2 — 01
- (h1 + hQ)th]_ - h1 + hg'

and

(h1 + h2)2(7h252) — h%(*hlél — hyd2)
—(h1 + h2)(=ha)(—h1)
(h1 + ha)h1hodo + h§h1(52 — 1)

= == 6 h .
(h1 + ha)hahy 2 a

b=
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Derivation of Miiller's Method (4/4)

@ If ps is the intersection of the x-axis with y = P(x), then
P(ps) = a(ps — p2)* + b(ps — p2) +¢=0
with ¢ = f(p2). So, we know that

—b+ \/b2—4ac_p —2¢
2a N

o+

b+ /b2 — 4ac
o —2c /\Z\ e A
= po + o sign(b)\/m. (D BREHERAE)

@ Repeat above procedure with the points (p1, f{ip1)), (p2, (p2))
and (ps, f(p3)) to obtain the next approx. ps to a zero of the

nonlinear equation f(x) = 0.
i quation f(x) o

p3 = p2+
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Pseudocode of Miller's Method

To find a sol. to f{x) = 0 given 3 approx. py, p1 and ps.

Algorithm 2.8: Miiller’'s Method

INPUT initial pg, p1, p2; tol. TOLL; max. no. iter. Nj.
OUTPUT approx. sol. p.

Step 1 Set i= 3.
Step 2 While i < Ny do Steps 3—7.
Step 3 Set h = p1 — po; 01 = [fip1) — fpo)]/h1;
hy = p2 — p1; 02 = [f(p2) — fp1)]/h2;
a= (52 — 61)/(/71 aF hz); b= 52 aF hga; Cc= f(pg);
D = +/b?> — 4ac. (May require complex arithmetic.)
Step 4 If |[b— D| < |b+ D] then set E= b+ D;
Else set E=b— D.
Step 5 Set h = —2¢/E; p= ps + h.
Step 6 If |h| < TOL then OUTPUT (p); STOP.
Step 7 Set po = p1; p1 = p2; p2=p; i =i+ 1. 7

Step 8 OUTPUT(‘Method failed after Ny iterations'); STOP.
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An lllustrative Example, p. 98

Use Miiller's Method to find all zeros of the 4th-degree polynomial

fx) =x* =33+ X +x+1

with TOL = 10~° and the following initial approximations:

(1) po=0.5, p1 = —0.5, p3 = 0; (Complex zero)

(2) po=0.5, p1 = 1.0, p3 = 1.5; (Real zero of small magnitude)
(3) po =1.5, p1 = 2.0, p3 = 2.5. (Real zero of large magnitude)

4
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Numerical Results (1/2)

One complex root z; is computed by the Miiller's Method, and the
other complex root zo can be obtained by taking zo = Z; directly.
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Numerical Results (2/2)

Two distinct real roots are computed by the Miiller's Method with
different initial points.
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Thank you for your attention!
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