Chapter 2 Solutions of Equations in One Variable

Hung-Yuan Fan (范洪源)

Department of Mathematics, National Taiwan Normal University, Taiwan

Spring 2016

Section 2.1 The Bisection Method (二分法)

Solutions of Nonlinear Equations

Root-Finding Problem (勘根問題)

- One of the most basic problems in numerical analysis.
- Try to find a root (or solution) p of a nonlinear equation of the form

$$f(x)=0,$$

given a real-valued function f, i.e. f(p) = 0.

• The root p is also called a zero (零根) of f.

Note: Three numerical methods will be discussed here:

- Bisection method
- Newton's (or Newton-Raphson) method
- Secant and False Position (or Regula Falsi) methods

The Procedure of Bisection Method

Assume that f is well-defined on the interval [a, b].

• Set $a_1 = a$ and $b_1 = b$. Find the midpoint p_1 of $[a_1, b_1]$ by

$$p_1 = \mathbf{a_1} + \frac{\mathbf{b_1} - \mathbf{a_1}}{2} = \frac{a_1 + b_1}{2}.$$

- If $f(p_1) = 0$, set $\mathbf{p} = \mathbf{p_1}$ and we are done.
- If $f(p_1) \neq 0$, then we have
 - $f(p_1) \cdot f(a_1) > 0 \Rightarrow p \in (p_1, b_1)$. Set $a_2 = p_1$ and $b_2 = b_1$.
 - $\bullet \ \textit{f}(\textit{p}_1) \cdot \textit{f}(\textit{a}_1) < 0 \Rightarrow \textit{p} \in (\textit{a}_1,\textit{p}_1). \ \mathsf{Set} \ \mathbf{a_2} = \mathbf{a_1} \ \mathsf{and} \ \mathbf{b_2} = \mathbf{p_1}.$
- Continue above process until convergence.

Illustrative Diagram of Bisection Method

Pseudocode of Bisection Method

Given $f \in C[a, b]$ with $f(a) \cdot f(b) < 0$.

Algorithm 2.1: Bisection

INPUT endpoints a, b; tolerance TOL; max. no. of iter. N_0 .

OUTPUT an approx. sol. p.

Step 1 Set
$$i = 1$$
 and $FA = f(a)$;

Step 2 While
$$i \le N_0$$
 do **Steps 3–6**

Step 3 Set
$$p = a + (b - a)/2$$
; $FP = f(p)$.

Step 4 If
$$FP = 0$$
 or $(b - a)/2 < TOL$ then $OUTPUT(p)$; **STOP**.

Step 5 Set
$$i = i + 1$$
.

Step 6 If
$$FP \cdot FA > 0$$
 then set $a = p$ and $FA = FP$.
Else set $b = p$. (FA is unchanged)

Step 7 OUTPUT ('Method failed after N_0 iterations') and **STOP**.

Stopping Criteria (停止準則)

In Step 4, other stopping criteria can be used. Let $\epsilon > 0$ be a given tolerance and p_1, p_2, \ldots, p_N be generated by Bisection method.

- $(1) |p_N p_{N-1}| < \epsilon,$
- (2) $\frac{|p_N-p_{N-1}|}{|p_N|} < \epsilon \text{ with } p_N \neq 0,$
- (3) $|f(p_N)| < \epsilon$.

Note: The stopping criterion (2) is preferred in practice.

An Example for Bisection Method

Example 1, p. 50

(1) Show that the equation

$$f(x) = x^3 + 4x^2 - 10 = 0$$

has exactly one root in [1,2].

- (2) Use Bisection method to determine an approx. root which is accurate to at least within 10^{-4} .
 - ullet The root is p=1.365230013 correct to 9 decimal places.

Solution

- (1) By IVT with f(1)f(2) = (-5)(14) < 0, $\exists p \in (1,2)$ s.t. f(p) = 0. Since $f'(x) = 3x^2 + 8x > 0$ for $x \in (1,2)$, the root must be unique in [1,2].
- (2) After **13** iterations, since $|a_{14}| < |p|$, we have

$$\frac{|p-p_{13}|}{|p|} \leq \frac{|b_{14}-a_{14}|}{|a_{14}|} \leq 9.0 \times 10^{-5}.$$

Note that

$$|f(p_9)| < |f(p_{13})|$$

in the Table 2.1.

Numerical Results for Example 1

Convergence of the Bisection Method

Thm 2.1 (二分法的收斂定理)

Suppose that $f \in C[a, b]$ with $f(a) \cdot f(b) < 0$. The Bisection method generates a sequence $\{p_n\}_{n=1}^{\infty}$ converging to a root p of f with

$$|p-p_n|\leq \frac{b-a}{2^n}\quad \forall \ n\geq 1.$$

The rate of convergence is $O(\frac{1}{2^n})$.

pf: For each $n \ge 1$, $p \in (a_n, b_n)$ and

$$b_n - a_n = \frac{b-a}{2^{n-1}}$$
 by induction.

Hence, we hve

$$|p-p_n|\leq \frac{b_n-a_n}{2}=\frac{b-a}{2^n}.$$

Is the error bound tight?

Remark

Applying Thm 2.1 to Example 1, we see that

$$|p-p_9| \leq \frac{2-1}{2^9} \approx 2 \times \mathbf{10^{-3}},$$

but the actual absolute value is $|p-p_9|\approx 4.4\times 10^{-6}$. In this case, the error bound in Thm 2.1 is **much larger** than the actual error.

Example 2, p. 52

As in Example 1, use Thm 2.1 to estimate the smallest number N of iterations so that $|p - p_N| < 10^{-3}$.

Sol: Applying Thm 2.1, it follows that

$$|p - p_N| \le \frac{2-1}{2^N} < 10^{-3} \iff 2^{-N} < 10^{-3},$$

or, equivalently, $(-N)\log_{10}2 < -3 \Longleftrightarrow N > \frac{3}{\log_{10}2} \approx 9.96$. So, 10 iterations will ensure the required accuracy. But, in fact, we know that

$$|p - p_9| \approx 4.4 \times 10^{-6}$$
.

Useful Suggestions for the Bisection Method

In Practical Computation...

• To avoid the round-off errors in the computations, use

$$p_n = a_n + rac{b_n - a_n}{2}$$
 instead of $p_n = rac{a_n + b_n}{2}$.

• To avoid the overflow or underflow of $f(p_n) \cdot f(a_n)$, use

$$sign(f(p_n)) \cdot sign(f(a_n)) < 0$$
 instead of $f(p_n) \cdot f(a_n) < 0$.

Note: The sign function is defined by

$$sign(x) = \begin{cases} 1 & \text{if } x > 0, \\ 0 & \text{if } x = 0, \\ -1 & \text{if } x < 0. \end{cases}$$

Section 2.2 Fixed-Point Iteration (固定點迭代)

Def 2.2

The number p is called a fixed point (固定點) of a real-valued function g if g(p) = p.

Note: A root-finding problem of the form

$$f(p) = 0,$$

where p is a root of f, can be transformed to a **fixed-point form**

$$p = g(p),$$

for some suitable function g obtained by algebraic transposition. (函數 g(x) 經由原函數 f(x) 代數移項可得)

Existence & Uniqueness of Fixed Points

Thm 2.3 (固定點的存在性與唯一性)

- (i) If $g \in C[a, b]$ and $g([a, b]) \subseteq [a, b]$, then g has at least one fixed point in [a, b].
- (ii) If, in addition, g'(x) exists on (a, b) and $\exists 0 < k < 1$ s.t.

$$|g'(x)| \le k \quad \forall \ x \in (a, b),$$

then there is **exactly one** fixed point in [a, b].

Illustrative Diagram for Fixed Points

Geometrically, a fixed point $p \in [a, b]$ is just the point where the curves y = g(x) and y = x intersect.

Proof of Thm 2.3

(i) If g(a)=a or g(b)=b, we are done. If not, then g(a)>a and g(b)< b, since $g([a,b])\subseteq [a,b]$. Note that the function $h(x)=g(x)-x\in C[a,b]$ and

$$h(a) = g(a) - a > 0, \quad h(b) = g(b) - b < 0.$$

By IVT, $\exists p \in (a, b)$ s.t. h(p) = 0 or g(p) = p.

(ii) Suppose that $\exists~p \neq q \in [a,b]$ s.t. g(p)=p and g(q)=q . By MVT, $\exists~\xi$ between p and q s.t.

$$|p-q| = |g(p) - g(q)| = |g'(\xi)||p-q|$$

$$\leq k|p-q| < |\mathbf{p} - \mathbf{q}|,$$

which is a contradiction! Hence, g must have a **unique** fixed point in [a, b].

Example 3: Condition (ii) Is NOT Satisfied (1/2)

Example 3, p. 59

Although the sufficient conditions are NOT satisfied for $g(x)=3^{-x}$ on the interval [0,1], there *does* exist a **unique** fixed point of g in [0,1].

Sol: Since $g'(x) = -3^{-x} \ln 3 < 0 \quad \forall \ x \in [0,1], \ g$ is strictly decreasing on [0,1] and hence

$$\frac{1}{3} = g(1) \le g(x) \le g(0) = 1 \quad \forall \ x \in [0, 1],$$

i.e. $\mathbf{g} \in \mathbf{C}[0,1]$ and $\mathbf{g}([0,1]) \subseteq [0,1]$.

Example 3: Condition (ii) Is NOT Satisfied (2/2)

But also note that

$$g'(0) = -\ln 3 \approx -1.0986,$$

thus $|g'(x)| \not< 1$ on (0,1) and condition (ii) of Thm 2.3 is not satisfied. Because g is strictly deceasing on [0,1], its graph must intersect the graph of y=x at **exactly one** fixed point $p\in(0,1)$.

Fixed-Point Iteration (固定點迭代)

Functional (or Fixed-Point) Iteration

Assume that $g \in C[a,b]$ and $g([a,b]) \subseteq [a,b]$. The fixed-point iteration generates a sequence $\{p_n\}_{n=1}^{\infty}$, with $p_0 \in [a,b]$, defined by

$$p_n = g(p_{n-1}) \quad \forall n \geq 1.$$

This method is also called the functional iteration. (泛函迭代)

Illustrative Diagrams

Starting wirh $p_0 \in [a, b]$, we obtain a sequence of points

$$(p_0, p_1) \rightarrow (p_1, p_1) \rightarrow (p_1, p_2) \rightarrow (p_2, p_2) \rightarrow (p_2, p_3) \rightarrow \cdots (p, p),$$

where p = g(p).

Pseudocode of Functional Iteration

To find a sol. p to x = g(x) given an initial approx. p_0 .

Algorithm 2.2: Fixed-Point Iteration

INPUT initial approx. p_0 ; tolerance TOL; max. no. of iter. N_0 .

OUTPUT approx. sol. p to x = g(x).

Step 1 Set i = 1.

Step 2 While $i \le N_0$ do Steps 3–6

Step 3 Set $p = g(p_0)$.

Step 4 If $|p - p_0| < TOL$ then OUTPUT(p); **STOP**.

Step 5 Set i = i + 1.

Step 6 Set $p_0 = p$. (Update p_0)

Step 7 OUTPUT ('Method failed after N_0 iterations'); **STOP**.

An Illustrative Example

5 Possible Fixed-Point Forms

The root-finding problem

$$f(x) = x^3 + 4x^2 - 10 = 0$$

can be transformed to the following 5 fixed-point forms:

(a)
$$x = g_1(x) = x - x^3 - 4x^2 + 10$$
 (b) $x = g_2(x) = (\frac{10}{x} - 4x)^{1/2}$

(c)
$$x = g_3(x) = \frac{1}{2}(10 - x^3)^{1/2}$$
 (d) $x = g_4(x) = (\frac{10}{4+x})^{1/2}$

(e)
$$x = g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

Numerical Results with $p_0 = 1.5$

Some Questions

Under what conditions does the fixed-point iteration (FPI)

$$p_n = g(p_{n-1}), \quad n = 1, 2, \dots$$

converge for any $p_0 \in [a, b]$?

- What is the error bound for the FPI?
- In addition, what is the rate of convergence?

Convergence of Functional Iteration

Thm 2.4 (Fixed-Point Thm)

Suppose that $g \in C[a, b]$ and $g([a, b]) \subseteq [a, b]$. If g'(x) exists on (a, b) and $\exists k \in (0, 1)$ s.t.

$$|g'(x)| \le k \quad \forall x \in (a, b),$$

then for any $p_0 \in [a, b]$, the sequence $\{p_n\}_{n=1}^{\infty}$ defined by

$$p_n = g(p_{n-1}) \quad \forall n \ge 1,$$

converges to the **unique** fixed point $p \in [a, b]$ of g.

Proof of Thm 2.4

- Thm 2.3 ensure that $\exists ! p \in [a, b]$ s.t. g(p) = p.
- For each $n \ge 1$, it follows from MVT that $\exists \ \xi_n$ between p_{n-1} and p s.t.

$$|p_n - p| = |g(p_{n-1}) - g(p)| = |g'(\xi_n)||p_{n-1} - p| \le k|p_{n-1} - p|.$$

- By induction $\Longrightarrow |p_n p| \le k^n |p_0 p|$ for $n \ge 0$.
- Since 0 < k < 1, we see that

$$\lim_{n\to\infty} |p_n - p| = 0 \Longleftrightarrow \lim_{n\to\infty} p_n = p$$

by the Sandwich Thm.

[Q]: What is the order of convergence for the FPI?

Error Bounds for Fixed-Point Iteration

Cor 2.5 (固定點迭代的誤差上界)

If g satisfies the hypotheses of Thm 2.4, then we have

(1)
$$|p_n - p| \le k^n \max\{p_0 - a, b - p_0\} \quad \forall n \ge 0$$
,

(2)
$$|p_n - p| \le \frac{k^n}{1 - k} |p_1 - p_0| \quad \forall n \ge 1.$$

pf: Inequality (1) follows immediately from the proof of Thm 2.4. For $m > n \ge 1$, by MVT inductively, we obtain

$$|p_{m}-p_{n}| \leq |p_{m}-p_{m-1}| + |p_{m-1}-p_{m-2}| + \dots + |p_{n+1}-p_{n}|$$

$$\leq k^{m-1}|p_{1}-p_{0}| + k^{m-2}|p_{1}-p_{0}| + \dots + k^{n}|p_{1}-p_{0}|$$

$$= k^{n}(1+k+k^{2}+\dots+k^{m-n-1}) \cdot |p_{1}-p_{0}|.$$

Hence, by taking $m \to \infty$, we have

$$|p-p_n| = \lim_{m \to \infty} |p_m - p_n| \le k^n \Big(\sum_{i=0}^{\infty} k^i\Big) |p_1 - p_0| = \frac{k^n}{1-k} |p_1 - p_0|.$$

Rate of Conv. for Functional Iter.

Remarks

- The rate of convergence for the fixed-point iteration depends on k^n or $\frac{k^n}{1-k}$.
- The smaller the value of k, the faster the convergence.
- The convergence would be **very slow** if $k \approx 1$.

The Illustrative Example Revisited

5 Possible Fixed-Point Forms

The root-finding problem

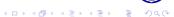
$$f(x) = x^3 + 4x^2 - 10 = 0$$

can be transformed to the following 5 fixed-point forms:

(a)
$$x = g_1(x) = x - x^3 - 4x^2 + 10$$
 (b) $x = g_2(x) = (\frac{10}{x} - 4x)^{1/2}$

(c)
$$x = g_3(x) = \frac{1}{2}(10 - x^3)^{1/2}$$
 (d) $x = g_4(x) = (\frac{10}{4+x})^{1/2}$

(e)
$$x = g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$



Illustration

- (a) $g_1([1,2]) \nsubseteq [1,2]$ and $|g'_1(x)| > 1$ for $x \in [1,2]$.
- (b) $g_2([1,2]) \nsubseteq [1,2]$ and $|g_2'(x)| \nleq 1$ for any interval containing $p \approx 1.36523$, since $|\mathbf{g}_2'(\mathbf{p})| \approx 3.4$.
- (c) Since $p_0 = 1.5$, $1 < 1.28 \approx g_3(1.5) \le g_3(x) \le g_3(1) = 1.5$ and hence $\mathbf{g_3}([\mathbf{1}, \mathbf{1.5}]) \subseteq [\mathbf{1}, \mathbf{1.5}]$. We also note that g_3' satisfies $|g_3'(x)| \le |g_3'(1.5)| \approx \mathbf{0.66}$ for $x \in [1, 1.5]$.
- (d) $g_4([1,2]) \subseteq [1,2]$ and the derivative g_4' satisfies

$$|g_4'(x)| = \left| \frac{-5}{\sqrt{10}(4+x)^{3/2}} \right| < \frac{5}{\sqrt{10}(5)^{3/2}} \approx \mathbf{0.1414}.$$

(e) It is **Newton's method** satisfying $\mathbf{g}_5'(\mathbf{p}) = \mathbf{0}$ theoretically!

Section 2.3 Newton's Method and Its Extensions (牛頓法及其推廣)

Derivation of Newton's Method

- Suppose that f(p) = 0, $f'(p) \neq 0$ and $f \in C^2[a, b]$.
- Given an initial approximation $p_0 \in [a, b]$ with $f'(p_0) \neq 0$ s.t. $|p p_0|$ is sufficiently small.
- By Taylor's Thm, $\exists \ \xi(p)$ between p and p_0 s.t.

$$0 = f(p) = f(p_0) + f'(p_0)(p - p_0) + \frac{f''(\xi(p))}{2}(p - p_0)^2.$$

• Since $|p - p_0|$ is sufficiently small, it follows that

$$0 \approx f(p_0) + f'(p_0)(p - p_0) \Longleftrightarrow p \approx p_0 - \frac{f(p_0)}{f'(p_0)}.$$

• This suggests the procedure of Newton's method:

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})} \quad \forall n \ge 1.$$

Newton's Method v.s. Functional Iteration

Observations

Let g be a real-valued function defined by

$$g(x) = x - \frac{f(x)}{f'(x)}, \quad x \in [a, b],$$

- Newton's method can be viewed as a fixed-point iteration $p_n = g(p_{n-1}) \quad \forall \ n \ge 1$, where $|\mathbf{p_0} \mathbf{p}|$ is sufficiently small.
- If f(p) = 0, g(p) = p, i.e., p is a **fixed-point** of g.
- $g \in C[a, b]$ and its first derivative is given by

$$g'(x) = \frac{f(x)f''(x)}{[f'(x)]^2}, \quad x \in [a, b].$$

• If f(p) = 0, then g'(p) = 0 follows immediately.

Further Questions

- Under what conditions does Newton's method converge to *p*?
- What is the error bond for Newton's method?
- How to choose a **good** initial guess p_0 ?
- What is the rate of convergence for Newton's method?

Pseudocode of Newton's Method

To find a sol. to f(x) = 0 given an initial approx. p_0 .

Algorithm 2.3: Newton's Method

INPUT initial approx. p_0 ; tolerance TOL; max. no. of iter. N_0 .

OUTPUT approx. sol. p to f(x) = 0.

Step 1 Set i = 1.

Step 2 While $i \le N_0$ do Steps 3–6

Step 3 Set $p = p_0 - f(p_0)/f'(p_0)$.

Step 4 If $|p - p_0| < TOL$ then OUTPUT(p); **STOP**.

Step 5 Set i = i + 1.

Step 6 Set $p_0 = p$. (Update p_0)

Step 7 OUTPUT ('Method failed after N_0 iterations'); **STOP**.

Example 1, p. 69

Use (a) fixed-point iteration and (b) Newton's method to find an approximate root p of the nonlinear equation

$$f(x) = \cos x - x = 0$$

with initial guess $p_0 = \frac{\pi}{4}$. The root is $p \approx 0.739085133215161$.

Solution (1/3)

(a) Consider the fixed-point form x = g(x), where

$$g(x) = \cos(x) \quad \forall x \in [0, \frac{\pi}{2}].$$

Then it is easily seen that

- **1** $g \in C[0, \frac{\pi}{2}],$
- $2 g([0, \frac{\pi}{2}]) \subseteq [0, 1] \subseteq [0, \frac{\pi}{2}],$

From Thm $2.4 \Longrightarrow$ the fixed-point iteration

$$p_n = g(p_{n-1}) = \cos(p_{n-1}) \quad \forall \ n \ge 1$$

must converge to the **unique** fixed point $p \in (0, \frac{\pi}{2})$ of g for any initial $p_0 \in [0, \frac{\pi}{2}]!$

Solution (2/3)

Applying the FPI with an initial guess $p_0 = \frac{\pi}{4}$, we obtain the following numerical results.

The root is $p \approx 0.739085133215161$. Note that **only 2 significant digits!**

Solution (3/3)

(b) For the same initial approx. $p_0=\pi/4$, applying Newton's method

$$p_n = p_{n-1} - \frac{\cos(p_{n-1}) - p_{n-1}}{-\sin(p_{n-1}) - 1} \quad \forall n \ge 1,$$

The actual root is $p \approx 0.739085133215161$. we obtain the following numerical results

Convergence Thm for Newton's Method

Thm 2.6 (牛頓法的收斂定理)

Let $f \in C^2[a,b]$ and $p \in (a,b)$. If f(p) = 0 and $f'(p) \neq 0$, then $\exists \ \delta > 0$ s.t. Newton's method generates a sequence $\{p_n\}_{n=1}^{\infty}$ defined by

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})} \quad \forall n \ge 1$$

converging to p for any $p_0 \in [p - \delta, p + \delta]$.

Note: The **local convergence** of Newton's method is guaranteed in Thm 2.6, but the order of convergence is NOT discussed here!

Sketch of Proof (1/2)

• Since $f'(p) \neq 0$, $\exists \delta_1 > 0$ s.t.

$$f'(x) \neq 0 \quad \forall x \in (p - \delta_1, p + \delta_1),$$

and hence

$$g(x) = x - \frac{f(x)}{f'(x)}$$

is well-defined on $(p - \delta_1, p + \delta_1)$.

Moreover, since its derivative is given by

$$g'(x) = \frac{f(x)f''(x)}{[f'(x)]^2} \quad \forall x \in (p - \delta_1, p + \delta_1),$$

it follows that $\mathbf{g} \in C^1(\mathbf{p} - \delta_1, \mathbf{p} + \delta_1)$ because $f \in C^2[\mathbf{a}, \mathbf{b}]$.

• Note that $f(p) = 0 \Longrightarrow g(p) = p$ and g'(p) = 0.

Sketch of Proof (2/2)

• Because g' is conti. at p, for any $k \in (0,1)$, $\exists 0 < \delta < \delta_1$ s.t.

$$|g'(x)| < k \quad \forall x \in [p - \delta, p + \delta].$$

• For $x \in [p - \delta, p + \delta]$, from MVT $\Rightarrow \exists \xi$ between x and p s.t.

$$|g(x) - p| = |g(x) - g(p)| = |g'(\xi)| |x - p| < \delta.$$

Hence, $g([p - \delta, p + \delta]) \subseteq [p - \delta, p + \delta]$.

From Thm 2.4 ⇒ the seq. generated by Newton's method

$$p_n = g(p_{n-1}) \quad \forall n \ge 1$$

converges to p for any $p_0 \in [p - \delta, p + \delta]$.

Questions

- How to guess a good initial approximation p_0 ?
- How to estimate $\delta > 0$ derived in Thm 2.6?
- What is the order of convergence for Newton's method?
- How to modify Newton's method if f'(x) is difficult to be evaluated in practice? Use **Secant Method!**

Derivation of Secant Method (割線法)

- In many applications, it is often difficult to evaluate the derivative of f.
- Since $f'(p_{n-1}) = \lim_{x \to p_{n-1}} \frac{f(x) f(p_{n-1})}{x p_{n-1}}$, we have

$$f'(p_{n-1}) \approx \frac{f(p_{n-2}) - f(p_{n-1})}{p_{n-2} - p_{n-1}} = \frac{f(p_{n-1}) - f(p_{n-2})}{p_{n-1} - p_{n-2}}$$

for any $n \geq 2$.

 With above spprox. for the derivative, Neton's method is rewritten as

$$p_n = p_{n-1} - \frac{f(p_{n-1})(p_{n-1} - p_{n-2})}{f(p_{n-1}) - f(p_{n-2})} \quad \forall n \ge 2.$$

This is called the **Secant method** with initial approximations p_0 and p_1 .

Illustrative Diagram for Secant Method

Key Steps of Secant Method

Given two initial p_0 and p_1 with $q_0 \leftarrow f(p_0)$ and $q_1 \leftarrow f(p_1)$, the followings are performed **repeatedly** in the Secant method:

Compute the new approximation

$$p \leftarrow p_1 - rac{q_1(p_1 - p_0)}{q_1 - q_0};$$

2 Update $p_0 \leftarrow p_1$ and $q_0 \leftarrow q_1$; $p_1 \leftarrow p$ and $q_1 \leftarrow f(p)$.

Pseudocode of Secant Method

To find a sol. to f(x) = 0 given initial approx. p_0 and p_1 .

Algorithm 2.4: Secant Method

INPUT initial approx. p_0, p_1 ; tolerance TOL; max. no. of iter. N_0 .

OUTPUT approx. sol. p to f(x) = 0.

Step 1 Set
$$i = 2$$
; $q_0 = f(p_0)$; $q_1 = f(p_1)$.

Step 2 While
$$i \le N_0$$
 do **Steps 3–6**

Step 3 Set
$$p = p_1 - q_1(p_1 - p_0)/(q_1 - q_0)$$
.

Step 4 If
$$|p - p_1| < TOL$$
 then $OUTPUT(p)$; **STOP**.

Step 5 Set
$$i = i + 1$$
.

Step 6 Set
$$p_0 = p_1$$
; $q_0 = q_1$; $p_1 = p$; $q_1 = f(p)$.

Step 7. OUTPUT('Method failed after N_0 iterations'); **STOP**.

Example 2, p. 72

Use the Secant method to find a sol. to

$$f(x) = \cos x - x = 0$$

with initial approx. $p_0 = 0.5$ and $p_1 = \pi/4$. Compare the results with those of Newton's method obtained in Example 1.

Sol: Applying the Secant method

$$p_n = p_{n-1} - \frac{(\cos p_{n-1} - p_{n-1})(p_{n-1} - p_{n-2})}{(\cos p_{n-1} - p_{n-1}) - (\cos p_{n-2} - p_{n-2})} \quad \forall n \ge 2,$$

we see that its approximation p_5 is accurate to 10 significant digits, whereas Newton's method produced the same accuracy after 3 iterations.

Numerical Results for Example 2

The Secant method is much faster than fixed-point iteration, but slower than Newton's method.

Method of False Position (錯位法)

- The method of False Position is also called Regula Falsi method. The root is always bracketed between successive approximations.
- Firstly, find p_2 using the **Secant method** . How to determine the next approx. p_3 ?
 - If $f(p_2) \cdot f(p_1) < 0$ (or $sign(f(\mathbf{p_2})) \cdot sign(f(\mathbf{p_1})) < 0$), then p_3 is the x-intercept of the line joining $(\mathbf{p_1}, \mathbf{f}(\mathbf{p_1}))$ and $(\mathbf{p_2}, \mathbf{f}(\mathbf{p_2}))$.
 - If not, p_3 is the x-intercept of the line joining $(\mathbf{p_0}, \mathbf{f}(\mathbf{p_0}))$ and $(\mathbf{p_2}, \mathbf{f}(\mathbf{p_2}))$, and then interchange the indices on $\mathbf{p_0}$ and $\mathbf{p_1}$.
- Continue above procedure until convergence.

Secant Method v.s. Method of False Position

Key Steps of False Position Method

Given two initial p_0 and p_1 with $q_0 \leftarrow \mathit{f}(p_0)$ and $q_1 \leftarrow \mathit{f}(p_1)$, the followings are performed **repeatedly** in the False Position method:

Compute the new approximation

$$p \leftarrow p_1 - rac{q_1(p_1 - p_0)}{q_1 - q_0};$$

- **2** Compute $q \leftarrow f(p)$;
- **4** Update $p_1 \leftarrow p$ and $q_1 \leftarrow q$.

Pseudocode for Method of False Position

To find a sol. to f(x) = 0 given initial approx. p_0 and p_1 .

Algorithm 2.5: Method of False Position

INPUT initial approx. p_0, p_1 ; tolerance TOL; max. no. of iter. N_0 .

OUTPUT approx. sol. p to f(x) = 0.

Step 1 Set
$$i = 2$$
; $q_0 = f(p_0)$; $q_1 = f(p_1)$.

Step 2 While
$$i \le N_0$$
 do **Steps 3–7**

Step 3 Set
$$p = p_1 - q_1(p_1 - p_0)/(q_1 - q_0)$$
.

Step 4 If
$$|p - p_1| < TOL$$
 then OUTPUT(p); **STOP**.

Step 5 Set
$$i = i + 1$$
; $q = f(p)$.

Step 6 If
$$q \cdot q_1 < 0$$
 then $p_0 = p_1$; $q_0 = q_1$.

Step 7 Set
$$p_1 = p$$
; $q_1 = q$.

Step 8 OUTPUT ('Method failed after N_0 iterations'); **STOP**.

Example 3, p. 74

Use the method of False Position to find a sol. to

$$f(x) = \cos x - x = 0$$

with $p_0=0.5$ and $p_1=\pi/4$. Compare the results with those obtained by Newton's method and Secant method.

Section 2.4 Error Analysis for Iterative Methods

Order of Convergence (收斂階數)

Def 2.7 (收斂階數的定義)

A sequence $\{p_n\}_{n=0}^{\infty}$ converges to p of order α , with asymptotic error constant λ if $\exists \ \alpha \geq 1$ and $\lambda \geq 0$ with

$$\lim_{n\to\infty}\frac{|p_{n+1}-p|}{|p_n-p|^{\alpha}}=\lambda.$$

- (i) $\alpha = 1$ and $0 < \lambda < 1 \Longrightarrow \{p_n\}_{n=0}^{\infty}$ is linearly convergent.
- (ii) $\alpha = 1$ and $\lambda = 0 \Longrightarrow \{p_n\}_{n=0}^{\infty}$ is superlinearly convergent.
- (iii) $\alpha = 2 \Longrightarrow \{p_n\}_{n=0}^{\infty}$ is quadratically convergent.

Note: The higher-order convergence is always expected in practical computation!

Linear Convergence of Functional Iteration

Thm 2.8 (固定點迭代的線性收斂性)

Suppose that $g \in C[a, b]$ and $g([a, b]) \subseteq [a, b]$. If $g' \in C(a, b)$, $\exists k \in (0, 1)$ s.t. $|g'(x)| \le k \quad \forall x \in (a, b)$ and $g'(p) \ne 0$, then for any $p_0 \in [a, b]$, the sequence

$$p_n = g(p_{n-1}) \quad \forall \ n \ge 1$$

converges only **linearly** to the **unique** fixed point $p \in [a, b]$.

Proof of Thm 2.8

- Thm 2.4 (Fixed-Point Thm) ensures that the sequence p_n converges to the unique fixed point $p \in [a, b]$.
- For each $n \ge 1$, by MVT $\Longrightarrow \exists \, \xi_n \text{ between } p_n \text{ and } p \text{ s.t.}$

$$|p_{n+1}-p|=|g(p_n)-g(p)|=|g'(\xi_n)||p_n-p|.$$

• Since $\lim_{n\to\infty} p_n = p$, $\xi_n\to p$ as $n\to\infty$. Thus,

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|} = \lim_{n \to \infty} |g'(\xi_n)| = |g'(p)| > 0$$

because $g' \in C(a, b)$, i.e., the sequence p_n converges to p only linearly!

Quadratic Convergence of Functional Iteration

Thm 2.9 (固定點迭代的二次收斂性)

If g(p) = p, g'(p) = 0 and \exists open interval I containing p where

$$g'' \in C(I)$$
 and $|g''(x)| < M \quad \forall x \in I$,

then $\exists \ \delta > 0$ s.t. the sequence defined by

$$p_n = g(p_{n-1}) \quad \forall \ n \ge 1$$

converges at least quadratically to p for any $p_0 \in [p - \delta, p + \delta]$. Moreover, we have

$$|p_{n+1}-p|<rac{M}{2}|p_n-p|^2$$
 for sufficiently large values of n .

Sketch of the Proof

• For any $k \in (0,1)$, since $\lim_{x \to p} g'(x) = g'(p) = 0$, $\exists \ \delta > 0$ s.t.

$$|g'(x)| \le k < 1 \quad \forall \ x \in [p - \delta, p + \delta] \subseteq I.$$
 (1)

- From (1) and MVT $\Rightarrow |p_n p| < \delta \quad \forall n \in \mathbb{N} \text{ if } |p_0 p| < \delta$, and $g([p \delta, p + \delta]) \subseteq [p \delta, p + \delta]$. Hence, $\lim_{n \to \infty} p_n = p$ by Fixed-Point Thm (Thm 2.4).
- For $n \ge 1$, from Taylor's Thm $\Rightarrow \exists \ \xi_n$ between p_n and p s.t.

$$p_{n+1} - p = g(p_n) - g(p) = \frac{g''(\xi_n)}{2}(p_n - p)^2.$$

• Taking $|\cdot|$ and $n \to \infty \Rightarrow \lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^2} = \frac{|g''(p)|}{2}$. $(:: \xi_n \to p)$

Quadratic Convergence for Newton's Method

Corollary (牛頓法的二次收斂性)

Let f(p) = 0, $f'(p) \neq 0$ and define the real-valued function

$$g(x) = x - \frac{f(x)}{f'(x)} \quad \forall \ x \in I,$$

where I is an open interval containing p. If $g'' \in C(I)$ with $|g''(x)| < M \quad \forall x \in I$, then $\exists \ \delta > 0$ s.t. Newton's method generates a sequence $\{p_n\}_{n=0}^{\infty}$ converging **at least quadratically** to p for any $p_0 \in [p-\delta, p+\delta]$. The asymptotic error constant is $\lambda = \frac{|g''(p)|}{2}$.

(當初始值 p_0 充分接近零根 p, 牛頓法是一個二次收斂的算法!)

Multiple Roots (重根)

Def 2.10 (零根的重數)

A number p is called a zero of multiplicity $m \in \mathbb{N}$ (重數) of f if for any $x \neq p$, we can write

$$f(x) = (x - p)^m q(x)$$
 with $\lim_{x \to p} q(x) \neq 0$.

Note: A root p of f is called **simple** (單根) if it is a zero of multiplicity one, i.e., m = 1.

Thm 2.11 (單根的充分必要條件)

 $f \in C^1[a, b]$ has a **simple zero** at $p \in (a, b) \iff f(p) = 0$, but $f'(p) \neq 0$.

Proof (1/2)

 (\Longrightarrow) If f has a simple zero at p, then f(x)=(x-p)q(x) for $x\in [a,b]\backslash \{p\}$. So, f(p)=0 and we also see that

$$f'(p) = \lim_{x \to p} f'(x) = \lim_{x \to p} [q(x) + (x - p)q'(x)] = \lim_{x \to p} q(x) \neq 0,$$

since $f \in C^1[a, b]$.

Proof (2/2)

(\iff) Suppose that $f \in C^1[a, b]$ with f(p) = 0 and $f'(p) \neq 0$ for some $p \in (a, b)$.

• From Taylor's Thm \Longrightarrow for any $x \in [a,b] \setminus \{p\}$, $\exists \xi(x)$ between x and p s.t.

$$f(x) = f(p) + f'(\xi(x))(x - p) = (x - p)q(x),$$

where $q(x) \equiv (f' \circ \xi)(x) = f'(\xi(x))$ for $x \in [a, b] \setminus \{p\}$.

• Because $\xi(x) \to p$ as $x \to p$ and f' is continuous at p,

$$\lim_{x\to p} q(x) = \lim_{x\to p} f'(\xi(x)) = f'\left(\lim_{x\to p} \xi(x)\right) = f'(p) \neq 0.$$

Hence, f must have a simple zero at p by Def.

Thm 2.12 (重根的充分必要條件)

 $f \in C^m[a, b]$ has a zero of multiplicity m at $p \in (a, b)$ $\iff f(p) = f'(p) = f''(p) = \cdots f^{(m-1)}(p) = 0$, but $f^{(m)}(p) \neq 0$.

Homework: do Exercise 12 for the proof.

Note: In practice, Newton's method usually converges **linearly** to a zero p of multiplicity $m \ge 2$, even though an initial guess p_0 is chosen close to p.

Linear Conv. of Newton's Method for m=2

Example 1, p. 83

Consider $f(x) = e^x - x - 1 = 0$ for all $x \in \mathbb{R}$.

- (a) Show that f has a zero of multiplicity $\mathbf{2}$ at p = 0.
- (b) Use Newton's method to compute an approximation to p with $\mathbf{p_0}=\mathbf{1}.$

Sol:

(a) Since

$$f(0) = e^0 - 0 - 1 = 0, f'(0) = e^0 - 1 = 0, f''(0) = e^0 = 1 \neq 0,$$

it follows that p = 0 is a zero of multiplicity 2 by Thm 2.12.

Numerical Results with $p_0 = 1$

(b) The following table shows the **linear convergence** of Newton's method when a multiple zero occurs:

Improvement of Convergence (1/2)

Suppose that $f \in C^m[a, b]$ and consider $\mu(x) = \frac{f(x)}{f'(x)}$.

• If f has a zero of multiplicity $m(\geq 2)$ at p, then $f(x) = (x - p)^m q(x)$ and hence

$$\mu(x) = \frac{(x-p)^m q(x)}{m(x-p)^{m-1} q(x) + (x-p)^m q'(x)}$$
$$= (x-p) \frac{q(x)}{mq(x) + (x-p)q'(x)} \equiv (x-p)\hat{q}(x).$$

• Since $q(p) \neq 0$, $\mu(\mathbf{p}) = \mathbf{0}$ and $\lim_{x \to p} \hat{q}(x) = \frac{1}{m} \neq \mathbf{0}$. So, $\mu(x)$ has a **simple zero** at p.

Improvement of Convergence (2/2)

• Applying Newton's method for solving the problem $\mu(x)=0$, we obtain

$$g(x) = x - \frac{\mu(x)}{\mu'(x)} = x - \frac{f(x)f'(x)}{[f'(x)]^2 - f(x)f''(x)}.$$
 (Check!)

Modified Newton's Method: (修正的牛頓法)

$$p_n = p_{n-1} - \frac{f(p_{n-1})f'(p_{n-1})}{[f'(p_{n-1})]^2 - f(p_{n-1})f''(p_{n-1})}$$

for all $n \ge 1$.

Example 2, p. 84

Use the **Modified Newton's method** for solving the multiple root

- x = 0 of $f(x) = e^x x 1$ with $p_0 = 1$.

 A system with 10 digits of precision is used in this case.
 - Both the numerator and the denominator approach $0 \Rightarrow$ Loss of Significant Digits!

The Convergence Order of Secant Method

Exercise 14, p. 86 (補充題)

It is shown from pp. 228–229 of [DaB] that if f(p) = 0 and the sequence $\{p_n\}_{n=0}^{\infty}$ generated by **Secant Method** converges to p, then $\exists C > 0$ s.t.

$$|p_{n+1}-p|\approx C|p_n-p||p_{n-1}-p|$$

for sufficiently large values of n. Apply this fact to prove the order of convergence for Secant Method is

$$\alpha = \frac{1+\sqrt{5}}{2} \approx 1.62$$
. (golden ratio; 黃金比率)

Proof of Exercise 14

Let $e_n = p_n - p$ for $n \ge 0$. If $p_n \to p$ of order α , then $\exists \lambda > 0$ s.t.

$$\lim_{n\to\infty}\frac{|p_{n+1}-p|}{|p_n-p|^\alpha}=\lim_{n\to\infty}\frac{|e_{n+1}|}{|e_n|^\alpha}=\lambda>0.$$

Then for sufficiently large values of n, $|e_{n+1}| \approx \lambda |e_n|^{\alpha}$. Thus,

$$|e_n| \approx \lambda |e_{n-1}|^{\alpha}$$
 or $|e_{n-1}| \approx \lambda^{-1/\alpha} |e_n|^{1/\alpha}$.

Using the hypothesis gives

$$\lambda |e_n|^{\alpha} \approx |e_{n+1}| \approx C|e_n| \cdot |e_{n-1}| \approx C\lambda^{-1/\alpha} |e_n|^{1+1/\alpha}$$

for sufficiently large values of n. So, we further have $|e_n|^{\alpha} \approx C \lambda^{-1/\alpha-1} |e_n|^{1+1/\alpha}$. Since the powers of $|e_n|$ must agree,

$$\alpha = 1 + 1/\alpha$$
 or $\alpha = \frac{1 + \sqrt{5}}{2} \approx 1.62$.

Remarks

- From Exercise 14(a) of Section 2.5, p. 91, we see that if a sequence $p_n \to p$ of order α for $\alpha > 1$, then it is superlinearly convergent.
- Thus, the Secant method must be superlinearly convergent!

Section 2.5 Accelerating Convergence (加速收斂性)

Acceleration of Linear Convergence

Objective

We try to develop some accelerating techniques for a linearly convergent sequence $\{p_n\}_{n=0}^{\infty}$ generated by the fixed-point iteration.

- Aitken's Δ^2 method (more rapid convergence)
- Steffensen's method (quadratic convergence)

The Difference Operator Δ

Def 2.13 (向前差分算子)

Let $\{p_n\}_{n=1}^{\infty}$ be a sequence generated by some iterative method.

ullet The **forward difference** operator Δ is defined by

$$\Delta p_n = p_{m+1} - p_n \quad \forall \ n \ge 0.$$

ullet Higher powers of Δ is defined recursively by

$$\Delta^k p_n = \Delta(\Delta^{k-1} p_n) \quad \forall \ k \ge 2.$$

Note: For k = 2 in above Def., we have

$$\Delta^{2} p_{n} = \Delta(p_{n+1} - p_{n}) = \Delta p_{n+1} - \Delta p_{n}$$

$$= (p_{n+2} - p_{n+1}) - (p_{n+1} - p_{n})$$

$$= p_{n+2} - 2p_{n+1} + p_{n}.$$

Derivation of Aitken's Δ^2 Method (1/2)

Assume that $p_n \to p$ and the signs of $p_{n+2} - p$, $p_{n+1} - p$, $p_n - p$ are the same.

Moreover, suppose also that

$$\frac{p_{n+1}-p}{p_n-p}\approx\frac{p_{n+2}-p}{p_{n+1}-p},$$

if *n* is sufficiently large.

• Then
$$(p_{n+1} - p)^2 \approx (p_{n+2} - p)(p_n - p)$$

 $\iff p_{n+1}^2 - 2p_{n+1}p + p^2 \approx p_{n+2}p_n - (p_{n+2} + p_n)p + p^2$
 $\iff (p_{n+2} - 2p_{n+1} + p_n)p \approx p_{n+2}p_n - p_{n+1}^2$

Derivation of Aitken's Δ^2 Method (2/2)

$$\iff p \approx \frac{p_{n+2}p_n - p_{n+1}^2}{p_{n+2} - 2p_{n+1} + p_n}$$

$$= \frac{(p_np_{n+2} - 2\mathbf{p_n}\mathbf{p_{n+1}} + \mathbf{p_n}^2) - (p_{n+1}^2 - 2\mathbf{p_{n+1}}\mathbf{p_n} + \mathbf{p_n}^2)}{p_{n+2} - 2p_{n+1} + p_n}$$

$$\iff p \approx p_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n} = p_n - \frac{(\Delta p_n)^2}{\Delta^2 p_n} \text{ for } n \ge 0.$$

• Aitken's Δ^2 Method:

$$\hat{p}_n = p_n - \frac{(\Delta p_n)^2}{\Delta^2 p_n} \equiv {\{\Delta^2\}(p_n)} \quad \forall n \ge 0,$$

where the term $p_n = g(p_{n-1})$ is often generated by the **fixed-point iteration** for $n \ge 1$.

Convergence Behavior for Aitken's Method

Thm 2.14 (Aitken 序列的收斂定理)

Suppose that $\{p_n\}_{n=0}^{\infty}$ is a sequence converging **linearly** to the limit p with

$$\lim_{n\to\infty}\frac{p_{n+1}-p}{p_n-p}<1.$$

Then the Aitken's Δ^2 sequence $\{\hat{p}_n\}_{n=0}^{\infty}$ converges to p faster than $\{p_n\}_{n=0}^{\infty}$ in the sense that

$$\lim_{n\to\infty}\frac{\hat{p}_n-p}{p_n-p}=0.$$

Note: See Exercise 16 for the proof of this theorem.

The Steffensen's Method

Steffensen's Sequences

• Aitken's Δ^2 method constructs the terms in order:

$$p_0, \quad p_1 = g(p_0), \quad p_2 = g(p_1), \quad \hat{p}_0 = \{\Delta^2\}(p_0),$$

 $p_3 = g(p_2), \quad \hat{p}_1 = \{\Delta^2\}(p_1), \dots$

• Steffensen's method constructs the same first 4 terms and every **third term** of the Steffensen sequence is generated by the Aitken's Δ^2 operator, i.e.

$$\begin{aligned} & p_0^{(0)}, \quad p_1^{(0)} = g(p_0^{(0)}), \quad p_2^{(0)} = g(p_1^{(0)}), \quad p_0^{(1)} = \{\Delta^2\}(p_0^{(0)}), \\ & p_1^{(1)} = g(p_0^{(1)}), \quad p_2^{(1)} = g(p_1^{(1)}), \quad p_0^{(2)} = \{\Delta^2\}(p_0^{(1)}), \dots \end{aligned}$$

Pseudocode of Steffensen's Method

To find a sol. to p = g(p) given initial approx. p_0 .

Algorithm 2.6: Steffensen's Method

```
INPUT initial approx. p_0; tolerance TOL; max. no. of iter. N_0.
```

Step 1 Set
$$i = 1$$
.

Step 2 While
$$i \le N_0$$
 do **Steps 3–6**

Step 3 Set
$$p_1 = g(p_0)$$
; $p_2 = g(p_1)$; $p = p_0 - (p_1 - p_0)^2/(p_2 - 2p_1 + p_0)$.

Step 4 If
$$|p - p_0| < TOL$$
 then $OUTPUT(p)$; **STOP**.

Step 5 Set
$$i = i + 1$$
.

OUTPUT approx. sol. p to x = g(x).

Step 6 Set
$$p_0 = p$$
. (Update p_0)

Step 7 OUTPUT ('Method failed after N_0 iterations'); **STOP**.

Example

Use the Steffensen's method to accelerate the fixed-point iteration $p_n=g(p_{n-1}), n\geq 1$, where

$$g(x) = g_4(x) = (\frac{10}{4+x})^{1/2},$$

for solving $f(x) = x^3 + 4x^2 - 10 = 0$ with $p_0 = 1.5$.

Sol: The **quadratic convergence** of Steffensen's method is shown. The computed sol. is accurate to the **9th** decimal place as Newton's method.

Convergence Behavior for Steffensen's Method

Thm 2.15 (Steffensen 序列的二次收斂性)

Suppose that x = g(x) has the solution p with $g'(p) \neq 1$. If $\exists \delta > 0$ s.t. $g \in C^3[p - \delta, p + \delta]$, then Steffensen's method gives **quadratic** convergence for any $p_0 \in [p - \delta, p + \delta]$.

Section 2.6
Zeros of Polynomials and
Müller's Method
(多項式的零根與 Müller 法)

Thm 2.16 (Fundamental Theorem of Algebra; FTA)

Every poly. of degree $n \ge 1$ with **real or complex coefficients**

$$P(x) = a_n x_n + a_{n-1} x_{n-1} + \dots + a_1 x_1 + a_0$$

has **exactly** n roots (or zeros) in \mathbb{C} .

Two Questions

- Q1 For any x_0 , how to evaluate $P(x_0)$ efficiently and accurately in practical computation?
- Q2 How to find the complex zeros of P(x) numerically?

Two Corollaries of FTA

Cor 2.17 (多項式的因式分解)

If P(x) is a poly. of degree n with real or complex coeffs., then \exists distinct zeros $x_1, x_2, \dots, x_k \in \mathbb{C}$ and $m_1, m_2, \dots, m_k \in \mathbb{N}$ s.t.

$$P(x) = a_n(x-x_1)^{m_1}(x-x_2)^{m_2}\cdots(x-x_k)^{m_k}.$$

Here, m_i is the multiplicity of the zero x_i for i = 1, 2, ..., k.

Cor 2.18 (多項式的相等)

Let P(x) and Q(x) be pplys. of degree at most n. If \exists distinct $x_1, \dots, x_k \in \mathbb{C}$ with k > n s.t.

$$P(x_i) = Q(x_i), \quad i = 1, 2, ..., k,$$

then $P(x) \equiv Q(x)$, i.e., $P(x) = Q(x) \quad \forall x \in \mathbb{C}$.

A Nested Technique for Evaluating $P(x_0)$

Thm 2.19 (Horner's Method)

Let $P(x) = a_n x_n + a_{n-1} x_{n-1} + \dots + a_1 x_1 + a_0$ and $x_0 \in \mathbb{R}$. Define $b_n = a_n$ and

$$b_k = a_k + b_{k+1}x_0, \quad k = n - 1, n - 2, \dots, 1, 0.$$

We then have

(1) $b_0 = P(x_0)$ can be evaluated in a nested manner, i.e.,

$$P(x_0) = a_0 + (\cdots a_{n-3} + (a_{n-2} + (a_{n-1} + a_n x_0)x_0)x_0 \cdots)x_0.$$

(2) If
$$Q(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \cdots + b_2 x + b_1$$
, then

$$P(x) = (x - x_0)Q(x) + b_0.$$

Proof of Thm 2.19

- It suffices to prove Part (2), since Part (1) is easily seen from the construction of b_k for $k = n, n 1, \dots, 1, 0$.
- For the Part (2), we see that

$$(x - x_0)Q(x) + b_0$$

$$= (x - x_0)(b_nx^{n-1} + b_{n-1}x^{n-2} + \cdots b_2x + b_1) + b_0$$

$$= b_nx^n + b_{n-1}x^{n-1} + \cdots b_2x^2 + b_1x$$

$$- b_nx_0x^{n-1} - b_{n-1}x_0x^{n-2} - \cdots - b_2x_0x - b_1x_0 + b_0$$

$$= b_nx^n + (b_{n-1} - b_nx_0)x^{n-1} + \cdots + (b_1 - b_2x_0)x + (b_0 - b_1x_0)$$

$$= a_nx^n + a_{n-1}x^{m-1} + \cdots + a_1x + a_0$$

$$= P(x), \text{ since } a_n = b_n \text{ and } a_k = b_k - b_{k+1}x_0, \quad k = n-1, \dots, 1, 0.$$

Therefore, we have $b_0 = P(x_0)$.

Example 2, p. 93

Use **Horner's Method** to evaluate $P(x) = 2x^4 - 3x^2 + 3x - 4$ at $x_0 = -2$. The actual value is $P(x_0) = P(-2) = 10$.

Sol: Try to construct a table as follows.

$$x_0 = -2$$
 $\begin{vmatrix} a_4 = 2 \\ b_4 x_0 = -4 \end{vmatrix}$ $\begin{vmatrix} a_3 = 0 \\ b_4 x_0 = -4 \end{vmatrix}$ $\begin{vmatrix} a_2 = -3 \\ b_3 x_0 = 8 \end{vmatrix}$ $\begin{vmatrix} a_1 = 3 \\ b_2 x_0 = -10 \end{vmatrix}$ $\begin{vmatrix} a_0 = -4 \\ b_1 x_0 = 14 \end{vmatrix}$ $\begin{vmatrix} b_4 = 2 \\ b_3 = -4 \end{vmatrix}$ $\begin{vmatrix} b_2 = 5 \\ b_1 = -7 \end{vmatrix}$ $\begin{vmatrix} b_0 = 10 \\ b_1 \end{vmatrix}$

So,
$$P(x) = (x+2)(2x^3 - 4x^2 + 5x - 7) + 10$$
 and hence $P(-2) = \frac{b_0}{2} = 10$ by using Horner's Metod.

Newton's Method for Polynomials

• From Thm 2.19, we obtain that

$$P(x) = (x - x_0)Q(x) + b_0.$$

So, differentiating w.r.t. x gives

$$P'(x) = Q(x) + (x - x_0)Q'(x).$$

- For any $x_0 \in \mathbb{R}$, we have $P'(x_0) = Q(x_0)$, which can be evaluated efficiently using Horner's Method.
- Newton's Method can be rewritten as

$$p_k = p_{k-1} - \frac{P(p_{k-1})}{Q(p_{k-1})}, \quad k = 1, 2, \dots,$$

where p_0 is a good initial approx. to the zero p of P(x).

Pseudocode of Horner's Method

To evaluate $P(x_0)$ and $P'(x_0)$ for an *n*th-degree polynomial P(x).

Algorithm 2.7: Horner's Method

INPUT degree n; coeff. a_n, \dots, a_1, a_0 ; x_0 .

OUTPUT $y = P(x_0)$; $z = P'(x_0)$.

Step 1 Set $y = a_n$; $z = a_n$.

Step 2 For $j = n - 1, n - 2, \dots, 1$ Set $y = y \cdot x_0 + a_j$; (Compute b_j for P.) $z = z \cdot x_0 + y$. (Compute b_{j-1} for Q.)

Step 3 Set $y = y \cdot x_0 + a_0$. (Compute b_0 for P.)

Step 4 OUTPUT(y, z); **STOP**.

Operation Counts (運算量)

• The usual method for evaluating

$$P(x_0) = a_n x_0^n + a_{n-1} x_0^{n-1} + \dots + a_2 x_0^2 + a_1 x_0 + a_0$$

= $a_n \cdot (x_0 \cdot x_0^{n-1}) + \dots + a_2 \cdot (x_0 \cdot x_0) + a_1 \cdot x_0 + a_0$

requires 2n - 1 multiplications and n additions.

- The Horner's Method for evaluating the value $P(x_0)$ requires only $\mathbf n$ multiplications and n additions.
 - ⇒ This avoids the loss of significance!

Example 3, p. 94

Find an approximation to a zero of

$$P(x) = 2x^4 - 3x^2 + 3x - 4$$

using Newton's method with $\mathbf{x_0} = -\mathbf{2}$ and Horner's method.

Sol: Using Horner's Method with initial $x_0 = -2$, we have

$$\implies x_1 = x_0 - \frac{P(x_0)}{Q(x_0)} = -2 - \frac{10}{-49} \approx -1.796.$$

Sol. of Example 3 (Conti'd)

Next, evaluate $P(x_1)$ and $P'(x_1) = Q(x_1) \Longrightarrow$

$$\implies x_2 = x_1 - \frac{P(x_1)}{Q(x_1)} = -1.796 - \frac{1.742}{-32.565} \approx -1.7425.$$

Similarly, $\mathbf{x_3} \approx -1.73897$ and an actual zero to $\mathbf{5}$ decimal places is -1.73896.

Complex Zeros of P(x)

Thm 2.20 (實係數多項式的複數重根)

If z = a + bi is a complex zero of **multiplicity** m of the poly. P(x) with **real coefficients**, then

- (1) $\bar{z} = a bi$ is also a complex zero of **multiplicity** m of P(x).
- (2) $P(x) = (x^2 2ax + a^2 + b^2)^m Q(x)$, where Q(x) is some poly. with $Q(z) \neq 0$.

Secant Method v.s. Müller's Method

Basic Ideas

- **Secant Method**: given p_0 and $p_1 \Rightarrow p_2$ is the *x*-intercept of the line through $(p_0, f(p_0))$ and $(p_1, f(p_1))$.
- Müller's Method: given p_0 , p_1 and $p_2 \Rightarrow p_3$ is the x-intercept of the **parabola** through $(p_0, f(p_0))$, $(p_1, f(p_1))$ and $(p_2, f(p_2))$.

Derivation of Müller's Method (1/4)

Consider the quadratic polynomial

$$P(x) = a(x - p_2)^2 + b(x - p_2) + c$$

passing through $(p_0, f(p_0))$, $(p_1, f(p_1))$ and $(p_2, f(p_2))$.

So, we obtain the following linear system

$$f(p_2) = a \cdot 0 + b \cdot 0 + c,$$

$$f(p_0) = a(p_0 - p_2)^2 + b(p_0 - p_2) + c,$$

$$f(p_1) = a(p_1 - p_2)^2 + b(p_1 - p_2) + c$$

to determine the constants a, b and c uniquely.

Derivation of Müller's Method (2/4)

It follows from Cramer's Rule that

$$c = f(p_2),$$

$$b = \frac{(p_0 - p_2)^2 [f(p_1) - f(p_2)] - (p_1 - p_2)^2 [f(p_0) - f(p_2)]}{(p_0 - p_2)(p_1 - p_2)(p_0 - p_1)},$$
(3)

$$a = \frac{(p_1 - p_2)[f(p_0) - f(p_2)] - (p_0 - p_2)[f(p_1) - f(p_2)]}{(p_0 - p_2)(p_1 - p_2)(p_0 - p_1)}.$$
 (4)

• Let h_1 , h_2 , δ_1 and δ_2 be defined by

$$h_1 = p_1 - -p_0, \quad h_2 = p_2 - p_1,$$

 $\delta_1 = [f(p_1) - f(p_0)]/h_1, \quad \delta_2 = [f(p_2) - f(p_1)]/h_2.$ (5)

Derivation of Müller's Method (3/4)

• Substituting (5) into (3)–(4) gives that

$$\begin{split} a &= \frac{(-h_2)(-h_1\delta_1 - h_2\delta_2) - [-(h_1 + h_2)](-h_2\delta_2)}{-(h_1 + h_2)(-h_2)(-h_1)} \\ &= \frac{h_2h_1(\delta_2 - \delta_1)}{(h_1 + h_2)h_2h_1} = \frac{\delta_2 - \delta_1}{h_1 + h_2}. \end{split}$$

and

$$b = \frac{(h_1 + h_2)^2(-h_2\delta_2) - h_2^2(-h_1\delta_1 - h_2\delta_2)}{-(h_1 + h_2)(-h_2)(-h_1)}$$

$$= \frac{(h_1 + h_2)h_1h_2\delta_2 + h_2^2h_1(\delta_2 - \delta_1)}{(h_1 + h_2)h_2h_1} = \frac{\delta_2 + h_2a}{\delta_2}.$$

Derivation of Müller's Method (4/4)

• If p_3 is the intersection of the x-axis with y = P(x), then

$$P(p_3) = a(p_3 - p_2)^2 + b(p_3 - p_2) + c = 0$$

with $c = f(p_2)$. So, we know that

$$p_3 = p_2 + \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = p_2 + \frac{-2c}{b \pm \sqrt{b^2 - 4ac}}$$
 $= p_2 + \frac{-2c}{b + \text{sign}(b)\sqrt{b^2 - 4ac}}.$ (取分母絕對值較大者)

• Repeat above procedure with the points $(p_1, f(p_1))$, $(p_2, f(p_2))$ and $(p_3, f(p_3))$ to obtain the next approx. p_4 to a zero of the nonlinear equation f(x) = 0.

Pseudocode of Müller's Method

To find a sol. to f(x) = 0 given **3** approx. p_0 , p_1 and p_2 .

Algorithm 2.8: Müller's Method

```
INPUT initial p_0, p_1, p_2; tol. TOLL; max. no. iter. N_0. OUTPUT approx. sol. p.
```

Step 1 Set
$$i = 3$$
.

Step 2 While
$$i \le N_0$$
 do **Steps 3–7**.

Step 3 Set
$$h_1 = p_1 - p_0$$
; $\delta_1 = [f(p_1) - f(p_0)]/h_1$; $h_2 = p_2 - p_1$; $\delta_2 = [f(p_2) - f(p_1)]/h_2$; $a = (\delta_2 - \delta_1)/(h_1 + h_2)$; $b = \delta_2 + h_2 a$; $c = f(p_2)$; $D = \sqrt{b^2 - 4ac}$. (May require complex arithmetic.)

Step 4 If
$$|b-D| < |b+D|$$
 then set $E = b+D$;
Else set $E = b-D$.

Step 5 Set
$$h = -2c/E$$
; $p = p_2 + h$.

Step 6 If
$$|h| < TOL$$
 then OUTPUT(p); **STOP**.

Step 7 Set
$$p_0 = p_1$$
; $p_1 = p_2$; $p_2 = p$; $i = i + 1$.

Step 8 OUTPUT ('Method failed after N_0 iterations'); **STOP**.

An Illustrative Example, p. 98

Use Müller's Method to find all zeros of the 4th-degree polynomial

$$f(x) = x^4 - 3x^3 + x^2 + x + 1$$

with $TOL = 10^{-5}$ and the following initial approximations:

- (1) $p_0 = 0.5$, $p_1 = -0.5$, $p_3 = 0$; (Complex zero)
- (2) $p_0 = 0.5$, $p_1 = 1.0$, $p_3 = 1.5$; (Real zero of **small** magnitude)
- (3) $p_0 = 1.5$, $p_1 = 2.0$, $p_3 = 2.5$. (Real zero of large magnitude)

Numerical Results (1/2)

One complex root z_1 is computed by the Müller's Method, and the other complex root z_2 can be obtained by taking $z_2 = \bar{z_1}$ directly.

Numerical Results (2/2)

Two distinct real roots are computed by the Müller's Method with different initial points.

Thank you for your attention!

