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Section 7.1
Norms of Vectors and Matrices
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Vector Norms ([BERIEE)

Def 7.1

A vector norm on R” is a function || - || : R” — R with the
following properties:

(i) |||l > 0 for all x € R™,
(ii)
(iii) ||ax|| = |a||x|| for all &« € R and x € R”,
(V) [Ix+ Yl < [IX[ + lIy] for all x, y € R™.

||| =0 <= x=0,

Note: The n-dimensional vector x is often denoted by
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Useful Vector Norms

Def 7.2

@ The k and Iy, norms for the vector x = [x1, X0, - ,x,]T € R"
are defined by

n 1/2
Iz = (32¢) " and fixlloc = max |
=1 1<i<n

@ The /1 norm of x € R" is defined by

n

Ixlly = Il

i=1
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Distance between Vectors in R”

Def 7.4

Let x=[x1,--- ,xn] " and y=[y1,---,yn] " be two vectors in R".

@ The /5 and I, distances between x and y are defined by

n 1/2
Ix=ylle = { 3Ca—y?} " and flx=ylloe = max iy

- 1<i<n
i=1

@ The /; distance between x and y is given by

n
Ix =yl =>_ Ixi— yil-
i=1
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Example 2, p. 435
The 3 x 3 linear system

3.3330x1 + 15920x2 — 10.333x3 = 15913,
2.2220x1 + 16.710x2 + 9.6120x3 = 28.544,
1.5611x1 4+ 5.1791x21.6852x3 = 8.4254

has the exact sol. x = [1,1,1]T. If the system is solved by GE
with patrial pivoting using 5-digit rounding arithnetic, we obtain
the computed sol.

% = [1.2001,0.99991,0.92538]".

So, the Iy, and & distances between x and X are

|x— X|oc = 0.2001 and |x— X||2 = 0.21356. g
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Convergence for Sequences of Vectors
Def 7.5 (A2 FIRIULR )

A seq. {xW}2 | of vectors in R” is said to converge to x € R”
with respect to the norm || - || if Ve > 0, 3N(e) € N s.t.

X0 — x| <e  Vk> N).

Thm 7.6

The seq. of vectors {x(K}2°  converges to x € R" with respect to

| A

the /o, norm <— klim xEk) =x;fori=1,2,...,n.
— 00

pf: It is easily seen that Ve > 0, 3N(e) € N s.t.

X9 — xlloo <€ Vk> N(e)
Ol , 20
—|x; x| <€ Vk> N(e)and 1 <i<n. A

1
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Example 3, p. 436

The sequence of vectors in R*

1 3
X(k) = [17 2 + 7(, ﬁ’ e_ksin k]T
converges to x = [1, 2,0, O]T € R* with respect to the /5, norm,

since

1
lim (2+ —) =2, |im3:0, lim e *sink=0.

k—00 k k—oo k2 k—00

Does the given sequence converge to x with respect to the
norm?
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Thm 7.7 (The Equivalence of Vector Norms)

For each x € R”,

IXloe < lIxl2 < v/nlIX]loo-

In this case, we say that the /| and kb norms are equivalent.

pf: For any x= [x1, ] T € R", let x| = max |x] = /x|
<i

Then we see that

O [xloe = b = /4 < VA& + -+ = |l
n 1/2 1/2

0 fxl2 < (X)) = () = vl
=

So, these prove the desired inequalities.
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Example 4, p. 437

Show that the sequence of vectors in Example 3

xk) :[1,2+1

o %,e_ksin KT eRr?

converges to x = [1, 2,0, O]T € R* with respect to the /, norm.

<

pf: In Example 3, we know that klim X% = x|loo = 0. So, for any
— 00
€e>0, 3Ny € Ns.t.

X0 — x| o0 < % v k> N,
and furthermore, it follows from Thm 7.7 that
€

9 =Xl < VA X9 = xloe <2 (5) =€

whenever k > Ny. Hence, this completes the proof.
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@ Any two vector norms || - || and || - ||” on R" are equivalent,
i,e., 3¢ > 0 and ¢ > 0 s.t.

alldl < Ixl < coll<l ¥xe R,

o A seq. {x(K}5° converges to the limit x € R" with respect
to the norm || - || <= a seq. {xW}%°, converges to the limit
x € R™ with respect to the norm | - ||'. ([AZ 38U EIHE
S0 RIRRR))

@ For any x € R”, the relations between /1, /5 and /., norms are

X2 < Il < v/nlixl2,
IXlloo < Xl < liXlloo-
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Matrix Norms and Distances

Def 7.8 (FEFERVEEEY)

A matrix norm on R"*" is a function || - || : R™" — R satisfying
forall A,Be R™" and all a € R :

(i) Al = 0;
(ii) ||A|l = 0 <= A =0 (zero matrix);

)
)
(iii) [leAll = [ef [IA]]
)
)

(iv) [[A+ Bl < [lAll + (| Bl
(v) [[ABI < [[All 1| B]I

Definition (Distances of Two Matrices)

If A, B € R™" the number ||A— BJ| is called the distance between
A and B with respect to the matrix norm || - ||. v
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Thm 7.9 (BAEEEEE)

If || - || is a vector norm on R”, then

Al = max 1A

is a matrix norm on R"*". (See Exercise 13 for the proof.)

pf: Only prove that ||AB|| < ||A|| || B]| for any A, B € R™" here.
For any unit vector x € R", we have

JABX) | = 1B - HA(HBH)H_HAII X0

Thus, we conclude that

IAB|| = ma ax [|(AB)xl| = max A

< max (JAIHIBx) = lIAll - max [Bx] = AT 1B %\%
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@ Matrix norms defined by vector norms are called the natural
(or induced) matrix norm associated with the vector norm.

@ Since x = ﬁ is a unit vector for z# 0, Thm 7.9 can be
rewritten as

A
Al = max 14 = max|A (2| = max 21
lIxl= B #0 |7
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For any A € R™" 0 # z€ R" and any natural norm || - ||,

| Az|| < [|A]l - |2]|-
Some Natural Matrix Norms
Alleoc = ma A = ma [ ZH"O. the /s, norm
Q [Allw |XOO>;1H Xl oo #))( HZHoo ( 00 )

Q ||A|l2 = max ||Ax]|2 = max

(the /&, norm)

Ila=1 H 2
O ||A|l1 = max ||Ax]|1 = max HAZHI. (the /; norm)
=1 z0 |zl
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Thm 7.11 ($B/8 oo-BBAIEHEAT)

If A= [a;] € R"™", then

[Aloe = max Zw (1A] = [|a;1] BIBABIAN)

pf: The proof is separated into two parts.

(1) Assume ||A]|loo = ||AX||oo for some x € R™ with
|X|loc = max |xj| = 1. Then we have
1<j<n

Al = Al = max [(AX)] = max Zauxj\
<
n
< max > (Jajl - xl ) = max Zrauw
1<i<n 4 1<i<n
=1 L2

since [|x|oo = 1.
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(2) Let y=[y1,¥2,---,¥n]" € R", where each component

o 1, if a;; >0,
Vi -1, if a,-j<0.

Then |lyllcc =1 and ajy; = |ajj| for all i, j. So, we get

n n
ajiyj| = max ajjl.
o Z iy 1255, E |aj]
Jj=1 Jj=1

1AVo0 = max [(Ay)il = max

Furthermore, it follows that

1Alleo = max [[AX[lo 2 [[Apfloc = max Z |-

[

From the parts (1) and (2) = these complete the proof. AR
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Exercise 6, p. 442 (JEf#E 1-#BEMEEAR)

If A= [a;] € R™", then

|Ally = max Zlaul (JAl = [|ag]] BIRAFTH)

1<j<n
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Example 5, p. 441

For the 3 x 3 matrix
1 2 -1
A=10 3 -1},
5 —1 1
it follows that
3
| Alleo = ,-L“fz’fg; |aj| = max{4,4,7} =1,
3
IAll1 212?2),(3; |aj| = max{6,6,3} = 6.
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Section 7.2
Eigenvalues and Eigenvectors
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Def 7.12 (HZIE)
The characteristic polynomial of A € R"™" is defined by

p(A\) = det(A — A)),

where [ is the n X n identity matrix.

Note: The characteristic poly. p is an nth-degree poly. with real
coefficients. So, it has at most n distinct zeros in C.
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Def 7.13 (FEEEFEH@E)
Let p(\) be the characteristic poly. of A € R™".

@ The number X € C is called an eigenvalue (or characteristic
value) of A if p(A) = 0.

@ The spectrum (&) of A, denoted by o(A), is the set of all
eigenvalues of A.

@ If 30 #x e R"s.t. Ax=Axor (A— A)x=0 for A € o(A),
then x is called an eigenvector (pr characteristic vector) of A
corresponding to A.
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Def 7.14

The spectral radius (FZ¥18) of A € R"™" is defined by
o(A) = max{|A| |A € o(A)}.

(For complex A = a + (i, we define |\| = /a2 + §2.)

Thm 7.15 (%EPE 2-ERMETE Q)

If Ais an n x n matrix, then

(i) [[Allz = v/p(ATA).

(i) p(A) < ||A|| for any natural matrix norm || - ||.
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Review from Linear Algebra

Let B= ATA with A€ R™" and v R".
o BT = (ATA)T = AT(AT)T = ATA = B, i.e., B is symmetric.
e Forany A € o(B), A > 0.
@ B is orthogonally diagonalizable, i.e., 3 orthog. @ € R™" s.t.

Q"BQ = Q"(ATA)Q = diag(M, A2, -+ , An) = D,

where A\ > X\g > --- A\, > 0.

Ty, we have

e Since ||v||2 =v
| Ax||2 = (Ax)T(Ax) = x"(ATA)x = x Bx

for any x € R".
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Proof of Thm 7.15 (1/2)

(i) Since ATA is symmetric, 3 orthogonal @ € R™" s.t.
QT(ATA)Q = diag()\la >\27 o 7)‘n) = Da
where A1 > X9 > --- A, > 0. Hence,

|AlI2 = max ||Ax]|3 = max x"(ATA)x

lIxll2=1 [Ixl2=1
= max x’ QDQ"x= max y'Dy,
lIxll2=1 lIvll2=1

where we let y = Q7x. So, ||Al|2 < A\1. Moreover, the
maximum value of y" Dy is achieved at the vector
y* =[1,0,---,0]7 € R" and thus ||A||3 = A1 or

IAll2 = VA; = v/P(ATA).
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Proof of Thm 7.15 (2/2)

(i) Let A€ R™" and || - || be any natural norm. For each
A€o(A), FI0#AxeR" s t.

Ax=Ax  with ||x]| = 1.
Hence, we know that
AL = (Al [IX] = [[AX] = [[A] < (Al X = [Al-

So, the spectral radius of A satisfies p(A) < ||Al.
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o If AT = Ac R™" then ||Allz = p(A).

@ For any A € R"™" and any € > 0, 3 a natural norm || - ||¢ s.t.

p(A) < [|Alle < p(A) + €.
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Def 7.16 (UIBFEFERYE R

We day that a matrix A € R"*" is convergent if

lim (A%); =0, forij=1,2,...,n.

k—o0

Example 4, p. 448

The 2 x 2 matrix A = [

1] is a convergent matrix, since we
2
have
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Thm 7.17 (WRAEFERYEERM)

Let A € R™". The following statements are equivalent.

(i) Ais a convergent matrix.

(ii)
(iii)
(iv) ( )
(v) lim A"x =0 for every x € R".

n—o0

I|m ||A"]| = 0 for some natural norm.

I|m HA”H = 0 for all natural norms.
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Section 7.3
The Jacobi and Gauss-Siedel lterative
Techniques
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Derivation of Jacobi Method

From the ith eq. of a linear system Ax= b

ajiix1 + apxg + - + X+ -+ + AinXn = bj

for solving the ith component x;, we get
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The Jacobi Method

Component Form (Jacobi ZR 73 ERZT)

For each k> 1, we nay consider the Jacobi iterative method:

1 -
X9 = - Zl ( a,-ij(.k 1)) +bi| fori=1 , (1)
iz
where an initial approx. x(0) = [x§°>, e (0)] € R" is given.
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Example 1, p. 451
The following linear system

10x; — x9 +2x3 =6
—x1+ 11x9 — x3 + 3x4 = 25
2x1 — x9 +10x3 — x4, = —11
3x2 — x3 + 8x4 = 15

has a unique solution x = [1,2,—1,1]T € R*. Use Jacobi's
iterative technique to find an approx. x{¥) to x starting with
x(©) =10,0,0,0]" € R* until

Hx(k) — X(k_l) ||OO

<1073,
[ERSTPS
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The given linear system ca be rewritten as

X1 =

X =

X3 =

X4 =

1 Lo, 3
L.

1072 525
L1 3 . %
—Xx1+ —=x3— —Xx4 + —
IR TR TR T
-1 1] 11
—X1+ =X+ —X4 — —
5 P10 107 10
3 1 1

—X ==X —s

g 2T gM Ty
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For each k> 1, we apply the Jacbi's method:
AD %ngq) _ %Xg’kq) " g
Xék) _ il (k71)+%xgk71) _% (k— 1)Jr “
ng) _ —?1ng—1)+% (k— 1)+E k1) %
MO %3X§k—1) +é (k=1) 185

with the initial guess xX(*) = [0,0,0,0]7 € R*.
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Numerical Results

After 10 iterations of Jacobi method, we have

X190 — x| 8.0 x 1074
19  1.9998

=40x10"* <1073,

In fact, the absolute error is ||x(1?) — x||oc = 2 x 10~
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Equivalent Matrix-Vector Forms

@ As in Chapter 2, every root-finding problem f(x) = 0 is
converted into its equivalent fixed-point form

x=g(x), xe€l=]ab]

, for some differentiable function g.

@ Similarly, we also try to covert the original linear system
Ax = b into its equivalent matrix-vector form

x=Tx+c¢ xeR"

where T € R™" and c € R" are fixed.

o For k=1,2,..., compute
X0 = k=) 4 ¢

with an initial approx. x(?) € R" to the unique sol. x. <
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A Useful Split of A

The iterative techniques for solving Ax = b will be derived by first
splitting A into its diagonal and off-diagonal parts, i.e.,
a11 0 L. 0 0 S A 0
A= 0 ano _ | a2
5 0 5 . o
0 0 0 am —am  r —apa1 O
0 —aj2 - —ain
—an—1,n
0
=D-L—-U. (2)

Matlab Commands

D = diag(diag(A)); L=tril(—A,—1); U= triu(—A,1); i
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The Jacobi Method Revisited

@ From the splitting of A as in (2), the linear system Ax= b is
transformed to

(D-L-Ux=b< Dx=(L+ Ux+bs x=Tx+g,

where T;= D (L + U) and ¢;= D 'b.

@ It is easily seen that the component form of Jacobi method

1 < _
Xl(k) - ; Z (—a,ﬁ(jk 1))+b, fori:1,...7n.
R

is equivalent to the following matrix-vector form

= T D 4 g Wk 1. AR
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Example 2, p. 453

The 4 x 4 linear system in Example 1 can be rewritten in the form

X1 =

X =

X3 =

X4 =

1 .

1002 5375

Lo 3.2
—Xx1+ —X3— —X4 + —
nr B ™M n
11 11
5 0T 10T 107 10
3 o1 15

—X — X —a

g 28Ny

So, the unique sol. x € R? satisfies x = Tjx + ¢; with

«|l, B~ o gk

=1 3
5 0 5
1 =3 25
11 11 and = | 1
o L 7| =11

10 10
1 15
g O 3
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Algorithm 7.1: Jacobi Method

INPUT dim. n; A= [a;] e R™"; be R"; X0 = X9 e R"; tol. TOL;
max. no. of iter. N.

OUTPUT an approx. sol. xi, x2, ..., x, to Ax= b.

Step 1 Set k=1.
Step 2 While (k < Np) do Steps 3—6
Step 3 Fori=1,...,nset

n

1
Xj = ;” E (—a,-jXOJ-) + bl .
j=1
Iy

Step 4 If ||x— X0|| < TOL then OUTPUT(xq,- -, x,); STOP.
Step 5 Set k= k+ 1.
Step 6 Set X0 = x.

Step 7 OUTPUT(‘Maximum number of iterations exceeded’); STOP.

v

Hung-Yuan Fan (32#i&), Dep. of Math., NTNU, Taiwan Chap . 7, Numerical Analysis (1) 41/130



Comments on Algorithm 7.1

o If some a;; = 0 and A is nonsingular, choose p # i s.t.

|api| is as large as possible,

and then perform (Ep) <+ (Ej) to ensure that no a; = 0 before
applying the Jacobi method.

@ In Step 4, a better stopping criterion should be

<% = x|

< TOL,
X9

where the vector norm || - || is the /1, k or I, norm.
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Jacobi Method v.s. Gauss-Seidel Metod

@ For the Jacobi's method, the ith component x,(k) of XK is

determined by xgk_l),--- ,ngzl) and :(-1;1 1), e ,xg,k_l).

@ At the kth step of Gauss-Seidel method, the ith component
x,(-k) is computed by x(k) o x,(k)1 and x(k 1), e ,xg,k_l).

@ Notice that the recently computed values of ng)7 . x,(k)1 are
better approxs. to x than the values of xgkfl), S ,(kll).
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Component Form of Gauss-Seidel Method

For each k > 1, the ith component of x(¥) is determined by

i—1 n
1 _
= — 1D (apg) + Y (—apg )+ b
ii = farrd)
[ i1 n
1 K k=1
=5 =Y @)= 3 (apd ) + bl (3)
! j=it1

where an initial vector xX(¥) is given and i=1,2,...,n.
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Algorithm 7.2: Gauss-Seidel Method

INPUT dim. n; A= [a;] € R™" ; be R"; X0 = x9) e R" tol. TOL;
max. no. of iter. N.

OUTPUT an approx. sol. xi, x2, ..., x, to Ax= b.
Step 1 Set k= 1.
Step 2 While (k < Np) do Steps 3—6
Step 3 Fori=1,...,nset

i—1 n
1
Xj = ; — Z(QUX)— Z (a,-jXOJ-) aF b,] .

j=1 j=i+1

Step 4 If |[x— X0|| < TOL then OUTPUT (x1,- - ,xn); STOP.
Step 5 Set k= k+ 1.
Step 6 Set X0 = x.

Step 7 OUTPUT(‘Maximum number of iterations exceeded’); STOP.
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Example 3, p. 455
The following linear system

10x; — x9 +2x3 =6
—x1+ 11x9 — x3 + 3x4 = 25
2x1 — x9 +10x3 — x4, = —11
3x2 — x3 + 8x4 = 15

has a unique solution x = [1,2,—1,1]" € R*. Use Gauss-Seidel
method to find an approx. x(K to x starting with
x(©) =10,0,0,0]" € R* until

Hx(k) — X(k_l) ||OO

<1073,
[ERSTPS
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For each k > 1, we apply the Gauss-Seidel method:
1 _ 1 3
ng)zfo (k—1) 5 (k 1)+g
AB) 111 gk)+% ) 131 (k=1) +§
X:(gk): —51 ()+% ()jLE (k1) 1(1)
A %3)(;@ n éng) N 1@5
with the initial guess x(%) = [0,0,0,0]7 € R*.
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Numerical Results of Example 3

After 5 iterations of Gauss-Seidel method, we have

(5) _ x(4) 0x107*
X% = xPlloe 80X X070 94 < 103,
HX(s)HOO 2.000

In fact, the absolute error is |[x(*) — x|loc = 1.0 x 10~%. The
numerical results are shown in the following table.
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Matrix-Vector Form of Gauss-Seidel Method (1/2)

@ From the component form as in (3)

i—1 n
K_ 1 k k-1
XE):; =3 @)+ Y (—apd ) + b
" j=1 J=i+1

we immediately obtain

k k k— k—
ailx(l o rapd = _ai,i+1X,('+11) e ap T opy

foreach i=1,2,...,n.

@ Thus we have following matrix form for Gauss-Seidel method:

a11 0 0 ng) 0 —aiag —aip ng—l)
. : (k) : . : : (k—1)
as]  asa . . X2 _ . . . . 9 +b
, N © 0 Tan—1,n (k=1) \
nl an,n—1 ann, Xn 0 Xn
I~
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Matrix-Vector Form of Gauss-Seidel Method (2/2)

@ For each k > 1, the above matrix equation can be rewritten as

(D— L)x0 = Uxtk=1 4 p
— X9 = (D-1)"'u*Y 4 (D-1)"'b

— xW = Tgx(kfl) + Cg,

where T,=(D—L)"'Uand ¢, = (D— L)~!b.
@ Recall the Jacobi method given by

X0 = Tk o k=1,2,...,

where T;= D~}(L+ U) and ¢;= D~ 'b.
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General lteration Methods

Some Questions

@ When does a general iteration of the form

X(k) _ Tx(k*l) + ¢, k = 172, .

converge to a solution x € R" of the matrix equation
x= Tx+ c?
@ What is the rate of convergence for this iterative method?

© Does the Gauss-Seidel method always converge faster than
the Jacobi method?
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Lemma 7.18

If T € R™" satisfies p(T) < 1, the (I — T)~! exists and

o
(I-T =1+ T-|-T2.|_...:ZTJ
j=0

with TV = /| being defined conventionally.
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Proof of Lemma 7.18

o If A€ o(T), then 30 # x € R s.t.
Tx=Xx or (I-T)x=(1-Mx

So,1-XAeo(l-T).
@ Because p(T) <1, |A| < p(T) < 1. This means that /— T
does not have any zero eigenvalues and hence (/— T)~! exists.

m .
@ Let Sp, = ) T. Then we have

j=0
(I=NSm=Y_ T-> Tl=j— 7"
j=0 j=0

Since p(T) < 1, Tis convergent, i.e., lim T™ =0 by Thm
m—>00

CON 7
7.17. Hence (I- T)~! = Iin Sm=>Y T.

J=
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Thm 7.19 (BERERZWRERIFTEIRA)

For any x(*) € R", the sequence {x(¥}2  defined by
X =T Dy Vix>1

converges to the unique solution of x= Tx+ c <= p(T) < 1.

pf: The proof is illustrated as follows.

(«<=) Suppose that p(T) < 1. By induction =

X9 = Txtk=1 4 ¢
= T(TxX* D 40 +c= T2 4 (T+ e

=T (T TH e
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Since p(T) < 1, lim T*x(®) = 0 by Thm 7.17. Thus, it
—00
follows from Lemma 7.18 that

o0

x= lim x® =0+ (Z Tj>c: (I- T le

k—o00 -
J=0
Hence, the limit x € R" is the unique solution of the equation

x=(-TNlce= (I-Tx=ce=x=Tx+c

(=) Assume that lim x(K = x for any initial vector xX(*), where

k—o00
x € R" is the unique sol. of x= Tx+ ¢. Now, we want to
claim that
p(T) <1< lim T"z=0 VzeR"
k—o00
7,
by applying Thm 7.17.
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For any z€ R”, let xX¥) = x — z. Then by induction =

x— XK = (Tx+ ) — (T Y + ¢)
= Tz, since z= x — X0,

So, it follows from the assumption that

lim T*z=x— lim XK = x—x=0.
k—o00 k—o00

Since z € R" is given arbitrarily, we have p(T) < 1.
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Cor 7.20 (BRENAMGRE LR EWRMLER)

If | T|| < 1 for any natural norm, the seq. {x(¥}2°, defined by
XK — Tadk=1) +c Vk>1

converges to the unique sol. of x = Tx + ¢, for any x(0) € R".
Moreover, we have

() X9 =] < [ TIFIXD =] Vhk>1

k
@) 10 = < Uyl =0 Vi1

Note: See Exercise 13 for the proof.
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Thm 7.21 (Jacobi jEF] Gaussl-Seidel JEUBIAYFE 73 15 1)

If A€ R™" is strictly diagonally dominant, then both Jacobi
and Gauss-Seidel methods converge to the unique sol. x of Ax = b,
for any choice of x(?) € R".

Thm 7.22 (Stein-Rosenberg)

If aj <0 fori# jand a; >0 fori=1,2,...,n, then one and only
one of the following statements holds:

(1)) 0<p(Tg) <p(Ty) <1; (i) 1< p(T)) < p(Tg);
(iii) p(T;) = p(Tg) = 0; (iv) p(Tj) = p(Tg) = 1.

Note: 1&FF (i) 31 (iil) SRAERIEIARO LAY - BIEHE (i) 3% (iv)
SREMEEBEE - o
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Section 7.4
Relaxation Techniques for Solving
Linear Systems
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Def 7.23 (5ZER@EHFEFEE)

If X € R" is an approximation to the solution of a linear system
Ax = b, then r= b — Ax is called the residual vector for x with
respect to the system.

@ In the Jacbi or Gauss-Seidel methods, a residual vector is

associated with each calculation of an approx. component to
the solution vector.

@ The true objective is to generate a sequence of approximations
that will cause the residual vectors to converge rapidly to zero.

N
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Some Notations

@ Foreachi=1,2,...,n, let

= A AT e

denote the residual vector for Gauss-Seidel method corresp. to

the approx. sol. vector x§k> defined by

ng) = [x§k>,xgk>, e ,ng)l,xgk_l), o ,xﬁ,"‘l)]T e R".
@ The ith component of the residual rgk) =b— Ax,(-k) is given by

i—1 n
(k) _ . SR k1) Jk=1)
ri’ = bj— g ajx; " — g ajjX; — ajiX; .
j=1 J=it1
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(k)

@ From the above equation for r;”, we obtain

i—1 n
rgik) + ai,-xgk_l) = b; — Z a,-jxj(-k) — Z a,-jxj(-k_l) (4)
j=1

Jj=i+1
foreach i=1,2,...,n.
e Note that, in the Gauss-Seidel method, we choose x,(k) to be
1 i—1 n
k k k—1
A LED DL D DTS
ii =1 j=it1
So, we further have
i—1 n
k k k—1
ain = b= _ap = 3 apg " (5)
j=1 j=it1 o

foreach i=1,2,...,n.
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e From Egs. (4) and (5) = a,-,-x,(-kfl) + rgik) = a,-,-xf.k).

Alternative Characterization for Gauss-Seidel Method

For each k > 1, choose the ith component of x(¥ satisfying

k k—1 f(-k)
X,():X,(-i)'f'L, i=1,2,---,n.
djj

@ Another characterization for the Gauss-Seidel is given by

The 2nd Characterization of Gauss-Seidel Method

For each k> 1, choose x,(k) satisfying

nay=0, i=12,...n
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Relaxation Methods (FZ3ti%)

For each k > 1, choose the ith component of x(¥ satisfying

(k)
ng):X,(k_l)"i‘w'i; i=12,...,n, (6)
dji
where w > 0 is a parameter. Two types of relaxation methods:
@ 0 < w < 1: under-relaxation methods. ({EFZ5t)%)

@ w > 1: over-relaxation methods. (38EF&5t)X%)
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The SOR Methods

@ The over-relaxation methods are also called the Successive
Over-Relaxation (SOR) methods.

@ They are often used to accelerate the convergence of the
Gauss-Seidel method.

@ These methods are particularly useful for solving the linear
systems that occur in the numerical solution of certain PDEs.

Review for rf.ik)

It has been shown previously that

rI(,.k) = o= Zaux(k Z a,Jx(k b _ ajiX fk 2

j=1 =i

foreach i=1,2,...,n. a9
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Component Form of SOR Method

(k)

Combining (6) with above eq. for r;’, we see that
ng) = X,(k_l) + (w/ajj) - ":(ik)
= ,(k_l) ‘|‘ — b - Z a,_,X - Z a,-J-xJ(-k_l) - a,-,-x,(k_l)
j=i1
” " i—1 n )
= (=@ b= Y e = 3 g | ()
! =1 j=it1
foreach i=1,2,...,n
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Matrix-Vector Form of SOR Method

@ From (7), the component form for SOR can be rewritten as

k—1
a,,x ) _w E a,Jx (1 —w)a,,x( )

n

+ w Z (—a,'J'XJ(-kil)) + wb;j
j=it1

foreach i=1,2,...,n
@ This is equivalent to the following matrix-vector form
(D—wl)x® = [(1 = w)D+wUx*V + wb
= X0 = T Xk )

where T, = (D — wL)~![(1 — w)D + wU] € R™" and the =
parameter-dependent vector ¢, = w(D — wl) 'h € R". 59
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Algorithm 7.3: SOR

INPUT dim. n; A= [a;] € R™" ; be R"; X0 = x0) e R"; parameter
w; tol. TOL; max. no. of iter. N.

OUTPUT an approx. sol. xi, x2, ..., x, to Ax= b.
Step 1 Set k= 1.
Step 2 While (k < Np) do Steps 3—6
Step 3 Fori=1,...,nset

Xj = (1 = w)XO,- aF E, b; — i(a,lxj) = Z (a,JXOJ)] .

i - o
Jj=1 J=it+1

Step 4 If |[x— X0|| < TOL then OUTPUT (x1,- - ,xn); STOP.
Step 5 Set k= k+ 1.
Step 6 Set X0 = x.

Step 7 OUTPUT(‘Maximum number of iterations exceeded’); STOP.
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Example 1, p. 464
The 3 x 3 linear system

4x1 + 3x9 = 24,
3x1 + 4x9 — x3 = 30,
— X9 + 4X3 = —-24

has the unique sol. x = [3,4, —5]" € R?. Use the Gauss-Seidel
method and SOR with w = 1.25 to compute an approx. sol. to x
using xX(¥) = [1,1,1]7 € R? for both methods.
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Solution (1/3)

(1) Applying the Gauss-Seidel method, we have for each k > 1,

X9 = 0755 46,
) = —0.759 1 0.25:8 ) 4 7.5,
K =0.25: — 6.

@ The fist 7 iterates of Gauss-Seidel method are listed below.
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Solution (2/3)

(2) Recall that the component form of SOR method is given by

(k) (k=1) | ¥ Z Z (k—1)
. = 1 w . b, ] )
X, ( )XI + 3 aJx aJx

=1 j=i+1
foreachi=1,2,...,n
@ The equations for SOR method with w = 1.25 are
K = 0255 —0.9375xY 4 7.5,
x50 = —0.9375x0 —0.25x ) +0.3125x Y 4 9.375,
x5 = 0.3125xgk>70.25x§k*1> ~ 7.5,

for each k> 1. AR
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Solution (3/3)

@ Again, the fist 7 iterates of SOR method are listed below.

Numerical Comparison

To obtain an approx. sol. accurate to 7 decimal places:
o Gauss-Seidel method requires 34 iterations.

e SOR with w = 1.25 requires only 14 iterations!
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How to select the optimal (or suboptimal) value of the relaxation
parameter w > 07

@ No complete answer to this question until now!

@ Only partial results are known for certain important cases.

Thm 7.24 (Kahan)
If a;; # 0 for each i=1,2,...,n, then

| \

p(T) 2w —1].

Note: From Thm 7.24 = the SOR converges only if 0 < w < 2!
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Proof of Thm 7.24

@ If \y,---, A\, are eigenvalues of
T, = (D—wl) (1 —w)D+ wU], then

7, )\ = det(T,,) = det(D — wlL) ™! - det[(1 — w)D + wU]|

-1

= (anax - -am) (1 —w)"-(an1a2: - anm)

=(1-w)".

e Thus, [p(T,)]" > I |Ail = |1 —w|" and hence
p(Ty) > |w — 1|. Also, note that

lw—1]<p(Ty) <1 =0<w<2.
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Two Useful Results

Thm 7.25 (Ostrowski-Reich)

If A e R™"is positive definite and 0 < w < 2, then the SOR
method converges for any initial approx. vector x(?).

Thm 7.26 (A BIEEE=HARER)

If A€ R™" is positive definite and tridiagonal, then
(i) p(Ty) = [p(T)2 < 1, and

(ii) the optimal choice of w for the SOR method is

2
I VIS P

With this choice of w, p(T,) =w — 1. =
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Reference

The proof of above two theorems can be found in [Or2], pp.
123-133.

[Or2] J. M. Ortega, Numerical Analysis: A Second Course,
Academic Press, New York, 1972.

V.

In Example 1, we apply the SOR method with w = 1.25 for solving
the linear system

4x1 + 3x9 = 24,
3x1 + 4x9 — x3 = 30,
— X9 + 4X3 = —24.

Is the choice of w optimal or suboptimal for this case? \7
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Example 2, p. 466

Find the optimal choice of w for the SOR method for solving a
linear system Ax = b with the tridiagonal matrix

4 3
A=13 4 -1
0

Sol: Note that A is symmetric and positive definite because

det(A) = 24, det([g ﬂ)_7 and  det([4]) = 4.

So, A € R3*3 is a positive and tridiagonal matrix, and hence Thm
7.26 can be applied. .
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o Now, compute the matrix T; = D~!(L + U) as

1 000 =30 0 -075 0
T;=10 %+ 0| |-3 0 1|=[-075 0 0.25
00 if]o 1 0 0 025 0

@ Since the cha characteristic polynomial of T; is

A =075 0
det(Tj— Al) = det [—0.75 —X  0.25
0 025 -

= —\(A\? - 0.625),

we have p(T;) = v/0.625 or [p(T;)]*> = 0.625.
@ Thus, the optimal value of w should be

2 2
- — _ ~ 1240 @ER
1+ /T—[p(T)? 1+v1-0625
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Section 7.5
Error Bounds and lterative Refinement

(RZELFEENIGE)
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Let x be a computed approximation to the unique sol. x € R" of
Ax = b with residual vector r= b — Ax.

Does the small quantity of ||r|| indicate that the absolute error
||x — x|| is small as well?

No, it depends on the conditioning of the given problem!
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Example 1 (/NEERREBEE/NRVEHERE)

The 2 x 2 linear system Ax = b is given by

1 2 X1 3
1.0001 2| |[x| [3.0001

has the unique solution x = [1,1]7 € R2. Find the residual vector
for the poor approximation X = [3, —0.0001] "

Sol: The residual vector is

re b A — 3 B 1 2 3 _ [0.0002
o ~ 13.0001 1.0001 2| |—0.0001| 0 :

Then ||r|c = 0.0002 is small, but its absolute error ||X — x||oc = 2
is quite large! A\
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@ The exact sol. x is just the intersection of two nearly parallel
lines

1 x1 4+ 2x0 = 3,
I : 1.0001x; 4+ 2x0 = 3.0001.

@ The poor approximation x lies on 1z, but lies close to 1;. So,
small quantity of |||/ is obtained.
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Relationship Between Residuals and Relative Errors

Thm 7.27 (REEAHHREER)

Let A be nonsingular and x be an approx. to the sol. x of the
linear system Ax = b with residual vector r=b— Ax. If || - ||
denotes any natural norm, then

o ||x—x|| < [[A[| - |||, and
”X_X” < |A||A7Y - |T provided that x # 0 and b # 0.

pf: Since Ax= b and Ax= b — r, we see that
Ax—x)=(b—r—b=—r or x—x=—-A"lr.
Taking norm || - || = || X — || = HA‘“H < ||A_1||||r|| Because

161 < [|Al[l[xI], we have 1/][x]| < [|A[|/[[b]| and the above
inequality becomes

I = _ Al
I =il

1y I LEQ
< [|Afl][A~ HHbH ey
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C onditioning of Linear Systems

The condition number (1&#£]) of a nonsingular matrix A is
defined by
K(A) = k(A) = |A[IA7]),

where || - || is any natural matrix norm.

The Conditioning of A

Since I = AA™!, it is easily seen that
L= [ < JAATH < AIATH = K(A).

Thus we say that
o A is well-conditioned (R2&H) if K(A) is close to 1.
o Ais illl-conditioned (JE&&HY) if K(A) is significantly greater |
than 1. Y
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Reformulation of Thm 7.27

= _ r
o Il < A7 1 = K(a) - fh an

Ix=xl < Ay H (HERE < BER  « HEES)

@ The condition number K(A) can be viewed as a magnifying
factor (FUKEF) of the absolute or relative error.

@ A is well-conditioned and ||r|| is small=> absolute or relative

error is small as well.
e
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Example 1 Revisited

Example 2, p. 471

Use /s, norm to determine the condition number of the matrix

1 2
A= {1.0001 2}

given in Example 1.

Sol: Note that ||Als = 3.0001. But its inverse is

A-1_ {10000 10000

_1 .
5000.5 —5000] , 50 |[A7"||c = 20000.

Hence, the condition number of A is K(A) = K« (A) = 60002.
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For any nonsingular A € R™ ", how to estimate its condition
number

K(A) = ||l A~

efficiently using t-digit arithmetic?
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The Estimation of Condition Numbers (1/2)

@ Assume that t-digit arithmetic is used in the process of GE
for solving the approx. sol. X to the linear system Ax = b.

@ It can be shown from pp. 45-47 of [FM, 1967] that

|7l = 10~ H|A|l|IX]|  with r=b— Ax.

Reference

[FM] G. E. Forsythe and C. B. Moler, Computer Solution of Linear
Algebraic Systems, Prentice-Hall, Englewood Cliffs, NJ, 1967.

e Use 2t-digit arithmetic (double precision) to evaluate the
residual vector r= b — Ax. A
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The Estimation of Condition Numbers (2/2)

@ Apply LU factorization generated from GE to obtain an
approx. sol. y of the linear system

Ay=r

using the t-digit arithmetic.
@ Thus we then have

YAl r=AYb-AX) =x—Xx or xmX+7.
e Taking norm || - || =
7l = AT AL < ATH] - (1] = 1074)1]| - K(A).

e Finally, the condition number K(A) can be estimated by
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An lllustrative Example (1/2)

The 3 x 3 linear system Ax = b with

3.3330 15920 —10.333 15913
A= (2.2220 16.710 9.6120 and b= |28.544
1.5611 5.1791 1.6852 8.4254

has the unique solution x = [1,1,1]T € R3.

e Applying GE with 5-digit rounding arithmetic = computed
solution x = [1.2001,0.99991, 0.92538].

@ Use 10-digit rounding arithmetic to obtain

~0.00518
r=filb—Ax) = | 027412914 |. N
—0.186160367 Ve
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An lllustrative Example (2/2)

@ Solving Ay = r with 5-digit rounding arithmetic for y —
¥ = [—0.20008, 8.9987 x 107°,0.074607] .

@ So, the condition number of A is estimated by

Koo (A) ~ WMl 05 _ 16672

[1Xlloo
without computing the inverse matrix A~! explicitly!
@ Furthermore, the exact condition number is
Koo (A) = A7 oo |Allso = (1.0041)(15934) = 15999

using 5-digit rounding arithmetic. AT
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Are the residual bounds in Thm 7.27

= _ r
o Ikl < A7 1 = K(a) - Jh, an

[l5e=x] Al
° T = KA1

sharp (or tight) for this Example?
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Is the residual bounds in Thm 7.27 sharp?

e Since the exact sol. x=[1,1,1]" is known, we compute

%= x|l 0.2001

= 0.2001.
X[l 1

|X — x||cc = 0.2001 and

@ Also, the residual bounds in Thm 7.27 are computed as

Mo (15999)(0.27413)

X = X|loo < Ko(A = = 0.27525,
%= xlloo < KoolA) 12— 15934
1% = X||oo IAloe  (15999)(0.27413)
< Kxo(A) = = 0.27561.
(1] 00 16| 15913

e This example illustrates the sharpness (or tightness) of
the error bounds in Thm 7.27! &
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lterative Refinement (or Improvement)

@ In above derivation, x &~ X+ y is more accurate than x as an
approximation to the sol. of Ax = b, where y is the computed
sol. to Ay =r.

o Basic Idea: Let xV) = x. For k=1,2,...
A =p— AR AR = [0 k) = () ()

@ All steps, except Step 3 below for computing the residual
vector rK)| of Iterative Refinement are performed in the
t-digit arithmetic.
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Algorithm 7.4: lterative Refinement

INPUT matrices A € R"™" b c R"; tolerance TOL; max. no. of iter.
N; no. of precision t.

OUTPUT approx. sol. xx to Ax = b; K (A) = COND.
Step 0 Solve Ax = b for x using GE.

Step 1 Set k= 1.

Step 2 While (k < N) do Steps 3-9
Step 3 Set residual vector r = b — Ax using 2t-digit arithmetic.
Step 4 Solve Ay = r for y using the LU fact. generated from Step 0.
Step 5 Set xx = x+ y.
Step 6 If k=1 then set COND = l="10".
Step 7 If ||xx — x||oo < TOL then OUTPUT(xx and COND); STOP.
Step 8 Set k= k+ 1.
Step 9 Set x=xx. (Update x.)

Step 10 OUTPUT(‘Max. no. of iter. exceeded’ and COND); STOP. |g
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Comments on Algorithm 7.4

@ The double-precision (or 2t-digit) arithmetic is required in
Step 3 in order to avoid the loss of significance for two nearly
equal numbers.

o If t-digit arithmetic is used and K (A) ~ 109 (0 < g < t),
then after k iterations of Iterative Refinement, the sol. xx has
approximately min{t,k(t — q)} correct digits.

@ If A (or the linear system) is well-conditioned, usually only
one or two iterations of lterative Refinement are required for
obtaining highly accurate approximation to the linear system.

o If Ais ill-conditioned with K, (A) > 10%, then extended
precision should be used in the calculations.
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The lllustrative Example Revisited (1/2)

The 3 x 3 linear system Ax = b with

3.3330 15920 —10.333 15913
A= 122220 16.710 9.6120 and b= |28.544
1.5611 5.1791 1.6852 8.4254

has the unique solution x = [1,1,1]T € R3. Perform 2 iterations
of Iterative Refinement using 5-digit rounding arithmetic.

Sol: With the computed approx. x and its residual

x) = x =[1.2001,0.99991,0.92538] "

AY = r=[—0.00518,0.27412914, —0.186160367],
we solve Ay = r(D) for y(1) —

YD = 5 = [—0.20008, 8.9987 x 10~>,0.074607] .

Chap . 7, Numerical Analysis (1) 97/130

Hung-Yuan Fan (32#i&), Dep. of Math., NTNU, Taiwan



The lllustrative Example Revisited (2/2)

@ After fist iteration of Iterative Refinement, we have
x? = x4 1) — [1.0000, 1.0000, 0.99999] "

with absolute (or relative) error ||x(?) — x||oc = 1 x 1075.

@ After second iteration, we obtain
y? = [1.5002 x 1079, 2.0951 x 107'°,1.0000 x 1079
and hence the next approx. sol. is given by
x3) = x? 4 ) = [1.0000, 1.0000, 1.0000] T,

which is the exact sol. x to the given linear system.
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Perturbation Theorem (#E1EE) for Linear Systems

Question

For any linear system Ax = b with nonsingular A, the computed
sol. X is obtained by solving the perturbed linear system

(A+0A)x=b+3db with |64 = O(10~%), ||6b] = O(107).

Is it always true that ||x — x|| = O(107%)?

Thm 7.29 (R4 24RVIEE) £5R)

If A€ R™" and ||6A| - [|A~!|| < 1 for any natural norm || - ||, then
Ix=x . KAIA] (H5bH N H5AH)_
Xl Al = KCA)[[BAN A [lBll (Al —
220\
O
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Section 7.6
The Conjugate Gradient Method
(X% EX; ¥ CG Method)

20
YaV
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Review of Inner Product in R”

Goal: To develop an iterative method for solving large-scale linear
systems with positive definite coefficient matrices.

Thm 7.30 (AFEMEXKE)
The inner product (or dot product) of x,y € R" is defined by

n
<Xa Y> = XTy: in}/i-
i=1

For any x,y,z€ R” and o € R, we have

(a) (xy) = (v, %) (b) {ax.y) = (x, ay) = alx,y);
(c) (x,y+2) =(xy) + (x,2); (d) (x,x) >0;
(e) (x,x) =0 <= x=0; (f) (x, Ay) = (Ax,y) if A= AT, N7
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Thm 7.31 (IEEAR 4 2 A EBCREEVEBE)

x* is the sol. to the positive definite linear system Ax = b <—
x* produces the minimal value of g(x) = (x, Ax) — 2(x, b).

Note: Since AT = A, for x,0#veR"and t € R, we have

g(x+ tv) =(x+ tv, Ax+ tAv) — 2(x + tv, b)
=(x, AX) + t{x, AV) + t(v, AX) + (v, AV)
— 2(x, by — 2t(v, b)
—=(x, AX) — 2(x, b) 4 2t(v, Ax) — 2t{v, b) + (v, Av)
—=g(x) — 2t(v, b — Ax) + (v, Av). (8)
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Proof of Thm 7.31 (1/2)
From (8), for x and v # 0, define a quadratic function h in t by

h(t) = g(x+ tv) = g(x) — 2t{v, b — Ax) + (v, Av).
Since (v, Av) > 0, h has a minimal value at some t and hence
0=H(t) = —2(v,b— Ax) + 2t{v, Av).
So, we obtain

(v, b— Ax)

v A and g(x+ tv) = g(x) —

%:

unless (v, b — Ax) = 0.
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Proof of Thm 7.31 (2/2)

Therefore, we conclude that

X" is the unique sol. to Ax=b
< AxX*=b or b—Ax" =0
<= (v,b—AX") =0 Vv#0
— g(x* +1tv) =g(x*) Vv#0
<= g has a minimal value at x*.
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Basic Idea of CG Method

INPUT x(9) is an initial approximation to x*; V) # 0 is an initial
search direction s.t. (v(1) b — Ax(?)) £ 0.

OUTPUT an approx. sol. to the linear system Ax = b.

@ For k=1,2,... until convergence

(AR b — AxlkD)
TR, ARy

NORENCO IO

@ But, what is the next search direction V(2 in above iteration?

How to find suitable and feasible search directions V(K for k > 27?
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Two Choices of Search Directions

o Steepest Descent Method: (&% &)%)
o Note that Vg(x) = 2(Ax — b) = —2r. (Check!)
o The direction where g(x) decreases most rapidly is
—Vg(x) = r, which is the residual vector.
o Select V(K = H) = p— Ax(k=1) for k=1,2,....
e But this method is not used for solving linear systems because
of its slow convergence.

o Conjugate Gradient Method: (H#I1FE %)

o Select A-orthogonal set of nonzero vectors {v(l), V2 }.

o A-orthogonality: Two vectors V() and v¥) are called
A-orthogonal (A-EEHME) if (W), AW) =0 for i # .

e The CG method of Hestenes and Steifel [HS, 1952] was
originally developed as a direct method for solving an n x n
positive definite linear system. Q@\d
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Reference

[HS] M. R. Hestenes and E. Steifel, Conjugate gradient methods in
optimization, Journal of Research of the National Bureau of
Standards, Vol. 49, pp. 409-436, 1952.
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%
>

Thm 7.32 (CG ERIIIRIE)

Let {v(D, 2 ... M} be A-orthogonal associated with positive
definite A and x(?) be arbitrary. Define

(VR b — Axtk=1))

(k) — x(k=1) (k)
R, AR X X + kv

ty =

for k=1,2,. oy . Then, assuming exact arithmetic, Ax") = b.
( ,.“?%}\ ERBRESMIRIED - CC EIARE n HEAERNT]
SK AR 4514 21 481

.
| \

Exercise 13, p. 494

Let S= {v(), V@) ... ("} be an A-orthogonal set of nonzero
vectors associated with positive definite A € R"*". Then

(a) Sis linearly independent and hence forms a basis for R".
(b) (2,0 =0for k=1,2,...,n <= z=0. Y
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Proof of Thm 7.32 (1/2)

@ Since xtk) = x(k=1) 4 tkv(k) for k> 1, we have

A = AXPY) o AU
= A2 L, AV o AU

A - AV o, AV,

@ So, AW — ph= Ax0) — p+ t1Av(1) + -+ t,,Av(”).
@ Because (VK AV)) =0 for k # i, we see that

(A0 A — By (9, 4O by 4 g (0 AR,

for k=1,2,...,n. A
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Proof of Thm 7.32 (2/2)

@ Again, by induction and A-orthogonality, notice that

ti (VR AR = (VR p— Axtk=1)y
= (V0 p— AXO)),

@ Thus, we conclude that for k=1,2,...,n,
(R A — by = (VRO A — by o (VR p— AXO)y = 0.
o From Exercise 13(b), we know that
ALY —pb=0 or AX" =,

ie., X" is the exact solution to Ax = b! Q?\a
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Example 1, p. 483
Apply Thm 7.32 to solve the positive definite system Ax = b with

4 3 0 24
A= |3 4 —1|,b=] 30
0 -1 4 —24

using x(©) = [0,0,0]T and A-orthogonal vectors v(1) = [1,0,0]T,
v(® =1[-3/4,1,0T, v® = [-3/7,4/7,1]T.

Note: See the textbook for showing the A-orthogonality
conditions:

W A =0, (VDAY =0, (WD ALY = .
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Solution of Example 1

k=1: A9 = b — AxXO) = b= [24,30, —24] " and

(1) [0)
(U, A0 H 6, XD =0 — (60,0

b= Ay T g

k=2: A = b — AxD =[0,12, —24] T and

LAY 12 48
Eavor eIt T A

6 48

-, —,0]T.
[7777]

k=3: 1% = b— AxY = 0,0, =129]7 and

(A Ay (3) _ (2 3) _ T

t3 - W = —5, X + t3\% - [374, —5] ,
O
which is the exact solution to Ax = b after 3 iterations! Ya
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The Conjugate Directions (F#E75[a))

Definition

The numerical method is called a conjugate direction method if
it uses an A-orthogonal set {V(1), V(2 ... v("} of direction
vectors.

Thm 7.33 (REBAHR@S@EEER)

For a conjugate direction method, its residual vectors A%, where
k=1,2,...,n, satisfy

(A MDYy =0, j=1,2,... k

(58 k THREROEEF k AHEHBOETER)
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Proof of Thm 7.33

k=1:
(W ADY = (D p— AXD)
= (W), b— AXOY — 1, (V1) AV = 0.
=2:
(W A2y = (D) p— AX2)
= (V) b— AxXDY) — 1, (VD AU?))
= (W, Ay —p=0.
and
(W2 A2y = (L2 p— AX2)
= (W, b— AxXV) — (V2 AD) = 0. &

k > 3 By mathematical induction! See also Exercise 14.
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How to construct these direction vectors?

Let x(9 be an initial approx. with residual A9 = b — Ax(0) £ 0.
e Firstly, choose V(1) = A0)_ (the steepest descent direction)

o Assume the conjugate directions V1), - V{k=1) and approx.
XD oo xk=1) are computed with

M AUY =0 and  (AD A =0 for i

o If Ak=1) = p— Ax(k=1) = 0, we are done. Otherwise, we have
(D 0y =0, i=1,2,... k-1

by Thm 7.33.

Define the kth Conjugate Direction

WO = k=1 g A1) for some s, 1 € R. Y
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How to construct these direction vectors? (Conti'd)

e Since we want (V*=1 AuR)Y) = 0, it follows that
0= (WD ARy = (=D Ak g (D Aty
and hence the scalar s, is given by

= (AD Ay <r< ), Adk=1))
Sk=1 = (=D, A1)~ (K 7Av(k 1y

@ From p. 245 of [Lu], it can be shown that {1 W) ... (9}
is an A-orthogonal set.

Reference

[Lu] D. G. Luenberger, Linear and Nonlinear Programming, 2nd ed.,
Addison-Wesley, Reading MA, 1984. =
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Reformulation for t,, F¥ and s,

@ The scalar t; can be rewritten as

. <V(k), r(k—1)> _ <r(k—1) + Skflv(k_l), r(k—l))
CT (R, AR (9, A
<’,(k—1)7 ,)(k—1)> <V(k—1)7 ,)(k—l)>

T, ARy T ARy
<r(k—1)7 ,,(k—1)>

= —<v(’<>,Av(k)> . (10)
@ The kth residual vector can be obtained by
AR = p— AXK) = p— AN — 1 AUK)
— Ak=1) _ (k)
=r t AV, (11)
L2
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Reformulation for t;, A and s, (Conti'd)

e From (10) and (11), we notice that

(Ak=D) —> t< ), ARy,

(9, 19) = (19, A1) — 1 (19, AH)

= —t,(AR) AR,
e From Eq. (9) for sk, it can be rewritten as

(AR ARY g (AR AVR)
T, AR T g (R, AR
(K9, 1)

T (A1) kD))

Hung-Yuan Fan (32itiR), Dep. of Math., NTNU, Taiwan Chap . 7, Numerical Analysis (1)

118/130



Put Egs. (10), (11) and (12) together to get

Basic Algorithm of CG Method

Let x9 be an initial guess with residual A9 = b — Ax(9) £ 0.
Step 1 Set V1) = AO),
Step 2 For k=1,2,...,n, set

<r(k 1) k 1) >/<V(k),AV(k)>;
X(k) NS )+ £,
Ak — [(k=1) tkAv(k);
If k < n,set
sk = (AR, ARy /(A1) k=),

AHD) — 0 4 g R,

Step 3 OUTPUT(x(")); STOP.
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Example 1 Revisited

Example 2, p. 488
Apply basic algorithm of CG method to solve the positive definite
system Ax = b with

4 3 0 24
A=|3 4 —1|,p=] 30
0 -1 4 —24

using x(©) = [0,0,0]T. The actual solution is x = [3,4, —5] .

120/130

Hung-Yuan Fan (32i#tiR), Dep. of Math., NTNU, Taiwan Chap . 7, Numerical Analysis (1)



Solution (1/3)

k = 1: we obtain xX() and AV as

XD = [3.525773196, 4.407216495, —3.525773196] "
A = [—3.32474227, —1.73195876, —5.48969072] .

The relative error and relative residual with respect to b are

1* oo
16|00

XY — xlo

Xl

~ 295 x 1071, ~183x10 L
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Solution (2/3)

k = 2: we obtain X and A2 as
x?) = [2.858011121, 4.148971939, —4.954222164]
A2 =[0.121039698, —0.124143281, —0.034139402] T

The relative error and relative residual with respect to b are
17 |oo
15[ oo

@ Note that SOR method with w = 1.25 requires 14 iterations
for obtaining 7 significant digits of the approximate solution.

1X*) — xloo

~4.14 x 1073,
[1]] 0o

~ 2.98 x 1072,
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Solution (3/3)

k = 3: we obtain x(3) and A3) as

x3) = [2.999999998, 4.000000002, —4.999999998]
A3 =10.36 x 1075,0.39 x 1075, —0.14 x 1078] 7.

The relative error and relative residual with respect to b are

1) oo
16|00

X — Xlloc

Xl

~ 4.00 x 10710, ~1.30 x 10719,
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2

Preconditioning (FR1E/ZIE)

@ When A is ill-conditioned, CG method is highly susceptible
(SE8UKHY) to the rounding errors.

@ The preconditioning strategy is to find a nonsingular matrix
C so that the transformed coefficient matrix

A=CtACT
is better-conditioned, where C- " = (C )T = (CT)~1.
@ The original linear system Ax = b is transformed as
Ax=bs (CTACT)(C'x) = Clbe ClAx= C b,

where x= C'x and b= C b
@ The inverse matrix of a preconditioner C should be cheaply &
obtained in practice!
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Preconditioned CG Method (FRBHELHEE X, &1 PCG)

o Let XK = CTx(K for k > 1. Then
0 =p— AW = clp— (CTACT)CTXW
= CHb— ARy = c AN,

o Let 0 = CTVH and wt® = C1AX for k> 1. Then

<W(k_1)7 W(k_1)>
ty =

(A, AR

AR k) g0, 5,

(w), wih)
(W=D (k1))
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Pseudocode of PCG Method

Algorithm 7.5: Preconditioned CG Method (1/2)

INPUT dimension n;
matrices A € R™" and b € R",
preconditioning matrix C € R"™*";
initial approximation x(0) € R";
maximum number of iterations IV,
tolerance TOL.

OUTPUT an approximate solution x € R” to Ax = b;
residual vector r € R".

Hung-Yuan Fan (32#i&), Dep. of Math., NTNU, Taiwan Chap . 7, Numerical Analysis (1) 126/130



Pseudocode of PCG Method (Conti'd)

Algorithm 7.5: Preconditioned CG Method (2/2)
Step 1 Set x= X0 r=p— Ax w= Clr,

v=CTw, a=(w,w).
Step 2 Set k= 1.
Step 3 While (k < N) do Steps 4-7
Step 4 If ||v|| < TOL then OUTPUT(x and r); STOP.
Step 5 Set u= Av; t = a/(v, u);
X=X+ tv, r=r— tu,
w=Clr, B=(w,w).
Step 6 If |3] < TOL then
if ||| < TOL then OUTPUT(x and r) ; STOP.
Step7 Set s= f/a; v=C Tw+ sy,
a=p k=kt1.

Step 8 OUTPUT(‘Maximum number of iterations exceeded'); STOP.
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[llustration

Example 3, p. 491

The 5 x 5 linear system Ax = b with

02 01 1 1 O 1
01 4 -1 1 -1 2
A=11 -1 60 0 —-2|, b=|3
1 1 0 8 4 4
0 -1 -2 4 700 )

has the solution

x* =[7.859713071, 0.4229264082, —0.07359223906,
— 0.5406430164,0.01062616286] "

The preconditioner used in PCG method is

_ Y
C = diag(v/a11, Va2, v/a33, v/aa4, v/as5). s
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Numerical Results for Example 3
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Thank you for your attention!
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