Chapter 7 Iterative Techniques in Matrix Algebra

Hung-Yuan Fan (范洪源)

Department of Mathematics, National Taiwan Normal University, Taiwan

Spring 2016

Section 7.1 Norms of Vectors and Matrices

Vector Norms (向量的範數)

Def 7.1

A vector norm on \mathbb{R}^n is a function $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}$ with the following properties:

- (i) $||x|| \ge 0$ for all $x \in \mathbb{R}^n$,
- (ii) $||x|| = 0 \iff x = 0$,
- (iii) $\|\alpha x\| = |\alpha| \|x\|$ for all $\alpha \in \mathbb{R}$ and $x \in \mathbb{R}^n$,
- (iv) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in \mathbb{R}^n$.

Note: The *n*-dimensional vector *x* is often denoted by

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = [x_1, x_2, \cdots, x_n]^T = (x_1, x_2, \cdots, x_n)^T.$$

Useful Vector Norms

Def 7.2

• The l_2 and l_∞ norms for the vector $x=[x_1,x_2,\cdots,x_n]^T\in\mathbb{R}^n$ are defined by

$$||x||_2 = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$$
 and $||x||_\infty = \max_{1 \le i \le n} |x_i|$.

• The I_1 norm of $x \in \mathbb{R}^n$ is defined by

$$||x||_1 = \sum_{i=1}^n |x_i|.$$

Distance between Vectors in \mathbb{R}^n

Def 7.4

Let $x = [x_1, \dots, x_n]^T$ and $y = [y_1, \dots, y_n]^T$ be two vectors in \mathbb{R}^n .

• The I_2 and I_{∞} distances between x and y are defined by

$$\|x-y\|_2 = \left\{\sum_{i=1}^n (x_i - y_i)^2\right\}^{1/2}$$
 and $\|x-y\|_{\infty} = \max_{1 \le i \le n} |x_i - y_i|$.

• The I_1 distance between x and y is given by

$$||x - y||_1 = \sum_{i=1}^n |x_i - y_i|.$$

Example 2, p. 435

The 3×3 linear system

$$3.3330x_1 + 15920x_2 - 10.333x_3 = 15913,$$

 $2.2220x_1 + 16.710x_2 + 9.6120x_3 = 28.544,$
 $1.5611x_1 + 5.1791x_2 \cdot 1.6852x_3 = 8.4254$

has the **exact sol.** $\mathbf{x} = [\mathbf{1}, \mathbf{1}, \mathbf{1}]^T$. If the system is solved by GE with patrial pivoting using **5-digit rounding arithnetic**, we obtain the computed sol.

$$\tilde{x} = [1.2001, 0.99991, 0.92538]^{T}.$$

So, the l_{∞} and l_2 distances between x and \tilde{x} are

$$||x - \tilde{x}||_{\infty} = 0.2001$$
 and $||x - \tilde{x}||_{2} = 0.21356$.

Convergence for Sequences of Vectors

Def 7.5 (向量序列的收斂性)

A seq. $\{x^{(k)}\}_{k=1}^{\infty}$ of vectors in \mathbb{R}^n is said to converge to $x \in \mathbb{R}^n$ with respect to the norm $\|\cdot\|$ if $\forall \epsilon > 0$, $\exists N(\epsilon) \in \mathbb{N}$ s.t.

$$||x^{(k)} - x|| < \epsilon \qquad \forall k \ge N(\epsilon).$$

Thm 7.6

The seq. of vectors $\{x^{(k)}\}_{k=1}^{\infty}$ converges to $x \in \mathbb{R}^n$ with respect to the l_{∞} norm $\iff \lim_{k \to \infty} x_i^{(k)} = x_i$ for $i = 1, 2, \dots, n$.

pf: It is easily seen that $\forall \epsilon > 0$, $\exists N(\epsilon) \in \mathbb{N}$ s.t.

$$\begin{split} & \|x^{(k)} - x\|_{\infty} < \epsilon \qquad \forall \ k \geq \textit{N}(\epsilon) \\ & \iff & |x_i^{(k)} - x_i| < \epsilon \qquad \forall \ k \geq \textit{N}(\epsilon) \ \text{and} \ 1 \leq i \leq \textit{n}. \end{split}$$

Example 3, p. 436

The sequence of vectors in \mathbb{R}^4

$$x^{(k)} = [1, 2 + \frac{1}{k}, \frac{3}{k^2}, e^{-k} \sin k]^T$$

converges to $\mathbf{x} = [1,2,0,0]^T \in \mathbb{R}^4$ with respect to the I_{∞} norm, since

$$\lim_{k \to \infty} (2 + \frac{1}{k}) = 2, \quad \lim_{k \to \infty} \frac{3}{k^2} = 0, \quad \lim_{k \to \infty} e^{-k} \sin k = 0.$$

Question

Does the given sequence converge to x with respect to the l_2 norm?

Thm 7.7 (The Equivalence of Vector Norms)

For each $x \in \mathbb{R}^n$,

$$||x||_{\infty} \le ||x||_2 \le \sqrt{n} ||x||_{\infty}.$$

In this case, we say that the l_{∞} and l_2 norms are equivalent.

pf: For any $x = [x_1, \dots, x_n]^T \in \mathbb{R}^n$, let $|x_{i_0}| = \max_{1 \le i \le n} |x_i| = ||x||_{\infty}$.

Then we see that

$$\|x\|_2 \le \left(\sum_{i=1}^n x_{i_0}^2\right)^{1/2} = \left(n\|x\|_{\infty}^2\right)^{1/2} = \sqrt{n}\|x\|_{\infty}.$$

So, these prove the desired inequalities.

Example 4, p. 437

Show that the sequence of vectors in Example 3

$$x^{(k)} = [1, 2 + \frac{1}{k}, \frac{3}{k^2}, e^{-k} \sin k]^T \in \mathbb{R}^4$$

converges to $x = [1, 2, 0, 0]^T \in \mathbb{R}^4$ with respect to the I_2 norm.

pf: In Example 3, we know that $\lim_{k\to\infty} \|x^{(k)} - x\|_{\infty} = 0$. So, for any $\epsilon > 0$, $\exists N_0 \in \mathbb{N}$ s.t.

$$\|\mathbf{x}^{(\mathbf{k})} - \mathbf{x}\|_{\infty} < \frac{\epsilon}{2} \qquad \forall \, \mathbf{k} \geq \mathbf{N}_{0},$$

and furthermore, it follows from Thm 7.7 that

$$||x^{(k)} - x||_2 \le \sqrt{4} \cdot ||x^{(k)} - x||_{\infty} < 2 \cdot (\frac{\epsilon}{2}) = \epsilon$$

whenever $k \ge N_0$. Hence, this completes the proof.

Remarks

• Any two vector norms $\|\cdot\|$ and $\|\cdot\|'$ on \mathbb{R}^n are equivalent, i.e., $\exists c_1 > 0$ and $c_2 > 0$ s.t.

$$c_1\|x\|' \leq \|x\| \leq c_2\|x\|' \qquad \forall x \in \mathbb{R}^n.$$

- A seq. $\{x^{(k)}\}_{k=1}^{\infty}$ converges to the limit $x \in \mathbb{R}^n$ with respect to the norm $\|\cdot\| \iff$ a seq. $\{x^{(k)}\}_{k=1}^{\infty}$ converges to the limit $x \in \mathbb{R}^n$ with respect to the norm $\|\cdot\|'$. (向量序列的收斂性 與範數無關!)
- ullet For any $x\in\mathbb{R}^n$, the relations between l_1 , l_2 and l_∞ norms are

$$||x||_2 \le ||x||_1 \le \sqrt{n} ||x||_2,$$

 $||x||_{\infty} \le ||x||_1 \le n ||x||_{\infty}.$

Matrix Norms and Distances

Def 7.8 (矩陣的範數)

A matrix norm on $\mathbb{R}^{n\times n}$ is a function $\|\cdot\|:\mathbb{R}^{n\times n}\to\mathbb{R}$ satisfying for all $A,B\in\mathbb{R}^{n\times n}$ and all $\alpha\in\mathbb{R}$:

- (i) $||A|| \ge 0$;
- (ii) $||A|| = 0 \iff A = 0$ (zero matrix);
- (iii) $\|\alpha A\| = |\alpha| \|A\|$;
- (iv) $||A + B|| \le ||A|| + ||B||$;
- (v) $||AB|| \le ||A|| \, ||B||$.

Definition (Distances of Two Matrices)

If $A, B \in \mathbb{R}^{n \times n}$, the number ||A - B|| is called the distance between A and B with respect to the matrix norm $||\cdot||$.

Thm 7.9 (自然矩陣範數)

If $\|\cdot\|$ is a **vector norm on** \mathbb{R}^n , then

$$||A|| = \max_{||x||=1} ||Ax||$$

is a matrix norm on $\mathbb{R}^{n\times n}$. (See Exercise 13 for the proof.)

pf: Only prove that $||AB|| \le ||A|| \, ||B||$ for any $A, B \in \mathbb{R}^{n \times n}$ here. For any unit vector $x \in \mathbb{R}^n$, we have

$$||A(Bx)|| = ||Bx|| \cdot ||A(\frac{Bx}{||Bx||})|| \le ||A|| \cdot ||Bx||.$$

Thus, we conclude that

$$\begin{split} \|AB\| &= \max_{\|x\|=1} \|(AB)x\| = \max_{\|x\|=1} \|A(Bx)\| \\ &\leq \max_{\|x\|=1} (\|A\| \|Bx\|) = \|A\| \cdot \max_{\|x\|=1} \|Bx\| = \|A\| \|B\|. \end{split}$$

Remarks

- Matrix norms defined by vector norms are called the natural (or induced) matrix norm associated with the vector norm.
- Since $x = \frac{z}{\|z\|}$ is a unit vector for $z \neq 0$, Thm 7.9 can be rewritten as

$$||A|| = \max_{||x||=1} ||Ax|| = \max_{z \neq 0} ||A(\frac{z}{||z||})|| = \max_{z \neq 0} \frac{||Az||}{||z||}.$$

Cor 7.10

For any $A \in \mathbb{R}^{n \times n}$, $0 \neq z \in \mathbb{R}^n$ and any natural norm $\|\cdot\|$,

$$||Az|| \leq ||A|| \cdot ||z||.$$

Some Natural Matrix Norms

Thm 7.11 (矩陣 ∞ -範數的計算公式)

If $A = [a_{ij}] \in \mathbb{R}^{n \times n}$, then

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|. \quad (|A| = [|a_{ij}|] \text{ 的最大列和})$$

pf: The proof is separated into two parts.

(1) Assume $\|A\|_{\infty}=\|Ax\|_{\infty}$ for some $x\in\mathbb{R}^n$ with $\|x\|_{\infty}=\max_{1\leq j\leq n}|x_j|=1.$ Then we have

$$||A||_{\infty} = ||Ax||_{\infty} = \max_{1 \le i \le n} |(Ax)_{i}| = \max_{1 \le i \le n} \left| \sum_{j=1}^{n} a_{ij} x_{j} \right|$$

$$\leq \max_{1 \le i \le n} \sum_{j=1}^{n} \left(|a_{ij}| \cdot ||x||_{\infty} \right) = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|,$$

(2) Let $y = [y_1, y_2, \dots, y_n]^T \in \mathbb{R}^n$, where each component

$$y_j = \left\{ \begin{array}{ll} 1, & \text{if } a_{ij} \geq 0, \\ -1, & \text{if } a_{ij} < 0. \end{array} \right.$$

Then $||y||_{\infty} = 1$ and $a_{ij}y_j = |a_{ij}|$ for all i, j. So, we get

$$||Ay||_{\infty} = \max_{1 \le i \le n} |(Ay)_i| = \max_{1 \le i \le n} \left| \sum_{j=1}^n a_{ij} y_j \right| = \max_{1 \le i \le n} \sum_{j=1}^n |a_{ij}|.$$

Furthermore, it follows that

$$||A||_{\infty} = \max_{\|\mathbf{x}\|_{\infty} = 1} ||A\mathbf{X}||_{\infty} \ge ||A\mathbf{y}||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|.$$

From the parts (1) and (2) \Longrightarrow these complete the proof.

Exercise 6, p. 442 (矩陣 1-範數的計算公式)

If
$$A = [a_{ij}] \in \mathbb{R}^{n \times n}$$
, then

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|. \quad (|A| = [|a_{ij}|] \text{ 的最大行和})$$

Example 5, p. 441

For the 3×3 matrix

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 3 & -1 \\ 5 & -1 & 1 \end{bmatrix},$$

it follows that

$$||A||_{\infty} = \max_{i=1,2,3} \sum_{j=1}^{3} |a_{ij}| = \max\{4,4,7\} = 7,$$

$$||A||_1 = \max_{j=1,2,3} \sum_{i=1}^{3} |a_{ij}| = \max\{\mathbf{6},\mathbf{6},\mathbf{3}\} = \mathbf{6}.$$

Section 7.2 Eigenvalues and Eigenvectors

Def 7.12 (特徵多項式)

The characteristic polynomial of $A \in \mathbb{R}^{n \times n}$ is defined by

$$p(\lambda) = \det(A - \lambda I),$$

where I is the $n \times n$ identity matrix.

Note: The characteristic poly. p is an nth-degree poly. with real coefficients. So, it has at most n distinct zeros in \mathbb{C} .

Def 7.13 (特徵值與特徵向量)

Let $p(\lambda)$ be the characteristic poly. of $A \in \mathbb{R}^{n \times n}$.

- The number $\lambda \in \mathbb{C}$ is called an eigenvalue (or characteristic value) of A if $p(\lambda) = 0$.
- The spectrum (譜) of A, denoted by $\sigma(A)$, is the set of all eigenvalues of A.
- If $\exists 0 \neq x \in \mathbb{R}^n$ s.t. $Ax = \lambda x$ or $(A \lambda I)x = 0$ for $\lambda \in \sigma(A)$, then x is called an eigenvector (pr characteristic vector) of A corresponding to λ .

Def 7.14

The **spectral radius (譜半徑)** of $A \in \mathbb{R}^{n \times n}$ is defined by

$$\rho(A) = \max\{|\lambda| \mid \lambda \in \sigma(A)\}.$$

(For complex $\lambda = \alpha + \beta i$, we define $|\lambda| = \sqrt{\alpha^2 + \beta^2}$.)

Thm 7.15 (矩陣 2-範數的計算公式)

If A is an $n \times n$ matrix, then

- (i) $||A||_2 = \sqrt{\rho(A^T A)}$.
- (ii) $\rho(A) \leq ||A||$ for any natural matrix norm $||\cdot||$.

Review from Linear Algebra

Let $B = A^T A$ with $A \in \mathbb{R}^{n \times n}$ and $v \in \mathbb{R}^n$.

- $B^T = (A^T A)^T = A^T (A^T)^T = A^T A = B$, i.e., B is symmetric.
- For any $\lambda \in \sigma(B)$, $\lambda \geq 0$.
- B is orthogonally diagonalizable, i.e., \exists orthog. $Q \in \mathbb{R}^{n \times n}$ s.t.

$$\label{eq:QTBQ} \mathbf{Q}^{\mathsf{T}} \mathbf{B} \mathbf{Q} = \mathbf{Q}^{\mathsf{T}} (\mathbf{A}^{\mathsf{T}} \mathbf{A}) \mathbf{Q} = \mathsf{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n) \equiv \mathbf{D},$$

where $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_n \geq 0$.

• Since $||v||_2^2 = v^T v$, we have

$$||Ax||_2^2 = (Ax)^T (Ax) = x^T (A^T A)x = x^T Bx$$

for any $x \in \mathbb{R}^n$.

Proof of Thm 7.15 (1/2)

(i) Since $A^T A$ is symmetric, \exists orthogonal $Q \in \mathbb{R}^{n \times n}$ s.t.

$$Q^{T}(A^{T}A)Q = diag(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}) \equiv D,$$

where $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_n \geq 0$. Hence,

$$||A||_{2}^{2} = \max_{||x||_{2}=1} ||Ax||_{2}^{2} = \max_{||x||_{2}=1} x^{T} (A^{T} A) x$$
$$= \max_{||x||_{2}=1} x^{T} Q D Q^{T} x = \max_{||y||_{2}=1} y^{T} D y,$$

where we let $y = Q^T x$. So, $||A||_2^2 \le \lambda_1$. Moreover, the maximum value of $y^T D y$ is achieved at the vector $y^* = [1, 0, \cdots, 0]^T \in \mathbb{R}^n$ and thus $||A||_2^2 = \lambda_1$ or $||A||_2 = \sqrt{\lambda_1} = \sqrt{\rho(A^T A)}$.

Proof of Thm 7.15 (2/2)

(ii) Let $A \in \mathbb{R}^{n \times n}$ and $\|\cdot\|$ be any natural norm. For each $\lambda \in \sigma(A)$, $\exists \, 0 \neq x \in \mathbb{R}^n$ s.t.

$$Ax = \lambda x$$
 with $||x|| = 1$.

Hence, we know that

$$|\lambda| = |\lambda| \cdot ||x|| = ||\lambda x|| = ||Ax|| \le ||A|| \, ||x|| = ||A||.$$

So, the spectral radius of A satisfies $\rho(A) \leq ||A||$.

Rematks

- If $A^T = A \in \mathbb{R}^{n \times n}$, then $||A||_2 = \rho(A)$.
- For any $A \in \mathbb{R}^{n \times n}$ and any $\epsilon > 0$, \exists a natural norm $\| \cdot \|_{\epsilon}$ s.t.

$$\rho(A) < ||A||_{\epsilon} < \rho(A) + \epsilon.$$

Def 7.16 (收斂矩陣的定義)

We day that a matrix $A \in \mathbb{R}^{n \times n}$ is **convergent** if

$$\lim_{k\to\infty} (A^k)_{ij} = 0, \quad \text{for } i, j = 1, 2, \dots, n.$$

Example 4, p. 448

The 2×2 matrix $A = \begin{bmatrix} \frac{1}{2} & 0 \\ \frac{1}{4} & \frac{1}{2} \end{bmatrix}$ is a convergent matrix, since we

have

$$A^{k} = \begin{bmatrix} \left(\frac{1}{2}\right)^{k} & 0\\ \frac{k}{2^{k+1}} & \left(\frac{1}{2}\right)^{k} \end{bmatrix} \qquad \forall k \ge 1$$

by mathematical induction, $\lim_{k\to\infty}(\frac12)^k=0$ and $\lim_{k\to\infty}\frac k{2^{k+1}}=0.$

Thm 7.17 (收斂矩陣的等價條件)

Let $A \in \mathbb{R}^{n \times n}$. The following statements are equivalent.

- (i) A is a convergent matrix.
- (ii) $\lim_{n\to\infty}\|A^n\|=0$ for **some** natural norm.
- (iii) $\lim_{n\to\infty} ||A^n|| = 0$ for **all** natural norms.
- (iv) $\rho(A) < 1$.
- (v) $\lim_{n\to\infty} A^n x = 0$ for every $x \in \mathbb{R}^n$.

Section 7.3 The Jacobi and Gauss-Siedel Iterative Techniques

Derivation of Jacobi Method

Basic Idea

From the *i*th eq. of a linear system Ax = b

$$a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{ii}x_i + \cdots + a_{in}x_n = b_i$$

for solving the *i*th component x_i , we get

$$\mathbf{x}_{i} = \frac{1}{\mathbf{a}_{ii}} \left[\sum_{\substack{j=1\\j\neq i}}^{n} (-\mathbf{a}_{ij}\mathbf{x}_{j}) + b_{i} \right],$$

provided that $a_{ii} \neq 0$ for $i = 1, 2, \dots, n$.

The Jacobi Method

Component Form (Jacobi 法的分量形式)

For each $k \ge 1$, we nay consider the Jacobi iterative method:

$$x_{i}^{(k)} = \frac{1}{a_{ii}} \left[\sum_{\substack{j=1\\j\neq i}}^{n} (-a_{ij}x_{j}^{(k-1)}) + b_{i} \right] \quad \text{for } i = 1, \dots, n, \quad (1)$$

where an initial approx. $\mathbf{x}^{(0)} = [\mathbf{x}_1^{(0)}, \cdots, \mathbf{x}_n^{(0)}]^T \in \mathbb{R}^n$ is given.

Example 1, p. 451

The following linear system

$$\mathbf{10}x_1 - x_2 + 2x_3 = 6$$

$$- x_1 + \mathbf{11}x_2 - x_3 + 3x_4 = 25$$

$$2x_1 - x_2 + \mathbf{10}x_3 - x_4 = -11$$

$$3x_2 - x_3 + \mathbf{8}x_4 = 15$$

has a unique solution $x = [1, 2, -1, 1]^T \in \mathbb{R}^4$. Use Jacobi's iterative technique to find an approx. $x^{(k)}$ to x starting with $x^{(0)} = [0, 0, 0, 0]^T \in \mathbb{R}^4$ until

$$\frac{\|x^{(k)} - x^{(k-1)}\|_{\infty}}{\|x^{(k)}\|_{\infty}} < 10^{-3}.$$

Solution (1/2)

The given linear system ca be rewritten as

$$x_1 = \frac{1}{10}x_2 - \frac{1}{5}x_3 + \frac{3}{5}$$

$$x_2 = \frac{1}{11}x_1 + \frac{1}{11}x_3 - \frac{3}{11}x_4 + \frac{25}{11}$$

$$x_3 = \frac{-1}{5}x_1 + \frac{1}{10}x_2 + \frac{1}{10}x_4 - \frac{11}{10}$$

$$x_4 = \frac{-3}{8}x_2 + \frac{1}{8}x_3 + \frac{15}{8}.$$

Solution (2/2)

For each $k \ge 1$, we apply the Jacbi's method:

$$\begin{split} \mathbf{x}_{1}^{(k)} &= \frac{1}{10} \mathbf{x}_{2}^{(k-1)} - \frac{1}{5} \mathbf{x}_{3}^{(k-1)} + \frac{3}{5} \\ \mathbf{x}_{2}^{(k)} &= \frac{1}{11} \mathbf{x}_{1}^{(k-1)} + \frac{1}{11} \mathbf{x}_{3}^{(k-1)} - \frac{3}{11} \mathbf{x}_{4}^{(k-1)} + \frac{25}{11} \\ \mathbf{x}_{3}^{(k)} &= \frac{-1}{5} \mathbf{x}_{1}^{(k-1)} + \frac{1}{10} \mathbf{x}_{2}^{(k-1)} + \frac{1}{10} \mathbf{x}_{4}^{(k-1)} - \frac{11}{10} \\ \mathbf{x}_{4}^{(k)} &= \frac{-3}{8} \mathbf{x}_{2}^{(k-1)} + \frac{1}{8} \mathbf{x}_{3}^{(k-1)} + \frac{15}{8} \end{split}$$

with the initial guess $\mathbf{x}^{(0)} = [0, 0, 0, 0]^T \in \mathbb{R}^4$.

Numerical Results

After 10 iterations of Jacobi method, we have

$$\frac{\|\mathbf{x}^{(10)} - \mathbf{x}^{(9)}\|_{\infty}}{\|\mathbf{x}^{(10)}\|_{\infty}} = \frac{8.0 \times 10^{-4}}{1.9998} = \mathbf{4.0} \times \mathbf{10^{-4}} < 10^{-3}.$$

In fact, the absolute error is $||x^{(10)} - x||_{\infty} = 2 \times 10^{-4}$.

Equivalent Matrix-Vector Forms

• As in Chapter 2, every root-finding problem f(x) = 0 is converted into its equivalent fixed-point form

$$x = g(x), \quad x \in I = [a, b]$$

- , for some **differentiable** function g.
- Similarly, we also try to covert the original linear system Ax = b into its equivalent matrix-vector form

$$x = Tx + c, \quad x \in \mathbb{R}^n,$$

where $T \in \mathbb{R}^{n \times n}$ and $c \in \mathbb{R}^n$ are fixed.

• For $k = 1, 2, \ldots$, compute

$$x^{(k)} = Tx^{(k-1)} + c$$

with an initial approx. $x^{(0)} \in \mathbb{R}^n$ to the unique sol. x.

A Useful Split of A

The iterative techniques for solving Ax = b will be derived by first splitting A into its diagonal and off-diagonal parts, i.e.,

$$A = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & a_{nn} \end{bmatrix} - \begin{bmatrix} 0 & \cdots & \cdots & 0 \\ -a_{21} & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ -a_{n1} & \cdots & -a_{n,n-1} & 0 \end{bmatrix} - \begin{bmatrix} 0 & -a_{12} & \cdots & -a_{1n} \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & -a_{n-1,n} \\ 0 & \cdots & \cdots & 0 \end{bmatrix}$$

$$\equiv D - L - U. \tag{2}$$

Matlab Commands

$$D = \operatorname{diag}(\operatorname{diag}(A)); \quad L = \operatorname{tril}(-A, -1); \quad U = \operatorname{triu}(-A, 1);$$

The Jacobi Method Revisited

• From the splitting of A as in (2), the linear system Ax = b is transformed to

$$(D-L-U)x = b \Leftrightarrow Dx = (L+U)x + b \Leftrightarrow x = T_{j}x + c_{j},$$

where $T_j \equiv D^{-1}(L + U)$ and $c_j \equiv D^{-1}b$.

It is easily seen that the component form of Jacobi method

$$x_i^{(k)} = rac{1}{\mathsf{a}_{ii}} \left[\sum_{\substack{j=1\ j
eq i}}^{\mathbf{n}} \left(-\mathsf{a}_{ij} x_j^{(k-1)}
ight) + \mathsf{b}_i
ight]$$
 for $i=1,\ldots,n$.

is equivalent to the following matrix-vector form

$$x^{(k)} = T_j x^{(k-1)} + c_j \qquad \forall \ k \ge 1.$$

Example 2, p. 453

The 4×4 linear system in Example 1 can be rewritten in the form

$$x_1 = \frac{1}{10}x_2 - \frac{1}{5}x_3 + \frac{3}{5}$$

$$x_2 = \frac{1}{11}x_1 + \frac{1}{11}x_3 - \frac{3}{11}x_4 + \frac{25}{11}$$

$$x_3 = \frac{-1}{5}x_1 + \frac{1}{10}x_2 + \frac{1}{10}x_4 - \frac{11}{10}$$

$$x_4 = \frac{-3}{8}x_2 + \frac{1}{8}x_3 + \frac{15}{8}.$$

So, the unique sol. $x \in \mathbb{R}^4$ satisfies $x = T_j x + c_j$ with

$$T_{j} = \begin{bmatrix} 0 & \frac{1}{10} & \frac{-1}{5} & 0\\ \frac{1}{11} & 0 & \frac{1}{11} & \frac{-3}{11}\\ \frac{-1}{5} & \frac{1}{10} & 0 & \frac{1}{10}\\ 0 & \frac{-3}{8} & \frac{1}{8} & 0 \end{bmatrix} \quad \text{and} \quad c_{j} = \begin{bmatrix} \frac{3}{5}\\ \frac{25}{11}\\ \frac{-11}{10}\\ \frac{15}{8} \end{bmatrix}.$$

Algorithm 7.1: Jacobi Method

INPUT dim. n; $A = [a_{ij}] \in \mathbb{R}^{n \times n}$; $b \in \mathbb{R}^n$; $X0 = x^{(0)} \in \mathbb{R}^n$; tol. TOL; max. no. of iter. N_0 .

OUTPUT an approx. sol. $x_1, x_2, ..., x_n$ to Ax = b.

Step 1 Set k = 1.

Step 2 While $(k \le N_0)$ do **Steps 3–6**

Step 3 For $i = 1, \ldots, n$ set

$$x_i = \frac{1}{a_{ii}} \left[\sum_{\substack{j=1\\j\neq i}}^n (-a_{ij}X0_j) + b_i \right].$$

Step 4 If ||x - X0|| < TOL then OUTPUT (x_1, \dots, x_n) ; **STOP**.

Step 5 Set k = k + 1.

Step 6 Set X0 = x.

Step 7 OUTPUT('Maximum number of iterations exceeded'); STOP.

Comments on Algorithm 7.1

• If some $a_{ii} = 0$ and A is **nonsingular**, choose $p \neq i$ s.t.

 $|a_{pi}|$ is as large as possible,

and then perform $(E_p) \leftrightarrow (E_i)$ to ensure that no $a_{ii} = 0$ before applying the Jacobi method.

In Step 4, a better stopping criterion should be

$$\frac{\|x^{(k)} - x^{(k-1)}\|}{\|x^{(k)}\|} < TOL,$$

where the vector norm $\|\cdot\|$ is the I_1 , I_2 or I_{∞} norm.

Jacobi Method v.s. Gauss-Seidel Metod

- For the Jacobi's method, the *i*th component $x_i^{(k)}$ of $x_i^{(k)}$ is determined by $x_1^{(k-1)}, \dots, x_{i-1}^{(k-1)}$ and $x_{i+1}^{(k-1)}, \dots, x_n^{(k-1)}$.
- At the *k*th step of Gauss-Seidel method, the *i*th component $x_i^{(k)}$ is computed by $x_1^{(k)}, \dots, x_{i-1}^{(k)}$ and $x_{i+1}^{(k-1)}, \dots, x_n^{(k-1)}$.
- Notice that the recently computed values of $x_1^{(k)}, \dots, x_{i-1}^{(k)}$ are better approxs. to x than the values of $x_1^{(k-1)}, \dots, x_{i-1}^{(k-1)}$.

Component Form of Gauss-Seidel Method

For each $k \ge 1$, the *i*th component of $x^{(k)}$ is determined by

$$x_{i}^{(k)} = \frac{1}{a_{ii}} \left[\sum_{j=1}^{i-1} (-a_{ij} x_{j}^{(k)}) + \sum_{j=i+1}^{n} (-a_{ij} x_{j}^{(k-1)}) + b_{i} \right]$$

$$= \frac{1}{a_{ii}} \left[-\sum_{j=1}^{i-1} (a_{ij} x_{j}^{(k)}) - \sum_{j=i+1}^{n} (a_{ij} x_{j}^{(k-1)}) + b_{i} \right], \quad (3)$$

where an initial vector $x^{(0)}$ is given and i = 1, 2, ..., n.

Algorithm 7.2: Gauss-Seidel Method

INPUT dim. n; $A = [a_{ij}] \in \mathbb{R}^{n \times n}$; $b \in \mathbb{R}^n$; $X0 = x^{(0)} \in \mathbb{R}^n$; tol. TOL; max. no. of iter. N_0 .

OUTPUT an approx. sol. x_1, x_2, \ldots, x_n to Ax = b.

Step 1 Set k = 1.

Step 2 While $(k \le N_0)$ do **Steps 3–6** Step 3 For i = 1, ..., n set

$$x_i = \frac{1}{a_{ii}} \left[-\sum_{j=1}^{i-1} (a_{ij}x_j) - \sum_{j=i+1}^{n} (a_{ij}X_{0j}) + b_i \right].$$

Step 4 If ||x - X0|| < TOL then $OUTPUT(x_1, \dots, x_n)$; **STOP**.

Step 5 Set k = k + 1.

Step 6 Set X0 = x.

Step 7 OUTPUT('Maximum number of iterations exceeded'); STOP.

Example 3, p. 455

The following linear system

$$\mathbf{10}x_1 - x_2 + 2x_3 = 6$$

$$- x_1 + \mathbf{11}x_2 - x_3 + 3x_4 = 25$$

$$2x_1 - x_2 + \mathbf{10}x_3 - x_4 = -11$$

$$3x_2 - x_3 + \mathbf{8}x_4 = 15$$

has a unique solution $x = [1, 2, -1, 1]^T \in \mathbb{R}^4$. Use **Gauss-Seidel method** to find an approx. $x^{(k)}$ to x starting with $x^{(0)} = [0, 0, 0, 0]^T \in \mathbb{R}^4$ until

$$\frac{\|x^{(k)} - x^{(k-1)}\|_{\infty}}{\|x^{(k)}\|_{\infty}} < 10^{-3}.$$

Solution

For each $k \ge 1$, we apply the Gauss-Seidel method:

$$\begin{aligned} \mathbf{x}_{1}^{(k)} &= \frac{1}{10} \mathbf{x}_{2}^{(k-1)} - \frac{1}{5} \mathbf{x}_{3}^{(k-1)} + \frac{3}{5} \\ \mathbf{x}_{2}^{(k)} &= \frac{1}{11} \mathbf{x}_{1}^{(k)} + \frac{1}{11} \mathbf{x}_{3}^{(k-1)} - \frac{3}{11} \mathbf{x}_{4}^{(k-1)} + \frac{25}{11} \\ \mathbf{x}_{3}^{(k)} &= \frac{-1}{5} \mathbf{x}_{1}^{(k)} + \frac{1}{10} \mathbf{x}_{2}^{(k)} + \frac{1}{10} \mathbf{x}_{4}^{(k-1)} - \frac{11}{10} \\ \mathbf{x}_{4}^{(k)} &= \frac{-3}{8} \mathbf{x}_{2}^{(k)} + \frac{1}{8} \mathbf{x}_{3}^{(k)} + \frac{15}{8} \end{aligned}$$

with the initial guess $\mathbf{x}^{(0)} = [0, 0, 0, 0]^T \in \mathbb{R}^4$.

Numerical Results of Example 3

After 5 iterations of Gauss-Seidel method, we have

$$\frac{\|\mathbf{x}^{(5)} - \mathbf{x}^{(4)}\|_{\infty}}{\|\mathbf{x}^{(5)}\|_{\infty}} = \frac{8.0 \times 10^{-4}}{2.000} = \mathbf{4.0} \times \mathbf{10^{-4}} < 10^{-3}.$$

In fact, the absolute error is $||x^{(5)} - x||_{\infty} = 1.0 \times 10^{-4}$. The numerical results are shown in the following table.

Matrix-Vector Form of Gauss-Seidel Method (1/2)

From the component form as in (3)

$$x_i^{(k)} = \frac{1}{a_{ii}} \left[-\sum_{j=1}^{i-1} (a_{ij}x_j^{(k)}) + \sum_{j=i+1}^{n} (-a_{ij}x_j^{(k-1)}) + b_i \right],$$

we immediately obtain

$$a_{i1}x_1^{(k)} + \dots + a_{ii}x_i^{(k)} = -a_{i,i+1}x_{i+1}^{(k-1)} - \dots - a_{in}x_n^{(k-1)} + b_i$$

for each i = 1, 2, ..., n.

• Thus we have following matrix form for Gauss-Seidel method:

$$\begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ & & & & \\ a_{21} & a_{22} & & & \\ & & \ddots & & \\ \vdots & \ddots & \ddots & 0 \\ a_{n1} & \cdots & a_{n,n-1} & a_{nn} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ a_{n1} & \cdots & a_{n,n-1} & a_{nn} \end{bmatrix} \begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \\ \vdots \\ x_n^{(k)} \end{bmatrix} = \begin{bmatrix} 0 & -a_{12} & \cdots & -a_{1n} \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \vdots \\$$

$$\begin{bmatrix} x_1^{(k-1)} \\ x_2^{(k-1)} \\ \vdots \\ x_n^{(k-1)} \end{bmatrix} + b.$$

Matrix-Vector Form of Gauss-Seidel Method (2/2)

• For each $k \ge 1$, the above matrix equation can be rewritten as

$$(D-L)x^{(k)} = Ux^{(k-1)} + b$$

$$\iff x^{(k)} = (D-L)^{-1}Ux^{(k-1)} + (D-L)^{-1}b$$

$$\iff x^{(k)} = T_gx^{(k-1)} + c_g,$$

where $T_g \equiv (D - L)^{-1} U$ and $c_g \equiv (D - L)^{-1} b$.

Recall the Jacobi method given by

$$x^{(k)} = T_j x^{(k-1)} + c_j, \quad k = 1, 2, \dots,$$

where $T_j = D^{-1}(L + U)$ and $c_j = D^{-1}b$.

General Iteration Methods

Some Questions

When does a general iteration of the form

$$x^{(k)} = Tx^{(k-1)} + c, \quad k = 1, 2, \dots$$

converge to a solution $x \in \mathbb{R}^n$ of the matrix equation x = Tx + c?

- 2 What is the rate of convergence for this iterative method?
- Ooes the Gauss-Seidel method always converge faster than the Jacobi method?

Lemma 7.18

If $T \in \mathbb{R}^{n \times n}$ satisfies $\rho(T) < 1$, the $(I - T)^{-1}$ exists and

$$(I-T)^{-1} = I + T + T^2 + \dots = \sum_{j=0}^{\infty} T^j$$

with $T^0 \equiv I$ being defined conventionally.

Proof of Lemma 7.18

• If $\lambda \in \sigma(T)$, then $\exists 0 \neq x \in \mathbb{R}^n$ s.t.

$$Tx = \lambda x$$
 or $(I - T)x = (1 - \lambda)x$.

So,
$$1 - \lambda \in \sigma(I - T)$$
.

- Because $\rho(T) < 1$, $|\lambda| \le \rho(T) < 1$. This means that I Tdoes not have any zero eigenvalues and hence $(I-T)^{-1}$ exists.
- Let $S_m = \sum_{i=0}^m T^i$. Then we have

$$(I-T)S_m = \sum_{j=0}^m T^j - \sum_{j=0}^m T^{j+1} = I - T^{m+1}.$$

Since $\rho(T) < 1$, T is convergent, i.e., $\lim_{m \to \infty} T^m = 0$ by Thm

7.17. Hence
$$(I - T)^{-1} = \lim_{m \to \infty} S_m = \sum_{j=0}^{\infty} T^j$$
.

Thm 7.19 (廣義迭代法收斂性的充要條件)

For any $x^{(0)} \in \mathbb{R}^n$, the sequence $\{x^{(k)}\}_{k=0}^{\infty}$ defined by

$$x^{(k)} = Tx^{(k-1)} + c \qquad \forall k \ge 1$$

converges to the **unique solution** of $x = Tx + c \iff \rho(T) < 1$.

pf: The proof is illustrated as follows.

 (\Leftarrow) Suppose that $\rho(T) < 1$. By induction \Longrightarrow

$$x^{(k)} = Tx^{(k-1)} + c$$

$$= T(Tx^{(k-2)} + c) + c = T^2x^{(k-2)} + (T+I)c$$

$$\vdots$$

$$= T^kx^{(0)} + (T^{k-1} + \dots + T+I)c.$$

Since $\rho(T)<1$, $\lim_{k\to\infty}T^kx^{(0)}=0$ by Thm 7.17. Thus, it follows from Lemma 7.18 that

$$x \equiv \lim_{k \to \infty} x^{(k)} = 0 + \left(\sum_{j=0}^{\infty} T^{j}\right) c = (I - T)^{-1} c.$$

Hence, the limit $x \in \mathbb{R}^n$ is the unique solution of the equation

$$x = (I - T)^{-1}c \iff (I - T)x = c \iff x = Tx + c.$$

 (\Rightarrow) Assume that $\lim_{k\to\infty} x^{(k)}=x$ for any initial vector $x^{(0)}$, where $x\in\mathbb{R}^n$ is the unique sol. of x=Tx+c. Now, we want to claim that

$$\rho(\mathit{T}) < 1 \Longleftrightarrow \lim_{k \to \infty} \mathit{T}^k z = 0 \quad \forall \, z \in \mathbb{R}^n$$

by applying Thm 7.17.

For any $z \in \mathbb{R}^n$, let $x^{(0)} = x - z$. Then by induction \Longrightarrow

$$x - x^{(k)} = (Tx + c) - (Tx^{(k-1)} + c)$$

$$= T(x - x^{(k-1)}) = \dots = T^{k}(x - x^{(0)})$$

$$= T^{k}z, \text{ since } z = x - x^{(0)}.$$

So, it follows from the assumption that

$$\lim_{k \to \infty} T^k z = x - \lim_{k \to \infty} x^{(k)} = x - x = 0.$$

Since $z \in \mathbb{R}^n$ is given arbitrarily, we have $\rho(T) < 1$.

Cor 7.20 (廣義迭代法的誤差上界與收斂比率)

If ||T|| < 1 for any natural norm, the seq. $\{x^{(k)}\}_{k=0}^{\infty}$ defined by

$$x^{(k)} = Tx^{(k-1)} + c \qquad \forall \ k \ge 1$$

converges to the unique sol. of x = Tx + c, for any $x^{(0)} \in \mathbb{R}^n$. Moreover, we have

(i)
$$||x^{(k)} - x|| \le ||T||^k ||x^{(0)} - x|| \quad \forall k \ge 1;$$

(ii)
$$||x^{(k)} - x|| \le \frac{||T||^k}{1 - ||T||} ||x^{(1)} - x^{(0)}|| \quad \forall k \ge 1.$$

Note: See Exercise 13 for the proof.

Thm 7.21 (Jacobi 法和 Gaussl-Seidel 法收斂的充分條件)

If $A \in \mathbb{R}^{n \times n}$ is **strictly diagonally dominant**, then both Jacobi and Gauss-Seidel methods converge to the unique sol. x of Ax = b, for any choice of $x^{(0)} \in \mathbb{R}^n$.

Thm 7.22 (Stein-Rosenberg)

If $a_{ij} \le 0$ for $i \ne j$ and $a_{ii} > 0$ for i = 1, 2, ..., n, then one and only one of the following statements holds:

(i)
$$0 \le \rho(T_g) < \rho(T_j) < 1$$
; (ii) $1 < \rho(T_j) < \rho(T_g)$;

(iii)
$$\rho(T_j) = \rho(T_g) = 0$$
; (iv) $\rho(T_j) = \rho(T_g) = 1$.

Note: 條件 (i) 或 (iii) 決定兩算法的收斂性 · 但條件 (ii) 或 (iv) 決定兩算法的發散性 ·

Section 7.4 Relaxation Techniques for Solving Linear Systems

Def 7.23 (殘餘向量或剩餘向量)

If $\tilde{x} \in \mathbb{R}^n$ is an approximation to the solution of a linear system Ax = b, then $r = b - A\tilde{x}$ is called the **residual vector** for \tilde{x} with respect to the system.

Remarks

- In the Jacbi or Gauss-Seidel methods, a residual vector is associated with each calculation of an approx. component to the solution vector.
- The true objective is to generate a sequence of approximations that will cause the residual vectors to converge rapidly to zero.

Some Notations

• For each i = 1, 2, ..., n, let

$$\mathbf{r}_{i}^{(k)} = [r_{1i}^{(k)}, r_{2i}^{(k)}, \cdots, r_{ni}^{(k)}]^{T} \in \mathbb{R}^{n}$$

denote the residual vector for Gauss-Seidel method corresp. to the approx. sol. vector $\mathbf{x}_{i}^{(k)}$ defined by

$$\mathbf{x}_{i}^{(k)} = [x_{1}^{(k)}, x_{2}^{(k)}, \cdots, x_{i-1}^{(k)}, x_{i}^{(k-1)}, \cdots, x_{n}^{(k-1)}]^{T} \in \mathbb{R}^{n}.$$

ullet The *i*th component of the residual ${f r}_i^{(k)} = b - A {f x}_i^{(k)}$ is given by

$$r_{ii}^{(k)} = b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)} - a_{ii} x_i^{(k-1)}.$$

• From the above equation for $r_{ii}^{(k)}$, we obtain

$$r_{ii}^{(k)} + a_{ii}x_i^{(k-1)} = b_i - \sum_{j=1}^{i-1} a_{ij}x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij}x_j^{(k-1)}$$
 (4)

for each i = 1, 2, ..., n.

• Note that, in the Gauss-Seidel method, we choose $x_i^{(k)}$ to be

$$x_i^{(k)} = \frac{1}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)} \right].$$

So, we further have

$$a_{ii}x_i^{(k)} = b_i - \sum_{j=1}^{i-1} a_{ij}x_j^{(k)} - \sum_{j=i+1}^n a_{ij}x_j^{(k-1)}$$
 (5)

for each i = 1, 2, ..., n.

• From Eqs. (4) and (5) $\Longrightarrow a_{ii}x_i^{(k-1)} + r_{ii}^{(k)} = a_{ii}x_i^{(k)}$.

Alternative Characterization for Gauss-Seidel Method

For each $k \ge 1$, choose the *i*th component of $x^{(k)}$ satisfying

$$\mathbf{x}_{i}^{(k)} = \mathbf{x}_{i}^{(k-1)} + \frac{r_{ii}^{(k)}}{a_{ii}}, \quad i = 1, 2, \dots, n.$$

• Another characterization for the Gauss-Seidel is given by

The 2nd Characterization of Gauss-Seidel Method

For each $k \ge 1$, choose $x_i^{(k)}$ satisfying

$$r_{i,i+1}^{(k)} = 0, \quad i = 1, 2, \dots, n.$$

Relaxation Methods (鬆弛法)

For each $k \ge 1$, choose the *i*th component of $x^{(k)}$ satisfying

$$x_i^{(k)} = x_i^{(k-1)} + \omega \cdot \frac{r_{ii}^{(k)}}{a_{ii}}, \quad i = 1, 2, \dots, n,$$
 (6)

where $\omega > 0$ is a parameter. Two types of relaxation methods:

- **①** $0 < \omega < 1$: **under-relaxation** methods. (低鬆弛法)
- **②** $\omega > 1$: **over-relaxation** methods. (過度鬆弛法)

The SOR Methods

- The over-relaxation methods are also called the Successive Over-Relaxation (SOR) methods.
- They are often used to accelerate the convergence of the Gauss-Seidel method.
- These methods are particularly useful for solving the linear systems that occur in the numerical solution of certain PDEs.

Review for $r_{ii}^{(k)}$

It has been shown previously that

$$r_{ii}^{(k)} = b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)} - a_{ii} x_i^{(k-1)}$$

for each i = 1, 2, ..., n.

Component Form of SOR Method

Combining (6) with above eq. for $r_{ii}^{(k)}$, we see that

$$x_{i}^{(k)} = x_{i}^{(k-1)} + (\omega/a_{ii}) \cdot r_{ii}^{(k)}$$

$$= x_{i}^{(k-1)} + \frac{\omega}{a_{ii}} \left[b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k-1)} - a_{ii} x_{i}^{(k-1)} \right]$$

$$= (1 - \omega) x_{i}^{(k-1)} + \frac{\omega}{a_{ii}} \left[b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k-1)} \right], \quad (7)$$

for each i = 1, 2, ..., n.

Matrix-Vector Form of SOR Method

• From (7), the component form for SOR can be rewritten as

$$a_{ii}x_i^{(k)} - \omega \sum_{j=1}^{i-1} (-a_{ij}x_j^{(k)}) = (1 - \omega)a_{ii}x_i^{(k-1)} + \omega \sum_{j=i+1}^{n} (-a_{ij}x_j^{(k-1)}) + \omega b_i$$

for each i = 1, 2, ..., n.

• This is equivalent to the following matrix-vector form

$$(D - \omega L)x^{(k)} = [(1 - \omega)D + \omega U]x^{(k-1)} + \omega b$$

$$\iff x^{(k)} = T_{\omega}x^{(k-1)} + c_{\omega},$$

where $T_{\omega} \equiv (D - \omega L)^{-1}[(1 - \omega)D + \omega U] \in \mathbb{R}^{n \times n}$ and the parameter-dependent vector $\mathbf{c}_{\omega} \equiv \omega(D - \omega L)^{-1}\mathbf{b} \in \mathbb{R}^{n}$.

Algorithm 7.3: SOR

- INPUT dim. n; $A = [a_{ij}] \in \mathbb{R}^{n \times n}$; $b \in \mathbb{R}^n$; $X_0 = x^{(0)} \in \mathbb{R}^n$; parameter ω ; tol. TOL; max. no. of iter. N_0 .
- OUTPUT an approx. sol. x_1, x_2, \ldots, x_n to Ax = b.
 - Step 1 Set k = 1.
 - Step 2 While $(k \le N_0)$ do **Steps 3–6** Step 3 For i = 1, ..., n set

$$x_i = (1 - \omega)X0_i + \frac{\omega}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} (a_{ij}x_j) - \sum_{j=i+1}^{n} (a_{ij}X0_j) \right].$$

- Step 4 If ||x X0|| < TOL then OUTPUT (x_1, \dots, x_n) ; **STOP**.
- Step 5 Set k = k + 1.
- Step 6 Set X0 = x.
- Step 7 OUTPUT('Maximum number of iterations exceeded'); STOP.

Example 1, p. 464

The 3×3 linear system

$$4x_1 + 3x_2 = 24,$$

 $3x_1 + 4x_2 - x_3 = 30,$
 $-x_2 + 4x_3 = -24$

has the unique sol. $\mathbf{x} = [3,4,-5]^T \in \mathbb{R}^3$. Use the Gauss-Seidel method and SOR with $\omega = \mathbf{1.25}$ to compute an approx. sol. to \mathbf{x} using $\mathbf{x}^{(0)} = [1,1,1]^T \in \mathbb{R}^3$ for both methods.

Solution (1/3)

(1) Applying the Gauss-Seidel method, we have for each $k \ge 1$,

$$\begin{aligned} x_1^{(k)} &= -0.75x_2^{(k-1)} + 6, \\ x_2^{(k)} &= -0.75x_1^{(k)} + 0.25x_3^{(k-1)} + 7.5, \\ x_3^{(k)} &= 0.25x_2^{(k)} - 6. \end{aligned}$$

• The fist 7 iterates of Gauss-Seidel method are listed below.

Solution (2/3)

(2) Recall that the component form of SOR method is given by

$$x_i^{(k)} = (1 - \omega)x_i^{(k-1)} + \frac{\omega}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij}x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij}x_j^{(k-1)} \right]$$

for each i = 1, 2, ..., n.

ullet The equations for SOR method with $\omega=1.25$ are

$$\begin{split} \mathbf{x}_{1}^{(k)} &= -0.25\mathbf{x}_{1}^{(k-1)} - 0.9375\mathbf{x}_{2}^{(k-1)} + 7.5, \\ \mathbf{x}_{2}^{(k)} &= -0.9375\mathbf{x}_{1}^{(k)} - 0.25\mathbf{x}_{2}^{(k-1)} + 0.3125\mathbf{x}_{3}^{(k-1)} + 9.375, \\ \mathbf{x}_{3}^{(k)} &= 0.3125\mathbf{x}_{2}^{(k)} - 0.25\mathbf{x}_{3}^{(k-1)} - 7.5, \end{split}$$

for each $k \ge 1$.

Solution (3/3)

• Again, the fist 7 iterates of SOR method are listed below.

Numerical Comparison

To obtain an approx. sol. accurate to **7 decimal places**:

- Gauss-Seidel method requires 34 iterations.
- SOR with $\omega=1.25$ requires only **14** iterations!

Question

How to select the optimal (or suboptimal) value of the relaxation parameter $\omega>0$?

- No complete answer to this question until now!
- Only partial results are known for certain important cases.

Thm 7.24 (Kahan)

If $a_{ii} \neq 0$ for each i = 1, 2, ..., n, then

$$\rho(T_{\omega}) \ge |\omega - 1|.$$

Note: From Thm 7.24 \Longrightarrow the SOR converges only if $0 < \omega < 2!$

Proof of Thm 7.24

• If $\lambda_1, \dots, \lambda_n$ are eigenvalues of $T_{\omega} = (D - \omega L)^{-1}[(1 - \omega)D + \omega U]$, then

$$\Pi_{i=1}^{n} \lambda_{i} = \det(T_{\omega}) = \det(D - \omega L)^{-1} \cdot \det[(1 - \omega)D + \omega U]$$
$$= (a_{11}a_{22} \cdots a_{nn})^{-1} \cdots (1 - \omega)^{n} \cdot (a_{11}a_{22} \cdots a_{nn})$$
$$= (1 - \omega)^{n}.$$

• Thus, $[\rho(T_{\omega})]^n \ge \prod_{i=1}^n |\lambda_i| = |1 - \omega|^n$ and hence $\rho(T_{\omega}) \ge |\omega - 1|$. Also, note that

$$|\omega - 1| \le \rho(T_\omega) < 1 \Longrightarrow 0 < \omega < 2.$$

Two Useful Results

Thm 7.25 (Ostrowski-Reich)

If $A \in \mathbb{R}^{n \times n}$ is positive definite and $0 < \omega < 2$, then the SOR method converges for any initial approx. vector $x^{(0)}$.

Thm 7.26 (A 為正定且三對角線矩陣)

If $A \in \mathbb{R}^{n \times n}$ is positive definite and tridiagonal, then

- (i) $\rho(T_g) = [\rho(T_i)]^2 < 1$, and
- (ii) the **optimal choice** of ω for the SOR method is

$$\omega = \frac{2}{1 + \sqrt{1 - [\rho(T_i)]^2}}.$$

With this choice of ω , $\rho(T_{\omega}) = \omega - 1$.

Reference

The proof of above two theorems can be found in [Or2], pp. 123–133.

[Or2] J. M. Ortega, Numerical Analysis: A Second Course, Academic Press, New York, 1972.

Question

In Example 1, we apply the SOR method with $\omega=1.25$ for solving the linear system

$$4x_1 + 3x_2 = 24,$$

 $3x_1 + 4x_2 - x_3 = 30,$
 $-x_2 + 4x_3 = -24.$

Is the choice of ω optimal or suboptimal for this case?

Example 2, p. 466

Find the optimal choice of ω for the SOR method for solving a linear system Ax = b with the **tridiagonal** matrix

$$A = \begin{bmatrix} 4 & 3 & 0 \\ 3 & 4 & -1 \\ 0 & -1 & 4 \end{bmatrix}.$$

Sol: Note that *A* is symmetric and **positive definite** because

$$\det(\mathsf{A}) = 24, \quad \det\left(\begin{bmatrix} 4 & 3 \\ 3 & 4 \end{bmatrix}\right) = 7 \quad \text{and} \quad \det([4]) = 4.$$

So, $A \in \mathbb{R}^{3 \times 3}$ is a positive and tridiagonal matrix, and hence Thm 7.26 can be applied.

• Now, compute the matrix $T_j = D^{-1}(L + U)$ as

$$T_j = \begin{bmatrix} \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{4} \end{bmatrix} \begin{bmatrix} 0 & -3 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -0.75 & 0 \\ -0.75 & 0 & 0.25 \\ 0 & 0.25 & 0 \end{bmatrix}.$$

ullet Since the cha characteristic polynomial of T_j is

$$\det(T_j - \lambda I) = \det \begin{bmatrix} -\lambda & -0.75 & 0 \\ -0.75 & -\lambda & 0.25 \\ 0 & 0.25 & -\lambda \end{bmatrix}$$
$$= -\lambda(\lambda^2 - 0.625),$$

we have $\rho(T_j) = \sqrt{0.625}$ or $[\rho(T_j)]^2 = \mathbf{0.625}$.

ullet Thus, the optimal value of ω should be

$$\omega = \frac{2}{1 + \sqrt{1 - [\rho(T_i)]^2}} = \frac{2}{1 + \sqrt{1 - 0.625}} \approx 1.24!$$

Section 7.5 Error Bounds and Iterative Refinement (誤差上界與迭代改進)

Let \tilde{x} be a computed approximation to the unique sol. $x \in \mathbb{R}^n$ of Ax = b with residual vector $r = b - A\tilde{x}$.

Question

Does the small quantity of ||r|| indicate that the absolute error $||\tilde{x} - x||$ is small as well?

No, it depends on the **conditioning** of the given problem!

Example 1 (小殘量不保證較小的絕對誤差)

The 2×2 linear system Ax = b is given by

$$\begin{bmatrix} 1 & 2 \\ \mathbf{1.0001} & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ \mathbf{3.0001} \end{bmatrix}$$

has the unique solution $x = [1, 1]^T \in \mathbb{R}^2$. Find the residual vector for the **poor** approximation $\tilde{x} = [3, -0.0001]^T$.

Sol: The residual vector is

$$r = b - A\tilde{x} = \begin{bmatrix} 3 \\ 3.0001 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 1.0001 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ -0.0001 \end{bmatrix} = \begin{bmatrix} 0.0002 \\ 0 \end{bmatrix}.$$

Then $\|r\|_{\infty}=0.0002$ is small, but its absolute error $\|\tilde{x}-x\|_{\infty}=2$ is quite large!

 The exact sol. x is just the intersection of two nearly parallel lines

$$\mathbf{l_1}: \ x_1 + 2x_2 = 3,$$

$$\mathbf{l_2}: 1.0001x_1 + 2x_2 = 3.0001.$$

• The poor approximation \tilde{x} lies on l_2 , but **lies close to** l_1 . So, small quantity of $||r||_{\infty}$ is obtained.

Relationship Between Residuals and Relative Errors

Thm 7.27 (殘量與相對誤差的關係)

Let A be **nonsingular** and \tilde{x} be an approx. to the sol. x of the linear system Ax = b with residual vector $r = b - A\tilde{x}$. If $\|\cdot\|$ denotes any natural norm, then

- $\|\tilde{x} x\| \le \|A^{-1}\| \cdot \|r\|$, and
- $\frac{\|\tilde{\mathbf{x}} \mathbf{x}\|}{\|\mathbf{x}\|} \le \|\mathbf{A}\| \|\mathbf{A}^{-1}\| \cdot \frac{\|\mathbf{r}\|}{\|\mathbf{b}\|}$, provided that $\mathbf{x} \ne 0$ and $\mathbf{b} \ne 0$.

pf: Since Ax = b and $A\tilde{x} = b - r$, we see that

$$A(\tilde{x} - x) = (b - r) - b = -r$$
 or $\tilde{x} - x = -A^{-1}r$.

Taking norm $\|\cdot\|\Longrightarrow \|\tilde{x}-x\|=\|A^{-1}r\|\leq \|A^{-1}\|\|r\|$. Because $\|b\|\leq \|A\|\|x\|$, we have $1/\|x\|\leq \|A\|/\|b\|$ and the above inequality becomes

$$\frac{\|\tilde{x} - x\|}{\|x\|} \le \frac{\|A^{-1}\| \|r\|}{\|x\|} \le \|\mathbf{A}\| \|\mathbf{A}^{-1}\| \frac{\|r\|}{\|b\|}.$$

C onditioning of Linear Systems

Def 7.28, p. 470

The **condition number** (條件數) of a nonsingular matrix A is defined by

$$K(A) = \kappa(A) = ||A|| ||A^{-1}||,$$

where $\|\cdot\|$ is any natural matrix norm.

The Conditioning of A_i

Since $I = AA^{-1}$, it is easily seen that

$$1 = ||I|| \le ||AA^{-1}|| \le ||A|| ||A^{-1}|| = K(A).$$

Thus we say that

- A is well-conditioned (良態的) if K(A) is close to 1.
- A is **illl-conditioned** (病態的) if K(A) is significantly greater than 1.

Reformulation of Thm 7.27

Rewriting Thm 7.27 as ...

- $\|\tilde{x} x\| \le \|A^{-1}\| \cdot \|r\| = K(A) \cdot \frac{\|r\|}{\|A\|}$, and
- $\frac{\|\tilde{x}-x\|}{\|x\|} \le K(A) \cdot \frac{\|r\|}{\|b\|}$. (相對誤差 \le 條件數 \times 相對殘量)

Notes

- The condition number K(A) can be viewed as a magnifying factor (放大因子) of the absolute or relative error.
- A is well-conditioned and ||r|| is small \Longrightarrow absolute or relative error is small as well.

Example 1 Revisited

Example 2, p. 471

Use I_{∞} norm to determine the condition number of the matrix

$$A = \begin{bmatrix} 1 & 2 \\ 1.0001 & 2 \end{bmatrix}$$

given in Example 1.

Sol: Note that $||A||_{\infty} = 3.0001$. But its inverse is

$$A^{-1} = \begin{bmatrix} -10000 & 10000 \\ 5000.5 & -5000 \end{bmatrix}, \text{ so } ||A^{-1}||_{\infty} = \mathbf{20000}.$$

Hence, the condition number of A is $K(A) = K_{\infty}(A) = 60002$.

Question

For any nonsingular $A \in \mathbb{R}^{n \times n}$, how to estimate its condition number

$$K(A) = ||A|| \, ||A^{-1}||$$

efficiently using t-digit arithmetic?

The Estimation of Condition Numbers (1/2)

- Assume that **t-digit arithmetic** is used in the process of GE for solving the approx. sol. \tilde{x} to the linear system Ax = b.
- It can be shown from pp. 45-47 of [FM, 1967] that

$$||r|| \approx 10^{-t} ||A|| ||\tilde{x}||$$
 with $r = b - A\tilde{x}$.

Reference

[FM] G. E. Forsythe and C. B. Moler, Computer Solution of Linear Algebraic Systems, Prentice-Hall, Englewood Cliffs, NJ, 1967.

• Use **2t-digit arithmetic** (double precision) to evaluate the residual vector $r = b - A\tilde{x}$.

The Estimation of Condition Numbers (2/2)

• Apply LU factorization generated from GE to obtain an approx. sol. \tilde{y} of the linear system

$$Ay = r$$

using the t-digit arithmetic.

Thus we then have

$$\tilde{y} \approx A^{-1}r = A^{-1}(b - A\tilde{x}) = x - \tilde{x}$$
 or $x \approx \tilde{x} + \tilde{y}$.

• Taking norm $\|\cdot\| \Longrightarrow$

$$\|\tilde{y}\| \approx \|A^{-1}r\| \le \|A^{-1}\| \cdot \|r\| \approx 10^{-t} \|\tilde{x}\| \cdot K(A).$$

• Finally, the condition number K(A) can be estimated by

$$K(A) \approx 10^t \cdot \frac{\|\tilde{y}\|}{\|\tilde{x}\|}.$$

An Illustrative Example (1/2)

Example

The 3×3 linear system Ax = b with

$$A = \begin{bmatrix} 3.3330 & 15920 & -10.333 \\ 2.2220 & 16.710 & 9.6120 \\ 1.5611 & 5.1791 & 1.6852 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 15913 \\ 28.544 \\ 8.4254 \end{bmatrix}$$

has the unique solution $\mathbf{x} = [\mathbf{1}, \mathbf{1}, \mathbf{1}]^\mathbf{T} \in \mathbb{R}^3.$

- Applying GE with **5-digit rounding** arithmetic \Longrightarrow computed solution $\tilde{x} = [1.2001, 0.99991, 0.92538].$
- Use 10-digit rounding arithmetic to obtain

$$r = fl(b - A\tilde{x}) = \begin{bmatrix} -0.00518 \\ 0.27412914 \\ -0.186160367 \end{bmatrix}.$$

An Illustrative Example (2/2)

• Solving Ay = r with **5-digit rounding arithmetic** for $\tilde{y} \Longrightarrow$

$$\tilde{y} = [-0.20008, 8.9987 \times 10^{-5}, 0.074607]^T.$$

So, the condition number of A is estimated by

$$\mathcal{K}_{\infty}(A) pprox \frac{\|\tilde{\mathbf{y}}\|_{\infty}}{\|\tilde{\mathbf{x}}\|_{\infty}} 10^5 = \mathbf{16672}$$

without computing the inverse matrix A^{-1} explicitly!

• Furthermore, the exact condition number is

$$K_{\infty}(A) = ||A^{-1}||_{\infty} ||A||_{\infty} = (1.0041)(15934) = 15999$$

using 5-digit rounding arithmetic.

Question

Are the residual bounds in Thm 7.27

•
$$\|\tilde{x} - x\| \le \|A^{-1}\| \cdot \|r\| = \frac{K(A)}{\|A\|} \cdot \frac{\|r\|}{\|A\|}$$
, and

$$\bullet \ \frac{\|\tilde{x}-x\|}{\|x\|} \le K(A) \cdot \frac{\|r\|}{\|b\|}$$

sharp (or tight) for this Example?

Is the residual bounds in Thm 7.27 sharp?

• Since the exact sol. $x = [1, 1, 1]^T$ is known, we compute

$$\|\tilde{x} - x\|_{\infty} = \mathbf{0.2001}$$
 and $\frac{\|\tilde{x} - x\|_{\infty}}{\|x\|_{\infty}} = \frac{0.2001}{1} = \mathbf{0.2001}.$

Also, the residual bounds in Thm 7.27 are computed as

$$\|\tilde{x} - x\|_{\infty} \le K_{\infty}(A) \frac{\|r\|_{\infty}}{\|A\|_{\infty}} = \frac{(15999)(0.27413)}{15934} = \mathbf{0.27525},$$

$$\frac{\|\tilde{x} - x\|_{\infty}}{\|x\|_{\infty}} \le K_{\infty}(A) \frac{\|r\|_{\infty}}{\|b\|_{\infty}} = \frac{(15999)(0.27413)}{15913} = \mathbf{0.27561}.$$

• This example illustrates the sharpness (or tightness) of the error bounds in Thm 7.27!

Iterative Refinement (or Improvement)

- In above derivation, $x \approx \tilde{x} + \tilde{y}$ is **more accurate than** \tilde{x} as an approximation to the sol. of Ax = b, where \tilde{y} is the computed sol. to Ay = r.
- Basic Idea: Let $x^{(1)} = \tilde{x}$. For k = 1, 2, ...

$$r^{(k)} = b - Ax^{(k)}, \quad Ay^{(k)} = r^{(k)}, \quad x^{(k+1)} = x^{(k)} + y^{(k)}.$$

• All steps, except Step 3 below for computing the residual vector $r^{(k)}$, of Iterative Refinement are performed in the **t-digit arithmetic**.

Algorithm 7.4: Iterative Refinement

- INPUT matrices $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$; tolerance TOL; max. no. of iter. N; no. of precision t.
- OUTPUT approx. sol. xx to Ax = b; $K_{\infty}(A) \approx COND$.
 - Step 0 Solve Ax = b for x using GE.
 - Step 1 Set k = 1.
 - Step 2 While $(k \le N)$ do **Steps 3–9**
 - Step 3 Set residual vector r = b Ax using **2t-digit arithmetic**.
 - Step 4 Solve Ay = r for y using the LU fact. generated from Step 0.
 - Step 5 Set xx = x + y.
 - Step 6 If k=1 then set $COND = \frac{\|y\|_{\infty}}{\|xx\|_{\infty}} 10^t$.
 - Step 7 If $||xx x||_{\infty} < TOL$ then OUTPUT(xx and COND); **STOP**.
 - Step 8 Set k = k + 1.
 - Step 9 Set x = xx. (Update x.)
 - Step 10 OUTPUT('Max. no. of iter. exceeded' and COND); STOP.

Comments on Algorithm 7.4

- The double-precision (or 2t-digit) arithmetic is required in Step 3 in order to avoid the loss of significance for two nearly equal numbers.
- If t-digit arithmetic is used and $K_{\infty}(A) \approx 10^q$ ($0 \le q \le t$), then after k iterations of Iterative Refinement, the sol. xx has approximately $\min\{\mathbf{t}, \mathbf{k}(\mathbf{t} \mathbf{q})\}$ correct digits.
- If A (or the linear system) is well-conditioned, usually only
 one or two iterations of Iterative Refinement are required for
 obtaining highly accurate approximation to the linear system.
- If A is ill-conditioned with $K_{\infty}(A) > 10^t$, then extended precision should be used in the calculations.

The Illustrative Example Revisited (1/2)

Example

The 3×3 linear system Ax = b with

$$A = \begin{bmatrix} 3.3330 & 15920 & -10.333 \\ 2.2220 & 16.710 & 9.6120 \\ 1.5611 & 5.1791 & 1.6852 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 15913 \\ 28.544 \\ 8.4254 \end{bmatrix}$$

has the unique solution $\mathbf{x} = [\mathbf{1}, \mathbf{1}, \mathbf{1}]^T \in \mathbb{R}^3$. Perform 2 iterations of Iterative Refinement using **5-digit rounding** arithmetic.

Sol: With the computed approx. \tilde{x} and its residual

$$\mathbf{x}^{(1)} = \tilde{\mathbf{x}} = [1.2001, 0.99991, 0.92538]^T$$

 $\mathbf{r}^{(1)} = \mathbf{r} = [-0.00518, 0.27412914, -0.186160367],$

we solve
$$Ay = r^{(1)}$$
 for $y^{(1)} \Longrightarrow$

$$\mathbf{y}^{(1)} = \tilde{\mathbf{y}} = [-0.20008, 8.9987 \times 10^{-5}, 0.074607]^T.$$

The Illustrative Example Revisited (2/2)

After fist iteration of Iterative Refinement, we have

$$\mathbf{x}^{(2)} = \mathbf{x}^{(1)} + \mathbf{y}^{(1)} = [\mathbf{1.0000}, \mathbf{1.0000}, \mathbf{0.99999}]^{\mathbf{T}}$$

with absolute (or relative) error $||x^{(2)} - x||_{\infty} = 1 \times 10^{-5}$.

After second iteration, we obtain

$$\textit{y}^{(2)} = [1.5002 \times 10^{-9}, 2.0951 \times 10^{-10}, 1.0000 \times 10^{-5}]$$

and hence the next approx. sol. is given by

$$x^{(3)} = x^{(2)} + y^{(2)} = [1.0000, 1.0000, 1.0000]^{T},$$

which is the exact sol. x to the given linear system.

Perturbation Theorem (擾動定理) for Linear Systems

Question

For any linear system Ax=b with nonsingular A, the computed sol. \tilde{x} is obtained by solving the **perturbed linear system**

$$(A + \delta A)\tilde{x} = b + \delta b$$
 with $||\delta A|| = O(10^{-t}), ||\delta b|| = O(10^{-t}).$

Is it always true that $\|\tilde{\mathbf{x}} - \mathbf{x}\| = O(10^{-t})$?

Thm 7.29 (線性系統的擾動上界)

If $A \in \mathbb{R}^{n \times n}$ and $\|\delta A\| \cdot \|A^{-1}\| < 1$ for any natural norm $\| \cdot \|$, then

$$\frac{\|\tilde{x} - x\|}{\|x\|} \le \frac{K(A)\|A\|}{\|A\| - K(A)\|\delta A\|} \left(\frac{\|\delta b\|}{\|b\|} + \frac{\|\delta A\|}{\|A\|}\right).$$

Section 7.6 The Conjugate Gradient Method (共軛梯度法; 簡稱 CG Method)

Review of Inner Product in \mathbb{R}^n

Goal: To develop an iterative method for solving large-scale linear systems with **positive definite** coefficient matrices.

Thm 7.30 (內積的基本性質)

The inner product (or dot product) of $x, y \in \mathbb{R}^n$ is defined by

$$\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i.$$

For any $x, y, z \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$, we have

(a)
$$\langle x, y \rangle = \langle y, x \rangle$$
;

(b)
$$\langle \alpha x, y \rangle = \langle x, \alpha y \rangle = \alpha \langle x, y \rangle$$
;

(c)
$$\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$$
; (d) $\langle x, x \rangle \ge 0$;

(e)
$$\langle x, x \rangle = 0 \iff x = 0$$
; (f) $\langle x, Ay \rangle = \langle Ax, y \rangle$ if $A = A^T$.

(f)
$$\langle x, Ay \rangle = \langle Ax, y \rangle$$
 if $A = A'$.

Thm 7.31 (正定線性系統與優化問題的關聯性)

 x^* is the sol. to the **positive definite** linear system $Ax = b \iff x^*$ produces the minimal value of $g(x) = \langle x, Ax \rangle - 2\langle x, b \rangle$.

Note: Since $A^T = A$, for $x, 0 \neq v \in \mathbb{R}^n$ and $t \in \mathbb{R}$, we have

$$g(x + tv) = \langle x + tv, Ax + tAv \rangle - 2\langle x + tv, b \rangle$$

$$= \langle x, Ax \rangle + t\langle x, Av \rangle + t\langle v, Ax \rangle + t^2 \langle v, Av \rangle$$

$$- 2\langle x, b \rangle - 2t\langle v, b \rangle$$

$$= \langle x, Ax \rangle - 2\langle x, b \rangle + 2t\langle v, Ax \rangle - 2t\langle v, b \rangle + t^2 \langle v, Av \rangle$$

$$= g(x) - 2t\langle v, b - Ax \rangle + t^2 \langle v, Av \rangle. \tag{8}$$

Proof of Thm 7.31 (1/2)

From (8), for x and $v \neq 0$, define a quadratic function h in t by

$$h(t) = g(x + tv) = g(x) - 2t\langle v, b - Ax \rangle + t^2\langle v, Av \rangle.$$

Since $\langle v, Av \rangle > 0$, h has a minimal value at some \hat{t} and hence

$$0 = h'(\hat{t}) = -2\langle v, b - Ax \rangle + 2\hat{t}\langle v, Av \rangle.$$

So, we obtain

$$\hat{t} = \frac{\langle v, b - Ax \rangle}{\langle v, Av \rangle}$$
 and $g(x + \hat{t}v) = g(x) - \frac{\langle v, b - Ax \rangle^2}{\langle v, Av \rangle} < g(x)$

unless $\langle v, b - Ax \rangle = 0$.

Proof of Thm 7.31 (2/2)

Therefore, we conclude that

$$x^*$$
 is the unique sol. to $Ax = b$
 $\iff Ax^* = b$ or $b - Ax^* = 0$
 $\iff \langle v, b - Ax^* \rangle = 0 \quad \forall \ v \neq 0$
 $\iff g(x^* + \hat{t}v) = g(x^*) \quad \forall \ v \neq 0$
 $\iff g$ has a minimal value at x^* .

Basic Idea of CG Method

INPUT $\mathbf{x}^{(0)}$ is an initial approximation to \mathbf{x}^* ; $\mathbf{v}^{(1)} \neq \mathbf{0}$ is an initial search direction s.t. $\langle \mathbf{v}^{(1)}, \mathbf{b} - \mathbf{A} \mathbf{x}^{(0)} \rangle \neq \mathbf{0}$.

OUTPUT an approx. sol. to the linear system Ax = b.

• For $k = 1, 2, \ldots$ until convergence

$$t_k = \frac{\langle v^{(k)}, b - Ax^{(k-1)} \rangle}{\langle v^{(k)}, Av^{(k)} \rangle}, \quad x^{(k)} = x^{(k-1)} + t_k v^{(k)}.$$

• But, what is the next search direction $v^{(2)}$ in above iteration?

Question

How to find suitable and feasible search directions $v^{(k)}$ for $k \ge 2$?

Two Choices of Search Directions

- Steepest Descent Method: (最速下降法)
 - Note that $\nabla g(x) = 2(Ax b) = -2r$. (Check!)
 - The direction where g(x) decreases most rapidly is $-\nabla g(x) = r$, which is the residual vector.
 - Select $v^{(k)} = r^{(k)} = b Ax^{(k-1)}$ for k = 1, 2, ...
 - But this method is not used for solving linear systems because of its slow convergence.
- Conjugate Gradient Method: (共軛梯度法)
 - Select A-orthogonal set of nonzero vectors $\{v^{(1)}, v^{(2)}, \cdots\}$.
 - **A-orthogonality:** Two vectors $v^{(i)}$ and $v^{(j)}$ are called **A-orthogonal** (A-垂直向量) if $\langle v^{(i)}, Av^{(j)} \rangle = 0$ for $i \neq j$.
 - The CG method of Hestenes and Steifel [HS, 1952] was originally developed as a direct method for solving an n × n positive definite linear system.

Reference

[HS] M. R. Hestenes and E. Steifel, Conjugate gradient methods in optimization, Journal of Research of the National Bureau of Standards, Vol. 49, pp. 409–436, 1952.

Thm 7.32 (CG 法的收斂性)

Let $\{v^{(1)}, v^{(2)}, \cdots, v^{(n)}\}$ be A-orthogonal associated with positive definite A and $x^{(0)}$ be arbitrary. Define

$$t_k = \frac{\langle v^{(k)}, b - Ax^{(k-1)} \rangle}{\langle v^{(k)}, Av^{(k)} \rangle}, \quad x^{(k)} = x^{(k-1)} + t_k v^{(k)}$$

for k = 1, 2, ..., n. Then, assuming exact arithmetic, $Ax^{(n)} = b$. (在無捨入誤差的精確算術環境中·CG 算法只要 n 步迭代即可求解線性系統!)

Exercise 13, p. 494

Let $S = \{v^{(1)}, v^{(2)}, \dots, v^{(n)}\}$ be an *A*-orthogonal set of nonzero vectors associated with **positive definite** $A \in \mathbb{R}^{n \times n}$. Then

- (a) S is **linearly independent** and hence forms a basis for \mathbb{R}^n .
- (b) $\langle z, v^{(k)} \rangle = 0$ for $k = 1, 2, \dots, n \iff z = 0$.

Proof of Thm 7.32 (1/2)

• Since $x^{(k)} = x^{(k-1)} + t_k v^{(k)}$ for $k \ge 1$, we have

$$Ax^{(n)} = Ax^{(n-1)} + t_n Av^{(n)}$$

$$= Ax^{(n-2)} + t_{n-1} Av^{(n-1)} + t_n Av^{(n)}$$

$$\vdots$$

$$Ax^{(0)} + t_1 Av^{(1)} + \dots + t_n Av^{(n)}.$$

- So, $Ax^{(n)} b = Ax^{(0)} b + t_1Av^{(1)} + \cdots + t_nAv^{(n)}$.
- Because $\langle v^{(k)}, Av^{(i)} \rangle = 0$ for $k \neq i$, we see that

$$\langle v^{(k)}, Ax^{(n)} - b \rangle = \langle v^{(k)}, Ax^{(0)} - b \rangle + t_k \langle v^{(k)}, Av^{(k)} \rangle.$$

for
$$k = 1, 2, ..., n$$
.

Proof of Thm 7.32 (2/2)

• Again, by induction and A-orthogonality, notice that

$$t_{k}\langle v^{(k)}, Av^{(k)} \rangle = \langle v^{(k)}, b - Ax^{(k-1)} \rangle$$

= $\langle v^{(k)}, b - Ax^{(0)} - t_{1}Av^{(1)} - \dots - t_{k-1}Av^{(k-1)} \rangle$
= $\langle v^{(k)}, b - Ax^{(0)} \rangle$.

• Thus, we conclude that for k = 1, 2, ..., n,

$$\langle \mathbf{v}^{(k)}, A\mathbf{x}^{(n)} - \mathbf{b} \rangle = \langle \mathbf{v}^{(k)}, A\mathbf{x}^{(0)} - \mathbf{b} \rangle + \langle \mathbf{v}^{(k)}, \mathbf{b} - A\mathbf{x}^{(0)} \rangle = 0.$$

From Exercise 13(b), we know that

$$A\mathbf{x}^{(n)} - b = 0$$
 or $A\mathbf{x}^{(n)} = b$,

i.e., $x^{(n)}$ is the **exact solution** to Ax = b!

Example 1, p. 483

Apply Thm 7.32 to solve the positive definite system Ax = b with

$$A = \begin{bmatrix} 4 & 3 & 0 \\ 3 & 4 & -1 \\ 0 & -1 & 4 \end{bmatrix}, b = \begin{bmatrix} 24 \\ 30 \\ -24 \end{bmatrix}$$

using $\mathbf{x^{(0)}} = [0,0,0]^T$ and A-orthogonal vectors $\mathbf{v^{(1)}} = [1,0,0]^T$, $\mathbf{v^{(2)}} = [-3/4,1,0]^T$, $\mathbf{v^{(3)}} = [-3/7,4/7,1]^T$.

Note: See the textbook for showing the *A*-orthogonality conditions:

$$\langle v^{(1)}, Av^{(2)} \rangle = 0, \quad \langle v^{(1)}, Av^{(3)} \rangle = 0, \quad \langle v^{(2)}, Av^{(3)} \rangle = 0.$$

Solution of Example 1

$$k=1: r^{(0)} = b - Ax^{(0)} = b = [24, 30, -24]^T$$
 and

$$t_1 = \frac{\langle v^{(1)}, r^{(0)} \rangle}{\langle v^{(1)}, Av^{(1)} \rangle} = \frac{24}{4} = \mathbf{6}, \quad x^{(1)} = x^{(0)} + t_1 v^{(1)} = [\mathbf{6}, \mathbf{0}, \mathbf{0}]^{\mathbf{T}}.$$

$$k=2$$
: $r^{(1)} = b - Ax^{(1)} = [0, 12, -24]^T$ and

$$t_2 = \frac{\langle v^{(2)}, r^{(1)} \rangle}{\langle v^{(2)}, Av^{(2)} \rangle} = \frac{12}{7/4} = \frac{48}{7}, \quad x^{(2)} = x^{(1)} + t_2 v^{(2)} = [\frac{6}{7}, \frac{48}{7}, 0]^{\mathbf{T}}.$$

$$k=3$$
: $r^{(2)} = b - Ax^{(2)} = [0, 0, \frac{-120}{7}]^T$ and

$$t_3 = \frac{\langle v^{(3)}, r^{(2)} \rangle}{\langle v^{(3)}, Av^{(3)} \rangle} = -\mathbf{5}, \quad x^{(3)} = x^{(2)} + t_3 v^{(3)} = [\mathbf{3}, \mathbf{4}, -\mathbf{5}]^{\mathbf{T}},$$

which is the **exact solution** to Ax = b after **3** iterations!

The Conjugate Directions (共軛方向)

Definition

The numerical method is called a **conjugate direction method** if it uses an *A*-orthogonal set $\{v^{(1)}, v^{(2)}, \cdots, v^{(n)}\}$ of direction vectors.

Thm 7.33 (殘量與共軛方向向量的關係)

For a conjugate direction method, its residual vectors $r^{(k)}$, where k = 1, 2, ..., n, satisfy

$$\langle r^{(k)}, v^{(j)} \rangle = 0, \quad j = 1, 2, \dots, k.$$

(第 k 步的殘餘向量與前 k 個共軛方向向量均垂直)

Proof of Thm 7.33

k=1:

$$\langle v^{(1)}, r^{(1)} \rangle = \langle v^{(1)}, b - Ax^{(1)} \rangle$$

= $\langle v^{(1)}, b - Ax^{(0)} \rangle - t_1 \langle v^{(1)}, Av^{(1)} \rangle = 0.$

k=2:

$$\langle v^{(1)}, r^{(2)} \rangle = \langle v^{(1)}, b - Ax^{(2)} \rangle$$

= $\langle v^{(1)}, b - Ax^{(1)} \rangle - t_2 \langle v^{(1)}, Av^{(2)} \rangle$
= $\langle v^{(1)}, r^{(1)} \rangle - 0 = 0.$

and

$$\langle v^{(2)}, r^{(2)} \rangle = \langle v^{(2)}, b - Ax^{(2)} \rangle$$

= $\langle v^{(2)}, b - Ax^{(1)} \rangle - t_2 \langle v^{(2)}, Av^{(2)} \rangle = 0.$

 $k \geq 3$ By mathematical induction! See also **Exercise 14**.

How to construct these direction vectors?

Let $x^{(0)}$ be an initial approx. with residual $r^{(0)} = b - Ax^{(0)} \neq 0$.

- Firstly, choose $v^{(1)} = r^{(0)}$. (the **steepest descent direction**)
- Assume the conjugate directions $v^{(1)}, \cdots, v^{(k-1)}$ and approx. $x^{(1)}, \cdots, x^{(k-1)}$ are computed with

$$\langle v^{(i)}, Av^{(j)} \rangle = 0$$
 and $\langle r^{(i)}, r^{(j)} \rangle = 0$ for $i \neq j$.

• If $r^{(k-1)} = b - Ax^{(k-1)} = 0$, we are done. Otherwise, we have

$$\langle r^{(k-1)}, v^{(i)} \rangle = 0, \quad i = 1, 2, \dots, k-1$$

by Thm 7.33.

Define the *k***th Conjugate Direction**

$$v^{(k)} = r^{(k-1)} + s_{k-1}v^{(k-1)}$$
 for some $s_{k-1} \in \mathbb{R}$.

How to construct these direction vectors? (Conti'd)

• Since we want $\langle v^{(k-1)}, Av^{(k)} \rangle = 0$, it follows that

$$0 = \langle v^{(k-1)}, Av^{(k)} \rangle = \langle v^{(k-1)}, Av^{(k-1)} \rangle + s_{k-1} \langle v^{(k-1)}, Av^{(k-1)} \rangle,$$

and hence the scalar s_{k-1} is given by

$$s_{k-1} = \frac{-\langle v^{(k-1)}, Ar^{(k-1)} \rangle}{\langle v^{(k-1)}, Av^{(k-1)} \rangle} = \frac{-\langle r^{(k-1)}, Av^{(k-1)} \rangle}{\langle v^{(k-1)}, Av^{(k-1)} \rangle}.$$
 (9)

• From p. 245 of [Lu], it can be shown that $\{v^{(1)}, v^{(2)}, \dots, v^{(k)}\}$ is an *A*-orthogonal set.

Reference

[Lu] D. G. Luenberger, *Linear and Nonlinear Programming*, 2nd ed., Addison-Wesley, Reading MA, 1984.

Reformulation for t_k , $r^{(k)}$ and s_k

• The scalar t_k can be rewritten as

$$t_{k} = \frac{\langle v^{(k)}, r^{(k-1)} \rangle}{\langle v^{(k)}, Av^{(k)} \rangle} = \frac{\langle r^{(k-1)} + s_{k-1} v^{(k-1)}, r^{(k-1)} \rangle}{\langle v^{(k)}, Av^{(k)} \rangle}$$

$$= \frac{\langle r^{(k-1)}, r^{(k-1)} \rangle}{\langle v^{(k)}, Av^{(k)} \rangle} + s_{k-1} \frac{\langle v^{(k-1)}, r^{(k-1)} \rangle}{\langle v^{(k)}, Av^{(k)} \rangle}$$

$$= \frac{\langle r^{(k-1)}, r^{(k-1)} \rangle}{\langle v^{(k)}, Av^{(k)} \rangle}.$$
(10)

• The kth residual vector can be obtained by

$$r^{(k)} = b - Ax^{(k)} = b - Ax^{(k-1)} - t_k Av^{(k)}$$

$$= r^{(k-1)} - t_k Av^{(k)}.$$
(11)

Reformulation for t_k , $r^{(k)}$ and s_k (Conti'd)

• From (10) and (11), we notice that

$$\langle r^{(k-1)}, r^{(k-1)} \rangle = \mathbf{t_k} \langle v^{(k)}, Av^{(k)} \rangle,$$

$$\langle r^{(k)}, r^{(k)} \rangle = \langle r^{(k)}, r^{(k-1)} \rangle - \mathbf{t_k} \langle r^{(k)}, Av^{(k)} \rangle$$

$$= -\mathbf{t_k} \langle r^{(k)}, Av^{(k)} \rangle.$$

• From Eq. (9) for s_k , it can be rewritten as

$$s_{k} = \frac{-\langle r^{(k)}, Av^{(k)} \rangle}{\langle v^{(k)}, Av^{(k)} \rangle} = \frac{-t_{k} \langle r^{(k)}, Av^{(k)} \rangle}{t_{k} \langle v^{(k)}, Av^{(k)} \rangle}$$
$$= \frac{\langle r^{(k)}, r^{(k)} \rangle}{\langle r^{(k-1)}, r^{(k-1)} \rangle}. \tag{12}$$

Basic Algorithm of CG Method

Let $x^{(0)}$ be an initial guess with residual $r^{(0)} = b - Ax^{(0)} \neq 0$.

Step 1 Set
$$v^{(1)} = r^{(0)}$$
.

Step 2 For $k = 1, 2, \dots, n$, set

$$t_{k} = \langle r^{(k-1)}, r^{(k-1)} \rangle / \langle v^{(k)}, Av^{(k)} \rangle;$$

$$x^{(k)} = x^{(k-1)} + t_{k}v^{(k)};$$

$$r^{(k)} = r^{(k-1)} - t_{k}Av^{(k)};$$
If $k < n$, set
$$s_{k} = \langle r^{(k)}, r^{(k)} \rangle / \langle r^{(k-1)}, r^{(k-1)} \rangle;$$

$$v^{(k+1)} = r^{(k)} + s_{k}v^{(k)}$$

Step 3 OUTPUT($x^{(n)}$); **STOP**.

Example 1 Revisited

Example 2, p. 488

Apply basic algorithm of CG method to solve the positive definite system Ax = b with

$$A = \begin{bmatrix} 4 & 3 & 0 \\ 3 & 4 & -1 \\ 0 & -1 & 4 \end{bmatrix}, b = \begin{bmatrix} 24 \\ 30 \\ -24 \end{bmatrix}$$

using $\mathbf{x^{(0)}} = [\mathbf{0}, \mathbf{0}, \mathbf{0}]^{\mathbf{T}}$. The actual solution is $\mathbf{x} = [3, 4, -5]^{\mathsf{T}}$.

Solution (1/3)

k = 1: we obtain $x^{(1)}$ and $r^{(1)}$ as

$$\mathbf{x}^{(1)} = [3.525773196, 4.407216495, -3.525773196]^T$$

 $\mathbf{r}^{(1)} = [-3.32474227, -1.73195876, -5.48969072]^T.$

The relative error and relative residual with respect to b are

$$\frac{\|x^{(1)} - x\|_{\infty}}{\|x\|_{\infty}} \approx 2.95 \times 10^{-1}, \quad \frac{\|r^{(1)}\|_{\infty}}{\|b\|_{\infty}} \approx 1.83 \times 10^{-1}.$$

Solution (2/3)

k=2: we obtain $x^{(2)}$ and $r^{(2)}$ as

$$\begin{aligned} \mathbf{x}^{(2)} &= [2.858011121, 4.148971939, -4.954222164]^T \\ \mathbf{r}^{(2)} &= [0.121039698, -0.124143281, -0.034139402]^T. \end{aligned}$$

The relative error and relative residual with respect to b are

$$\frac{\|x^{(2)} - x\|_{\infty}}{\|x\|_{\infty}} \approx 2.98 \times 10^{-2}, \quad \frac{\|r^{(2)}\|_{\infty}}{\|b\|_{\infty}} \approx 4.14 \times 10^{-3}.$$

• Note that **SOR method** with $\omega = 1.25$ requires **14** iterations for obtaining **7** significant digits of the approximate solution.

Solution (3/3)

k=3: we obtain $x^{(3)}$ and $r^{(3)}$ as

$$\mathbf{x}^{(3)} = [2.999999998, 4.000000002, -4.999999998]^T$$

 $\mathbf{r}^{(3)} = [0.36 \times 10^{-8}, 0.39 \times 10^{-8}, -0.14 \times 10^{-8}]^T.$

The relative error and relative residual with respect to b are

$$\frac{\|x^{(3)} - x\|_{\infty}}{\|x\|_{\infty}} \approx 4.00 \times 10^{-10}, \quad \frac{\|r^{(3)}\|_{\infty}}{\|b\|_{\infty}} \approx 1.30 \times 10^{-10}.$$

Preconditioning (預優處理)

- When A is ill-conditioned, CG method is highly susceptible (高度敏感的) to the rounding errors.
- The preconditioning strategy is to find a nonsingular matrix
 C so that the transformed coefficient matrix

$$\tilde{A} = C^{-1}AC^{-T}$$

is **better-conditioned**, where $C^{-T} \equiv (C^{-1})^T = (C^T)^{-1}$.

• The original linear system Ax = b is transformed as

$$\tilde{A}\tilde{x} = \tilde{b} \Leftrightarrow (C^{-1}AC^{-T})(C^{T}x) = C^{-1}b \Leftrightarrow C^{-1}Ax = C^{-1}b,$$

where $\tilde{x} = C^T x$ and $\tilde{b} = C^{-1} b$.

• The inverse matrix of a **preconditioner** *C* should be cheaply obtained in practice!

Preconditioned CG Method (預優共軛梯度法; 簡稱 PCG)

• Let $\tilde{\mathbf{x}}^{(k)} = \mathbf{C}^T \mathbf{x}^{(k)}$ for $k \geq 1$. Then

$$\tilde{r}^{(k)} = \tilde{b} - \tilde{A}\tilde{x}^{(k)} = C^{-1}b - (C^{-1}AC^{-T})C^{T}x^{(k)}$$
$$= C^{-1}(b - Ax^{(k)}) = C^{-1}r^{(k)}.$$

• Let $\tilde{v}^{(k)} = C^T v^{(k)}$ and $w^{(k)} = C^{-1} r^{(k)}$ for $k \ge 1$. Then

$$\tilde{t}_{k} = \frac{\langle w^{(k-1)}, w^{(k-1)} \rangle}{\langle v^{(k)}, Av^{(k)}}; \quad x^{(k)} = x^{(k-1)} + \tilde{t}_{k}v^{(k)};
r^{(k)} = r^{(k-1)} - \tilde{t}_{k}Av^{(k)}; \quad \tilde{s}_{k} = \frac{\langle w^{(k)}, w^{(k)} \rangle}{\langle w^{(k-1)}, w^{(k-1)} \rangle};
v^{(k+1)} = C^{-T}w^{(k)} + \tilde{s}_{k}v^{(k)}.$$

Pseudocode of PCG Method

Algorithm 7.5: Preconditioned CG Method (1/2)

```
INPUT dimension n; matrices A \in \mathbb{R}^{n \times n} and b \in \mathbb{R}^n; preconditioning matrix C \in \mathbb{R}^{n \times n}; initial approximation x^{(0)} \in \mathbb{R}^n; maximum number of iterations N; tolerance TOL.
```

OUTPUT an approximate solution $x \in \mathbb{R}^n$ to Ax = b; residual vector $r \in \mathbb{R}^n$.

Pseudocode of PCG Method (Conti'd)

Algorithm 7.5: Preconditioned CG Method (2/2)

```
Step 1 Set x = x^{(0)}; r = b - Ax; w = C^{-1}r.
              v = C^{-T}w: \alpha = \langle w, w \rangle.
Step 2 Set k=1.
Step 3 While (k \le N) do Steps 4–7
      Step 4 If ||v|| < TOL then OUTPUT(x and r); STOP.
      Step 5 Set u = Av; t = \alpha/\langle v, u \rangle;
                    x = x + tv: r = r - tu:
                    w = C^{-1}r: \beta = \langle w, w \rangle.
      Step 6 If |\beta| < TOL then
                   if ||r|| < TOL then OUTPUT(x and r); STOP.
      Step 7 Set s = \beta/\alpha; v = C^{-T}w + sv;
                   \alpha = \beta: k = k + 1.
```

Step 8 OUTPUT('Maximum number of iterations exceeded'); STOP.

Illustration

Example 3, p. 491

The 5×5 linear system Ax = b with

$$A = \begin{bmatrix} 0.2 & 0.1 & 1 & 1 & 0 \\ 0.1 & 4 & -1 & 1 & -1 \\ 1 & -1 & 60 & 0 & -2 \\ 1 & 1 & 0 & 8 & 4 \\ 0 & -1 & -2 & 4 & 700 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$$

has the solution

$$\mathbf{x}^* = [7.859713071, 0.4229264082, -0.07359223906, \\ -0.5406430164, 0.01062616286]^T.$$

The preconditioner used in PCG method is

$$C = diag(\sqrt{a_{11}}, \sqrt{a_{22}}, \sqrt{a_{33}}, \sqrt{a_{44}}, \sqrt{a_{55}}).$$

Numerical Results for Example 3

Thank you for your attention!

