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Section 10.1
Fixed Points for Functions of Several
Variables
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Objective
To solve a system of nonlinear equations of the form

ﬂ(X17X25 'an)
f2(X17 X2, '7Xn)

0,
0,

(1)
fn(X17X27 ) Xn) - 07

where each f;: R” — R is a (nonlinear) function for i=1,2,...,n.
The unknown vector x = [x1, x, - - - ,X,,]T € R" is called a solution
to the nonlinear system (1).
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Vector-Valued Functions

Reformulation of the Nonlinear System

Consider a vector-valued function F: R"” — R" defined by

F(X) = [fl(x)v f2(X)a t 7fn(X)]T €R” VxeR".

@ The system of nonlinear equations (1) can be represented as
F(x) =0, x=[xi,x2x]  €R". (2)

@ The functions f1, f, - - , f, are called the coordinate
functions (1FER ) of F.

Hung-Yuan Fan (32#i&), Dep. of Math., NTNU, Taiwan Chap . 10, Numerical Analysis (1) 4/46



Two Vector Norms (B = RYELEN)

Definition (TS EE)

Let v=[vi, v, -, v, T € R".

@ T he h-norm (or Euclidean norm) of v is defined by

M2 = VvTv =

@ T he Ix-norm of v is defined by [|v|[-c = max |vj.
1<i<n

MATLAB Command: norm(v, 2) or norm(v) is used for
|Ivll2, and norm(v, 'inf') is used for ||v|. &
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Example 1, p. 631

Place the following nonlinear system

3X1 — COS(X2X3) — % =0
X3 —81(x2 +0.1)2 +sinx3 + 1.06 = 0 (3)

e 4 90z 4 1013 —

in the form (2).
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Rewrite the nonlinear system (3) as

F(x1, x2,x3) = [f(x1, X2, %3), fo(x1, X2, X3), f3(x1, X2, X3)] "
=10,0,0]" =0 € R?,

where the coordinate functions are defined by

1
f1(X1,X2,X3) =3x1 — COS(X2X3) Ty
fo(x1,x2,x3) = X3 — 81(xa + 0.1)% 4 sin x3 + 1.06,
10m — 3
f3(x1, x2,x3) = € 1" 4 20x3 + WT
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Fixed-Point Forms

@ As in Chap. 2, we shall transform the root-finding problem (2)
into a fixed-point problem

x= G(x), x€D,

where G: D C R" — R" is some vector-valued function with
domain

D= {[X1:X27"' 7XH]T’aI'§XI'§ bia = 1727"' 7n} (4)

for some constants ai, as, - ,a, and by, bo, - - -, b,.
o Fixed-Point Iteration (FPI) with an initial vector x() € D:

XK = G(x(k_l)), k=1,2,...,

provided that XX e D Vk > 1. 7
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Fixed Points in R”

The vector-valued function G: D C R" — R" has a fixed point at
p e Dif G(p) = p.

@ Under what conditions does the sequence of vectors {x(k)}i‘;o
generated by FPI converge to the unique fixed point p € D?

o What is the error bound for the absolute error ||x%) — p||?

@ What is the rate of convergence for FPI?

We may write

G(X) = [g1(X), g2(X)7 T 8 (X)]Ta
’ AR
where each gj is the ith component function of Gfor i=1,2,..., n.
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Convergence Theorem of FPI

Thm 10.6

Let G be conti. on D with G(D) C D, where the domain D is
defined as in (4). Then

(1) G has at least one fixed point in D.

(2) If, in addition, 30 < K < 1 s.t. each component function g;
has conti. partial derivatives with

’ 9gi(x) ‘
0xj

K
< —, whenever x € D,
n

for i,j=1,2,...,n, then with any xX¥) € D conv. to the

unique fixed point p € D, and
k

1-K

IX* = plle < XY =XV Yk &
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How to check the continuity of G?

Thm 10.4 (53 ERFRVEEF )

Let g: D C R" — R be a function and xp € D. If 36 > 0 and
M > 0 s.t. the partial derivatives of g exist on Ns(xp) N D with

0
g(X)’ <M  V¥xe Ns(xo)N D,
9
for j=1,2,...,n, then gis conti. at xg.

Continuity of G

@ Gis conti. at xg € D <= each component function gj is
conti. at xg for i=1,2,...,n.

@ Gis conti. on D <= each gj is conti. on D for i=1,2,...,n.

Y
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Example 2, p. 633

(a) Place the nonlinear system in Example 1

3X1 — COS(X2X3) — % =0
X2 —81(xg + 0.1)% +sinx3 + 1.06 = 0

e12 4 20x3 + 107=3 =

in a fixed-point form x = G(x), x € D, and show that there
is a unique sol. on

D={[x5,x,x3]"| —1<x<1, i=1,23}.

(b) Perform the FPI with x(%) = [0.1,0.1, —0.1]7 and the stopping
criterion ||x(0 — x(k=1)|| . < 1075.
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Solution of (a)

Solving the ith eq. of (3) for x; (i=1,2,3) =

1 1
x1 =g cos(xex3) + ~ = gi(x1, X2, x3)

6
1
Xo = §\/x%—i—sinx;g—|—1.06—O.1E<rg2(x1,x2./X3) (5)
-1 10 — 3
X3 = —e *1*2 _ il = g3(xy, X2, X3).

20 60

So, define a vectored-valued function G: D — R3 by
G(x1, %2, x3) = [g1(x1, %2, x3), &2(x1, X2, X3), g3 (X1, X2, x3)] T € R?
for any x = [x1, x2,x3]T € D. Now, consider the fixed-point form
x=G(x), x€D

obtained from the original nonlinear system (3).
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Solution of (a)-Conti'd

Fist, we shall claim that G(D) C D. It is easily seen from (5) that
for any x € D, we have

1 1
lg1(x)] < 5] cos(xa2x3)| + 5 < 0.50,

1
g (X)| = |=1/x¢ +sinx3 +1.06 — 0.1
9 1

gf\/ 2 +sin(1) + 1.06 — 0.1 < 0.09
1 107 — 3

—  ax1x2

lgs(X)| = 55 + —5

1 10m—3

< — 0.61.

=20°7T 760 °

Hence, we know that G(D) C D. 7N
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Solution of (a)-Conti'd

Next, simple manipulation from Calculus gives that

0 — 0 —
a—i = %Sin(Xng), 8—2 = % sin(xa2x3), (6)
% B X1 % B COS X3
Ox1 9\ +sinxg+1.06° Ox3s 18/ +sinx3 + 1.06

(7)
O8s _ 2 mm 08 _ N e 081 _ OB D8
8X1 20 ’ 8X2 20 ’ (9X1 8X2 0X3 .

(8)
= All first partial derivatives of g, g2, g3 are conti. on D!

L2
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Solution of (a)-Conti'd

Now, from (6) =

0 nl 0
gl‘ < |X3’ sin(xexs)| < 02 < 0.281, gl‘ < 0.281.
aXQ 3
From (7), we see that
8gz‘ 1 1
Ox1l = 9,/sin(—1)+1.06  9+0.218
3g2‘ 1 1
252 = <0.119,
Ox3l = 184/sin(—1) + 1.06  181/0.218
and furthermore, from (8), we also have
0gs 0gs3
<2 <014, ‘<—<014
8x1‘ 20 dxy |~ 20 20
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Solution of (a)-Conti'd

Thus, the partial derivatives of g1, g2, g3 are bounded on D. It
follows from Thm 10.4 that G must be conti. on D and
ogi

X

K K
<0281 =—=— VxeD
n 3

for i,j = 1.2.3. So, the sufficient conditions of Thm 10.6 are
satisfied with the constant K = (0.281)(3) = 0.843 < 1.

@ G has a unique fixed point p € D by Thm 10.6.

@ This fixed point p is one of the solutions to the original
nonlinear system (3).
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Solution of (b)-Numerical Results

Finally, perform the FPI
X9 = Gy k=1,2,...

with x(0) = [0.1,0.1, —0.1]" € D and ||x¥) — x(k=D|| . < 1075.
Actual sol. p = [0.5,0, Z%]T ~ [0.5,0, —0.5235987757]T.
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A Test for the Error Bound

e With the computed sol. x{5) and the actual fixed point p € D,
[x7) = plloc < 2 x 1078,
o With K = 0.843, the theoretical error bound would become

(0.843)°

(5) _ < AT
XY = Plle < T =553

(0.423) < 1.15.

@ The error bound in Thm 10.6 might be much larger than
the actual absolute error!
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Accelerating Convergence (J0:RUTEHE)

Basic ldeas

@ Use the latest estimates generated by the FPI

(k) (k) (k)

X1 HXg Ty X

instead of xgkfl),xgkfl), cee fkl ) to compute the jth

com (k)
ponent x; .
@ This is the same as the idea of Gauss-Seidel method for

solving linear systems. (See Chapter 7)
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Revisit Example 2

Reformulation as Gauss-Seidel Method

Consider the following Gauss-Seidel form for Example 2

1 - - 1
ng) == cos(xgk 1)ng 1)) + -,
3 6
1 _
ng) = §\/(xgk))Q + sin xék Y4 1.06—0.1, (9)
—1 ) (o 10m — 3
N ALy S S
20 60

with x(°) = [0.1,0.1, —0.1]" € R? and the same stopping criterion
[|xF) — xk=1)]| o < 1072,

Hung-Yuan Fan (32#i&), Dep. of Math., NTNU, Taiwan Chap . 10, Numerical Analysis (1) 21/46



Benbrae thes et (Abedthotivanysidocatate thihe
BomAsigieaulisTre shommy i sherfaR@ving able; Npte: In
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Section 10.2
Newton’s Method
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In One-Dimensional Case

Review of Newton’s Method

@ Newton's method for solving a nonlinear equation of one
variable

fix)y=0, xeR
can be regarded as a fixed-point iteration with

! =x— ¢(x) - f(x
7 0 = x= 009 - ).

gx) = x—

The quadratic convergence of Newton's method is always
expected if the initial guess is sufficiently close to a zero of f.
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In Multidimensional Case

@ For solving a nonlinear system

F(x) = [A(x), a(x), -, fH(x)]T=0€R", xecR",
try to develop a FPI with the vector-valued function
G(x) = x— A(x) " F(x)
= [61(x),82(x),- -~ ,gn(x)]" €R", x€R",  (10)

assuming that A(x) = [aj;(x)] € R"™" is nonsingular at the
fixed point p of G.

@ Hopefully, the quadratic convergence can be achieved under
reasonable conditions. 5
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Thm 10.7 (FP1 ZRULBIAIFE 75 1& )

Let G(p) = p. Suppose that 36 > 0 with
(i) g—i’: is conti. on Ns(p) for i,j=1,2,...,n;

(ii) 08 s conti. on Ns(p), and IM > 0 s.t.

Dx0x;
a2g"(x)\ <M Vxe Ns(p),
OXjOx
fori,j,k=1,2,.
(i) "g< P) —Oforlj—l 2,...,n.

Then 36 < § s.t. the seq. {x(¥ }22, generated by FPI converges
quadratically to p for any x(¥) ¢ N;(p). Moreover,

159 — plloe < = 5 Y xd 2, Wk L o
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Derivation of the Matrix A(x)

o Write A(x)~! = [bjj(x)] € R™". From (10) =

n
gi(x) = xi — Z bi(x)fu(x), i=1,2,....n.
k=1
@ Foreach i,j=1,2,...,n, the first partial derivatives of g; are

-3 (ab%x)fk(x) + bik(X)agkig())v i= ]

8g,'(X) _ k=1
% - /;1 (%%XE-X) fi(x) + bik(x) 8%;%)), i .
(11)
LEN
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Derivation of the Matrix A(x)—Conti'd

e From condition (iii) of Thm 10.7 and (11), we immediately

obtain
. 1- Y bu(p) 22, =}
0= g,(p) k=1 (12)
0% =Y bulp) 2R, i
k=1
@ Define the Jacobian matrix J(x) = [835(;()] € R™" by
P00 P - P
ofy ofy ... 0Of
J(x) = 6X1_(X) aXQ_(X) axn.(X) , x€ Ns(p).
o) B9 - (¥ .

It follows from (12) that A(p) 'J(p) = I or A(p) = J(p).
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Newton's Method

@ So, it is appropriate to choose A(x) = J(x) for x € Ns(p).

@ Basic form of Newton's method for nonlinear systems:

KR = GxR1Y = k1) A (k1) =1 Frlk)y
= XD — NGy k=1,2,...,  (13)

where X9 € N;(p) and J(x) is nonsingular on N;(p) with
0<0<9.

@ Quadratic convergence of Newton's method is guaranteed
from Thm 10.7 if the initial guess is sufficiently close to p!
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Some Comments on Newton’s Method (13)

@ We DO NOT compute J(x{*~1))~1 explicitly in practical
computation.
@ In order to save the operation counts, we first solve the linear

system
D)y = — (k)

for the correction vector y using Gaussian Elimination
with Partial Pivoting, and then compute the next iterate via

K0 = k1) 4

@ Floating-point operation counts = O(%n:‘) per iteration.
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Pseudocode of Newton's Method

To approx. the sol. of the nonlinear system F(x) = 0, x € R".

Algorithm 10.1: Newton’s Method for Systems

INPUT dim. n; initial x € R"; tol. TOL; max. no. of iter. Np.
OUTPUT an approx. sol. x to the nonlinear system.

Step 1 Set k= 1.

Step 2 While (k < Np) do Steps 3—7
Step 3 Compute F(x) and the Jacobian matrix J(x).
Step 4 Solve the n x n linear system J(x)y = —F(x).
Step 5 Set x=x+y.
Step 6 If ||y|| < TOL then OUTPUT(x); STOP.
Step 7 Set k= k+ 1.

Step 8 OUTPUT(‘Maximum number of iterations exceeded'); STOP.
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Example 1, p. 641 (See also Example 2 of Sec. 10.1)

Apply Newton’s Method to solve the nonlinear system
3X1 — COS(X2X3) — % =0
X2 — 81(x2 + 0.1)% + sinx3 + 1.06 = 0
= 10m—3 _
€712 +20x3 + =5~ =0

with x(©) = [0.1,0.1,-0.1]7 and ||x*¥ — xk=D ||, < 107°.
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Numerical Results of Example 1

The Jacobian matrix J(x) is easily obtain from Calculus as

3 x3 ~ (xaX3) X3 Sin(x2x3)
J(x1, X2, x3) = 2x1 —162(x2 + 0.1) COS X3
—XgEe X1X2 —x1e XX 20

Actual sol. p = [0.5,0, %]T ~ [0.5,0, —0.5235987757|T.
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Section 10.3
Quasi-Newton Methods

(BEIRE)

20
YaV
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Newton's Method v.s. Broyden's Method (1/2)

For Each lterate of Newton’'s Method

@ At least n” scalar functional evaluations for the Jacobian
matrix J(xX)) and n scalar functional evaluations for F(x(¥)).

@ Solving a linear system involving the Jacobian requires O(n®)
operation counts.

@ Self-Correcting: it will generally correct for roundoff error
with the successive iterations.

e Quadratic convergence occurs if a good initial guess is given.
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Newton's Method v.s. Broyden's Method (2/2)

For Each Iterate of Broyden’s Method

@ Only n scalar functional evaluations are required!

@ The amount of operation counts for solving the linear system
is reduced to O(n?).
o It is Not Self-Correcting with the successive iterations.

@ Only superlinear convergence occurs if a good initial guess is
given, i.e., we have

lim M —0
k—oo ||x(K) — p|| ’

where p € R" is a solution of the nonlinear system F(x) = 0.
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About Broyden’s Method ...

@ It belongs to a class of least-change secant update
methods that produce algorithms called quasi-Newton.

@ The quasi-Newton methods replace the Jacobian matrix in
Newton’'s method with an approximate matrix that is
easily updated at each iteration.

v
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Derivation of Broyden's Method (1/2)

e For an initial approx. X(¥) € R, compute the Jacobian matrix
Ay = J(XO) € R™" and the first iterate

XD = X0 — A =TFR(0)

as Newton's method.

o If we let
s =xY —xO and y = F(xV) — F(x),

want to determine a matrix A; ~ J(x(1)) € R"*" satisfying
the quasi-Newton condition or secant condition

A — X0y = FD) — F(XD) or Aisi =y, (14)
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Derivation of Broyden's Method (2/2)

@ To determine A; uniquely, Broyden [Broy] imposed

Aiz=Ayz VzeR"withs/z=0 (15)
on the secant codition (14).So, it follows from (14) and (15)
that [DM]
— Aps
A1:A0+(y1 31)'5{
Is1ll2

and hence x?) = x(1) — A, =1 F(x(V).
@ In general, for k > 2, we have

— Ai_1s
A=A | + M s T (16)
[Iskll3

D) — 58 4 ~1F( )

where s, = x0 — xk=1) = —A 1 F(x(k=1)) and A%
vk = F(x¥) — F(x(kD).
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e From (16), we see that Ay is obtained from the previous Ax_;
plus an rank-1 updating matrix.

@ This technique is called the least-change secant updates.

@ In single-variable Newton's method, may write

F(x) ~ fixk) — fxe—1)

or ' (xx) (xk — xk—1) ~ fAxk) — Axk_1);
Xk — Xk—1

while we try to determine uniquely A, ~ J(x¥)) s.t.
Ak(x(k) _ X(k—l)) - /:(X(k)) _ /:(X(k—l))

in the multidimensional case.
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A Question

With the special structure of Ax, how to reduce the number of
arithmetic calculations to O(n?) for solving the n x n linear system

A R(XR)?

| A

Thm 10.8 (Sherman-Morrison Formula)

If A€ R™" is nonsingular and x,y € R" are nonzero vectors with
yTA=lx # —1, then A+xy" is nonsingular and

A lxyTA™L
Atxy)t=A1- " =2 —
(o) 1+ yTA-1x
20
Ve
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Reformulation of A;l

For each k > 1, from (16) and Sherman-Morrison formula =

(Yk — Ak—15k) T) -1

—1
Ak = (Akfl + 3 . Sk
([ skl
—1 [ Yk—Ak—15k \ T a1
Ak—1<72 )SkAk—l
e IIskll5
- k-1
TaA—1 ( Yk—Ak—15
A (50

1 (A;—11Yk_5k)(5/Z-A;—l1)

k— =
Y Iskll3 + sTA i — llsll3
— Al (Sk - A;_ll}/k)(sl—(rA;_ll)
= A1 STAT
1Yk
ALY STAL)
— AL T . () o
=Sk (_Ak—lyk) %1
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Algorithm 10.2: Broyden's Method

INPUT dim.

n; initial x € R"; tol. TOL; max. no. of iter. Nj.

OUTPUT an approx. sol. x of nonlinear system F(x) =
Step 1 Set Ap = J(x): the Jacobian matrix evaluated at x.

v= F(x). (Note: v=F(x(0))

Step 2 Set A= A;'. (Use Gaussian elimination.)
Step 3 Set s= —Av; x=x+s, k=1. (Note: s =s71, x = X(l).)
Step 4 While (k < Np) do Steps 5-11.

Step 5
Step 6
Step 7
Step 8
Step 9

Step 10
Step 11

Step 12 OUTPUT(‘Maximum number of iterations exceeded'); STOP.v‘

Set w=v; v= F(x); y=v—w. (Note: y = yk.)

Set z= —Ay (Note: z=—A " yx.)

Set p = —s"z (Note: p=sfA, ' yx.)

Setu' =s"TA; A=A+ L(s+2)u”. (Note: A =A,")

Set s=—Av; x=x+s. (Note: s = —A, '"F(x) and

x = x(k+1) )

If ||s|| < TOL then OUTPUT(x); STOP.

Set k= k+ 1. 20
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Example 1, p. 651 (See also Example 2 of Sec. 10.1)

Use Broyden's Method to solve the nonlinear system
3X1 — COS(X2X3) — % =0
X2 — 81(x2 + 0.1)% + sinx3 + 1.06 = 0
= 10m—3 _
e P2 +20x3 + —5 > =0

with x(©) = [0.1,0.1, —0.1] and [|x¥ — x(k=D |5 < 1075,
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Numerical Results for Example 1

The superlinear convergence of Broyden's method for Example 1
Acdaaiogsitrpted [0 5he follgling (bl and. BE3G9BMISEH) dolutions

are less accurate than those computed by Newton's method.
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Thank you for your attention!
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