Chapter 10 Numerical Solutions of Nonlinear Systems of Equations

Hung-Yuan Fan (范洪源)

Department of Mathematics, National Taiwan Normal University, Taiwan

Spring 2016

Section 10.1 Fixed Points for Functions of Several Variables

Objective

To solve a system of nonlinear equations of the form

$$\begin{cases}
f_1(x_1, x_2, \cdot, x_n) = 0, \\
f_2(x_1, x_2, \cdot, x_n) = 0, \\
\vdots \\
f_n(x_1, x_2, \cdot, x_n) = 0,
\end{cases}$$
(1)

where each $f_i: \mathbb{R}^n \to \mathbb{R}$ is a (nonlinear) function for i = 1, 2, ..., n. The unknown vector $x = [x_1, x_2, \cdots, x_n]^T \in \mathbb{R}^n$ is called **a solution** to the nonlinear system (1).

Vector-Valued Functions

Reformulation of the Nonlinear System

Consider a vector-valued function $F: \mathbb{R}^n \to \mathbb{R}^n$ defined by

$$F(x) = [f_1(x), f_2(x), \cdots, f_n(x)]^T \in \mathbb{R}^n \quad \forall x \in \mathbb{R}^n.$$

The system of nonlinear equations (1) can be represented as

$$F(x) = \mathbf{0}, \quad x = [x_1, x_2, \cdot, x_n]^T \in \mathbb{R}^n.$$
 (2)

• The functions f_1, f_2, \dots, f_n are called the **coordinate** functions (坐標函數) of F.

Two Vector Norms (向量的範數)

Definition (常用的向量範數)

Let $v = [v_1, v_2, \cdots, v_n]^T \in \mathbb{R}^n$.

• T he l_2 -norm (or Euclidean norm) of v is defined by

$$||v||_2 = \sqrt{v^T v} = \sqrt{\sum_{i=1}^n v_i^2}.$$

• T he l_{∞} -norm of v is defined by $||v||_{\infty} = \max_{1 \le i \le n} |v_i|$.

MATLAB Command: norm(v, 2) or norm(v) is used for $||v||_2$, and norm(v, 'inf') is used for $||v||_{\infty}$.

Example 1, p. 631

Place the following nonlinear system

$$\begin{cases} 3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0\\ x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0\\ e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0 \end{cases}$$
 (3)

in the form (2).

Solution

Rewrite the nonlinear system (3) as

$$F(x_1, x_2, x_3) \equiv [f_1(x_1, x_2, x_3), f_2(x_1, x_2, x_3), f_3(x_1, x_2, x_3)]^T$$

= $[0, 0, 0]^T = \mathbf{0} \in \mathbb{R}^3$,

where the coordinate functions are defined by

$$\begin{split} f_1(x_1, x_2, x_3) &= 3x_1 - \cos(x_2 x_3) - \frac{1}{2}, \\ f_2(x_1, x_2, x_3) &= x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06, \\ f_3(x_1, x_2, x_3) &= e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3}. \end{split}$$

Fixed-Point Forms

• As in Chap. 2, we shall transform the root-finding problem (2) into a fixed-point problem

$$x = G(x), x \in D,$$

where $G:D\subseteq\mathbb{R}^n\to\mathbb{R}^n$ is some vector-valued function with domain

$$D = \{ [x_1, x_2, \cdots, x_n]^T | a_i \le x_i \le b_i, i = 1, 2, \cdots, n \}$$
 (4)

for some constants a_1, a_2, \dots, a_n and b_1, b_2, \dots, b_n .

• Fixed-Point Iteration (FPI) with an initial vector $\mathbf{x}^{(0)} \in D$:

$$x^{(k)} = G(x^{(k-1)}), \quad k = 1, 2, \dots,$$

provided that $x^{(k)} \in D \quad \forall k > 1$.

Fixed Points in \mathbb{R}^n

Def 10.5

The vector-valued function $G: D \subseteq \mathbb{R}^n \to \mathbb{R}^n$ has a fixed point at $p \in D$ if G(p) = p.

Questions

- Under what conditions does the sequence of vectors $\{x^{(k)}\}_{k=0}^{\infty}$ generated by FPI converge to the **unique** fixed point $p \in D$?
- What is the error bound for the absolute error $||x^{(k)} p||_{\infty}$?
- What is the rate of convergence for FPI?

We may write

$$G(x) = [g_1(x), g_2(x), \cdots, g_n(x)]^T$$

where each g_i is the *i*th component function of G for i = 1, 2, ..., n.

Convergence Theorem of FPI

Thm 10.6

Let G be **conti.** on D with $G(D) \subseteq D$, where the domain D is defined as in (4). Then

- (1) G has at least one fixed point in D.
- (2) If, in addition, $\exists 0 < K < 1$ s.t. each component function g_i has **conti.** partial derivatives with

$$\left|\frac{\partial g_i(x)}{\partial x_j}\right| \le \frac{K}{n}$$
, whenever $x \in D$,

for i, j = 1, 2, ..., n, then with **any** $x^{(0)} \in D$ conv. to the **unique** fixed point $p \in D$, and

$$||x^{(k)} - p||_{\infty} \le \frac{K^k}{1 - K} ||x^{(1)} - x^{(0)}||_{\infty} \quad \forall k.$$

How to check the continuity of G?

Thm 10.4 (分量函數的連續性)

Let $g: D \subseteq \mathbb{R}^n \to \mathbb{R}$ be a function and $x_0 \in D$. If $\exists \, \delta > 0$ and M > 0 s.t. the partial derivatives of g exist on $N_{\delta}(x_0) \cap D$ with

$$\left|\frac{\partial g(x)}{\partial x_j}\right| \leq M \qquad \forall x \in N_\delta(x_0) \cap D,$$

for j = 1, 2, ..., n, then g is conti. at x_0 .

Continuity of *G*

- *G* is conti. at $x_0 \in D \iff$ each component function g_i is conti. at x_0 for i = 1, 2, ..., n.
- G is conti. on $D \iff$ each g_i is conti. on D for i = 1, 2, ..., n.

Example 2, p. 633

(a) Place the nonlinear system in **Example 1**

$$\begin{cases} 3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0 \\ x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0 \\ e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0 \end{cases}$$

in a **fixed-point form** $x = G(x), x \in D$, and show that there is a **unique** sol. on

$$D = \{ [x_1, x_2, x_3]^T | -1 \le x_i \le 1, i = 1, 2, 3 \}.$$

(b) Perform the FPI with $x^{(0)} = [0.1, 0.1, -0.1]^T$ and the stopping criterion $\|x^{(k)} - x^{(k-1)}\|_{\infty} < 10^{-5}$.

Solution of (a)

Solving the *i*th eq. of (3) for x_i (i = 1, 2, 3) \Rightarrow

$$\mathbf{x_1} = \frac{1}{3}\cos(x_2x_3) + \frac{1}{6} \equiv \mathbf{g_1}(x_1, x_2, x_3)$$

$$\mathbf{x_2} = \frac{1}{9}\sqrt{x_1^2 + \sin x_3 + 1.06} - 0.1 \equiv \mathbf{g_2}(x_1, x_2, x_3)$$

$$\mathbf{x_3} = \frac{-1}{20}e^{-x_1x_2} - \frac{10\pi - 3}{60} \equiv \mathbf{g_3}(x_1, x_2, x_3).$$
(5)

So, define a vectored-valued function $G: D \to \mathbb{R}^3$ by

$$G(x_1, x_2, x_3) = [g_1(x_1, x_2, x_3), g_2(x_1, x_2, x_3), g_3(x_1, x_2, x_3)]^T \in \mathbb{R}^3$$

for any $x = [x_1, x_2, x_3]^T \in D$. Now, consider the fixed-point form

$$x = G(x), x \in D$$

obtained from the original nonlinear system (3).

Solution of (a)-Conti'd

Fist, we shall claim that $G(D) \subseteq D$. It is easily seen from (5) that for any $x \in D$, we have

$$\begin{split} |g_1(x)| &\leq \frac{1}{3} |\cos(x_2 x_3)| + \frac{1}{6} \leq \mathbf{0.50}, \\ |g_2(x)| &= \left| \frac{1}{9} \sqrt{x_1^2 + \sin x_3 + 1.06} - 0.1 \right| \\ &\leq \frac{1}{9} \sqrt{(1)^2 + \sin(1) + 1.06} - 0.1 < \mathbf{0.09} \\ |g_3(x)| &= \frac{1}{20} e^{-x_1 x_2} + \frac{10\pi - 3}{60} \\ &\leq \frac{1}{20} e + \frac{10\pi - 3}{60} < \mathbf{0.61}. \end{split}$$

Hence, we know that $G(D) \subseteq D$.

Solution of (a)-Conti'd

Next, simple manipulation from Calculus gives that

$$\frac{\partial g_{1}}{\partial x_{2}} = \frac{-x_{3}}{3}\sin(x_{2}x_{3}), \quad \frac{\partial g_{1}}{\partial x_{3}} = \frac{-x_{2}}{3}\sin(x_{2}x_{3}), \qquad (6)$$

$$\frac{\partial g_{2}}{\partial x_{1}} = \frac{x_{1}}{9\sqrt{x_{1}^{2} + \sin x_{3} + 1.06}}, \quad \frac{\partial g_{2}}{\partial x_{3}} = \frac{\cos x_{3}}{18\sqrt{x_{1}^{2} + \sin x_{3} + 1.06}}, \qquad (7)$$

$$\frac{\partial g_{3}}{\partial x_{1}} = \frac{-x_{2}}{20}e^{-x_{1}x_{2}}, \quad \frac{\partial g_{3}}{\partial x_{2}} = \frac{-x_{1}}{20}e^{-x_{1}x_{2}}, \quad \frac{\partial g_{1}}{\partial x_{1}} = \frac{\partial g_{2}}{\partial x_{2}} = \frac{\partial g_{3}}{\partial x_{3}} = 0.$$

 \implies All first partial derivatives of g_1, g_2, g_3 are **conti.** on D!

Solution of (a)-Conti'd

Now, from $(6) \Longrightarrow$

$$\left|\frac{\partial g_1}{\partial x_2}\right| \leq \frac{|x_3|}{3} \cdot |\sin(x_2 x_3)| \leq \frac{\sin 1}{3} < \mathbf{0.281}, \quad \left|\frac{\partial g_1}{\partial x_3}\right| < \mathbf{0.281}.$$

From (7), we see that

$$\begin{split} \left| \frac{\partial g_2}{\partial x_1} \right| &\leq \frac{1}{9\sqrt{\sin(-1) + 1.06}} = \frac{1}{9\sqrt{0.218}} < \mathbf{0.238}, \\ \left| \frac{\partial g_2}{\partial x_3} \right| &\leq \frac{1}{18\sqrt{\sin(-1) + 1.06}} = \frac{1}{18\sqrt{0.218}} < \mathbf{0.119}, \end{split}$$

and furthermore, from (8), we also have

$$\left|\frac{\partial g_3}{\partial x_1}\right| \leq \frac{e}{20} < \mathbf{0.14}, \quad \left|\frac{\partial g_3}{\partial x_2}\right| \leq \frac{e}{20} < \mathbf{0.14}.$$

Solution of (a)–Conti'd

Thus, the partial derivatives of g_1, g_2, g_3 are **bounded** on D. It follows from Thm 10.4 that G must be conti. on D and

$$\left| \frac{\partial g_i}{\partial x_i} \right| \le \mathbf{0.281} = \frac{K}{n} = \frac{K}{3} \qquad \forall \, x \in D$$

for i, j = 1.2.3. So, the sufficient conditions of **Thm 10.6** are satisfied with the constant K = (0.281)(3) = 0.843 < 1.

Conclusions

- G has a unique fixed point $p \in D$ by Thm 10.6.
- This fixed point *p* is one of the solutions to the original nonlinear system (3).

Solution of (b)–Numerical Results

Finally, perform the FPI

$$x^{(k)} = G(x^{(k-1)}), \quad k = 1, 2, \dots$$

with $\mathbf{x}^{(0)} = [0.1, 0.1, -0.1]^{\mathsf{T}} \in \mathcal{D}$ and $\|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\|_{\infty} < 10^{-5}$. Actual sol. $\mathbf{p} = [0.5, 0, -\frac{\pi}{6}]^{\mathrm{T}} \approx [0.5, 0, -0.5235987757]^{\mathrm{T}}$.

A Test for the Error Bound

• With the computed sol. $x^{(5)}$ and the actual fixed point $p \in D$,

$$||x^{(5)} - p||_{\infty} \le 2 \times 10^{-8}.$$

• With K = 0.843, the theoretical error bound would become

$$\|x^{(5)} - p\|_{\infty} \le \frac{(0.843)^5}{1 - 0.843}(0.423) < 1.15.$$

• The error bound in Thm 10.6 might be much larger than the actual absolute error!

Accelerating Convergence (加速收斂性)

Basic Ideas

Use the latest estimates generated by the FPI

$$x_1^{(k)}, x_2^{(k)}, \cdots, x_{i-1}^{(k)}$$

instead of $x_1^{(k-1)}, x_2^{(k-1)}, \cdots, x_{i-1}^{(k-1)}$ to compute the *i*th component $\mathbf{x}_i^{(k)}$.

• This is the same as the idea of Gauss-Seidel method for solving linear systems. (See Chapter 7)

Revisit Example 2

Reformulation as Gauss-Seidel Method

Consider the following Gauss-Seidel form for Example 2

$$\mathbf{x}_{1}^{(k)} = \frac{1}{3}\cos(\mathbf{x}_{2}^{(k-1)}\mathbf{x}_{3}^{(k-1)}) + \frac{1}{6},$$

$$\mathbf{x}_{2}^{(k)} = \frac{1}{9}\sqrt{(\mathbf{x}_{1}^{(k)})^{2} + \sin\mathbf{x}_{3}^{(k-1)} + 1.06} - 0.1,$$

$$\mathbf{x}_{3}^{(k)} = \frac{-1}{20}e^{-\mathbf{x}_{1}^{(k)}\mathbf{x}_{2}^{(k)}} - \frac{10\pi - 3}{60}, \quad k = 1, 2, \dots$$
(9)

with $\mathbf{x}^{(0)} = [0.1, 0.1, -0.1]^T \in \mathbb{R}^3$ and the same stopping criterion $\|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\|_{\infty} < 10^{-5}$.

genering the inection (a) without an way to according to the commercial recording to

Section 10.2 Newton's Method

In One-Dimensional Case

Review of Newton's Method

Newton's method for solving a nonlinear equation of one variable

$$f(x) = 0, \quad x \in \mathbb{R}$$

can be regarded as a fixed-point iteration with

$$g(x) = x - \frac{1}{f'(x)} \cdot f(x) \equiv x - \phi(x) \cdot f(x).$$

The **quadratic convergence** of Newton's method is always expected if the initial guess is **sufficiently close** to a zero of *f*.

In Multidimensional Case

Objectives

• For solving a nonlinear system

$$F(x) = [f_1(x), f_2(x), \dots, f_n(x)]^T = \mathbf{0} \in \mathbb{R}^n, \quad x \in \mathbb{R}^n,$$

try to develop a FPI with the vector-valued function

$$G(x) = x - A(x)^{-1} F(x)$$

$$\equiv [g_1(x), g_2(x), \cdots, g_n(x)]^T \in \mathbb{R}^n, \quad x \in \mathbb{R}^n, \quad (10)$$

assuming that $A(x) = [a_{ij}(x)] \in \mathbb{R}^{n \times n}$ is nonsingular at the fixed point p of G.

 Hopefully, the quadratic convergence can be achieved under reasonable conditions.

Thm 10.7 (FPI 二次收斂的充分條件)

Let G(p) = p. Suppose that $\exists \delta > 0$ with

- (i) $\frac{\partial g_i}{\partial x_j}$ is **conti.** on $N_\delta(p)$ for $i,j=1,2,\ldots,n$;
- (ii) $\frac{\partial^2 g_i}{\partial x_i \partial x_k}$ is **conti.** on $N_{\delta}(p)$, and $\exists M > 0$ s.t.

$$\left|\frac{\partial^2 g_i(x)}{\partial x_j \partial x_k}\right| \le M \qquad \forall \, x \in N_\delta(p),$$

for i, j, k = 1, 2, ..., n;

(iii)
$$\frac{\partial g_i(p)}{\partial x_j} = 0$$
 for $i, j = 1, 2, \dots, n$.

Then $\exists \hat{\delta} \leq \delta$ s.t. the seq. $\{x^{(k)}\}_{k=0}^{\infty}$ generated by FPI converges **quadratically** to p for any $x^{(0)} \in N_{\hat{\delta}}(p)$. Moreover,

$$\|x^{(k)} - p\|_{\infty} \le \frac{n^2 M}{2} \|x^{(k-1)} - p\|_{\infty}^2 \qquad \forall k \ge 1.$$

Derivation of the Matrix A(x)

• Write $A(x)^{-1} = [b_{ij}(x)] \in \mathbb{R}^{n \times n}$. From (10) \Rightarrow

$$g_i(x) = x_i - \sum_{k=1}^n \frac{b_{ik}(x)}{b_{ik}(x)} f_k(x), \quad i = 1, 2, \dots, n.$$

• For each i, j = 1, 2, ..., n, the first partial derivatives of g_i are

$$\frac{\partial g_{i}(x)}{\partial x_{j}} = \begin{cases}
1 - \sum_{k=1}^{n} \left(\frac{\partial b_{ik}(x)}{\partial x_{j}} f_{k}(x) + \frac{b_{ik}(x)}{\partial x_{j}} \frac{\partial f_{k}(x)}{\partial x_{j}} \right), & i = j, \\
- \sum_{k=1}^{n} \left(\frac{\partial b_{ik}(x)}{\partial x_{j}} f_{k}(x) + \frac{b_{ik}(x)}{\partial x_{j}} \frac{\partial f_{k}(x)}{\partial x_{j}} \right), & i \neq j.
\end{cases}$$
(11)

Derivation of the Matrix A(x)-Conti'd

• From condition (iii) of Thm 10.7 and (11), we immediately obtain

$$0 = \frac{\partial g_{i}(p)}{\partial x_{j}} = \begin{cases} 1 - \sum_{k=1}^{n} b_{ik}(p) \frac{\partial f_{k}(p)}{\partial x_{j}}, & i = j, \\ - \sum_{k=1}^{n} b_{ik}(p) \frac{\partial f_{k}(p)}{\partial x_{j}}, & i \neq j. \end{cases}$$
(12)

ullet Define the **Jacobian matrix** $J(x) = [rac{\partial f_i(x)}{\partial x_j}] \in \mathbb{R}^{n imes n}$ by

$$J(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x) & \frac{\partial f_1}{\partial x_2}(x) & \cdots & \frac{\partial f_1}{\partial x_n}(x) \\ \frac{\partial f_2}{\partial x_1}(x) & \frac{\partial f_2}{\partial x_2}(x) & \cdots & \frac{\partial f_2}{\partial x_n}(x) \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_n}{\partial x_1}(x) & \frac{\partial f_n}{\partial x_2}(x) & \cdots & \frac{\partial f_n}{\partial x_n}(x) \end{bmatrix}, \quad x \in N_{\delta}(p).$$

It follows from (12) that $A(p)^{-1}J(p)=I$ or A(p)=J(p).

Newton's Method

- So, it is appropriate to choose A(x) = J(x) for $x \in N_{\delta}(p)$.
- Basic form of Newton's method for nonlinear systems:

$$x^{(k)} = G(x^{(k-1)}) = x^{(k-1)} - A(x^{(k-1)})^{-1} F(x^{(k-1)})$$

= $x^{(k-1)} - J(x^{(k-1)})^{-1} F(x^{(k-1)}), \quad k = 1, 2, ...,$ (13)

where $x^{(0)} \in N_{\hat{\delta}}(p)$ and J(x) is **nonsingular** on $N_{\hat{\delta}}(p)$ with $0 < \hat{\delta} \le \delta$.

• **Quadratic convergence** of Newton's method is guaranteed from Thm 10.7 if the initial guess is sufficiently close to *p*!

Some Comments on Newton's Method (13)

- We DO NOT compute $J(x^{(k-1)})^{-1}$ explicitly in practical computation.
- In order to save the operation counts, we first solve the linear system

$$J(x^{(k-1)})y = -F(x^{(k-1)})$$

for the **correction vector** *y* using **Gaussian Elimination with Partial Pivoting**, and then compute the next iterate via

$$x^{(k)} = x^{(k-1)} + y.$$

 \bullet Floating-point operation counts $\approx O(\frac{2}{3}n^3)$ per iteration.

Pseudocode of Newton's Method

To approx. the sol. of the nonlinear system $F(x) = 0, x \in \mathbb{R}^n$.

Algorithm 10.1: Newton's Method for Systems

INPUT dim. n; initial $x \in \mathbb{R}^n$; tol. TOL; max. no. of iter. N_0 .

OUTPUT an approx. sol. x to the nonlinear system.

Step 1 Set
$$k = 1$$
.

Step 2 While
$$(k \le N_0)$$
 do **Steps 3–7**

- Step 3 Compute F(x) and the Jacobian matrix J(x).
- Step 4 Solve the $n \times n$ linear system J(x)y = -F(x).
- Step 5 Set x = x + y.
- Step 6 If ||y|| < TOL then OUTPUT(x); **STOP**.
- Step 7 Set k = k + 1.

Step 8 OUTPUT('Maximum number of iterations exceeded'); STOP.

Example 1, p. 641 (See also Example 2 of Sec. 10.1)

Apply Newton's Method to solve the nonlinear system

$$\begin{cases} 3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0 \\ x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0 \\ e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0 \end{cases}$$

with
$$\mathbf{x}^{(0)} = [0.1, 0.1, -0.1]^T$$
 and $\|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\|_{\infty} < 10^{-5}$.

Numerical Results of Example 1

The Jacobian matrix J(x) is easily obtain from Calculus as

$$J(x_1, x_2, x_3) = \begin{bmatrix} 3 & x_3 \sim (x_2 x_3) & x_3 \sin(x_2 x_3) \\ 2x_1 & -162(x_2 + 0.1) & \cos x_3 \\ -x_2 e^{-x_1 x_2} & -x_1 e^{-x_1 x_2} & 20 \end{bmatrix}.$$

Actual sol. $\mathbf{p} = [0.5, 0, \frac{-\pi}{6}]^{\mathbf{T}} \approx [0.5, 0, -0.5235987757]^{\mathbf{T}}.$

Section 10.3 Quasi-Newton Methods (擬牛頓法)

Newton's Method v.s. Broyden's Method (1/2)

For Each Iterate of Newton's Method

- At least n^2 scalar functional evaluations for the Jacobian matrix $J(x^{(k)})$ and n scalar functional evaluations for $F(x^{(k)})$.
- Solving a linear system involving the Jacobian requires $O(n^3)$ operation counts.
- Self-Correcting: it will generally correct for roundoff error with the successive iterations.
- Quadratic convergence occurs if a good initial guess is given.

Newton's Method v.s. Broyden's Method (2/2)

For Each Iterate of Broyden's Method

- Only n scalar functional evaluations are required!
- The amount of operation counts for solving the linear system is reduced to $O(n^2)$.
- It is **Not Self-Correcting** with the successive iterations.
- Only superlinear convergence occurs if a good initial guess is given, i.e., we have

$$\lim_{k \to \infty} \frac{\|x^{(k+1)} - p\|}{\|x^{(k)} - p\|} = 0,$$

where $p \in \mathbb{R}^n$ is a solution of the nonlinear system F(x) = 0.

About Broyden's Method ...

- It belongs to a class of least-change secant update methods that produce algorithms called quasi-Newton.
- The quasi-Newton methods replace the Jacobian matrix in Newton's method with an approximate matrix that is easily updated at each iteration.

References (參考文獻)

- [Broy] C G. Broyden, A class of methods for solving nonlinear simultaneous equations, Math. Comp., 19(92), 577-593, 1965.
 - [DM] J. E. Dennis, Jr. and J. J. Moré, *Quasi-Newton methods, motivation and theory*, SIAM Rev., 19(1), 46–89, 1977.

Derivation of Broyden's Method (1/2)

• For an initial approx. $x^{(0)} \in \mathbb{R}^n$, compute the Jacobian matrix $A_0 = J(x^{(0)}) \in \mathbb{R}^{n \times n}$ and the first iterate

$$x^{(1)} = x^{(0)} - A_0^{-1} F(x^{(0)})$$

as Newton's method.

If we let

$$s_1 = x^{(1)} - x^{(0)}$$
 and $y_1 = F(x^{(1)}) - F(x^{(0)})$,

want to determine a matrix $A_1 \approx J(x^{(1)}) \in \mathbb{R}^{n \times n}$ satisfying the quasi-Newton condition or secant condition

$$A_1(x^{(1)} - x^{(0)}) = F(x^{(1)}) - F(x^{(0)})$$
 or $A_1s_1 = y_1$. (14)

Derivation of Broyden's Method (2/2)

• To determine A₁ uniquely, Broyden [Broy] imposed

$$A_1 z = A_0 z \qquad \forall z \in \mathbb{R}^n \text{ with } s_1^T z = 0$$
 (15)

on the secant codition (14).So, it follows from (14) and (15) that $\left[DM \right]$

$$\mathbf{A_1} = A_0 + \frac{(y_1 - A_0 s_1)}{\|s_1\|_2^2} \cdot s_1^T$$

and hence $x^{(2)} = x^{(1)} - A_1^{-1}F(x^{(1)}).$

• In general, for $k \ge 2$, we have

$$A_{k} = A_{k-1} + \frac{(y_{k} - A_{k-1}s_{k})}{\|s_{k}\|_{2}^{2}} \cdot s_{k}^{T},$$

$$x^{(k+1)} = x^{(k)} - A_{k}^{-1}F(x^{(k)}).$$
(16)

where
$$s_k = x^{(k)} - x^{(k-1)} = -A_{k-1}^{-1} F(x^{(k-1)})$$
 and $v_k = F(x^{(k)}) - F(x^{(k-1)})$.

Chap . 10, Numerical Analysis (I)

Remarks

- From (16), we see that A_k is obtained from the previous A_{k-1} plus an **rank-1 updating matrix**.
- This technique is called the **least-change secant updates**.
- In single-variable Newton's method, may write

$$f'(x_k) pprox rac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}} \text{ or } f'(x_k)(x_k - x_{k-1}) pprox f(x_k) - f(x_{k-1});$$

while we try to determine uniquely $A_k \approx J(x^{(k)})$ s.t.

$$A_k(x^{(k)} - x^{(k-1)}) = F(x^{(k)}) - F(x^{(k-1)})$$

in the multidimensional case.

A Question

With the special structure of A_k , how to reduce the number of arithmetic calculations to $O(n^2)$ for solving the $n \times n$ linear system $A_k^{-1}F(X^{(k)})$?

Thm 10.8 (Sherman-Morrison Formula)

If $A \in \mathbb{R}^{n \times n}$ is nonsingular and $x, y \in \mathbb{R}^n$ are nonzero vectors with $y^T A^{-1} x \neq -1$, then $A + xy^T$ is **nonsingular** and

$$(A+xy^T)^{-1} = A^{-1} - \frac{A^{-1}xy^TA^{-1}}{1+y^TA^{-1}x}.$$

Reformulation of A_k^{-1}

For each $k \ge 1$, from (16) and Sherman-Morrison formula \Longrightarrow

$$\begin{aligned} \mathbf{A_{k}}^{-1} &= \left(A_{k-1} + \frac{(y_{k} - A_{k-1}s_{k})}{\|s_{k}\|_{2}^{2}} \cdot s_{k}^{T}\right)^{-1} \\ &= A_{k-1}^{-1} - \frac{A_{k-1}^{-1} \left(\frac{y_{k} - A_{k-1}s_{k}}{\|s_{k}\|_{2}^{2}}\right) s_{k}^{T} A_{k-1}^{-1}}{1 + s_{k}^{T} A_{k-1}^{-1} \left(\frac{y_{k} - A_{k-1}s_{k}}{\|s_{k}\|_{2}^{2}}\right)} \\ &= A_{k-1}^{-1} - \frac{\left(A_{k-1}^{-1} y_{k} - s_{k}\right) \left(s_{k}^{T} A_{k-1}^{-1}\right)}{\|s_{k}\|_{2}^{2} + s_{k}^{T} A_{k-1}^{-1} y_{k} - \|s_{k}\|_{2}^{2}} \\ &= A_{k-1}^{-1} + \frac{\left(s_{k} - A_{k-1}^{-1} y_{k}\right) \left(s_{k}^{T} A_{k-1}^{-1}\right)}{s_{k}^{T} A_{k-1}^{-1} y_{k}} \\ &= A_{k-1}^{-1} + \frac{\left(s_{k} - A_{k-1}^{-1} y_{k}\right) \left(s_{k}^{T} A_{k-1}^{-1}\right)}{-s_{k}^{T} \cdot \left(-A_{k-1}^{-1} y_{k}\right)}. \end{aligned}$$

Algorithm 10.2: Broyden's Method

```
INPUT dim. n; initial x \in \mathbb{R}^n; tol. TOL; max. no. of iter. N_0.
OUTPUT an approx. sol. x of nonlinear system F(x) = 0.
   Step 1 Set A_0 = J(x): the Jacobian matrix evaluated at x.
                 v = F(x). (Note: v = F(x^{(0)}).)
   Step 2 Set A = A_0^{-1}. (Use Gaussian elimination.)
   Step 3 Set s = -Av; x = x + s; k = 1. (Note: s = s_1, x = x^{(1)}.)
   Step 4 While (k < N_0) do Steps 5–11.
          Step 5 Set w = v, v = F(x); y = v - w. (Note: y = y_k.)
          Step 6 Set z = -Ay. (Note: \mathbf{z} = -\mathbf{A}_{\mathbf{k}_{-1}}^{-1} \mathbf{y}_{\mathbf{k}}.)
          Step 7 Set p = -s^T z. (Note: \mathbf{p} = \mathbf{s}_k^T \mathbf{A}_{k-1}^{-1} \mathbf{y}_k.)
          Step 8 Set u^T = s^T A; A = A + \frac{1}{2}(s+z)u^T. (Note: A = A_k^{-1}.)
          Step 9 Set s = -Av; x = x + s. (Note: s = -A_{L}^{-1}F(x^{(k)}) and
                  x = x^{(k+1)}.)
         Step 10 If ||s|| < TOL then OUTPUT(x); STOP.
        Step 11 Set k = k + 1.
```

Step 12 OUTPUT ('Maximum number of iterations exceeded'); STOP

Example 1, p. 651 (See also Example 2 of Sec. 10.1)

Use Broyden's Method to solve the nonlinear system

$$\begin{cases} 3x_1 - \cos(x_2 x_3) - \frac{1}{2} = 0 \\ x_1^2 - 81(x_2 + 0.1)^2 + \sin x_3 + 1.06 = 0 \\ e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0 \end{cases}$$

with
$$x^{(0)} = [0.1, 0.1, -0.1]^T$$
 and $||x^{(k)} - x^{(k-1)}||_2 < 10^{-5}$.

Numerical Results for Example 1

The superlinear convergence of Broyden's method for Example 1 is clearly sufficiently followed that the superlinear convergence of Broyden's method for Example 1 is clearly sufficiently followed by Newton's method.

Thank you for your attention!

