排列组合－直線排列

Permutation and Combination－Permutation in Linear Order

第 1 節 1st Period	
Material	Note
	Word：Permutation（排列），Tree diagram（數狀圖）， Arrangement（安排的情況），Scenario（情況）． Sentence ： 1．If we seat them in order，how many different people could sit in the $1^{\text {st }}$ seat？（如果將他們按順序排成一列，第一個位子有幾個人可入座？） 2．For each of the 3 scenarios，after the first seat is taken， 2 different people could be put in the $2^{\text {nd }}$ seat．（在這 3 種情況下，第 2 張椅子有 2 個人可以坐。） 3．We can draw a tree diagram，the first section has 3 branches with person A，B，or C．（使用樹狀圖的話，第一個分支即有 3 個人 A, B 或 C 。）
	Word：Factorial（階乘） Sentence ： The number of permutations for seating these n people in n steats is n times n － 1 times $\mathrm{n}-2$ times to 1 ， which we call it n factorial．（ n 個人坐 n 張椅子的排列數是， n 乘 $\mathrm{n}-1$ 乘 $\mathrm{n}-2$ 乘到 1 ，我們稱為 $「 \mathrm{n}$ 的階乘」•）

勿 1 學校獨唱比赛共有 6 位同學報名參加，出場順序由抽䈅決定。共有多少㮔可能的抽䋨結果： \qquad 的的結果可視作將 6 位多冓者排成一列，其中排在最左这代表第 1 位 埸－其後依次为第 $2,3,4,5,6$ 位出場•因為 6 位参赛者排成一列共有 種排法，所以抽擮結果也有 720 種。	Translation： In this question，we have 6 people needed to fit in 6 places．So the permutations for this question is 6 factorial，which is 6 times 5 times 4 times 3 times 2 times 1．And it is equal to 720 arrangements．
接下來，探討從 n 個不同的事物中任選 k 個 $(1 \leq k \leq n)$ 排成一列的排列数。先看道個例子：從 7 人中任選 3 人排成一列，共有多少種排法？仿照前面填空格的方式，把它想成有 7 個不同的事物要逐一從左至右填入 3 個空格中 如固 5 ，利用乘法原理，排法共有 ：利用階乘的符躆將 $7 \times 6 \times 5$ 表示成 \qquad $\frac{3 \text { 伯 }}{7 \times 6 \times 5}=\frac{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{4 \times 3 \times 2 \times 1}=\frac{7!}{4!}=\frac{7!}{(7-3)!}$. 般而言 ，利用填空格的方式，可以推得：從 n 個不同的事物中任選 k 個 $(1 \leq k \leq n)$ 排成一列，排法共有 $\frac{n!}{(n-k)!}$ 種，我們將這個排列數記作 P_{k}^{n}（䜖作 $P n$ 取 $k)$ 。因為取 0 物排列只有「不取」一種方法，所以定義 $P_{0}^{n}=1$ 。道時前述的公式也會正確，因為 $P_{0}^{n}=1=\frac{n!}{(n-0)!}$ •將這個結論整理如下。	Sentence： 1．How can I relate factorial to this problem？（要如何連結至階乘呢？） 2．It looks like we kind of did factorial，but we stopped．We didn＇t go times 4 times 3 times 2 times 1．（可以用另一種想法，我們其實是使用了 7 的階乘，但沒有乘 4 到 1 。） 3．We can write it in terms of factorial．We could write this as 7 factorial over 4 factorial．（我們就可以用階乘把算式寫成 7 的階乘除以 4 的階乘。）
直線排列 细 n 個不同事物中任選 k 個 $(0 \leq k \leq n)$ 排成一列，共有 $P_{k}^{n}=\frac{n!}{(n-k)!}$ 種排法	Suggested Instruction： In conclusion，we have a notation P_{k}^{n} for the number of permutations where we put n people in k chairs is going to be n factorial over n minus k factorial． Note： $P_{k}^{n} \text { can be written in }{ }^{n} P_{k},{ }_{n} P_{k}, n P k \text { or } P(n, k) .$

某歌手想從 7 首歌中，選出 4 首在簽唱會中依序表演其安排的方案共有多少種？ 解 從7首歌中 $P_{4}^{7}=\frac{7!}{(7-4)!}=\frac{7!}{3!}=7 \times 6 \times 5 \times 4=840(\text { 種 }):$	Translation： In this question，there are 7 songs，but there are only 4 shows to perform．Therefore，we have 7 times 6 times 5 possible scenarios to give a performance， which is equal to P_{4}^{7} ，also is 210 ．
	補充題
	Material

Find the number of different 8－letter arrangements that can be made from the letters of the word DAUGHTER so that
（i）All vowels occur together
（ii）No vowels occur together

Solution：

（i）There are 8 different letters in the word DAUGHTER．There are 3 vowels，namely， A, U and E ． Since the vowels have to occur together，we can for the time being，assume them as a single object（AUE）．This single object together with 5 remaining letters（objects）will be counted as 6 objects．Then we count permutations of these 6 objects taken all at a time．This number would be 6P6＝6！．Corresponding to each of these permutations，we shall have 3！ permutations of the three vowels $\mathrm{A}, \mathrm{U}, \mathrm{E}$ taken all at a time．Hence，by the multiplication principle the required number of permutations $=6!\times 3!=4320$ ．
（ii）If we have to count those permutations in which no vowels can be together，we first have to find all possible arrangements of 8 letters taken all at a time，which can be done in 8 ！ways． Then，we have to subtract from this number，the number of permutations in which the vowels are always together．Therefore，the required number $8!-6!\times 3!=6!(7 \times 8-6)=2 \times$ $6!(28-3)=50 \times 6!=50 \times 720=36000$

Note

Word：Vowel（母音）．

Sentence：

1．All vowels occur together．（母音完全相鄰）
2．No vowels occur together．（母音不完全相鄰）

3．Since the vowels have to occur together，we can for the time being，assume them as a single object（AUE）．（因為要將母音排在一起，我們可以將 AUE 先視為一體。）

4．We count permutations of these 6 objects taken all at a time．（我們先數 6 個物品的排列數。）

参考資料

References
1．許志農，黃森山，陳清風，廖森游，董涵冬（2019）。數學 2 ：單元 4 排列。龍騰文化。

2．National Council of educational Research \＆Training．（2022，April 10）．Permutation and Combinations FINAL 04．01．PMD．https：／／ncert．nic．in／textbook／pdf／kemh107．pdf．

3．Khan Academy．（2022，April 10）．Unit：Counting，permutations，and combinations． https：／／www．khanacademy．org／math／statistics－probability／counting－permutations－and－ combinations．

[^0]
[^0]: 製作者：臺北市立陽明高中 吴柏菖 教師

