Rewrite 12

雙語教學主題（國中九年級上學期教材）：三角形的内心
Topic：introducing incenter of a triangle

The teaching materials for introducing circles in our textbooks have been changed quite a bit due to the $\mathbf{1 0 8}$ syllabi．Therefore，the content here is based on the official textbooks－NANI，KANG HSUAN and HANLIN．
由於 108 新網教材大改，所以這個單元參考 108 新課網及南一，康軒及翰林版國中數學課本第五冊

Vocabulary
Incenter，angle bisector，incircle，vertex，vertices，congruent，equidistant，

Before we start introducing this new lesson，we definitely need to review some of the related geometry properties．
Review ：
Property of angle bisector：
In figure $1, \overrightarrow{B P}$ is an angle bisector of $\angle A B C$ ，
point D is any point on $\overrightarrow{\mathrm{BP}}, \angle \mathrm{ABD}=\angle \mathrm{CBD}$ ．
$\overline{\mathrm{DE}} \perp \overline{\mathrm{BA}}$ and $\overline{\mathrm{DE}}$ intersects $\overline{\mathrm{BA}}$ at point E ，

Figure 1
$\overline{\mathrm{DF}} \perp \overline{\mathrm{BC}}$ and $\overline{\mathrm{DF}}$ intersects $\overline{\mathrm{BC}}$ at point F ．Then $\overline{\mathrm{DE}}=\overline{\mathrm{DF}}$
As usual，review what you have learned before，and do the proofs on your own．
（hint：triangle congruency is one of the methods．）

The inverse of Property of angle bisector is true，too．

That is：In figure 2，point D is inside $\angle A B C, \overline{D E}=\overline{D F}$
$\overline{\mathrm{DE}} \perp \overline{\mathrm{AB}}$ and $\overline{\mathrm{DE}}$ intersects $\overline{\mathrm{AB}}$ at point E ，

$\overline{D F} \perp \overline{B C}$ and $\overline{D F}$ intersects $\overline{B C}$ at point F ．
Then $\angle \mathrm{ABD}=\angle \mathrm{CBD}$
We don＇t do the proof here．Students can think of different ways to prove it．
（hint：symmetry or triangle congruency）

Incenter:

As shown in figure 1,
$\overrightarrow{B D}$ is an angle bisector of the interior angle $\angle A B C$ and $\overrightarrow{C E}$ is an angle bisector of the interior angle

Figure 1 In figure 2 , construct $\overline{\mathrm{P}} \perp \overline{\mathrm{AB}}$ and $\overline{\mathrm{IQ}} \perp \overline{\mathrm{BC}}$.

From review 2, we know that $\overline{\mathrm{P}}=\overline{\mathrm{IQ}}$,
As shown in figure 2.

Figure 2

Will the three angle bisectors of three interior angles in $\triangle A B C$ intersect at the same point?

The answer is yes, too.
In figure 3,
Construct $\overline{\mathrm{R}} \perp \overline{\mathrm{AC}}$, we can easily
get the conclusion that $\overline{\mathrm{R}}=\overline{\mathrm{P}}=\overline{\mathrm{IQ}}$,

Figure 3

so point I is also on the angle bisector
of $\angle \mathrm{BAC}$. It means three angle bisectors intersect at the same point I , and point I is the incenter of $\triangle A B C$.

Fact 1:
Since point I is the intersection point of three interior angle bisectors, point I always stays inside $\triangle A B C$. No matter what kind of triangles it is. See figure 4.

Figure 4

Fact 2:
In figure 3, we get $\overline{\mathrm{IR}}=\overline{\mathrm{IP}}=\overline{\mathrm{IQ}}$. We can then
construct a circle inside the $\triangle \mathrm{ABC}$
where point I is its center and
$\overline{\mathrm{IR}}=\overline{\mathrm{IP}}=\overline{\mathrm{IQ}}=r$ is the radius.
As shown in figure 5. Circle I is the incircle of $\triangle A B C$, and intersects each side of the triangle

Figure 5 at only one point, point P, point Q, and point R respectively. Circle I is an inscribed circle of $\triangle A B C$ and the three sides are tangent to the incircle.

Fact 3:
in figure 6, since $\overline{\mathrm{IP}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{IQ}} \perp \overline{\mathrm{BC}}, \overline{\mathrm{IR}} \perp \overline{\mathrm{AC}}$, and $\mathrm{r}=\overline{\mathrm{IR}}=\overline{\mathrm{P}}=\overline{\mathrm{IQ}}$.
The area of $\Delta A B C=\Delta A I B+\Delta B I C+\Delta C I A$

$$
\begin{aligned}
& =\frac{1}{2} \overline{\mathrm{IP}} \cdot \overline{\mathrm{AB}}+\frac{1}{2} \overline{\mathrm{IQ}} \cdot \overline{\mathrm{BC}}+\frac{1}{2} \overline{\mathrm{IR}} \cdot \overline{\mathrm{AC}} \\
& =\frac{1}{2} r \cdot \overline{\mathrm{AB}}+\frac{1}{2} r \cdot \overline{\mathrm{BC}}+\frac{1}{2} r \cdot \overline{\mathrm{AC}} \\
& =\frac{1}{2} r(\overline{\mathrm{AB}}+\overline{\mathrm{BC}}+\overline{\mathrm{AC}})
\end{aligned}
$$

$=r s($ let s be half of the perimeter of $\triangle A B C$) Figure 6

We learned that right triangles have special properties concerning circumcenters.
Same thing happens here.
There are some very important properties of incenters in right triangles.
In the figure on the right side, point l is the incenter of $\triangle A B C$ and $\overline{A B} \perp \overline{B C}$.
$\overline{\mathrm{IP}} \perp \overline{\mathrm{AB}}, \overline{\mathrm{IQ}} \perp \overline{\mathrm{BC}} .$, and $\overline{\mathrm{IR}} \perp \overline{\mathrm{AC}}$.

Then (1) $\overline{\mathrm{AR}}=\overline{\mathrm{AP}}, \overline{\mathrm{BP}}=\overline{\mathrm{BQ}}$, and $\overline{\mathrm{CR}}=\overline{\mathrm{CQ}}$.
(2) the inradius $\overline{\mathrm{IP}}=\frac{\overline{\mathrm{AB}}+\overline{\mathrm{BC}}-\overline{\mathrm{AC}}}{2}$

Pf:
(1)we can easily get the result we learned before: by the tangent property of a circle that from any exterior point of a circle, the length of tangent segment is always equal.

So $\overline{\mathrm{AR}}=\overline{\mathrm{AP}}, \overline{\mathrm{BP}}=\overline{\mathrm{BQ}}$, and $\overline{\mathrm{CR}}=\overline{\mathrm{CQ}}$
Attention: Please notice that this is not only true in right triangles, it's true in all kind of triangles. It's a very powerful property.
(2)since the four interior angles of quadrilateral IPBQ are right angles, plus $\overline{\mathrm{IP}}=\overline{\mathrm{Q}}$ (same radius), we get that quadrilateral IPBQ is a square. That tells us that

$$
\begin{aligned}
& \overline{\mathrm{P}}=\overline{\mathrm{IQ}}=\overline{\mathrm{BP}}=\overline{\mathrm{BQ}} \\
& 2 \text { times of inradius } 2 \overline{\mathrm{P}}=\overline{\mathrm{BP}}+\overline{\mathrm{BQ}} \\
& =\overline{\mathrm{AB}}-\overline{\mathrm{AP}}+\overline{\mathrm{BC}}-\overline{\mathrm{CQ}} \\
& =\overline{\mathrm{AB}}-\overline{\mathrm{AR}}+\overline{\mathrm{BC}}-\overline{\mathrm{CR}} \\
& =\overline{\mathrm{AB}}+\overline{\mathrm{BC}}-\overline{\mathrm{AR}}-\overline{\mathrm{CR}} \\
& =\overline{\mathrm{AB}}+\overline{\mathrm{BC}}-(\overline{\mathrm{AR}}+\overline{\mathrm{CR}}) \\
& =\overline{\mathrm{AB}}+\overline{\mathrm{BC}}-\overline{\mathrm{AC}} \\
& \text { Then } \\
& \overline{\mathrm{P}}=\frac{1}{2}(\overline{\mathrm{AB}}+\overline{\mathrm{BC}}-\overline{\mathrm{AC}})_{\#}
\end{aligned}
$$

t
Please review these properties over and over again till you can recall them easily whenever you need to use them.

Let's do some examples together.

Ex 1:

See the figure on the right side, point I is the incenter of $\triangle \mathrm{ABC} . \angle \mathrm{BAC}=70^{\circ}$, find the measure of $\angle \mathrm{BIC}$

Sol:

Set $\angle \mathrm{IBC}=\angle 1, \angle \mathrm{ICB}=\angle 2$, then $\angle 1=\frac{1}{2} \angle \mathrm{ABC}, \angle 2=\frac{1}{2} \angle \mathrm{ACB} \cdots \cdots(1)$
In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}+\angle \mathrm{ACB}=180^{\circ}-\angle \mathrm{BAC}$

$$
\begin{align*}
& =180^{\circ}-70^{\circ}, \\
& =110^{\circ} \ldots \ldots . .(2 \tag{2}
\end{align*}
$$

And in $\triangle \mathrm{BIC}, \angle \mathrm{BIC}=180^{\circ}-(\angle 1+\angle 2)$

$$
\begin{aligned}
& =180^{\circ}-\left(\frac{1}{2} \angle A B C,+\frac{1}{2} \angle A C B\right) \cdots \cdots . \text { from }(1) \\
& =180^{\circ}-\frac{1}{2}(\angle A B C+\angle A C B) \\
& =180^{\circ}-\frac{1}{2} \cdot 110^{\circ} \\
& =125^{\circ} \#
\end{aligned}
$$

Ex 2：
In the figure on the right side，point I is the incenter of the right triangle $A B C$ ， $\angle \mathrm{B}=90^{\circ}$ ．If $\overline{\mathrm{AB}}=8, \overline{\mathrm{BC}}=6$ ，please find out
（1）the length of segment $A C(\overline{A C})$
（2）the measure of angle $\operatorname{AIC}(\angle \mathrm{AIC})$
（3）the area of $\triangle A B C$
Sol：
（1）by the Pythagorean theorem：$\overline{\mathrm{AC}}^{2}=\overline{\mathrm{AB}}^{2}+\overline{\mathrm{BC}}^{2}$

$$
\begin{aligned}
& =8^{2}+6^{2} \\
& =100
\end{aligned}
$$

Then $\overline{\mathrm{AC}}=10$
（2）$\angle \mathrm{AIC}=180^{\circ}-\left(\frac{1}{2} \angle \mathrm{BAC}+\frac{1}{2} \angle \mathrm{ACB}\right)$
$=180^{\circ}-\frac{1}{2}(\angle \mathrm{BAC}+\angle \mathrm{ACB})$
$=180^{\circ}-\frac{1}{2}\left(180^{\circ}-\angle \mathrm{ABC},\right)$
$=180^{\circ}-\frac{1}{2}\left(180^{\circ}-90^{\circ}\right)$
$=135^{\circ}$
（3）the inradius $=\frac{1}{2}(\overline{\mathrm{AB}}+\overline{\mathrm{BC}}-\overline{\mathrm{AC}})=\frac{1}{2}(8+6-10)$

$$
=2
$$

The area of $\Delta \mathrm{ABC}=\frac{1}{2} \cdot 2 \cdot(8+6+10)$

$$
=24_{\#}
$$

Get more familiar with all the properties，they are quite useful in the coming days．

製作者：台北市 金華國中 郝曉青

