雙語教學主題（國中九年級上學期教材）：三角形的重心
Topic：The centroid of a triangle

The teaching materials for introducing circles in our textbooks have been changed quite a bit due to the $\mathbf{1 0 8}$ syllabus．Therefore，the content here is based on the official textbooks－NANI，KANG HSUAN and HANLIN．
由於 108 新網教材大改，所以這個單元參考 108 新課網及南一，康（）軒及翰林版國中數學課本第五冊

Vocabulary
centroid，median，vertex，vertices，congruent，equidistant，

Before we start introducing this new lesson，we want to introduce a new word median．

As shown in the figure on the right，in $\triangle A B C$ ，point M is the midpoint of segment $A B$ ．Then $\overline{A M}$ is a median．

We can easily prove that

The area of $\triangle A B M=$ the area of $\triangle A C M=\frac{1}{2}$ the area of $\triangle A B C$
For teachers＇reference（students can try to prove it themselves）
Pf：

In $\triangle \mathrm{ABC}, \overline{A H} \perp \overline{B C}$ and $\overline{A H}$ intersects $\overline{B C}$ at point H ，as shown in figure 1.
The area of $\triangle \mathrm{ABC}=\frac{1}{2} \overline{B C} \times \overline{A H}$
The area of $\triangle \mathrm{ABM}=\frac{1}{2} \overline{B M} \times \overline{A H}$
The area of $\triangle \mathrm{ACM}=\frac{1}{2} \overline{C M} \times \overline{A H}$

Since point M is a midpoint of segment $B C$

Figure 1

$$
\overline{B M}=\overline{C M}=\frac{1}{2} \overline{B C}
$$

We get
The area of $\triangle \mathrm{ABM}=\frac{1}{2} \overline{B M} \times \overline{A H}=\frac{1}{4} \overline{B C} \times \overline{A H}=\frac{1}{2}$ the area of $\triangle \mathrm{ABC}$
The area of $\triangle \mathrm{ACM}=\frac{1}{2} \overline{C M} \times \overline{A H}=\frac{1}{4} \overline{B C} \times \overline{A H}=\frac{1}{2}$ the area of $\triangle \mathrm{ABC}$

That is:
The area of $\triangle A B M=$ the area of $\triangle A C M=\frac{1}{2}$ the area of $\triangle A B C$
So the statement is true.\#

Now let's learn what the centroid of a triangle is.

Centroid:

Figure 1 shows that $\overline{B E}$ and $\overline{C D}$ are two medians in $\triangle \mathrm{ABC}$ and they intersect each other at point G.

Figure 1
As we mention in the beginning, $\overline{B E}$ is a median of $\triangle A B C$, then the area of $\triangle \mathrm{ABE}$ =the area of $\triangle \mathrm{CBE}$., this means the center of gravity (center of mass) of this triangle must lie on $\overline{B E} . \overline{C D}$ is also a median of $\triangle \mathrm{ABC}$. Therefore, we know that the intersection point G is the center of gravity of $\triangle A B C$.

We have learned that in a triangle, three perpendicular bisectors of three sides will intersect at one point, and three angle bisectors of three interior angles will intersect at one point. If we construct the third median in $\triangle A B C$, will these three medians also intersect at one point?

Connect $\overline{D E}$ as shown In figure 2.
By midsegment theorem, $\overline{D E} / / \overline{B C}$ and $\overline{D E}=\frac{1}{2} \overline{B C}$

In \triangle DEG and $\triangle C B G$,
Figure 2
$\angle \mathrm{DEG}=\angle \mathrm{CBG}(\overline{D E} / / \overline{B C}$, the alternate interior angles are equal)
$\angle \mathrm{DGE}=\angle \mathrm{CGB}$ (the vertical angles are equal)
(of course you can use the same reason as the first one with $\angle E D G=\angle B C G$)
We get \triangle DEG $\sim \Delta$ CBG (AA)
Then $\overline{D G}: \overline{C G}=\overline{E G}: \overline{B G}=\overline{D E}: \overline{B C}=1: 2\left(\overline{D E}=\frac{1}{2} \overline{B C}\right)$
In figure 3, connect $\overline{A F}$ where point F
is the midpoint of $\overline{B C}$. And assume $\overline{A F}$
 intersects $\overline{B E}$ at a point G^{\prime}.

Similarly, $\overline{E G^{\prime}}: \overline{B G^{\prime}}=1: 2$, but $\overline{E G}: \overline{B G}=1: 2$
Figure 3
Point G and point G^{\prime} are both on segment BE
Therefore, Point G and point G^{\prime} must be the same point
That means the third median $\overline{A F}$ also passes through the centroid
We get the conclusion that

Three medians of a triangle will intersect at one point, centroid.

We can see in figure 4 that no matter what kind of triangle it is, the centroid of the triangle always stays inside the triangle.

Figure 4

From the discussion above, we get a very important result that

$$
\overline{A G}=2 \overline{F G}, \overline{B G}=2 \overline{E G} \text {, and } \overline{C G}=2 \overline{D G} \text { : }
$$

Now let's talk about some important properties concerning centroids of triangles
In figure 1 on the right side, point G is the centroid of $\triangle \mathrm{ABC}$, connect $\overline{A G}, \overline{B G}$, and $\overline{C G}$.

Then the area of $\Delta \mathrm{AGB}=$ the area of $\Delta \mathrm{BGC}=$ the area of $\Delta \mathrm{CGA}$
Figure 1

$$
=\frac{1}{3}(\text { the area of } \triangle \mathrm{ABC})
$$

Pf: in figure 2, construct $\overrightarrow{A G}$, and $\overrightarrow{A G}$ intersects
$\overline{B C}$ at point D. And construct $\overline{B B^{\prime}} \perp \overrightarrow{A G}$
and intersects $\overrightarrow{A G}$ at point B^{\prime},
 construct $\overline{\mathrm{CC}^{\prime}} \perp \overrightarrow{A G}$ and intersects $\overrightarrow{A G}$ at point C^{\prime}.

In $\triangle B B^{\prime} D$ and $\triangle C C^{\prime} D$ ，

$$
\angle \mathrm{BB}^{\prime} \mathrm{D}=\angle \mathrm{CC}^{\prime} \mathrm{D}=90^{\circ} \quad\left(\overrightarrow{B B^{\prime}} \perp \overrightarrow{A G}, \overline{\mathrm{CC}^{\prime}} \perp \overrightarrow{A G}\right) \quad \text { Figure } 2
$$

$\angle \mathrm{BDB}^{\prime}=\angle \mathrm{CDC}^{\prime} \quad$（vertical angles are equal）
$\overline{B D}=\overline{C D} \quad$（point G is the centroid，so point D is the midpoint of segment $B C$ ．）
Then $\quad \Delta B^{\prime} D \cong \triangle C^{\prime} D \quad(A A S)$
$\overline{B B^{\prime}}=\overline{\mathrm{CC}^{\prime}}$（corresponding segments are congruent）
In $\triangle \mathrm{ABG}$ ，the area of $\triangle \mathrm{ABG}=\frac{1}{2} \cdot \overline{A G} \cdot \overline{B B^{\prime}}$
and in $\triangle \mathrm{ACG}$ ，the area of $\triangle \mathrm{ACG}=\frac{1}{2} \cdot \overline{A G}$ ．
the area of $\triangle \mathrm{ABG}=$ the area of $\triangle \mathrm{ACG}$（same base and congruent height）
Similarly，we can get the conclusion that the area of $\triangle A B G=$ the area of $\triangle A C G=$ the area of $\triangle B C G$ \because the area of $\triangle A B C$ $=$ the area of $\triangle A B G+$ the area of $\triangle A C G+$ the area of $\triangle B C G$
We get the area of $\triangle A B G=$ the area of $\triangle A C G=$ the area of $\triangle B C G$ $=\frac{1}{3}($ the area of $\triangle \mathrm{ABC})$ \＃

You can have lots of methods to get the result above，please try your best to think and enjoy the process．

製作者 北市金華國中 郝曉青

If we construct three medians of a triangle, we can get the result as follows:

In figure $3, \overline{A D}, \overline{B E}$, and $\overline{C F}$ are medians of $\triangle A B C$.
Let the area of $\triangle A F G=a, \Delta B F G=b, \Delta B D G=c$,
$\Delta C D G=d, \Delta C E G=e$, and $\triangle A E G=f$,
then $a=b=c=d=e=f$
Pf:

Figure 3
In figure 4, construct $\overline{G H} \perp \overline{B C}$ and intersects $\overline{B C}$ at point H .
Then $\mathrm{c}=\frac{1}{2} \cdot \overline{B D} \cdot \overline{G H}=\frac{1}{2} \cdot \overline{C D} \cdot \overline{G H}=\mathrm{d} \quad(\overline{B D}=\overline{C D})$
With the similar process, we get

$$
a=b=c=d=e=f_{\#}
$$

Figure 4

Let's do some examples here.
Ex 1:
Point G is the centroid of right triangle $A B C$. Point D is the midpoint of segment $\mathrm{BC}, \overline{A C}=10, \overline{B C}=6$.

Please find out:
(1)the length of $\overline{A G}$
(2)the area of $\triangle \mathrm{ABG}$

Sol:
(1) $\overline{A G}=\frac{2}{3} \overline{A D}=\frac{2}{3} \sqrt{\overline{A B}^{2}+\overline{B D}^{2}}$

By Pythagorean theorem
$\overline{A B}^{2}=\overline{A C}^{2}-\overline{B C}^{2}=10^{2}-6^{2}=64$
$\overline{B D}=\frac{1}{2} \overline{B C}=\frac{1}{2} \cdot 6=3$
$\overline{A G}=\frac{2}{3} \overline{A D}=\frac{2}{3} \sqrt{\overline{A B}^{2}+\overline{B D}^{2}}=\frac{2}{3} \sqrt{64+9}=\frac{2}{3} \sqrt{73}$
(2) the area of $\triangle A B G=\frac{1}{3}$ the area of $\triangle A B C$

$$
\begin{aligned}
& =\frac{1}{3} \cdot \frac{1}{3} \cdot 8 \cdot 8 \\
& =8 \text { \# }
\end{aligned}
$$

Ex 2:
Two diagonals in rhombus $A B C D \overline{A C}$ and $\overline{B D}$ intersect each other at point O . Point E is the midpoint of segment CD.
$\overline{E F}=2, \overline{C F}=4$. Please find out:

(1)the length of segment BF
(2) the length of segment OF
(3) the length of segment BO
(4) the area of \triangle CEF
(5) the area of rhombus $A B C D$

Sol:
The two diagonals of a rhombus are perpendicular and bisect each other.
Point O is the midpoint of $\overline{B D}$ and point E is the midpoint of $\overline{C D}$.
(1) $\overline{B F}=2 \overline{E F}=2 \cdot 2=4 \quad$ (property of centroid)
(2) $\overline{O F}=\frac{1}{2} \overline{C F}=\frac{1}{2} \cdot 4=2$
(3) apply the Pythagorean theorem,

$$
\begin{aligned}
& \overline{O B}^{2}=\overline{B F}^{2}-\overline{O F}^{2}=4^{2}-2^{2}=12 \\
& \overline{O B}=2 \sqrt{3}
\end{aligned}
$$

(4) the area of $\triangle C E F=$ the area of $\triangle O B F$

$$
\begin{aligned}
& =\frac{1}{2} \cdot \overline{O B} \cdot \overline{O F} \\
& =\frac{1}{2} \cdot 2 \sqrt{3} \cdot 2 \\
& =2 \sqrt{3}
\end{aligned}
$$

(5) the area of rhombus $A B C D=12 \cdot$ the area of $\triangle O B F$

$$
=12 \cdot 2 \sqrt{3}=24 \sqrt{3} \#
$$

Let＇s wrap up the key information as follows：

TYPE FEATURES	CIRCUMCENTER	INCENTER	CENTROID
INTERSECTION POINT OF	PERPENDICULAR BISECTORS OF THREE SIDES	ANGLE BISECTORS OF THREE INTERIOR ANGLES	THREE MEDIANS
POSITION	ACUTE Δ INTERIOR OF Δ RIGHT Δ ON THE MIDPOINT OF HYPOTENUSE OBTUSE Δ EXTERIOR OF Δ	ALWAYS INTERIOR OF Δ	ALWAYS INTERIOR OF Δ
EQUIDISTANT TO	THREE VERTICES	THREE SIDES	X
CENTER OF	CIRCUMCIRCLE	INCIRCLE	x

There is so much to learn in this lesson．Please review it thoroughly．And do more practice is a must．

Watch and enjoy：Center of gravity
https：／／youtu．be／R8wKVOUQtlo

