組合	£
----	---

Combinations

Material		Vocabulary
組合 從〃佩不同事物中敗出メ偈(0≤k≤〃)的組合數為		1. combination (組合), 2. permutation (排列), 3.
$C_k^a = rac{n!}{k!(n-k)!}$.	85	column (欄), 4. arrange (安排), 5. convention (常規),
		6. reasonable (合理), 7. committee (委員會), 8.
		membership (會員), 9. applicant (申請人), 10.
		express (表達), 11. general (一般).
Translations		

Combinations¹ of *n* Things Taken *k* at a Time

The number of possible combinations if k items are taken from n ($n \ge k$) items is

$$C_k^n = \frac{n!}{k!(n-k)!}$$

Note:

(1) n! is read "n factorial."

(2) C_k^n can also be written as ${}_nC_k$, nC_k or $\binom{n}{k}$; is read as "*n* choose *k*."

(3) P_k^n : The number of permutations² as n distinct objects taken k at a time; is read as "n pick k",

"n permutes k" or more precisely "permutation of n elements taken k at a time."

Illustrations

A Formula for Combinations

In the previous chapter we have learned that the notation P_k^n means the number of permutations of *n* things taken *k* at a time. Similarly, the notation C_k^n means the number of combinations of *n* things taken *k* at a time. (在先前的章節我們已經學過排列 P_k^n 為*n* 個相異物 取*k* 個,直線排列的計算方式。相似的, C_k^n 代表*n* 個相異物取*k* 個。)

We can develop a formula for C_k^n by comparing permutations and combinations. Consider the letters A, B, C, and D. The number of permutations of these four letters taken three at a time is $P_3^4 = \frac{4!}{(4-3)!} = \frac{4!}{1!} = 24$.

比較排列與組合的性質,我們可以發展出C ⁿ 的公式。思考四個字母A、B、C與D,從					,從		
中取	中取3個字母的排列數為 $P_3^4 = \frac{4!}{(4-3)!} = \frac{4!}{1!} = 24$ 。						
	(4-3)! 1!						
ŀ	Here are the 24 permutations:						
	ABC	ABD		ACD		BCD	
	ACB BAC	ADB		ADC		BDC	
	BAC BCA	BAD		DAC DCA		DBC DCB	
	CAB	BDA DAB		CAD		CBD	
	САВ	DAB		CDA		CDB	
	This column contains only	This column contains only		This column contains only		This column contains only	
	one combination, ABC. We can see that ever	one combination, ABD. Ty column ³ contains or	nlv	one combination, ACD.	he	one combination, BCD. e reason is the order	of
		, e in determining comb					
		on. There is a total of t				·	
		ABC, ABD					
	這是24種排列數,	我們可以發現每一欄		,	紙	1合數不在意字母排	刺順
		攻皆只代表一種組合對					
				- · ·			
	-	mber of combinations					
	,	ur combinations, there	9 8	are 6, or 3!, times as	m	any permutations as	5
there	are combinations.						
	因此, C ₃ = 4:4個相異物取3個的組合數為4。4個相異字母取3個, 有24種排列					钅列	
數但,	只有4種組合數,其	其排列數為 6 (3!) 倍的	魚	且合數。			
	4!						
	$C_{3}^{4} = \frac{P_{3}^{4}}{2!} = \frac{\overline{(4-3)!}}{2!} = \frac{4!}{1!} = 4$						
	5! 5! 1:5!						
In general, k objects can be chosen from n different objects in P_k^n ways, and k objects can be							
arran	arranged ⁴ in k! ways. So, the number of combinations of n different objects taken k at a time is:						
	$C_k^n = \frac{P_k^n}{k!}$ (substitute: $P_k^n = \frac{n!}{(n-k)!}$)						
	$\frac{n!}{(n-k)!}$						
	$=\frac{\frac{n!}{(n-k)!}}{k!} = \frac{n!}{(n-k)!k!}$						
	()						

綜合說明,從n個相異物中取k個排列有Pⁿ種方式,而k個物品有k!種排列數,所

以,從n個相異物中取k個的組合數有 $C_k^n = \frac{n!}{(n-k)!k!}$ 種方式。

Notes

By convention⁵, 0! is defined to be 1. Thus, $C_0^n = C_n^n = 1$. We also take C_i^n to be equal to 0 when either i < 0 or i > n.

 $0! 被定義為1, 因為C_n^n = C_n^n = 1 。 無論 i < 0 或是 i > n, C_i^n 都 被定義為0。$

It might seem **reasonable**⁶ that the number of ways to choose 0 things from n is 0 (none). However, there actually is 1 way to choose 0 out of n things.

從n個相異物取0個為0種方法好像很合理,因為選0個東西不是一種選擇。然而,應該為1種,以下證明:

We can define C_0^n by formula $C_k^n = \frac{n!}{k!(n-k)!}$.

$$C_0^n = \frac{n!}{0!(n-0)!} = \frac{n!}{1 \cdot n!} = 1$$

Examples

A four-person committee⁷ is to be elected from an organization's membership⁸ of 10

students. How many different committees are possible?

(a) How many ways are there to form a 4-person committee?

(b) How many ways are there to form a 6-person committee?

欲從10個會員選出4位組成委員會。以下情況有幾種選法:

(a) 選出 4 個申請人

(b)選出6位申請人。

Solution

The order of chosen students does not matter. Use the combination formula. (因為沒有順序之分,所以利用組合的公式。)

$$C_{k}^{n} = \frac{n!}{(n-k)!k!}$$
 Substitute: $n = 10$ and $k = 4$
$$C_{4}^{10} = \frac{10!}{(10-4)!4!} = \frac{10!}{6!4!} = \frac{10 \cdot 9 \cdot 8 \cdot 7}{4 \cdot 3 \cdot 2 \cdot 1} = 210$$

A committee of 4 students can be chosen in 210 ways.

$$C_{k}^{n} = \frac{n!}{(n-k)!k!}$$
 Substitute: $n = 10$ and $k = 6$
$$C_{6}^{10} = \frac{10!}{(10-6)!6!} = \frac{10!}{4!6!} = \frac{10 \cdot 9 \cdot 8 \cdot 7}{4 \cdot 3 \cdot 2 \cdot 1} = 210$$

A committee of 6 students can be chosen in 210 ways.

In this example, the answers to parts a and b are the same. This is because the number of ways of choosing 4 students from 10 students is the same as the number of ways of choosing 6 students (that is, not choosing the other 4 students) from 10 students.

在這個例子中,題目(a)與(b)的答案一樣,這是因為選4位學生的方法數,與選6位 學生(亦即不選4位學生)相同。

This relationship can be expressed¹⁰ in general¹¹ terms. (此關係可以一般式表達。)

$$C_{k}^{n} = \frac{n!}{(n-k)!k!} \text{ replace } k \text{ with } n-k$$

$$C_{n-k}^{n} = \frac{n!}{(n-(n-k))!(n-k)!} = \frac{n!}{(n-n+k)!(n-k)!} = \frac{n!}{k!(n-k)!} = C_{k}^{n}$$

**The number of ways of choosing k objects from a set of n objects is the same as the number of ways of not choosing k objects from a set of n objects. (從 n 種相異物選 k 種的方法數即等於不選 k 種的方法數。)

Material	Vocabulary
何題 3 將論社的3位男生與2位女生組隆參加奧脂間三人制辯論比賽·從這5人	12. debate (辩論), 13. elect (選出), 14. counting
中,還出3人分別擔任一歸、二歸與三歸。 請問出費名單中既有男生又有女生的安排共有多少種?	principle (計數原理), 15. distinguish (區分), 16.
 選出3人中既有男生又有女生的情形可分成「2 男1女」和「1 男2女」 两類: ①「2 男1女」:先分別還出2 男及1女,再將此3人作直線將列。 	separate (分離), 17. a deck of (一副(撲克牌)), 18. A
得名果安排有(C ² ₂ ×C ² ₁)×31 = 36 後, ②「1 男2 女」:先分別選出1 男及2 女,再將此3 人作直線排列, 得名果安排有(C ² ₁ ×C ² ₁)×31 = 18 後。	full house (葫蘆).
利用加法原理,出資名單的安排共有36+18=54種。	

Translations

A **debate**¹² club consists of 3 boys and 2 girls. They need to **elect**¹³ 3 members to be the first speaker, the second speaker and the third speaker of an Oregon-Style Debate. The team has to include at least one boy and one girl. Find the number of ways of selecting a team.

Solution

We have two possibilities to select 3 members with at least 1 boy and 1 girl.

First possibility: 2 boys and 1 girl.

We select 2 boys out of 3 boys and 1 girl out of 2 girls, and arrange 3 people in a row.

The number of ways to arrange the team is: $(C_2^3 \times C_1^2) \times 3! = 36$.

Second possibility: 1 boy and 2 girls.

We select 1 boy out of 3 boys and all 2 girls out of 2 girls, and arrange 3 people in a row.

The number of ways to arrange the team is: $(C_1^3 \times C_2^2) \times 3! = 18$.

By the rule of sum, the team can be selected in 36 + 18 = 54 ways.

Illustrations

When solving problems involving counting principles¹⁴, you need to distinguish¹⁵ among the

various counting principles to determine which is necessary to solve the problem.

1. If the order of the elements matters, then use *permutation*.

2. If the order of the elements doesn't matters, then use *combination*.

3. If the problem involves two or more **separate**¹⁶ events, then use the *fundamental counting principle* first.

若題目須使用基本計數原理時,你要分辨不同的計數原則來決定要如何解題。

1. 若此題目為有順序的元素,則使用排列。

2. 若此題目為無順序的元素,則使用組合。

3. 若此問題包含兩個或多個束件,則一開始就要使用基本計數原理分類。

Examples

You are dealt five cards from a standard deck of¹⁷ 52 playing cards. In how many ways can you get: (a) A full house¹⁸ (b) A five-card combination containing two jacks and three aces?

(你的手牌為從一副 52 張卡牌中取出的 5 張,以下情況有幾種方法數:(a)葫蘆(b)兩張 J 三張 A。)

Solution

A standard deck of cards has 13 ordinal cards (Ace, 2-10, Jack, Queen, King) - 1 of each ordinal in each of 4 suits (spades, clubs, hearts, diamonds), and so there are $4 \times 13 = 52$ cards.

一副標準撲克牌有4種花色-黑桃、梅花、愛心、方塊。每種花色有13張牌:A、2-10、J、Q、K。

(a) FULL HOUSE: consists of three of one kind and two of another.

Pick a card type: $C_1^{13} = 13$ ways

Pick 3 out of the 4 cards: $C_3^4 = 4$

Pick a 2^{nd} card type: $C_1^{13-1} = 12$ ways

Pick 2 of the 4 cards: $C_2^4 = 6$

Total $13 \times 4 \times 12 \times 6 = 3744$ ways.

(b) For the number of hands we can draw getting specifically 2 jacks and 3 aces, we have

Pick 2 jacks out of the 4 cards: $C_2^4 = 6$

Pick 3 aces of the 4 cards: $C_3^4 = 4$

Total $6 \times 4 = 24$ ways.

Material	Vocabulary
例題 4 將6人分配住進A.B兩間房間・A房住4人・B房住2人・共有多少確分	19. quad room (四人房), 20. double room (雙人房),
	21. accommodate (容納), 22. correspond (對應), 23.
解法一 利用组合的方法	distinguishable permutations (相同物排列), 24.
先從 6 人中選出 4 人住 A 房 · 有 C_{9}^{0} 總選法: 制下的 2 人都住 B 房 · 有 C_{2}^{2} 種選法:利用乘法原理: 評選法共有 $C_{9}^{0} \times C_{2}^{3} = 15 \times 1 = 15$ (種) 。	division (分配), 25. league (聯盟), 26. irrelevant (無關
解法二 利用排列的方法 如下所示,先將6人的位置固定,再將4個A及2個B在底下任意排一	的).
列·使得人與房間上下對應。例如: 甲 乙 丙 丁 戊 己 A A B A A B	
對到 A 的人住 A 房, 對到 B 的人住 B 房。因此, 4 個 A 及 2 個 B 的每一種 排列等同於一種分配方案。利用有相同物的排列公式, 得方案共有 6 ¹ / ₂₁₇₇ = 15 (種) 。	
4121	

Translations

Arrange People in Rooms

How many ways can 6 people be assigned to quad room¹⁹ A and double room²⁰ B.

Solution 1: Combination

There are C_4^6 ways of choosing 4 people to live in room A. There are C_2^2 ways of choosing 2

people to live in room B.

By the Fundamental Counting Principle, there are $C_4^6 \cdot C_2^2 = 15 \cdot 1 = 15$ ways can 6 people be

accommodated²¹ in 2 rooms.

Solution 2: Permutation

First, we fix the position of 6 people. Arrange 4 "A" and 2 "B" in a row beneath, so people correspond²² to rooms, as figure 1 shown. For instance:

甲乙丙丁戊己 A A B A A B

Figure 1

The person corresponding to letter "A" stays in room A. The person corresponding to letter "B" stays in room B. Hence, every permutation represents one way to arrange these 6 people. By the *distinguishable permutation*²³ formula, we have

$$\frac{6!}{2!4!} = 15$$
 ways.

Examples

Division²⁴ and Distribution of distinct objects

- (a) Ten children are to be divided into an A team and a B team of 5 each. The A team will play in one league²⁵ and the B team in another. How many different divisions are possible?
- (b) In order to play a game of basketball, 10 children at a playground divide themselves into two teams of 5 each. How many different divisions are possible?

相異物的分組分堆

(a) 10 個小朋友平分至 A、B 兩組,每組 5 人,A、B 兩組分別打不同的聯盟賽,有幾種分 配的方式?

(b) 為了要打籃球賽,將他們平分兩組,有幾種分法?

Solution

- (a) There are $\frac{10!}{5!5!} = 252$ possible divisions.
- (b) Note that this example is different from Example (a) because now the order of the two teams is **irrelevant**²⁶. That is, there is no A and B team, but just a division consisting of 2 groups of 5

each. Hence, the desired answer is
$$\frac{\frac{10!}{5!5!}}{2!} = 126$$
.

解

(b) 注意這兩個題目不同,此題不在意組別的順序,就是不分A、B 組,但要分成兩組。因

Material	Vocabulary
我們以「9人任選4人」為例。說明明解性質: (1)迄9人中選出4人・相當於後9人中衛法 5 人,陽者的選法數是一樣的,即 $a_{\mu}^{2} - a_{\nu}^{2}$ (2)飽甲是這9人中的一人。依「甲是否被選中」將「9人任選4人」的方法分成 以下開肥 理確理: 選要從別8人中選出3人。選法有 c_{μ}^{3} 低 一種確理: 選定役別8人中選出4人。選法有 c_{μ}^{3} 低 地加底原理: 組合数 c_{μ}^{2} 等公人。 一種 一種 一種 一種 一種 一種 一種 一種 一種 一種	27. scenario (設想), 28. subset (子集), 29.element(元素).
	Translations
Taking "choose 4 people out of 9 p	eople" as an example, to illustrate two identities.
(1) The way of choosing 4 people out of	9 people, is the same as not choosing 5 people out of 9
people. That is $C_4^9 = C_5^9$.	
(2) Let A be 1 of 9 people. We want to k	now how many ways of choosing 4 people out of 9
people. There are two scenarios ²⁷ : A i	is chosen and A is not chosen.
A is chosen: we can select 3 people ou	ut of 8 people, C_3^8 ways.
A is not chosen: we can select 4 peop	le out of 8 people, C_4^8 ways
By the fundamental counting principle	e, we know $C_4^9 = C_3^8 + C_4^8$.
In general, we obtained	
Combinatorial identity	
(1) When $0 \le k \le n$, $C_k^n = C_{n-k}^n$.	
(2) When $1 \le k \le n-1$, $C_k^n = C_{k-1}^{n-1} + C_k^{n-1}$.	
	illustrations
We begin by asking a question, and	l answering the question in two ways: How many
subsets ²⁸ of size k are there from a set of	of size n ? "
考慮一個問題,以兩種方法回答	此問題:一集合有 n 個元素有幾個 k 個元素的子集
Answer 1: There are C ⁿ subsets. (n 個遅	
Answer 2: Pick any element ²⁹ of the set	. That element is either included in a subset, or it is not.
(選任意一個在集合內的元素,此元素	不是在子集裡就是不在子集裡。)
(i) How many subsets contain this eleme	ent? We will be picking from the remaining $n-1$
	to have k elements, but we already have one of them, w

have a total of C_{k-1}^{n-1} subsets. (若子集包含此元素,有多少個子集?我們從剩下的n-1個元素中選取子集。因為我們想要 k 個元素的子集合,但子集內已經有此元素了,所以我們 $f C_{k-1}^{n-1}$ 種子集合。)

(ii) How many subsets do not contain this element? We will be picking from the remaining n-1 elements. Since we want the subsets to have k elements, we have C_kⁿ⁻¹ such subsets. (若子集 包含此元素,有多少個子集?我們從剩下的n-1個元素中選取子集合。因為我們想要k 個元素的子集合,且子集合內沒有此元素了,所以我們有C_kⁿ⁻¹種子集合。)

Thus, there are $C_{k-1}^{n-1} + C_k^{n-1}$ subsets of k elements from a set of n elements.

Because each answer counted the same objects, but in two different ways, those answers must be the same. Therefore,

$$C_k^n = C_{k-1}^{n-1} + C_k^{n-1}$$
.

因此,從n個元素的集合中有k個元素的子集合有 $C_{k-1}^{n-1} + C_k^{n-1}$ 種。

又因,(i)、(ii)兩種答案是用不同的方法計算,所以方法數一樣。因此 $C_k^n = C_{k-1}^{n-1} + C_k^{n-1}$ 。

Examples

Prove that $C_r^{n+m} = C_0^n C_r^m + C_1^n C_{r-1}^m + \dots + C_r^n C_0^m$. (Hint: Consider a group of *n* men and *m* women.) How many groups of size *r* are possible?

證明 $C_r^{n+m} = C_0^n C_r^m + C_1^n C_{r-1}^m + \dots + C_r^n C_0^m$,提示:考慮 n 個男生 m 個女生為一組,若要選 r 個 人為一組,有多少種可能?

Solution

Consider a group of *n* men and *m* women.

The number of ways in which we can choose a group of *r* people from this group of n+m people is C_r^{n+m} ...(1).

考慮n個男生m個女生為一組。

從此組共n+m個人選出r個人一方法數為 C_r^{n+m} 。

But if we look at it differently, we can choose k men and r - k women for every k for which

 $0 \leq k \leq r$. For a fixed k, there are

 $C_k^n C_{r-k}^m$ possible choices for k men and r-k women.

4. Ron Larson (2018). Precalculus with CalcChat and CalcView Tenth Edition. Cengage Learning.

- 5. AoPSOnline. *Combinatorial identity.* https://reurl.cc/EGa3Kk.
- 6. Per Alexandersson. *Discrete mathematics*. https://reurl.cc/mlNVnl.

製作者:臺北市立陽明高中 吳柏萱 教師