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1. tangent (*~ 42), 2. perpendicular (£- ), 3. radial
({2 ), 4. curve (¥ &) 5. condense (Jk %), 6.
approximate (7 2 1), 7. secant (2] 42), 8. the point
of tangency (*~ Bt), 9. slope (£ &), 10. difference
(#£), 11.quotient (7 ), 12. denominator (4 # ), 13.
numerator (4 <), 14. interval (% &), 15.
differentiate (4 ), 16. derivative (3 #z), 17.
differentiation (#& 4 ), 18. relabel (£ #7#3%), 19.
alternate (* ), 20. approach (& iT), 21. associate
(B# 75), 22. denote (% 77 ), 23. notation (# %5), 24.
procedure (#2. 5 ), 25. rationalize (& 32 {*), 26.

vertical (22 ), 27 point-slope form (2L 4L ;34).

lllustration 1

What does it mean that a line is

at a point P is the line that

to a curve at a point? For a circle, the tangent line

to the line at point P, as shown Figure 1.
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Figure 1

For a general , how would you define a tangent line? See Figure 2 below.
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A line is tangent to a curve at a point Pif it touches, but does not cross, the curve at point

P.#- iEREd RBFEFFII P LG FES R ,T*u%ﬁ-; A e

The problem of finding the tangent line at a point P down to the problem of
finding the slope of the tangent line at point P. You can this slope using a
line through and a second point on the curve, as shown in Figure 3.
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Figure 3
If P(a,f(a)) is the point of tangency and Q(a+Ax,f(a +Ax)) is a second point on the

graph of f, the slope of the secant line m__ through the two points using the formula is:.
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This equation is a .The Ax is the change in x, and
the Ay = f(a+Ax)-f(a) is the change in y, as shown in Figure 4.
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Definition of Tangent Line with Slope m

If f is defined on an open containing a, and if the limit

m=lim &: lim f(a+Ax)—f(a)
A&x—0 Ax  Mx—0 Ax

exists, then the line passing through P(a,f(a)) with slope m is the tangent line to the graph
of f atthe point P(a,f(a)).
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The slope of the tangent line to the graph of f at the point P(a,f(a)) is also called the

slope of the graph of f at x=a.
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Example 1

(that is, find the of) f(x)=x*

Solution

Applying the definition, we have
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2 2
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llustration 2

The limit used to define the slope of a tangent line is also used to define one of two

fundamental operations of calculus —
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Definition of the Derivative of a Function

The derivative of f at x is given by

provided the limit exists. For all x for which this limit exists, f' is a function of x
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Definition (Alternate) Derivative at a Point

The derivative of f(x) at a point where x =a is found by taking the limit as Ax — 0 of

slopes of secant lines, as shown in Figure 6.
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Figure 6
By relabeling’® the pi in Fi i ful al Y f la f
y relabeling® the picture as in Figure 7, we arrive at a useful alternate® formula for

calculating the derivative. The limit is taken as x approaches®’ a.
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Figure 7

Definition (Alternative definition) of Derivative at A Point.

The derivative of the function f at the point x =g is the limit

f'(a):Iim—f(X)_f(a)
X—>a X—a
provided the limit exits.
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Other Derivative Notations




The process of finding a derivative is called differentiation. You can think of differentiation
as an operation on functions that a function f' with a function f.When the
independent variable is x, the differentiation operation is also commonly by
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Readings

f'(x) f prime of x

y' y prime

? “dy dx” or “the derivative of y with respect to x”
X

Z_f “df dx” or “the derivative of f with respectto x”
X

dif(x) “d dx of f of x” or “the derivative of f of x”
X

D, [v] “Dx y”or“Dsub x of y”

With the above notations, the value of the derivative at a point x, can be expressed as

Fle)=2 [£00] 1 06)=0LF ()] - F(x) =y (%), £()=22

X:XO dX X:XO

Examples 2

Using the derivative to Find the Slope at a Point
Find f'(x) for f(x)= Jx . Then find the slopes of the graph of f at the points (1,1) and
(4,2) . Discuss the behavior of f at (0,0).

Solution

Use the by numerators.




f'(X)Z'X'LTg Ax Definition of derivative
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At the point (1,1), the slope is f'(1) :; At the point (4,2), the slope is f'(4) :%. See

Figure 8. At the point (0,0), the slope is undefined. Moreover, the graph of f has a

tangent line at (0,0).
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Figure 8
Use the , we can find that the equation of the tangent line to the graph at

(1,1) is y—lzg(x—l), and at (4,2) is y—2:%(x—4), as shown in Figure 8.
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lllustrations 3

One-sided?® Derivatives

The derivative of f at c is

f'(C) = Dm% Alternative form of derivative

provided this limit exists, as Figure 9 shown.
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Note that the existence of the limit in this alternative form requires that the one-sided limits
x)—flc x)—f(c
x—>c” X—C x—>c* X—C
exist and are equal (see Figure 10). These one-sided limits are called the derivatives from the left

and from the right, respectively.
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Figure 10

Examples 3

One-sided Derivatives Can Differ’” at a Point
Show that the following function has left-hand and right-hand derivatives at x =0, but no

derivative there (Figure 11).

x*, x<0
y:
2x, x>0




Figure 11

Solution
We verify the of the left-hand derivative:
x)—f(0 2
x—0~ x—0 x>0 X—0 x>0

We verify the existence of the right-hand derivative:

im L0210 2x=0_ o,
x—0" x—0 x=0" x—0 x-0"

Since the left-hand derivative equals zero and the right-hand derivative equals 2, the

derivatives are not equal at x =0. The function does not have a derivative at 0.

lllustrations 4

How f'(a) Might Fail to Exist
A function will not have a derivative at a point P(a,f(a)) where the slopes of the secant

lines,

fail to approach a limit as x approaches a.
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If a function is not continuous at x =c, it is also not differentiable at x =c. For instance, the

greatest integer function, f(x)=[x],
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Figure 12

is not continuous at x =0, and so it is not differentiable at x =0 (See Figure 12). We verify this

by observing®” that

lim f(x)—f(O) = lim [X]_O :_—1:oo Derivative from the left
x—0" x—0 x=00 x—0 0

and
lim f(x)—f(O) = lim [X]_O :gzo_ Derivative from the right
x—0" x—0 x=0" x—0 0"

Although it is true that differentiability implies®*® continuity, the converse®* is not true.

A Corner

The one-sided derivatives differ; The function: f(x)= |x|

m=—1 m=1

-2 -1 0 1 2

Figure 13

is continuous at x =0, as shown in Figure 13. However, the one-sided limits

lim f(x)—f(O) = lim |X|_O :_—X:—l Derivative from the left
x—0~ x—0 x=0 x—0 X

and
lim f(x)—f(O) = lim |X|_O _X =1 Derivative from the right
x—0" x—0 x—=0" x—0 X

are not equal. So, f is not differentiable at x =0 and the graph of f does not have a tangent

10




line at the point (0,0).

A

The slopes of the secant lines approach o« from one side and —o from the other; The

2

function: f(x)=x?

-3 -2 -1 0 1 2 3

Figure 14

is continuous at x =0, as shown in Figure 14. However, the one-sided limits

. x)—f(0 .o x3=-0
lim f()=1( ): lim =—=-0  Derivative from the left
x—0~ x—0 x=00 x—0 3
X
and
2
- f(x)-f(0) . x*-0_ 1 - .
lim = lim =T =™ Derivative from the right
x—0* x—0 x=0" x—=0 Xg

don’t exist and are not equal. So, f is not differentiable at x=0.

A Vertical Tangent

The slopes of the secant lines approach either oo or —o both sides; The function:

f(x)zi/;

-3 -2 -1 0 1 2 3

Figure 15

is continuous at x =0, as shown in Figure 15. However, because the limit

11



1

f(x)=f(0)  x*-0 1

x—0 x—0 x>0 x—0 Z
X3
is , we can conclude that the tangent line is vertical at x=0. So, f is not differentiable

at x=0.

From these examples, we see that a function is not differentiable at point at which its graph
has a sharp turn or a vertical tangent line.
Differentiability Implies Continuity

If f is differentiable at x=a, then f is continuous at x=a.
VA TR
F i f(x) kx=afkr A 0 B f(X) bx=akad ¥ -
Proof
To prove that f is continuous at x =a by showing that f(x) approaches f(a) as x —>a.

To do this, use the differentiability of f at x=a and consider the following limit.

lim[ f(x)~f(a)]= 'X‘LTJ,{(X _G)M}

[Lm(x—aﬂ-@;_f?xxiﬁ(”)}

Because the difference f(x)—f(a) approaches zero as x —a, you can conclude that

limf(x)=f(a).So, f iscontinuousat x=a.

X—a

The converse of this Theorem is false, as we have already seen. A continuous function might
have a discontinuity, a corner, a cusp, or a vertical tangent line, and hence not be differentiable
at given point.
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