微分（一）

Differentiation I

Material	Vocabulary
```導數的定義 當拯限 \(\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}\) 存在時, 稱此極限為函數 \(f(x)\) 在 \(x=a\) 處的導數 記作 \(f^{\prime}(a)\), 即 道數興切線的斜率 若導數 \(f^{\prime}(a)\) 存在, 則稱通過點 \(P(a, f(a))\) 且斜牢為 \(f^{\prime}(a)\) 的直線為 數 \(f(x)\) 的圆形在 \(P\) 點的切線, 而 \(P\) 點稱為切點```	1．tangent（切線），2．perpendicular（垂直），3．radial （徑向），4．curve（曲線）5．condense（濃縮）， 6. approximate（近似的），7．secant（割線），8．the point of tangency（切點），9．slope（斜率），10．difference （差），11．quotient（商），12．denominator（分母）， 13. numerator（分子），14．interval（區間）， 15. differentiate（微分），16．derivative（導數）， 17. differentiation（微分），18．relabel（重新標記）， 19. alternate（代替），20．approach（逼近），21．associate （關聯），22．denote（表示），23．notation（符號）， 24. procedure（程序），25．rationalize（合理化）， 26. vertical（垂直）， 27 point－slope form（點斜式）．
	Illustration 1

What does it mean that a line is tangent ${ }^{1}$ to a curve at a point？For a circle，the tangent line at a point $P$ is the line that perpendicular ${ }^{2}$ to the radial ${ }^{3}$ line at point $P$ ，as shown Figure 1.

考慮一切線切曲線於一點是什麼意思？見圖 1，以圓為例，在 P 點的切線為垂直在 $P$點的半徑的那條線。


Figure 1
For a general curve ${ }^{4}$ ，how would you define a tangent line？See Figure 2 below．
見圖 2 ，如果是一般的曲線，又應該如何定義呢？


Figure 2
A line is tangent to a curve at a point $P$ if it touches，but does not cross，the curve at point P．若一條線與曲線剛好碰觸到 P 點，沒有穿過曲線，就稱為切線。

The problem of finding the tangent line at a point $P$ condenses ${ }^{5}$ down to the problem of finding the slope of the tangent line at point $P$ ．You can approximate ${ }^{6}$ this slope using a secant ${ }^{7}$ line through the point of tangency ${ }^{8}$ and a second point on the curve，as shown in Figure 3.

如何找到曲線上 P 點的切線，此問題被縮小範圍成如何找到曲線上 P 點的切線斜率。我們可以用通過切點的割線與第二個點來逼近切線，如圖 3 。


Figure 3
If $P(a, f(a))$ is the point of tangency and $Q(a+\Delta x, f(a+\Delta x))$ is a second point on the graph of $f$ ，the slope of the secant line $m_{\text {sec }}$ through the two points using the slope ${ }^{9}$ formula is：．

函數 $f$ 上，若 $P(a, f(a))$ 是切點，$Q(a+\Delta x, f(a+\Delta x))$ 是第二個點，用計算斜率的公式代入兩點坐標，求出通過這兩個點的割線斜率。

$$
m_{\mathrm{sec}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{f(a+\Delta x)-f(a)}{(a+\Delta x)-a}=\frac{f(a+\Delta x)-f(a)}{\Delta x}
$$

This equation is a difference ${ }^{10}$ quotient ${ }^{11}$ ．The denominator ${ }^{12} \Delta x$ is the change in $x$ ，and the numerator ${ }^{13} \Delta y=f(a+\Delta x)-f(a)$ is the change in $y$ ，as shown in Figure 4.

這個算式稱為差商。分母 $\Delta x$ 為 $x$ 的變化量，分子 $\Delta y=f(a+\Delta x)-f(a)$ 為 $y$ 的變化量，

## 如圖 4。



Figure 4

## Definition of Tangent Line with Slope $m$

If $f$ is defined on an open interval ${ }^{14}$ containing $a$ ，and if the limit

$$
m=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f(a+\Delta x)-f(a)}{\Delta x}
$$

exists，then the line passing through $P(a, f(a))$ with slope $m$ is the tangent line to the graph of $f$ at the point $P(a, f(a))$ ．

## 切線斜率 $m$ 的定義

若函數 $f$ 的定義域為包含 $a$ 值的開區間，且極限值 $m=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f(a+\Delta x)-f(a)}{\Delta x}$ 存
在，則通過點 $P(a, f(a))$ 且斜率為 $m$ 的直線即為函數 $f$ 上通過點 $P(a, f(a))$ 的切線。
The slope of the tangent line to the graph of $f$ at the point $P(a, f(a))$ is also called the slope of the graph of $f$ at $x=a$ ．

函數 $f$ 上在點 $P(a, f(a))$ 的切線斜率也稱為函數 $f$ 在 $x=a$ 的斜率。

## Example 1

Differentiate ${ }^{15}$（that is，find the derivative ${ }^{16}$ of）$f(x)=x^{3}$

## Solution

Applying the definition，we have

$$
\begin{array}{rlr}
f^{\prime}(x) & =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{3}-x^{3}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\left(x^{3}+3 x^{2} \Delta x+3 x(\Delta x)^{2}+(\Delta x)^{3}\right)-x^{3}}{\Delta x} \quad(x+\Delta x)^{3} \text { expanded } \\
& =\lim _{\Delta x \rightarrow 0} \frac{\left(3 x^{2}+3 x \Delta x+(\Delta x)^{2}\right) \Delta x}{\Delta x} \quad x^{3} \text { s cancelled, } h \text { factored out } \\
& =\lim _{\Delta x \rightarrow 0}\left(3 x^{2}+3 x \Delta x+(\Delta x)^{2}\right) \\
& =3 x^{2}
\end{array}
$$

## Illustration 2

The limit used to define the slope of a tangent line is also used to define one of two fundamental operations of calculus－differentiation ${ }^{17}$ ．

極值常用於定義切線斜率，也定義微積分的基本運算之一 一 微分。

## Definition of the Derivative of a Function

The derivative of $f$ at $x$ is given by

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

provided the limit exists．For all $x$ for which this limit exists，$f^{\prime}$ is a function of $x$

## 導函數的定義

函數 $f$ 在 $x$ 的導數極限 $f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$ 存在。每一個數 $x$ 的極限均存在，稱 $f^{\prime}$ 為 $x$ 導函數。

## Definition（Alternate）Derivative at a Point

The derivative of $f(x)$ at a point where $x=a$ is found by taking the limit as $\Delta x \rightarrow 0$ of slopes of secant lines，as shown in Figure 6.

## 導函數在一點上的定義（替代公式）

函數 $f(x)$ 在點 $x=a$ 上的導數為當 $\Delta x \rightarrow 0$ 時割線斜率的極限值，如圖6。


By relabeling ${ }^{18}$ the picture as in Figure 7，we arrive at a useful alternate ${ }^{19}$ formula for calculating the derivative．The limit is taken as $x$ approaches ${ }^{20} a$ ．

如圖7，將其代號重新命名，我們會得到一實用的導數的替代公式。此極限為 $x$ 逼近 $a$之值。


Figure 7

## Definition（Alternative definition）of Derivative at A Point．

The derivative of the function $f$ at the point $x=a$ is the limit

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

provided the limit exits．
導函數在一點上的定義（替代公式）
若極限存在，且此極限 $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$ 為函數 $f$ 在點 $x=a$ 的導數。

The process of finding a derivative is called differentiation．You can think of differentiation as an operation on functions that associates ${ }^{21}$ a function $f^{\prime}$ with a function $f$ ．When the independent variable is $x$ ，the differentiation operation is also commonly denoted ${ }^{22}$ by

## 其它導數記號

尋找導數的過程稱為微分，微分是函數 $f$＇與函數 $f$ 間的運算。當自變數為 $x$ ，微分運算符號也可寫成：

Notations ${ }^{23}$	Readings
$f^{\prime}(x)$	$f$ prime of $x$
$y^{\prime}$	$y$ prime
$\frac{d y}{d x}$	＂$d y d x$＂or＂the derivative of $y$ with respect to $x$＂
$\frac{d f}{d x}$	＂$d f d x$＂or＂the derivative of $f$ with respect to $x$＂
$\frac{d}{d x} f(x)$	＂$d d x$ of $f$ of $x$＂or＂the derivative of $f$ of $x$＂
$D_{x}[y]$	＂D $x y$＂or＂D sub $x$ of $y$＂

With the above notations，the value of the derivative at a point $x_{0}$ can be expressed as

$$
f^{\prime}\left(x_{0}\right)=\left.\frac{d}{d x}[f(x)]\right|_{x=x_{0}}, f^{\prime}\left(x_{0}\right)=\left.D_{x}[f(x)]\right|_{x=x_{0}}, f^{\prime}\left(x_{0}\right)=y^{\prime}\left(x_{0}\right), f^{\prime}\left(x_{0}\right)=\left.\frac{d y}{d x}\right|_{x=x_{0}}
$$

## Examples 2

## Using the derivative to Find the Slope at a Point

Find $f^{\prime}(x)$ for $f(x)=\sqrt{x}$ ．Then find the slopes of the graph of $f$ at the points $(1,1)$ and $(4,2)$ ．Discuss the behavior of $f$ at $(0,0)$ ．

## Solution

Use the procedure ${ }^{24}$ by rationalizing ${ }^{25}$ numerators．

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \\
& =\lim _{x \rightarrow 0} \frac{\sqrt{x+\Delta x}-\sqrt{x}}{\Delta x} \\
& =\lim _{x \rightarrow 0}\left(\frac{\sqrt{x+\Delta x}-\sqrt{x}}{\Delta x}\right)\left(\frac{\sqrt{x+\Delta x}+\sqrt{x}}{\sqrt{x+\Delta x}+\sqrt{x}}\right) \\
& =\lim _{x \rightarrow 0} \frac{(x+\Delta x)-x}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})} \\
& =\lim _{x \rightarrow 0} \frac{\Delta x}{\Delta x(\sqrt{x+\Delta x}+\sqrt{x})} \\
& =\lim _{x \rightarrow 0} \frac{1}{\sqrt{x+\Delta x}+\sqrt{x}} \\
& =\frac{1}{2 \sqrt{x}}, x>0
\end{aligned}
$$

## One－sided ${ }^{28}$ Derivatives

The derivative of $f$ at $c$ is

$$
f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \quad \text { Alternative form of derivative }
$$

provided this limit exists，as Figure 9 shown．


Figure 9
Note that the existence of the limit in this alternative form requires that the one－sided limits

$$
\lim _{x \rightarrow c^{-}} \frac{f(x)-f(c)}{x-c} \text { and } \lim _{x \rightarrow c^{+}} \frac{f(x)-f(c)}{x-c}
$$

exist and are equal（see Figure 10）．These one－sided limits are called the derivatives from the left and from the right，respectively．

（a）$Q$ 從 $P$ 的右側靠近

（b）$Q$ 從 $P$ 的左側靠近

Figure 10

## Examples 3

## One－sided Derivatives Can Differ ${ }^{29}$ at a Point

Show that the following function has left－hand and right－hand derivatives at $x=0$ ，but no derivative there（Figure 11）．

$$
y= \begin{cases}x^{2}, & x \leq 0 \\ 2 x, & x>0\end{cases}
$$



Figure 11

## Solution

We verify the existence ${ }^{30}$ of the left－hand derivative：

$$
\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{-}} \frac{x^{2}-0}{x-0}=\lim _{x \rightarrow 0^{-}} x=0
$$

We verify the existence of the right－hand derivative：

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{2 x-0}{x-0}=\lim _{x \rightarrow 0^{+}} 2=2
$$

Since the left－hand derivative equals zero and the right－hand derivative equals 2 ，the derivatives are not equal at $x=0$ ．The function does not have a derivative at 0 ．

## Illustrations 4

How $f^{\prime}(a)$ Might Fail to Exist
A function will not have a derivative at a point $P(a, f(a))$ where the slopes of the secant lines，

$$
\frac{f(x)-f(a)}{x-a}
$$

fail to approach a limit as $x$ approaches $a$ ．
微分 $f^{\prime}(a)$ 不存在
若當 $x$ 趨近 $a$ ，割線斜率 $\frac{f(x)-f(a)}{x-a}$ 無法逼近極限值，則函數 $f$ 在點 $P(a, f(a))$ 的導數不存在。

## A Discontinuity ${ }^{31}$

If a function is not continuous at $x=c$ ，it is also not differentiable at $x=c$ ．For instance，the greatest integer function，$f(x)=[x]$ ，


Figure 12
is not continuous at $x=0$, and so it is not differentiable at $x=0$ (See Figure 12). We verify this by observing ${ }^{32}$ that

$$
\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{-}} \frac{[x]-0}{x-0}=\frac{-1}{0^{-}}=\infty \quad \text { Derivative from the left }
$$

and

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{[x]-0}{x-0}=\frac{0}{0^{+}}=0 . \quad \text { Derivative from the right }
$$

Although it is true that differentiability implies ${ }^{33}$ continuity, the converse ${ }^{34}$ is not true.

## A Corner

The one-sided derivatives differ; The function: $f(x)=|x|$


Figure 13
is continuous at $x=0$, as shown in Figure 13. However, the one-sided limits

$$
\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{-}} \frac{|x|-0}{x-0}=\frac{-x}{x}=-1 \quad \text { Derivative from the left }
$$

and

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{|x|-0}{x-0}=\frac{x}{x}=1 \quad \text { Derivative from the right }
$$

are not equal. So, $f$ is not differentiable at $x=0$ and the graph of $f$ does not have a tangent
line at the point $(0,0)$.
A cusp ${ }^{35}$
The slopes of the secant lines approach $\infty$ from one side and $-\infty$ from the other; The function: $f(x)=x^{\frac{2}{3}}$


Figure 14
is continuous at $x=0$, as shown in Figure 14. However, the one-sided limits

$$
\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{-}} \frac{x^{\frac{2}{3}}-0}{x-0}=\frac{1}{x^{\frac{1}{3}}}=-\infty \quad \text { Derivative from the left }
$$

and

$$
\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{x^{\frac{2}{3}}-0}{x-0}=\frac{1}{x^{\frac{1}{3}}}=\infty \quad \text { Derivative from the right }
$$

don't exist and are not equal. So, $f$ is not differentiable at $x=0$.

## A Vertical Tangent

The slopes of the secant lines approach either $\infty$ or $-\infty$ both sides; The function:
$f(x)=\sqrt[3]{x}$


Figure 15
is continuous at $x=0$, as shown in Figure 15. However, because the limit

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x^{\frac{1}{3}}-0}{x-0}=\frac{1}{x^{\frac{2}{3}}}=\infty
$$

is infinite ${ }^{36}$ ，we can conclude that the tangent line is vertical at $x=0$ ．So，$f$ is not differentiable at $x=0$ ．

From these examples，we see that a function is not differentiable at point at which its graph has a sharp turn or a vertical tangent line．

## Differentiability Implies Continuity

If $f$ is differentiable at $x=a$ ，then $f$ is continuous at $x=a$ ．

## 可微分即連續

若函數 $f(x)$ 在 $x=a$ 處可微分，則 $f(x)$ 在 $x=a$ 處連續。

## Proof

To prove that $f$ is continuous at $x=a$ by showing that $f(x)$ approaches $f(a)$ as $x \rightarrow a$. To do this，use the differentiability of $f$ at $x=a$ and consider the following limit．

$$
\begin{aligned}
\lim _{x \rightarrow c}[f(x)-f(a)] & =\lim _{x \rightarrow a}\left[(x-a) \frac{f(x)-f(a)}{x-a}\right] \\
& =\left[\lim _{x \rightarrow a}(x-a)\right] \cdot\left[\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}\right] \\
& =(0)\left[f^{\prime}(a)\right] \\
& =0
\end{aligned}
$$

Because the difference $f(x)-f(a)$ approaches zero as $x \rightarrow a$ ，you can conclude that $\lim _{x \rightarrow a} f(x)=f(a)$ ．So，$f$ is continuous at $x=a$ ．

The converse of this Theorem is false，as we have already seen．A continuous function might have a discontinuity，a corner，a cusp，or a vertical tangent line，and hence not be differentiable at given point．

逆定理不為真，如前所述，即使函數在某一點連續，圖形有可能為不連續，轉折點，尖點或鉛直切線，不能保證在該點可微分。

## References

1．許志農，黄森山，陳清風，廖森游，董涵冬（2019）。數學甲：單元3微分。龍騰文化。

2．Ron Larson \＆Bruce H．Edwards（2009）．Calculus $9^{\text {th }}$ ．Brooks／Cole
3．Howard Anton，Irl C．Bivens \＆Stephen Davis．Calculus：Early Transcendentals，10th Edition． Wiley．

製作者：臺北市立陽明高中 吴柏菖 教師

