雙語教學主題（國中八年級教材）：介紹以因式分解解二元一次方程式 Topic：solving quadratic equations by factoring

這個單元常用到的一些用語
The vocabulary we will use in this topic
squared，square root ，\pm plus or minus 正負，complete the square，solution or root ， polynomial，coefficient，leading coefficient，binomial，trinomial，identity 沍等式， ZERO PRODUCT PROPERTY，GCF＝greatest common factor，factoring polynomial ， factoring out，grouping，repeated roots 重根，

各位老師，用因式分解法來解二元一次方程式這個單元，在内容上主要是因式分解的方法，國内外稍有不同。在這裡我主要介紹我們常用的因式分解方法來解二次方程。

We first want to introduce ZERO PRODUCT PROPERTY
If $a \cdot b=0$ ，then $a=0$ or $b=0$
It means if the product of a times b equals 0 ，then either $a=0$ or $b=0$ ．No two numbers other than 0 can be multiplied together and get 0 ．

Actually，we used the ZERO PRODUCT PROPERTY when we solved linear equations with one variable before．For instance，
$3 x=0$
3 times an unknown number x equals 0
We know that x has to be 0 ，So the solution to this equation is $x=0$

Let＇s start solving quadratic equations by using different factoring methods．I highly recommend that we havetoreview all we learned about factoring polynomials in another class before we get into this lesson．
We usually set the quadratic equations in the general standard form $\mathbf{a x}^{\mathbf{2}} \mathbf{+ b x + c = 0}$
Ex1：solving the quadratic equations by using factoring the GCF method．
1．$x^{2}+2 x=0$
$x^{2}+2 x=0$
$x(x+2)=0$
$\Rightarrow \quad \mathrm{x}=0$ or $\mathrm{x}+2=0$
$x=0$ or $x=-2$
0 and -2 are the solutions to this
quadratic equation $x^{2}+2 x=0$

Check：
x squared plus $2 x$ equals 0
Both terms have a common variable x
Factor out their GCF x
ZERO PRODUCT PROPERTY

In the future，please do the checking if you have time after solving equations．

Replace x with 0 in the equation
$x^{2}+2 x=0$ ，we get

$$
\begin{aligned}
& 0^{2}+2(0) \\
& =0+0 \\
& =0
\end{aligned}
$$

Also
Replace x with -2 in the equation $x^{2}+2 x=0$ ，we get

$$
\begin{aligned}
& (-2)^{2}+2(-2) \\
& =4+(-4) \\
& =0
\end{aligned}
$$

Both 0 and -2 are the solutions to the equation $x^{2}+2 x=0$
Attention：please do the checking after solving each equation whenever you have time．We won＇t show the checking process here anymore．

2． $4 x^{2}=100 x$

$$
\begin{gathered}
4 x^{2}=100 x \\
4 x^{2}-100 x=0 \\
4 x(x-25)=0 \\
\Rightarrow x=0 \text { or } x-25=0 \\
\Rightarrow x=0 \text { or } x=25 \#
\end{gathered}
$$

Another method that we mostly do：

$$
\begin{aligned}
& 4 x^{2}=100 x \\
& x^{2}=25 x \\
& x(x-25)=0 \\
& \Rightarrow x=0,25 \#
\end{aligned}
$$

4 times x squared equals 100 times x First，we noticed that this equation is not in a general form．

Rewrite it as $4 x^{2}-100 x=0$
Factor out the common factor $4 x$

ZERO PRODUCT PROPERTY
（我想這裏我們應該不用再用英文解釋解一元一次方程式的過程了吧）

Divide both sides by 4 ，and get x squared equals $25 x$
Simplify and factor the common factor x

Please do the checking when available．

Whenever we solve a quadratic equation，we always try to keep the equation in the general standard form

$$
a x^{2}+b x+c=0,
$$

This means we keep all the terms on the left side of the equation．Because we might make the mistake like this：

$$
4 x^{2}=100 x
$$

Divide both sides by the common factor $4 x$ and get：

$$
x=25
$$

A quadratic equation always has two roots，if we solve the equation as above， we have only one root，and it＇s not correct！
The reason why it happens：
When we divide both sides by $4 x$ ，we don＇t know what the value of x is，and if $\mathrm{x}=0$ ，then we make a big mistake by dividing the equaiton by 0 ．
So please start to solve the quadratic equations in gerneral standard form to avoid the mistake．

Ex2：solving the quadratic equations by using the polynomial identities
1．$x^{2}-4=0$

$$
a^{2}-b^{2}=(a+b)(a-b)
$$

$$
\begin{aligned}
& x^{2}-4=0 \\
& x^{2}-2^{2}=0 \\
& (x+2)(x-2)=0 \\
& x+2=0 \text { or } x-2=0 \\
& x=-2,2 \#
\end{aligned}
$$

$\begin{aligned} & 18 x^{2}-84 x+98=0 \\ & 9 x^{2}-42 x+49=0 \\ & (3 x)^{2}-42 x+7^{2}=0 \\ & -2(3 x)(7) \end{aligned}$ $\begin{aligned} & (3 x-7)^{2}=0 \\ \Rightarrow & 3 x-7=0 \end{aligned}$ $x=\frac{7}{3}, \frac{7}{3}$ Or $\quad x=\frac{7}{3}$ (repeated roots) \#	18 x squared plus 98 equals 84 x Rewrite it in the standard form Divide both sides by their GCF 2 Rewrite the square terms Apply the polynomial identity $(a-b)^{2}=a^{2}-2 a b+b^{2}$ Replace a with $3 x$ and b with 7 0 is the only number that multiplying itself is still 0 . A quadratic equation always has two roots. But there are certain kinds of equations that we don't know the roots yet. You will learn that when you get into grade 12.

Ex3: solve the following quadratic equations by using our cross method.

1. $x^{2}+3 x+2=0$

$$
\begin{aligned}
& x^{2}+3 x+2=0 \\
& \left(x^{2}+x\right)+(2 x+2)=0
\end{aligned}
$$

$x(x+1)+2(x+1)=0$
$(x+1)(x+2)=0$
$\Rightarrow \mathrm{x}+1=0$ or $\mathrm{x}+2=0$
$\Rightarrow x=-1$ or $x=-2$
$\Rightarrow x=-1,-2 \#$

We can use all kinds of polynomial factoring methods to solve quadratic equations． For some quadratic equations that cannot be factorized，we will introduce how to complete the square with x^{2} term and x term and quadratic formula to solve any kinds of quadratic equations．

Practicing more would build up the fluency on doing math．

製作者：北市 金華國中 郝曉青

