三角形的外角
 The exterior angles in a triangle

Class： \qquad Name： \qquad

1．Interior angle and exterior angle（内角與外角）
The interior angles of a triangle are three original angles．

The exterior angle is the angle between any side of a triangle and an extended adjacent side．

$\angle 1$ and $\angle 4$ are the exterior angles of $\angle B A C$ ．
$\angle 2$ and $\angle 5$ are the exterior angles of $\angle A B C$ ．
$\angle 3$ and $\angle 6$ are the exterior angles of $\angle A C B$ ．

2．Exterior angle theorem（外角定理）
Let＇s find the relationship between interior angles and exterior angles．
$\angle 1+\angle 2=180^{\circ}$（ $\angle 1$ and $\angle 2$ are supplementary．）
$\angle 2+\angle 3+\angle 4=180^{\circ}$（The sum of the interior angles of a triangle is 180° ）
$\Rightarrow \angle 1+\angle 2=\angle 2+\angle 3+\angle 4$
$\Rightarrow \angle 1=\angle 3+\angle 4$

Exterior angle theorem：
The measure of the exterior angle of a triangle is equal to the sum of the two remote angles， which are nonadjacent interior angles．

Example 1

Find the measure of $\angle 1$ in the figure.

[Solution]
$\angle 1$ is the exterior angle of $\triangle D E F$.
We can apply the exterior angle theorem.

$$
\angle 1=30^{\circ}+65^{\circ}=95^{\circ}
$$

Exercise 1

Find the measure of $\angle 2$ in the figure.

Example 2

Find the measure of $\angle 3$ in the figure.

[Solution]
$\angle A C E$ is the exterior angle of $\triangle A B C$.
We can apply the exterior angle theorem.
$\angle A C E=40^{\circ}+46^{\circ}=86^{\circ}$
Similarly, $\angle 3$ is the exterior angle of $\triangle C E F$.
Apply the exterior angle theorem again.

$$
\angle 3=86^{\circ}+25^{\circ}=111^{\circ}
$$

Exercise 2

Find the measure of $\angle 4$ in the figure.

3．The sum of exterior angles of a triangle（三角形的外角和）

We know the sum of the interior angles of a triangle is 180° ．Next，we are going to find the sum of the exterior angles of a triangle．
［Method 1］

In $\triangle A B C$ ，
$\angle B A C+\angle 1=180^{\circ} \cdots \ldots$（1）
$\angle A B C+\angle 2=180^{\circ}$ ．
$\angle A C B+\angle 3=180^{\circ}$
From（1）$+(2)+(3)$ ，we get $(\angle B A C+\angle A B C+\angle A C B)+(\angle 1+\angle 2+\angle 3)=540^{\circ}$
The sum of the interior angle of a triangle is 180° ．That is，$\angle B A C+\angle A B C+\angle A C B=180^{\circ}$ ．
Therefore，$\angle 1+\angle 2+\angle 3=360^{\circ}$ ．
［Method 2］star
Tom walks on the sides of a triangular park．He walks around the park stating from point P ， goes counterclockwise，and comes back to P ．

Tom walks from P to A and		
turns to face point B ．The		
turning angle is $\angle 1$.	Tom walks from A to B and turns to face point C ．The turning angle is $\angle 2$.	Tom walks from B to C and turns to face A ．The turning angle is $\angle 3$ ．He goes back to P in the end．

Switch the green angle（ $\angle 1$ ）and blue angle $(\angle 3)$ to the lower left corner．We can find these three angles form a full rotation angle． Therefore，we have $\angle 1+\angle 2+\angle 3=360^{\circ}$ ．

一，設計理念：

1．延續前一份學習單教多邊形的内角，本份學習單主要介紹外角定理及三角形的外角和。
2．多邊形的外角和因為在 108 課網中屬於補充教材，故未列於本份學習單中。

二，英文詞槀：

中文	英文
角	angle
補角	supplementary angle
内角	interior angle
外角	exterior angle
多邊形	polygon
三角形	triangle

三，數學英文用法：

數學表示法	
90°	90 degrees
$\angle A$	angle A
$\angle A$ 和 $\angle B$ 互補	Angle A and angle B are supplementary．

1 【外角定理】 Exterior angle theorem	2．Exterior angle theorem（外角定理） Let＇s find the relationship between interior angles and exterior angles． $\begin{aligned} & \angle 1+\angle 2=180^{\circ}(\angle 1 \text { and } \angle 2 \text { are supplementary.) } \\ & \left.\angle 2+\angle 3+\angle 4=180^{\circ} \text { (The sum of the interior angles of a triangle is } 180^{\circ}\right) \\ & \Rightarrow \angle 1+\angle 2=\angle 2+\angle 3+\angle 4 \\ & \Rightarrow \angle 1=\angle 3+\angle 4 \end{aligned}$ Exterior angle theorem： The measure of the exterior angle of a triangle is equal to the sum of the two remote angles， which are nonadjacent interior angles．
	We just learned the interior angles and exterior angles of a triangle．Next， we want to find the relationship between interior angles and exterior angles． Here is a triangle ABC ，and we draw the exterior angle of angle C．Angle 1 and angle 2 form a straight angle，so angle 1 plus angle 2 equals 180 degrees． On the other hand，we know the sum of the interior angles of a triangle is 180 degrees，so angle 2 plus angle 3 plus angle 4 equals 180 degrees． Both these two sums equal 180 degrees．Therefore，angle 1 plus angle 2 equals angle 2 plus angle 3 plus angle 4 ．Subtract angle 2 on both sides．We have angle 1 equals angle 3 plus angle 4 ． Angle 3 and angle 4 are the interior angles of triangle $A B C$ ，which are not adjacent to angle 1．These two angles are called＂remote angles＂of angle 1. From the process above，we get the measure of the exterior angle of a triangle is equal to the sum of the two remote angles．This conclusion is called the exterior angle theorem．

製作者：臺北市雙園國中 劉家宇

