離散型隨機變數

Discrete Random Variables

Material	Vocabulary
 点一愐武驗可在相同的條件下重複進行，每次武験的可能結果不只一種•試駗前無法碓定聊一種結果會出現時•槅此試驗為隨機試驗。例如下列三項試敖都是不只一種結果的階機試驗 \qquad別垶應到機率 $\frac{3}{8}, ~ \frac{1}{8}$ ；追種特随機戀數 X 所有可能的取值 x 對㦄到其機率的函數關俰稍為随機變數 X 的機率質量函數，習樌上可以列表如下，並稱此表为機率分布表 一般而言， \square \square \square	1．discrete（離散），2．outcome（結果），3．in advance （事先），4．die（骰子）， $5 . \operatorname{toss}$（擲），6．fair（公平）， 7. character（字符），8．associate（關聯），9．assign（分配）， 10．obtain（得到），11．upper case（大寫），12．lower case（小寫），13．subscript（下標），14．tabulation（製表），15．vertical（垂直），16．finite（有限的），17．infinite （無限的），18．various（各式各樣），19．exhaustive（詳盡的），20．occur（發生），21．defect（缺點）， 22. uniform（匀值），23．without replacement（取後不放回），24．scenario（設想）．

Illustrations I

Discrete ${ }^{1}$ Random Variables

A random experiment is a process that can be repeated under the same conditions，and the outcome ${ }^{2}$ of the experiment is more than one．The specific outcome is not known in advance ${ }^{3}$ ． Example of random experiments include throwing a six－sided die ${ }^{4}$ ，tossing ${ }^{5}$ a fair ${ }^{6}$ coin，or drawing balls from a bag．

當一項試驗可在相同的條件下重複進行，每次試驗的可能結果不只一種，且試驗前無法確定哪一種結果會出現時，稱此試驗為隨機試驗。例如擲骰子，丢硬幣或抽球都是不只一種結果的隨機試驗。
（1）Throwing a Six－Sided Die：The outcome could be any number from 1 to 6 ，resulting in a total of 6 possible results．擲一粒骰子，可能出現 $1,2,3,4,5$ 或 6 點，共有 6 種結果。
（2）Tossing a Fair Coin Two times：The outcomes could be（heads，heads），（heads，tails），（tails， heads），or（tails，tails），resulting in a total of 4 possible results．丢一枚硬幣雨次，可能是 （正，正），（正，反），（反，正）或（反，反），共有4 種結果。
（3）Drawing a Ball from a bag that contains red balls and blue balls：The outcome could be either
red or blue，resulting in only 2 possible results．從只裝有紅球與白球的袋中取一球，可能是紅球或白球，共有 2 種結果。

The outcomes of a random experiment can be a variety of things，such as real numbers， characters＂（Tail，Head，．．．）or symbols（＂©）＂for Yes，＂：）＂for No，．．．）．To make studying easier，we can use a rule where each outcome of a random experiment is associated ${ }^{8}$ with a real number． For example，considering the experiment of tossing a fair coin two times，and expressing an interest in the occurrences of heads，then we can build a correspondence between the outcomes and the number of times heads appear as follows．

隨機試驗的結果有很多樣式，有些是數值，有些是文字或符號等。為了方便研究，通常會依感興趣的内容，將試驗的結果對應到一些特定的實數值。例如丢一枚硬幣兩次，若感興趣的是正面出現的次數，則會將試驗結果與正面出現的次數對應如下。

outcomes （tails，tails） （tails，heads） （heads，tails） corresponding to	The occurrences of heads
0	

The relationship that assigns ${ }^{9}$ each possible outcome（i．e．，the sample space）to one and only one real number in a random experiment is called a random variable，usually denoted as X ．

像這樣將隨機試驗所有可能發生的結果（即樣本空間）對應到一個實數值的函數關係稱為隨機變數，通常以X表示。

Consider tossing a fair coins two times，where we can obtain ${ }^{10} 0,1$ or 2 heads．The number of heads obtained in each trial，X ，is a discrete random variable and $X \in\{0,1,2\}$ ．

令 X 表示丢一枚硬幣雨次正面出現的次數，那麼 X 的值可為 $0,1,2$ ，此時
＂$X=0$＂represents＂the event of heads appearing 0 times．＂
＂$X=1$＂represents＂the event of heads appearing 1 time．＂
＂$X=2$＂represents＂the event of heads appearing 2 times．＂
$「 X=0$ 」表示「正面出現 0 次的事件」；
$\ulcorner X=1 」$ 表示「正面出現1次的事件」；
$「 X=2$ 」表示「正面出現 2 次的事件 」。

A discrete random variable is usually denoted by an upper case ${ }^{11}$ letter，such as X, Y ，or Z ． The values that the variable takes are denoted by lower case ${ }^{12}$ letters，such as x, y ，or z ． Sometimes are given subscript ${ }^{13} x_{1}, x_{2}, x_{3}, \ldots$ ．Thus，$P\left(X=x_{1}\right)$ is the probability that the discrete random variable X takes the value x_{1} ．

離散型隨機變數通常以大寫字母表示，例如 $X, ~ Y$ 或 Z 。其變數之取值以小寫字母表示，例如 x ，y 或 z ，有時候會在符號後面加下標，如 $x_{1}, x_{2}, x_{3}, \ldots$ 。因此 $P\left(X=x_{1}\right)$ 為離散型隨機變數 $X=x_{1}$ 的機率。

Probability distributions

The probability mass function（PMF）is a relationship that defines the probabilities associated with each possible outcome of a discrete random variable．The usual method of display is by tabulation ${ }^{14}$ in a probability distribution table．The probability distribution also can be represented in a vertical ${ }^{15}$ line graph or in a bar chart．With the previous example of tossing a fair coin two times，we have

機率分布表

機率質量函數用以表示機率與隨機變數之間的關係，通常以表格的形式呈現，也能使用長條圖或直方圖。以擲骰子兩次為例，可得：

$$
\begin{aligned}
& P(X=0)=P(\text { tails, tails })=0.5 \times 0.5=0.25 \\
& P(X=1)=P(\text { heads, tails })+P(\text { tails, heads })=(0.5 \times 0.5)+(0.5 \times 0.5)=0.5 \\
& P(X=2)=P(\text { heads, heads })=0.5 \times 0.5=0.25 .
\end{aligned}
$$

The probability distribution for X is displayed in the following table．

x	0	1	2
$P(X=x)$	0.25	0.5	0.25

Generally，for a random variable X ，where all possible values are $x_{1}, x_{2}, \ldots, x_{n}$ ，and $P\left(X=x_{i}\right)=p_{i}$ for $i=1,2, \ldots, n$ ，we can tabulate the probability distribution as follows．

一般來說，隨機變數 X 其可能的取值為 $x_{1}, x_{2}, \ldots, x_{n}$ 且 $P\left(X=x_{i}\right)=p_{i}$ ，其中 $i=1,2, \ldots, n$ ，我們可將機率質量函數以表格呈現如下：

x	x_{1}	x_{2}	\cdots	x_{n}
$P(X=x)$	p_{1}	p_{2}	\cdots	p_{n}

From the properties of probability，the probability $P\left(X=x_{i}\right)=p_{i}$ has two characteristics：（1） $0 \leq p_{i} \leq 1, i=1,2, \ldots, n$ （2）$p_{1}+p_{2}+\cdots+p_{n}=1$ ．

根據機率的基本性質知，機率 $P\left(X=x_{i}\right)=p_{i}$ 具有下面兩個性質：（1） $0 \leq p_{i} \leq 1$ ， $i=1,2, \ldots, n$（2）$p_{1}+p_{2}+\cdots+p_{n}=1$ ．

Discrete random variable may have a finite ${ }^{16}$ or an infinite ${ }^{17}$ number of possible outcomes． Consider that we keep throwing a fair six－sided die until we roll a 6 ，in which case the distribution may be considered infinite．

隨機變數X也有無限多個取值的情況，例如連續擲一粒骰子，擲到6 點才停止，此時隨機變數所有可能的取值就有無限多個。

A infinite discrete random variable has infinite outcomes $x_{1}, x_{2}, x_{3}, \ldots, x_{n}, \ldots$ ，with associated probabilities $p_{1}, p_{2}, p_{3}, \ldots, p_{n}, \ldots$ ，then the sum of the probabilities must equal 1 ．Since the various ${ }^{18}$ outcomes cover all possibilities，they are exhaustive ${ }^{19}$ ．We have
（1） $0 \leq p_{i} \leq 1, i=1,2,3, \ldots, n, \ldots$
（2）$p_{1}+p_{2}+\cdots+p_{n}+\cdots=1$ ．
若隨機變數 X 的取值為 $x_{1}, x_{2}, x_{3}, \ldots, x_{n}, \ldots$ ，且其對應的機率為 $p_{1}, p_{2}, p_{3}, \ldots, p_{n}, \ldots$ ，則這些機率具有下面兩個性質。
（1） $0 \leq p_{i} \leq 1, i=1,2,3, \ldots, n, \ldots$
（2）$p_{1}+p_{2}+\cdots+p_{n}+\cdots=1$ ．
A well－known example of an infinite discrete random variable occurs ${ }^{20}$ in the Poisson distribution（Ex：The number of defects ${ }^{21}$ in a wire cable can be modeled by the Poisson distribution with a uniform ${ }^{22}$ rate of 1.5 defects per kilometer．Find the probability that a single kilometer of wire will have at least 5 defects），while the study of discrete random variables in this chapter will limited to finite cases．

其中有名的無限離散隨機變數為卜瓦松分布，例：電䌐中的缺陷數量為卜瓦松分布，其中每公里平均有 1.5 個缺陷，求一公里的電線至少有五個缺陷的機率。而此章節的離散型隨機變數則只討論有限多的例子。

Examples I

A bag contains 2 white balls and 3 red balls．Balls are drawn one at a time without replacement ${ }^{23}$ until a red ball is drawn．The random variable X represents the number of balls are drawn．
（1）Find the probability distribution of X ．
（2）Find the value of $P(x \leq 2)$ ．

Solution

（1）Let $X=1$ represent the number of balls drawn as 1 ，and its color is red．The probability is

$$
P(X=1)=\frac{3}{5} .
$$

Let $X=2$ represent the number of balls drawn as 2 ，with the first ball being white and the second ball being red．The probability is

$$
P(X=2)=\frac{2}{5} \times \frac{3}{4}=\frac{3}{10} .
$$

Let $X=3$ represent the number of balls drawn as 3 ，with the colors being white，white，and red in that order．The probability is

$$
P(X=3)=\frac{2}{5} \times \frac{1}{4} \times \frac{3}{3}=\frac{1}{10} .
$$

Due to the scenario ${ }^{24}$ of having only two white balls in the bag，It is for certain that the third draw will be a red bal；that is $x \leq 3$ ，which gives the following probability distribution

The number of balls are drawn x	1	2	3
$P(X=x)$	$\frac{3}{5}$	$\frac{3}{10}$	$\frac{1}{10}$

（2）$P(X \leq 2)=P(X=1)+P(X=2)=\frac{3}{5}+\frac{3}{10}=\frac{9}{10}$ ．

Material	Vocabulary
	25．expectation（期望值），26．variance（變異數）， 27. estimate（估計），28．central tendency（集中趨勢）， 29. spread（散布），30．recall（回想），31．standard deviation（標準差），32．distinct（相異的），33．regard （看待），34．ordinary（普通的），35．inclusive（包含）， 36 ． alternate（備用），37．wage（薪資）．

Illustrations II

Expectation ${ }^{25}$ and Variance ${ }^{26}$

To estimate ${ }^{27}$ the probabilities of the various possible outcomes，we can compare the probability distributions by calculating measures of central tendency ${ }^{28}$ and a measure of spread ${ }^{29}$ ．The most useful measure of central tendency is the mean or expectation of the random variable and the most useful measure of spread is the variance．

為了估計各種可能結果的機率，我們透過計算集中趨勢和離散值來比較各個機率分布。針對集中趨勢最有用的測量是隨機變數的平均值或期望值，而對於離散值的測量則是使用變異數。

Recall ${ }^{30}$ that when an experiment has n results，$m_{1}, m_{2}, \ldots, m_{n}$ ，with associated the probabilities $p_{1}, p_{2}, \ldots, p_{n}$ its expectation is given by

當一試驗有 $m_{1}, m_{2}, \ldots, m_{n}$ 等 n 種結果，且每一種結果發生的機率分別為 $p_{1}, p_{2}, \ldots, p_{n}$時，此試驗的期望值為

$$
E=m_{1} p_{1}+m_{2} p_{2}+\cdots+m_{n} p_{n}=\sum_{i=1}^{n} m_{i} p_{i} .
$$

Similarly，the expected value or the expectation of a discrete random variable X is obtained by adding the products of each possible values，$x_{1}, x_{2}, \ldots, x_{n}$ ，multiplied by their corresponding probabilities．

同様地，對於隨機變數 X ，將 X 所有可能的取值 $x_{1}, x_{2}, \ldots, x_{n}$ 分別乘上相對應發生的機率之總和，就是隨機變數 X 的期望值。

The Expectation

Let X be a random variable assuming the values $x_{1}, x_{2}, \ldots, x_{n}$ with corresponding probabilities $p_{1}, p_{2}, \ldots, p_{n}$ The mean or expectation of X is defined by

$$
E(X)=x_{1} p_{1}+x_{2} p_{2}+\cdots+x_{n} p_{n}=\sum_{i=1}^{n} x_{i} p_{i},
$$

where the probability distribution is shown on the right．

x	x_{1}	x_{2}	\cdots	x_{n}
$P(X=x)$	p_{1}	p_{2}	\cdots	p_{n}

If it is an infinite discrete random variable X ，then
當隨機變數 X 的取值有無限多個時，

$$
E(X)=x_{1} p_{1}+x_{2} p_{2}+\cdots+x_{n} p_{n}+\cdots=\sum_{i=1}^{\infty} x_{i} p_{i} .
$$

Before introducing the concepts of the variance and the standard deviation，let＇s review mean and variance：there are 6 figures， $4,5,7,5,4,5$ ，the mean is

在介紹變異數和標準差的概念之前，我們先回顧一下平均數和變異數：有 6 個數字， $4,5,7,5,4,5$ ，平均數是

$$
\begin{aligned}
\mu & =\frac{1}{6}(4+5+7+5+4+5) \\
& =\frac{1}{6}(4 \times 2+5 \times 3+7 \times 1) \\
& =4 \times \frac{2}{6}+5 \times \frac{3}{6}+7 \times \frac{1}{6}=5
\end{aligned}
$$

Recall that when an experiment has n results，$m_{1}, m_{2}, \ldots, m_{n}$ ，the variance is
當一試験有 $m_{1}, m_{2}, \ldots, m_{n}$ 等 n 種結果，此試驗的變異數為

$$
\sigma^{2}=\frac{\left(m_{1}-\mu\right)^{2}+\left(m_{2}-\mu\right)^{2}+\cdots+\left(m_{n}-\mu\right)^{2}}{n}=\frac{1}{n} \sum_{i=1}^{n}\left(m_{i}-\mu\right)^{2},
$$

and the standard deviation ${ }^{31}$ is
且其標準差為

$$
\sigma=\sqrt{\frac{\left(m_{1}-\mu\right)^{2}+\left(m_{2}-\mu\right)^{2}+\cdots+\left(m_{n}-\mu\right)^{2}}{n}}=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(m_{i}-\mu\right)^{2}} .
$$

Observing these 6 figures，there are 3 distinct ${ }^{32}$ values： 4,5 ，and 7 ，each appearing 2,3 ，and 1 times accordingly．This means they are associated with probabilities of $\frac{2}{6}, \frac{3}{6}$ ，and $\frac{1}{6}$ ， respectively．Thus，the mean of these 6 figures can be regarded ${ }^{33}$ as the expectation of a random variable X ．Moreover，the variance of these 6 figures is

觀察這 6 個數字，有 3 個不同的值：4，5和7，分別出現 $2, ~ 3$ 和 1 次。這表示他們的機率分別為 $\frac{2}{6}, ~ \frac{3}{6}$ 和 $\frac{1}{6}$ 。因此，這 6 個數字的平均值可以視為隨機變數 X 的期望值。此外，這 6 個數字的變異數為

$$
\begin{aligned}
\sigma^{2} & =\frac{1}{6}\left[(4-5)^{2}+(5-5)^{2}+(7-5)^{2}+(5-5)^{2}+(4-5)^{2}+(5-5)^{2}\right] \\
& =\frac{1}{6}\left[(4-5)^{2} \times 2+(5-5)^{2} \times 3+(7-5)^{2} \times 1\right] \\
& =(4-5)^{2} \times \frac{2}{6}+(5-5)^{2} \times \frac{3}{6}+(7-5)^{2} \times \frac{1}{6}=1
\end{aligned}
$$

Hence，following the concept of expectation，where each value is multiplied by its probability，we add the product of the squared deviation multiplied by its corresponding probability．This is denoted as the variance of the random variable X ．

因此，仿照期望值將每一個數值以其發生的機率加權的概念，將離均差平方乘上其對應的機率之總和，稱為隨機變數 X 的變異數。

Variance and Standard Deviation

If X is a random variable with mean $E(X)=\mu$ ，then the variance of X ，denoted by $\operatorname{Var}(X)=\sigma^{2}$ ，is defined by

x	x_{1}	x_{2}	\cdots	x_{n}
$P(X=x)$	p_{1}	p_{2}	\cdots	p_{n}

$$
\operatorname{Var}(X)=\left(x_{1}-\mu\right)^{2} p_{1}+\left(x_{2}-\mu\right)^{2} p_{2}+\cdots+\left(x_{n}-\mu\right)^{2} p_{n}=\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} p_{i}
$$

or

$$
\operatorname{Var}(X)=x_{1}^{2} p_{1}+x_{2}^{2} p_{2}+\cdots+x_{n}^{2} p_{n}-\mu^{2}=\sum_{i=1}^{n} x_{i}^{2} p_{i}-\left(\sum_{i=1}^{n} x_{i} p_{i}\right)^{2} .
$$

Beside，$\sigma=\sqrt{\operatorname{Var}(X)}$ is the standard deviation of random variable X ．
The probability distribution is shown on the right．
The second version of the variance is often written as $E\left(X^{2}\right)-[E(X)]^{2}$ ，which can be remembered as＂the expectation of the squares minus the square of the expectation．＂

變異數也可以寫成 $E\left(X^{2}\right)-[E(X)]^{2}$ ，記做「平方期望值減期望值平方」。
Also，if it is an infinite discrete random variable X ，then
同様地，當隨機變數 X 的取值有無限多個時，

$$
\operatorname{Var}(X)=\left(x_{1}-\mu\right)^{2} p_{1}+\left(x_{2}-\mu\right)^{2} p_{2}+\cdots+\left(x_{n}-\mu\right)^{2} p_{n}+\cdots=\sum_{i=1}^{\infty}\left(x_{i}-\mu\right)^{2} p_{i}
$$

When calculating the expectation and variance of a discrete probability distribution，you will find it helpful to set your work out systematically in a table．

當計算離散型機率分布的期望值和變異數時，利用表格系統化的計算較容易。

Examples II

The random variable X is given by the sum of the scores when two ordinary ${ }^{34}$ dice are thrown
(i) Find the probability of X.
(ii) Find $E(X)=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$.
(iii) Find the values of $P(X<\mu), P(X>\mu+\sigma)$ and $P(|X-\mu|<2 \sigma)$

Solution

(i) The table shows all the possible totals when the two dice are thrown.

		First die					
		1	2	3	4	5	6
	1	2	3	4	5	6	7
	2	3	4	5	6	7	8
	3	4	5	6	7	8	9
	4	5	6	7	8	9	10
	5	6	7	8	9	10	11
	6	7	8	9	10	11	12

The probability distribution for X is as follows.

x	2	3	4	5	6	7	8	9	10	11	12
$P(X=x)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

(ii) $E(x)=\mu=\sum_{i=1}^{11} x_{i} p_{i}$

$$
\begin{aligned}
= & 2 \times \frac{1}{36}+3 \times \frac{2}{36}+4 \times \frac{3}{36}+5 \times \frac{4}{36}+6 \times \frac{5}{36}+7 \times \frac{6}{36}+8 \times \frac{5}{36}+9 \times \frac{4}{36}+10 \times \frac{3}{36}+11 \times \frac{2}{36} \\
& +12 \times \frac{1}{36} \\
= & \frac{252}{36}=7
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}(x)= & \sigma^{2}=\sum_{i=1}^{11}\left(x_{i}-\mu\right)^{2} p_{i} \\
= & (2-7)^{2} \times \frac{1}{36}+(3-7)^{2} \times \frac{2}{36}+(4-7)^{2} \times \frac{3}{36}+(5-7)^{2} \times \frac{4}{36}+(6-7)^{2} \times \frac{5}{36}+(7-7)^{2} \times \frac{6}{36} \\
& +(8-7)^{2} \times \frac{5}{36}+(9-7)^{2} \times \frac{4}{36}+(10-7)^{2} \times \frac{3}{36}+(11-7)^{2} \times \frac{2}{36}+(12-7)^{2} \times \frac{1}{36} \\
= & \frac{210}{36} \approx 5.83
\end{aligned}
$$

(iii) $P(X<\mu)=P(X<7)=P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)$

$$
\begin{aligned}
=\frac{1}{36} & +\frac{2}{36}+\frac{3}{36}+\frac{4}{36}+\frac{5}{36}=\frac{15}{36}=\frac{5}{12} \\
P(X>\mu+\sigma)= & P(X>7+\sqrt{5.83})=P(X>9.4)=P(X=10)+P(X=11)+P(X=12) \\
= & \frac{3}{36}+\frac{2}{36}+\frac{1}{36}=\frac{6}{36}=\frac{1}{6} \\
P(|X-\mu|<2 \sigma) & =P(\mu-2 \sigma<X<\mu+2 \sigma)=P(2.2<X<11.8) \\
& =P(X=3)+P(X=4)+P(X=5)+P(X=6)+P(X=7)+P(X=8)+P(X=9) \\
& +P(X=10)+P(X=11) \\
& =\frac{2}{36}+\frac{3}{36}+\frac{4}{36}+\frac{5}{36}+\frac{6}{36}+\frac{5}{36}+\frac{4}{36}+\frac{3}{36}+\frac{2}{36} \\
= & \frac{34}{36}=\frac{17}{18}
\end{aligned}
$$

The probability of $\mu-2 \sigma<X<\mu+2 \sigma$ is $\frac{17}{18}$, which is almost 1 .

Examples III

Bob earns \$80 per day, Monday to Friday inclusive ${ }^{35}$. He works every alternate ${ }^{36}$ Saturday for which he earns "time and a half" and every fourth Sunday, for which he is paid "double time." Let X represents his daily wage ${ }^{37}$, and Y represents his weekly wage.
(i) By considering a typical four-week period of 28 days, find the probability distribution for X.
(ii) Calculate the expectation and variance of X.
(iii) Show that there are two possible patterns Bob could work over a typical four-week period, depending on which Saturdays and Sunday he works. Hence find the expectation and variance of Y under either pattern.

Solution

(i) He earns $\$ 80$, and 20 out of 28 are week days.

He earns "time and a half," which means $\$ 80 \times 1.5=120$, and 2 out of 28 are alternate

Saturdays.

He is paid "double time," which means $\$ 80 \times 2=160$, and 1 out of 28 is the fourth Sundays. The pattern of a typical four-week period of 28 days.

M	Tu	W	Th	F	Sa	Su
80	80	80	80	80	120	X
80	80	80	80	80	X	X
80	80	80	80	80	120	X
80	80	80	80	80	X	160

The probability distribution for X gives the following

$x(\$)$	0	80	120	160
$P(X=x)$	$\frac{5}{28}$	$\frac{20}{28}$	$\frac{2}{28}$	$\frac{1}{28}$

(ii) $E(x)=\mu=\sum_{i=1}^{4} x_{i} p_{i}$

$$
\begin{aligned}
& =0 \times \frac{5}{28}+80 \times \frac{20}{28}+230 \times \frac{2}{28}+160 \times \frac{1}{28} \\
& =\frac{2000}{28} \approx 71.43
\end{aligned}
$$

$$
\operatorname{Var}(x)=\sigma^{2}=E\left(X^{2}\right)-\mu^{2}
$$

$$
=0^{2} \times \frac{5}{28}+80^{2} \times \frac{20}{28}+120^{2} \times \frac{2}{28}+160^{2} \times \frac{1}{28}-\left(\frac{2000}{28}\right)^{2}
$$

$$
=\frac{45600}{7}-\frac{250000}{49}=\frac{69200}{49} \approx 1410 \text { (to } 3 \text { s.f.) }
$$

Hence, his mean daily wage is $\$ 71.43$, with a variance of 1410 , resulting in a standard deviation of about $\$ 38$.
(iii) Pattern 1: he works on the first and third Saturday, and works on the fourth Sunday.

M	Tu	W	Th	F	Sa	Su
80	80	80	80	80	120	X
80	80	80	80	80	X	X
80	80	80	80	80	120	X
80	80	80	80	80	X	160

The probability distribution for γ_{1} gives the following

$y_{1}(\$)$	400	520	560
$P\left(Y_{1}=y_{1}\right)$	$\frac{1}{4}$	$\frac{2}{4}$	$\frac{1}{4}$

$E\left(y_{1}\right)=400 \times \frac{1}{4}+520 \times \frac{2}{4}+560 \times \frac{1}{4}=500$
$\operatorname{Var}\left(y_{1}\right)=400^{2} \times \frac{1}{4}+520^{2} \times \frac{2}{4}+560^{2} \times \frac{1}{4}-500^{2}=3600$
Pattern 2：he works on the second and fourth Saturday，and works on the fourth Sunday．

M	Tu	W	Th	F	Sa	Su
80	80	80	80	80	X	X
80	80	80	80	80	120	X
80	80	80	80	80	X	X
80	80	80	80	80	120	160

The probability distribution for Y_{2} gives the following

$y_{2}(\$)$	400	520	680
$P\left(y_{2}=y_{2}\right)$	$\frac{2}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

$E\left(y_{2}\right)=400 \times \frac{2}{4}+520 \times \frac{1}{4}+680 \times \frac{1}{4}=500$
$\operatorname{Var}\left(y_{2}\right)=400^{2} \times \frac{2}{4}+520^{2} \times \frac{1}{4}+680^{2} \times \frac{1}{4}-500^{2}=13200$
Hence，his mean weekly wage is $\$ 500$ ，with a variance of 500 or 13200 ．

References

1．許志農，黄森山，陳清風，廖森游，董涵冬（2019）。數學 1 ：單元4科學記號與常用對數。龍騰文化。

2．Dean Chalmers（2018）．Cambridge International AS \＆A Level Mathematics：Probability \＆
Statistics 1．Cambridge University Press．
製作者：臺北市立陽明高中 吴柏萱 教師

