三視圖
 Views of Objects

Class： \qquad Name： \qquad

1．Warm－up：Observe the cylinder
Here is a cylinder．Tom and Mary are looking at this cylinder from different directions．Here are the shapes they see．

Tom：I see a circle．	Mary：I see a rectangle．

Observe the cylinder and determine which direction they observing from the cylinderd．

2．Observing objects from different directions

When viewing the same object from different directions，its appearance varies．The outline of a three－dimensional object observed from a particular direction is referred to as the view of that object．

When observing a three－dimensional object，we typically identify the front of the object first and then correspondingly determine the back，left，right，and top of the object．

Here is an object made from linking cubes．Use linking cubes to make the same object on the right by yourselves and answer the following questions．

（1）Draw the result by seeing the object from the front．	（2）Draw the result by seeing the object from the back．
（3）Draw the result by seeing	
the object from the right．	（4）Draw the result by seeing the object from the left．
front view	

What do you find between the four results above?
The front view and the back view have a line symmetry, and the right view and the left view also have a line symmetry.

If we know the front view of the object, we also know what the back view of the object is like. As a result, we only need the front view or the back view. Similarly, we only need one of the side viwe: the right view or the left view.

Generally, we refer to the front view, right view, and top view of a three-dimensional object collectively as the three views.

Let's look at the object from top to bottom-and answer the following two questions.

We can find the top view is different if we look from different directions. For the convenience of communication, we define the top view as drawn from the front of the object.

3. Draw three views of an object

Example

Draw the top view, right view, and front view of the given object.

[Solution]

We can make the same object by linking cubes and then draw the results, but here we want to introduce a way without using linking cubes.

The object has been colored blue, red, and yellow. The blue sides are what we see from the front, so we can draw the front view.

Similarly, the red sides and yellow sides are what we see from the top and the right respectively. Therefore, we get the top view and the right view of the object.

Exercise

Draw the top view, right view, and front view of the given object. [Hint]: We can color the object as we do in the previous example or observe the object after making the same object by linking cubes.

front view		right view			top view							

4. Supplementary material

We can see the width, height, and depth of the object. We want to find their relationship with the three views.

The top view shows the width and depth of the object.

The front view shows the width and height of the object.

The top view and the front view must have the same width. Therefore, if a line drawn on the left side of the top view aligns with the front view, then a line drawn on the right side of the top view must align with the right side of the front view. That is, the line we drew along the left side is parallel to the line along the right side.

Similarly, the right view shows the depth and height of the object, so the front view and the right view must have the same height. Therefore, if a line drawn on the top of the front view aligns with the right view, then a line drawn on the bottom of the front view must align with the bottom of the right view.

When drawing the three views in engineering, we usually place the top view above the front view and the right view on the right of the front view.

一，設計理念：

1．三視圖可直接翻譯為 Three－view drawing，但國外課程在上此單元時標題通常為 Views of Objects，而三視圖直接稱為 Three views，故本份學習單的英文標題選用 Views of Objects。
2．後視圖可稱為 back view 或 rear view，本份學習單選用 back view。
3．本份學習單第 4 點提及「長，寬，高及其對應在三視圖中的關係」屬補充内容，非數學課網内的教材。
4．課程中教師宜發實體教具給學生觀察，從中了解一個立體圖形從不同方向所看到的結果。

二，英文詞集：

中文	英文
三視圖	three views
前視圖	front view
後視圖	back view／rear view
左視圖	left view
右視圖	right view
上視圖	top view
線對稱	line symmetry

三，教學参考範例：

1 【三視圖】 Three views	What do you find between the four results above？ The front view and the back view have a line symmetry，and the right view and the left view also have a line symmetry．
	We just drew the front，back，right，and left views of the object．Take a look at these four drawings．Can we find any relationship among them？ We have learned line symmetry in the previous section．We can use it to describe the relationship．The front view and the back view are line symmetry， with a verticle line as the axis of line symmetry．Similarly，the right view and the left view are also line symmetry．

