Matrix II

I. Key mathematical terms

Terms	Symbol	Chinese translation
Reciprocal		
Inverse Matrix		
Transpose		

II. Inverse Matrix

In real numbers, if $a \neq 0$ there exists a unique reciprocal $b=\frac{1}{a}$ which satisfies " $a b=b a=1 "$.

Definition:(Inverse Matrix)

Let A be a $n \times n$ square matrix. We say A is invertible (or nonsingular) if there exists a $n \times n$ square matrix B such that

$$
A B=B A=I_{n}
$$

If such matrix B exists, we say B is" the inverse of A " and denoted as $B=A^{-1}$.
If no such inverse B exists for a matrix A, we say A is non-invertible (or singular).
<key> There can only exist at most one inverse.
$<$ key $>$ The matrix is singular if and only if $\operatorname{det}(\mathrm{A})=0$.

Example1.

$$
A=\left(\begin{array}{cc}
3 & 2 \\
-1 & 1
\end{array}\right), B=\left(\begin{array}{ll}
2 & 1 \\
2 & 1
\end{array}\right)
$$

For each of the matrices A and B determine whether the matrix is singular. If the matrix is non-singular, find its inverse.
(Hint: You can use Cramer's rule to solve the linear equation.)
(1) $A=\left(\begin{array}{cc}3 & 2 \\ -1 & 1\end{array}\right)$
(2) $B=\left(\begin{array}{ll}2 & 1 \\ 2 & 1\end{array}\right)$

Inverse of $\mathbf{2 x 2}$ Matrix

We can fine the inverse of any non-singular matrix.
The inverse of a matrix M is the matrix M^{-1} such that $M M^{-1}=M^{-1} M=I$.
In the case of 2×2 matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ a simple formula exists to find its inverse:

$$
\text { If } A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \text { then } A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)=\frac{1}{\operatorname{det}(A)}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

<key>
(1) If $\operatorname{det}(\mathrm{A})=0$, then A is noninvertible.
(2) If $\operatorname{det}(A) \neq 0$, then A is invertible.
<proof>
To varify the formula above, suppose $B=\left(\begin{array}{ll}x & u \\ y & v\end{array}\right)$ such that $A B=B A=I_{2}$.

$$
A B=I_{2}
$$

$\Rightarrow\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{ll}x & u \\ y & v\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad$ We can get two systems of linear equations.
$\Rightarrow\left\{\begin{array}{l}a x+b y=1 \\ c x+d y=0\end{array}\right.$ and $\left\{\begin{array}{l}a u+b v=0 \\ c u+d v=1\end{array}\right.$ We can use Cramer's rule to solve these
equations.
$\Rightarrow(1)\left\{\begin{array}{l}a x+b y=1 \\ c x+d y=0\end{array}\right.$
(2) $\left\{\begin{array}{l}a u+b v=0 \\ c u+d v=1\end{array}\right.$

Finally we have:

$$
\text { For } A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) A^{-1}=\frac{1}{}(\quad)=\frac{1}{}(\quad)
$$

Example2.

$$
\text { Given } A=\left(\begin{array}{ll}
5 & 3 \\
2 & 1
\end{array}\right), B=\left(\begin{array}{cc}
7 & -8 \\
-4 & 5
\end{array}\right)
$$

(1) Find the inverse matrix of A.
(2) If $A X=A B$, find X

III. Solving systems of equations by using matrices

We can use the inverse of $n \times n$ matrix to solve a system of n simultaneous linear equations in n unknowns. We will introduce how to solve the 2 simultaneous linear equations in 2 unknowns in our class.

$$
\text { If } A\binom{x}{y}=v \text { and } A \text { is non-singular, then }\binom{x}{y}=A^{-1} v .
$$

Example3.
Use an inverse matrix to solve the simultaneous equations: $\left\{\begin{array}{l}2 x-4 y=4 \\ 3 x-5 y=3\end{array}\right.$

Example4.
Matrix A is a 2×2 matrix which satisfies $A\binom{8}{5}=\binom{1}{2}, A\binom{3}{2}=\binom{-1}{1}$
(1) Find matrix A
(2) If $A B=\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right)$, find B

IV. Properties of Inverse and Transpose

Definition:(Transpose of Matrix)

Given an $m \times n$ matrix W we define W^{t}, the transpose of W, to be the $n \times m$ matrix whose (i, j) th entry is the (j, i) th entry of W; that is the matrix for which

$$
\left(W^{t}\right)_{i j}=W_{j i}
$$

For example

$$
A=\left(\begin{array}{ccc}
1 & 0 & -4 \\
2 & -1 & 3
\end{array}\right) A^{t}=\left(\begin{array}{cc}
1 & 2 \\
0 & -1 \\
-4 & 3
\end{array}\right) ; B=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] B^{t}=\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]
$$

<key> Transpose of matrix is found by interchanging rows into columns (or columns into rows).

Properties of Inverse and Transpose

(1) A martix has at most one inverse.
(2) Assume A and B are invertible $n \times n$ matrices. Then the product $A B$ is invertible and

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

(3) We have $(A B)^{t}=B^{t} A^{t}$ and $(\lambda A)^{t}=\lambda A^{t}$ for any matrix A and real constant λ.
(4) Assume A is invertible. Then the transpose A^{t} is invertible and

$$
\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t}
$$

<explanation>
(1)
(2)
(3)
(4)
（Hint：Use the prorperties of inverse and transpose to solve example5～7．） Example5．
Matrix A is a 2×2 matrix and $A^{2}=\left(\begin{array}{cc}3 & 4 \\ 8 & 11\end{array}\right), A^{3}=\left(\begin{array}{ll}11 & 15 \\ 30 & 41\end{array}\right)$ Find A ．

Example6．

Matrix A and B are invertible 2×2 matrices．Suppose $A B=\left[\begin{array}{cc}3 & -4 \\ -5 & 7\end{array}\right]$ ．Find $B A$ ．

Example7．

Matrix A and B are invertible 2×2 matrices，such that $B A B=I$ ．
（1）Prove that $A=B^{-1} B^{-1}$ ．Given that $B=\left(\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right)$
（2）Find the matrix A such that $B A B=I$

