Law of Sines and Cosines

第 1 節		
1st Period		
Material	Note	
$\sin A = \frac{a}{R} = \frac{a}{2R}$ $a = 2R \sin A$ $a = 2R \sin A$ $a = \frac{a}{2R} = \frac{a}{2R}$ $a = \frac{a}{2R} = \frac{a}{2R}$	Vocabulary: Circumcircle (外接圓), Radius (半徑),	
	Inscribed angle (圓周角), Central angle (圓心角).	
	Sentences:	
	1. The measure of an inscribed angle is half of the	
	measure of the central angel with the same	
	intercepted arc. (對應同弧的圓心角是圓周角的	
	兩倍。)	
	2. The same can be proved that (同理可證…)	
	GeoGebra Resource:	
	羅驥韡 (Pegasus Roe) - 正弦定理	
	https://www.geogebra.org/m/pP86kbJA	
正弦定理 若 _{点,} , か和 c分別表 ΔABC 三 六 角 ∠A, ∠B 和 ∠C 的對邊長・且 R 表其外接圖 米酒、M	Translations:	
$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R +$	In a triangle, side "a" divided by the sine of angle	
	A is equal to the side "b" divided by the sine of angle	
	B is equal to the side "c" divided by the sine of angle	
	C is equal to 2 times radius of circumcircle.	
傍題 3 (1)在△ABC中・已知∠A=45 [*] , ∠B=66 [*] , BC=√2 · 求 AC 的長度興	Vocabulary: Segment (線段).	
$\triangle ABC$ 的外援调半售。 (2)在 $\triangle ABC$ 中、已知 $\angle A = 25^{\circ}, \overline{BC} = 1, \overline{AC} = 2 \cdot 求 \angle B$ 的角度、(四拾 五入到小數點以下第1位)	Translations:	
(1) \neq η \equiv \pm α α α π $\frac{\sqrt{2}}{\sin 45^{\circ}} = \frac{AC}{\sin 60^{\circ}} = 2R$.	By the law of sines, we have square root of 2	
$\frac{\# \#}{AC} = \frac{\sqrt{2} \sin 60^*}{\sin 45^*} = \frac{\sqrt{2} \times \frac{\sqrt{3}}}{\sqrt{2}} = \sqrt{3} .$	over sine 45 degrees is equal to segment AC over sine	
·····································		

	3. The coordinate of point A will be $(b\cos\theta, b\sin\theta)$.
	(則A點座標即為 $(b\cos heta,b\sin heta)$ 。)
$c^2 = (a - b\cos\theta)^2 + (b\sin\theta)^2$	Vocabulary: Projection (投影), Pythagorean Theorem
А	(畢氏定理), Simplify (簡化).
	Sentences:
	1. Set the projection of a point A on X-axis is a point
	D. (設點 A 投影在 X 軸上為點 D。)
$ \begin{array}{c c} \uparrow \\ b\cos\theta \end{array} & C & \uparrow \\ a \end{array} $	2. The X-coordinate of point D is (點 D 的 x 坐標
	為…)
	3. As triangle ADB is a right triangle, we'll have
	Pythagorean Theorem which is
	$(a-b\cos\theta)^2+(b\sin\theta)^2=c^2.$ (因為三角形 ADB 是
	直角三角形,所以我們可以使用畢氏定理,因
	此得到式子 $(a-b\cos\theta)^2+b\sin^2\theta=c^2$ 。)
	4. We simplify this formula (我們將式子簡化…)
餘弦定理 若 $a,b和c分別表 \Delta ABC 三內角\angle A, \angle B和\angle C的對過長\cdot則a^2 = b^2 + c^2 - 2bc \cos A.$	Translations:
$b^2 = c^2 + a^2 - 2ca\cos B ,$ $c^2 = a^2 + b^2 - 2ab\cos C \circ$	Let a, b, and c be the lengths of the three sides
	of a triangle. A, B, and C be the three corresponding
	vertices of the triangle. Then, the law of cosine states
	that: a square is equal to b square plus c square
	minus 2 times b times c times cosine A.
例題 6 在 ΔABC 中、已知 \overline{AB} = 8, \overline{AC} = 3, $\angle A$ = 60 [*] · 求 \overline{BC} 的段度。	Translation:
(3) 利用 徐 征 定 理 $a^2 = b^2 + c^2 - 2bc\cos A + 祥\overline{BC}^2 = 3^2 + 8^2 - 2 \times 3 \times 8 \times \cos 60^*$ <i>A</i>	By using law of cosines we have line segment BC
$= 9 + 64 - 24 = 49 \cdot \\ \hbar t \; \overline{t} \; \overline{BC} = 7 \; \cdot \label{eq:BC}$	square is equal to 3 square plus 8 square minus 2

	times 3 times 8 times cosine 60 degre	es And it is
	equal to 49. Thus, we have segment E	3C is 7.
	補充題	
	Materials	
Two airplanes leave an airport at the same time on different runways. One flies at a bearing		
of N66°W at 325 miles per hour. The other airplane flies at a bearing of S26°W at 300 miles per		
hour. How far apart will the airplanes be a	fter two hours?	$W \xrightarrow{N} E$
Solutions :		C $a = N650 miles 466^{\circ}$
After two hours, the plane flying at 325 miles per hour travels 325×2		B
miles, or 650 miles. Similarly, the plane flying at 300 miles per hour travels 600 $\int_{c=1}^{b=2}$		b = ? $c = s$
miles. The situation is illustrated in Figure. $A^{600 \text{ mile}}$		$\bigvee_{A} 600 \text{ miles}$
Let b be the distance between the planes after two hours. We can use a north-south line to		
find angle B in triangle ABC. Thus, $B = 180^\circ - 66^\circ - 26^\circ = 88^\circ$		
We now have $a = 650, c = 600$ and $B = 88^{\circ}$. We use the Law of Cosines to find b in this SAS		
situation.		
$b^2 = a^2 + c^2 - 2ac\cos B$	(Apply the Law of Cosines.)	
$b^2 = 650^2 + 600^2 - 2(650)(600)\cos 88^\circ$	(Substitute: $a = 650, c = 600 an$	$dB = 88^\circ$.)
≈775,278	(Use a calculator.)	
$b \approx \sqrt{775,278} \approx 869$	(Take the square root and solve	e for b.)
After two hours, the planes are approximately 869 miles apart.		
Note		
Vocabulary: Runway (飛機跑道), Bearing (方位), direction(方向), Illustrate (說明), Approximately		

(大約).

Sentences:

1. A plane flies at a bearing of N66°W at 325 miles per hour. (一架飛機以每小時 325 英里往北

66 度西飛行。)

- A plane flies in the direction of N66°W at 325 miles per hour. (一架飛機以每小時 325 英里 往北 66 度西飛行。)
- 3. The plane flying at 300 miles per hour travels 600 miles. (一架飛機以每小時 300 英里飛

行,飛行里程為600英里。)

	参考 資料	
References		
1.	許志農、黃森山、陳清風、廖森游、董涵冬 (2019)。數學 2:單元 12 三角比的性質。	
	龍騰文化。	
2.	Openstax. (2022, May 24). <i>AlgebraAndTrigonometry</i> . https://reurl.cc/x9pKbe.	
3.	Ron Larson. (2018). <i>Precalculus 10th Edition.</i> Cengage Learning.	

4. Miami Beach Senior High School. (2022, July 4). *Chapter 6 Additional Topics in Trigonometry*. https://reurl.cc/6Z6jK6.

製作者:臺北市立陽明高中 吳柏萱 教師