```
雙語教學主題(國中七年級教材):解一元一次不等式
```

Topic：solving linear inequality in one variable

這個單元常用到的一些用語
Vocabulary we use in this topic

Integer	fraction
Decimal	reciprocal
Flip	switch
Swap	transpose
Coefficient	distributive property
Denominator	LCD（ least common denominator）

From the last lesson，we learned the inequality signs such as：greater than $>$ ，less than $<$ ，greater than or equal to \geq and less than or equal to \leq ． Before we learn how to solve linear inequalities in one variable，I＇d like to talk about the properties of inequality here．Most of the properties of inequality are almost the same as the properties of equation，and I＇ll emphasize the differences down below．

Properties of inequality a, b, c are real numbers	Real numbers are like integers，fraction，decimals，negative numbers and positive numbers etc．
a）if $a>b$, then $a+c>b+c$ Let $a=x, b=4$ and $c=3$	a）if a is greater than b, then a plus c is greater than b plus c Let a be x, b be 4 and c be 3

if $x>4$, then $x+3>4+3$	If x is greater than 4, then $x+3$ is greater than 4+3
Check:	
since $x>4$, we let $x=10$	Since x is any number greater than 4, let x be 10
$10+3=13$ and 4+3 = 7	10 plus 3 is 13 and 4 plus 3 is 7
$13>7$	13 is greater than 7
i.e. $10+3>4+3$	That is 10 plus 3 is greater than 4 plus 3
The statement is true	The statement is true
b) if $a>b$, then $a-c>b-c$	b)if a is greater than b, then a minus c is greater than b minus c
Let $a=x, b=4$ and $c=3$	Let a be x, b be 4 and c be 3
if $x>4$, then $x-3>4-3$	If x is greater than 4, then $x-3$ is greater than 4-3
Check:	
Since $x>4$, we let $x=10$	Since x is any number greater than 4, let x be 10
$10-3=7$ and 4-3=1	10 minus 3 is 7 and 4 minus 3 is 1
$7>1$	7 is greater than 1
i.e. $\quad 10-3>4-3$	That is 10 minus 3 is greater than 4 minus 3
The statement is true	The statement is true

We can see the properties of inequality are about the same as the properties of equation in terms of addition and subtraction.. However, we have to pay extra attention to the properties of inequality when we are dealing with multiplication and division.

$c-1$) if $a>b$, and $c>0$, then $a^{*} c>b^{*} c$	c) if a is greater than b, and c is a positive number, then a times c is greater than b times c
Let $\mathrm{a}=\mathrm{x}, \mathrm{b}=4$ and $\mathrm{c}=3$	Let a be x, b be 4 and c be 3
if $x>4$, then $x^{*} 3>4 * 3$	If x is greater than 4, then $x^{*} 3$ is greater than $4 * 3$
Check:	
Since $x>4$, we let $x=10$	Since x is any number greater than 4, let x be 10
$10 * 3=30$ and $4 * 3=12$	10 times 3 is 30 and 4 times 3 is 12
$30>12$	30 is greater than 12
i.e. $10 * 3>4 * 3$	That is 10 times 3 is greater than 4 times 3
The statement is true	The statement is true
Now let's pay more attention on the following:	
$c-2$) if $a>b$ and $c<0$	c-2) if a is greater than b and c is a negative number
then $\mathrm{a}^{*} \mathrm{c}<\mathrm{b}^{*} \mathrm{c}$	then $a^{*} \mathrm{c}$ is less than $\mathrm{b}^{*} \mathrm{c}$
Let $a=x, b=4$ and $c=3$	Let a be x, b be 4 and c be - 3
if $x>4$, then $x^{*}(-3)<4 *(-3)$	If x is greater than 4, then $x^{*}(-3)$ is greater than $4^{*}(-3)$
Check:	
Since $x>4$, we let $x=10$	Since x is any number greater than 4, let x be 10
$10 *(-3)=-30$ and $4 *(-3)=12$	10 times negative 3 is negative 30 and 4 times negative 3 is negative 12

| But $\quad-30<-12$ |
| :--- | :--- |
| i.e. $\quad 10^{*}(-3)<4^{*}(-3)$ |
| The statement is true |\quad| But \quadnegative 30 is less than negative 12
 That is 10 times negative 3 is less than 4 times negative 3
 The statement is true |
| :--- |
| Whenever we do division, we actually do multiplication of reciprocal. |
| We don't need to do any further explanation for division property.. |
| We have to bear it in mind that when we multiply or divide a |
| negative number on both sides of an inequality, we have to switch |
| the direction of the inequality sign. |

Now let's solve the following inequalities and graph the solutions

Ex1:	$x-3>2$		
$x-3+3>2+3$		\quad	X minus 3 is greater than 2
:---			
We add the same quantity 3 on both sides			
(or you can transpose negative 3 to the right side and change its sign			
to positive)			

$\frac{2 r}{2}<\frac{6}{2}$ Then $r<3$	We divide both sides by 2 (or we multiply the reciprocal of 2 which is $\frac{1}{2}$ on both sides) Now we isolate the variable r on the left side Then we get r is less than 3
Ex4: $\quad-3 \mathrm{t} \geq 6$ $\frac{-3 t}{-3} \leq \frac{6}{-3}$ Then $t \leq-2$	Negative 3 times t is greater than or equal to 6 We want to isolate t on the left side, we need to get rid of its coefficient negative 3 So we divide negative 3 on both sides Since we do the division with a negative number We have to swap the inequality sign from greater than or equal to to less than or equal to Then t is less than or equal to negative 2

Let's try some more multi-step questions
Solve the following inequalities and graph the solutions

Remember to practice more to get the fluency on doing math．

製作者 北市 金華國中 郝曉青

