圓方程式

Equations of Circles

第 1 節 1st Period	
Material	Note
（7）国的標準式 平面上 上，和 \qquad為圓，這個定點稱為圓心，图心和团上一點的距餫稱為半徑 在坐標平面上，以點 $M(h, k)$ 為國心，r 為半往 要一個圆 C 。設 $P(x, y)$ 是国 C 上的一點，因為 $\overline{P M}=r$ 所以由兩點距離公式可得 ynaristivi 因此•點 $P(x, y)$ 滿足方程式 $(x-h)^{2}+(y-k)^{2}=r^{2}$ 。 反之，滿足這個方程式的點 (x, y) 也都在圆 C ，我侧稱方程式 $(x-h)^{2}+(y-k)^{2}=r^{2}$ 為圓的標準	Vocabulary：Compass（圓規），Standard Equation of a Circle（圆的標準式），Center（中心），Radius（半徑）， Distance Formula（距離公式），Diameter（直徑）． Sentences： 1．A circle is the set of all points in a plane that are a fixed distance from a given point called the center of a circle．（平面上，和一個定點等距離的所有點所成的圖形稱為圓。這個定點稱為圓心。） 2．The distance from the center to a point on the circle is called the radius of a circle．（圓心和圆上一點的距離稱為半徑。） 3．Let r be the radius of the circle C ．（設 r 是圆 C 的半徑。） 4．Let point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any point on the circle C ．（設 $P(x, y)$ 是圆 C 上的任意點。） 5．By the Distance Formula，you can get．．．（由距離公式可得．．．） 6．We call this $(x-h)^{2}+(y-k)^{2}=r^{2}$ is the Standard Equation of a Circle．

Video：BYJU＇S－Circles ：Introduction	Vocabulary：Diameter（直徑），Chord（弦），Arc（弧），
Sector（扇形），Segment（弓形），Circumference（圆周），	
Exterior（外部），Interior（内部）．	

	From the standard equation of a circle，we get the equation of a circle is $(x+2)^{2}+(y-3)^{2}=25$
	Vocabulary：General Form of a Circle（圆的一般式）， Quadratic Equation in Two Variables（二元二次方程式） Translations： Expand the standard form of a circle $(x-h)^{2}+(y-k)^{2}=r^{2}$ and we get $x^{2}+y^{2}-2 h x-2 k y+h^{2}+k^{2}-r^{2}=0$ This form of equation is similar to quadratic equation in two variables $x^{2}+y^{2}+d x+e y+f=0$ ，which is the＂General Form of a Circle＂． General Form of a Circle All of the equations of circles can be expressed as the form of two－variable quadratic equations： $x^{2}+y^{2}+d x+e y+f=0$
	Translations： Example 3 Find the center and the radius of the circle $c: x^{2}+y^{2}-2 x+6 y+6=0$ Solution Complete the square for the x terms，and similarly for

	the y terms，and we get $\left(x^{2}-2 x+1\right)+\left(y^{2}+6 y+9\right)=-6+1+9$ so that $(x-1)^{2}+(y+3)^{2}=2^{2}$ From the standard equation of a circle we know that the center of the circle is $(1,-3)$ and the radius is 2 ．
因點興国的開係 在圆上的點與國心的距㢈佮等於半徑。那縻，如何知道一倜點是在圆的內部 间的郮係可䱱納為下列三種情形 （1）當 $\overline{M P}=r$ 時 $\cdot P$ 點在唄上 （2）當 $\overline{M P}>r$ 時，P 點在圆外， （3）當 $\overline{M P}<r$ 時，P 點在國内。 利用以上的方法判斷點與圆的關係	Vocabulary：Interior Point（内部點），Exterior Point（外部點）． Illustrations： Look at figure 5 ，point M is the center of the circle． The radius of the circle is r and a point P ． （1）If point P lies on the circle，then $\overline{M P}=r$ ． （2）If point P lies exterior of the circle，then $\overline{M P}>r$ ． （3）If point P lies interior of the circle，then $\overline{M P}<r$ ．
	Example 8 Determine if these the three points $P(6,0)$ ， $Q(-2,-1)$ and $R(0,2)$ lie on inside，outside or on the circle of this equation：$C:(x-2)^{2}+(y+3)^{2}=25$ ． Solution From standard form of a circle we know the center is $M(2,-3)$ ，and the radius is 5 ． Calculate the distance from point P, Q and R to center

	$M(2,-3)$ respectively，and we get $\begin{aligned} & \overline{P M}=\sqrt{(6-2)^{2}+(0+3)^{2}}=5 \\ & \overline{Q M}=\sqrt{(-2-2)^{2}+(-1+3)^{2}}=\sqrt{20}<5 \\ & \overline{R M}=\sqrt{(0-2)^{2}+(2+3)^{2}}=\sqrt{29}>5 \end{aligned}$ Thus，point P is on the circle，point Q is inside of the circle and point R is outside of the circle．
	補充題
	Material 1
A city＇s commuter system has three zones within 3 miles of the city＇s center．Zone 2 ser 7 miles（included）from the center．Zone 3 from the center．（Shown in the right figure	Zone 1 serves people living serves those between 3 and serves those over 7 miles

Determine which zone serves people whose homes are
represented by the points $A(3,4), B(6,5), C(1,2), D(0,3)$ and $E(1,6)$ ．

Solution
We set the center of the city as $O(0,0)$ ．Calculate the distance from point $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E to the center O respectively．
$\overline{A O}=\sqrt{(3-0)^{2}+(4-0)^{2}}=5$ ，and $3<\overline{A O}<7$ ． A is in zone 2.
$\overline{B O}=\sqrt{(6-0)^{2}+(5-0)^{2}}=\sqrt{61}$ ，and $\overline{B O}>7 . B$ is in zone 3.
$\overline{C O}=\sqrt{(1-0)^{2}+(2-0)^{2}}=\sqrt{5}$ ，and $\overline{C O}<3 . C$ is in zone 1.
$\overline{D O}=\sqrt{(0-0)^{2}+(3-0)^{2}}=3$ ，and $\overline{D O}=3 . D$ is in zone 2.
$\overline{E O}=\sqrt{(1-0)^{2}+(6-0)^{2}}=\sqrt{37}$ ，and $3<\overline{E O}<7 . \mathrm{E}$ is in zone 2.

Material 2

The epicenter of an earthquake is the point on Earth＇s surface directly above the earthquake＇s origin．A seismograph can be used to determine the distance to the epicenter of an earthquake．

Seismographs are needed in three different places to locate an
 earthquake＇s epicenter．

Use the seismograph readings from locations A, B ，and C to find the epicenter of an earthquake．
－The epicenter is 7 miles away from $A(-2,2,5)$ ．
－The epicenter is 4 miles away from $B(4,6)$ ．
－The epicenter is 5 miles away from $\mathrm{C}(3,-2.5)$ ．

Solution

The set of all points equidistant from a given point is a circle，so the epicenter is located on each of the following circles．
\odot A with center $(-2,2.5)$ and radius 7
\odot B with center $(4,6)$ and radius 4
$\odot C$ with center $(3,-2.5)$ and radius 5

To find the epicenter，graph the circles on a coordinate plane where each unit corresponds to one mile．Find the point of
 intersection of the three circles．

The epicenter is at about $(5,2)$ ．

Note

Word：Commuter（通勤者），Serve（服務），Represent（表示），Epicenter（震央），Earthquake（地震）， Surface（表面），Origin（起源），Seismograph（地震儀），Intersection Point（交點）．

Sentence：

1．Zone 1 serves people living within 3 miles of the city＇s center．（第一區服務距離市中心 3 英

里以內的人民。）
2．Graph the circles on a coordinate plane．（將圓畫在坐標平面上。）
3．Each unit corresponds to one mile．（每單位為1英里。）

参考資料
 References

1．許志農，黃森山，陳清風，廖森游，董涵冬（2019）。數學1：單元6圓方程式。龍騰文化。

2．Big ideas math（2022）．Circles in the Coordinate Plane．https：／／reurl．cc／qNmOKg．

製作者：臺北市立陽明高中 吴柏菖 教師

