雙語教學主題(國中七年級教材):解一元一次不等式應用問題 Topic: solving word problems involving linear inequalities in one variable

這個單元常用到的一些用語

.

Some words or expressions we generally use in this topic minimum, maximum, quotient, division, compare, symbol, requirement, determine, integer,

When we solve word problems, the most important thing is to READ THE
QUESTIONS. You have to fully understand the questions and answer yourself:
What do we know? And what don't we know?
Just like solving real-world problems, there's a procedure we can follow as we solve and write the inequalities to solve real-world problems.
First step: define your variable (set the unknown)
This is "what don't we know?"
Second step: write an inequality to model the situation
This is "what do we know?" and use the appropriate inequality sign to

get the inequality statement

Third step: solve the inequality and give the solution

There are some common used words for inequality signs we see in word problems.

| >      | greater, over, above, more, exceed, higher, larger, bigger, |
|--------|-------------------------------------------------------------|
| <      | less, fewer, lower, under, below, smaller, beneath,         |
| ≥      | at least, minimum, no less than,                            |
| $\leq$ | at most, maximum, no greater than,                          |
|        |                                                             |

Word problems examples

| Q1:                                                      | When we read the word quotient, it        |
|----------------------------------------------------------|-------------------------------------------|
| The quotient of a number and 2 is less                   | means there's a division.                 |
| than or equal to 5                                       | The quotient of a number and 2 means      |
| Sol:                                                     | the unknown number n divided by 2,        |
| let the number be n                                      | that is: $\frac{n}{2}$                    |
| $\frac{n}{2}$ is less than 5, $\frac{n}{2}$ is a smaller | Set the unknown                           |
| number comparing to 5, so $\frac{n}{2}$ stays on         |                                           |
| the left side of the symbol <                            |                                           |
| The arrow always points to the smaller                   |                                           |
| value and the larger value stays on the                  |                                           |
| right side of the symbol                                 |                                           |
| $\frac{n}{2}$ <5                                         |                                           |
| $rac{\mathrm{n}}{2}~$ and 5 can be equal too, so we use |                                           |
| the symbol $\leq$ instead of <                           |                                           |
| n<br><5                                                  |                                           |
| $\frac{1}{2}$                                            | The inequality would be                   |
|                                                          | n divided by 2 is less than or equal to 5 |
|                                                          | we move 2 to the right side and get       |
| n<10                                                     | the move 2 to the right side and get      |
|                                                          | n is less than or equal to 10             |
|                                                          |                                           |
|                                                          |                                           |
|                                                          |                                           |
|                                                          |                                           |
|                                                          |                                           |
|                                                          |                                           |
|                                                          |                                           |
|                                                          |                                           |
|                                                          |                                           |

| Product means multiplication              |
|-------------------------------------------|
| -                                         |
| The product of $\frac{3}{4}$ and a number |
| means                                     |
| Three-quarters times a number             |
| Let the unknown be x                      |
| The inequality would be                   |
| one half is greater than three-fourths    |
| times x                                   |
|                                           |
| We multiply 4(LCD of denominators) on     |
| both sides and get                        |
| two is greater than 3x                    |
| divide both sides by 3 and                |
| two thirds is greater than x or           |
| x is less than two thirds                 |
|                                           |
|                                           |

| Q3:                                                   | Consecutive odd natural numbers are        |
|-------------------------------------------------------|--------------------------------------------|
| Find all pairs of consecutive odd natural             | like 3,5 or 7, 9                           |
| numbers, both of which are larger than                | Both of which are larger than 15, since x  |
| 15 such that the sum is less than 40 .                | is the smaller odd number, if x is greater |
| Sol:                                                  | than 15, x plus 2 will also be greater     |
| Let the smaller odd number be x, then                 | than 15                                    |
| the larger odd number would be x+2                    | X plus x plus 2 is less than 40            |
|                                                       | Combine like terms, we get                 |
| x>15                                                  | two times x is less than thirty-eight      |
|                                                       | divide both sides by 2, then               |
| and                                                   | x is less than nineteen                    |
| x+(x+2)<40                                            | with x is greater than 15                  |
| 2x+2<40                                               | we get                                     |
| 2x<38                                                 | 15 <x<19< td=""></x<19<>                   |
|                                                       | x is an odd number and is greater than     |
| X<19                                                  | 15, x cannot be 15, so x can be 17 or      |
|                                                       | more                                       |
|                                                       | x is less than 19, x cannot be 19, so x    |
| So 15 <x<19< td=""><td>can be 17 or less</td></x<19<> | can be 17 or less                          |
|                                                       | So x can only be 17                        |
|                                                       | and x+2 would be 19                        |
|                                                       | So there's only one solution (17,19)       |
|                                                       |                                            |
|                                                       |                                            |
| x can be 17 only                                      |                                            |
| and x+2 would be19                                    |                                            |
| The solution is: (17,19)                              | Checking after solving the word            |
|                                                       | problems is essential.                     |
|                                                       | Please do it from time to time             |
|                                                       |                                            |
|                                                       |                                            |
| Check:                                                |                                            |
| Let x=17, then x+2=19                                 |                                            |
| 17+19=36, 36<40                                       |                                            |
| X=17 fits the requirement                             |                                            |
| If we take x=19, then x+2=21                          |                                            |
| 19+21=40, 40 is not less than 40                      |                                            |
| So x=19 is not the solution                           |                                            |

| Q4:                                       |                                          |
|-------------------------------------------|------------------------------------------|
| A can of soda costs 35 dollars. Harry has |                                          |
| 300 dollars with him. Please determine    | Set the unknown c                        |
| the number of cans of soda he can buy     | The inequality would be                  |
| under 300 dollars?                        | thirty-five times c is less than three   |
| Sol:                                      | hundred                                  |
| Let c be the number of cans of soda       | divide both sides by thirty-five         |
| Then we get                               | we get                                   |
|                                           | c is less than the mixed number eight    |
| 35c<300                                   | and four seventh                         |
| 35c 300                                   | But c is the number of cans of soda, we  |
| $\frac{1}{35} < \frac{1}{35}$             | cannot buy part of a can of drinks, this |
| 4                                         | means c must be a whole number           |
| c<8+7                                     | The largest whole number for c is 8      |
|                                           |                                          |
| c<8                                       |                                          |
| 0_0                                       |                                          |
| So Harry can buy at most 8 cans of soda   |                                          |
| under 300 dollars                         |                                          |
| Check:                                    |                                          |
| If Harry buys 8 caps 8-35=280             |                                          |
| 280<300 he is able to pay for them        |                                          |
| If Harry wants to buy 9 cans              |                                          |
| 9.35-315 315 300 be can't afford it       |                                          |
| 5.55-515, 515/500, he can't anora it      |                                          |
|                                           |                                          |
|                                           |                                          |
|                                           |                                          |
|                                           |                                          |
|                                           |                                          |
|                                           |                                          |
|                                           |                                          |
|                                           |                                          |
|                                           |                                          |
|                                           |                                          |
|                                           |                                          |
|                                           |                                          |
|                                           |                                          |
|                                           |                                          |

| Q5:                                        |                                                    |                     | Key phrases                             |
|--------------------------------------------|----------------------------------------------------|---------------------|-----------------------------------------|
| A father is 40                             | ) years ol                                         | d and his son is 12 | twice the son's age 2(y+12)             |
| years old. in                              | how man                                            | y years will twice  | more than >                             |
| the son's age                              | e be more                                          | e than the father's | father's age y+40                       |
| age?                                       |                                                    |                     |                                         |
|                                            |                                                    |                     |                                         |
|                                            |                                                    |                     | Set the unknown y                       |
| Sol:                                       |                                                    |                     |                                         |
| Let y be the r                             | number o                                           | of years            |                                         |
|                                            |                                                    |                     |                                         |
|                                            |                                                    |                     |                                         |
|                                            |                                                    |                     | Please do not forget, after some years, |
| person time                                | Now                                                | After v vears       | both father and son are growing old     |
| Eathor's ago                               | 40                                                 |                     | <u>together</u>                         |
| Son's age                                  | 40                                                 | 40+y                |                                         |
| according to                               | Sort Sage 12 12+9 2 times in parentheses y plus 12 |                     |                                         |
| This inequali                              | tv should                                          | be                  | greater than y plus 40                  |
| 2/ν±12).                                   | y 3110010<br>> y±∕10                               | be                  | Distribute 2 to the parentheses, we get |
| 2(y+12)                                    | ≥ y+40                                             |                     | 2 times y plus 24 is greater than y     |
| Thon 21+215                                | v±40                                               |                     | plus 40                                 |
| 111C11 2 y 1 242                           | y140                                               |                     | Combine like terms                      |
|                                            |                                                    |                     | y is greater than 16                    |
| v>16                                       |                                                    |                     | Since y is a whole number, y has to be  |
| y>10<br>So y−17                            |                                                    |                     | 17 or more                              |
| 30 y-17                                    |                                                    |                     | So we choose the minimum                |
| In 17 years o                              | r more ti                                          | wice of the son's   | y is equal to 17                        |
| age will be m                              | ore than                                           | father's age        |                                         |
| Check:                                     |                                                    |                     |                                         |
| Take v=17.                                 |                                                    |                     |                                         |
| Son's age will be 29, father's age will be |                                                    |                     |                                         |
| 57                                         |                                                    |                     |                                         |
| 2·29=58, 58>57, it is a solution           |                                                    |                     |                                         |
| Let's take y=18                            |                                                    |                     |                                         |
| Son's age will be 30, father's age will be |                                                    |                     |                                         |
| 58                                         |                                                    |                     |                                         |
| 2·30=60, 60>58, it is a solution           |                                                    |                     |                                         |
| lf y=16                                    |                                                    |                     |                                         |
| Son's age will be 28, father's age will be |                                                    |                     |                                         |

| 56                              |                                       |
|---------------------------------|---------------------------------------|
| 2·28=56, 56 is not more than 56 |                                       |
| It doesn't meet the requirement |                                       |
|                                 |                                       |
|                                 |                                       |
|                                 |                                       |
|                                 |                                       |
|                                 | We know that                          |
|                                 | An average is                         |
|                                 | the sum of all scores/number of tests |
|                                 |                                       |
|                                 |                                       |
|                                 |                                       |
|                                 |                                       |
|                                 |                                       |
|                                 |                                       |
|                                 |                                       |
|                                 |                                       |
|                                 |                                       |
|                                 |                                       |
|                                 |                                       |
|                                 |                                       |
|                                 |                                       |
|                                 |                                       |
|                                 |                                       |
|                                 |                                       |
|                                 |                                       |
|                                 |                                       |
|                                 |                                       |
|                                 |                                       |
|                                 |                                       |
|                                 |                                       |
|                                 |                                       |
|                                 |                                       |
|                                 |                                       |
|                                 |                                       |
|                                 |                                       |

| Q6:                                                                                                                                  | Set the unknown score to be s              |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| There are three major exams in one                                                                                                   | We have                                    |
| semester. Amy has scores 73 and 81                                                                                                   | The quantity of 73 plus 81 plus s over 3   |
| from the last two exams in math. What                                                                                                | is greater than or equal to 85             |
| score does she need in math in the final                                                                                             | Multiply 3 on both sides                   |
| exam to get an average of no less than                                                                                               | 73 plus 81 plus s is greater than or equal |
| 85 in this semester?                                                                                                                 | to 85 times 3                              |
| (full marks would be 100)                                                                                                            | Combine like terms and transpose 154       |
| Sol:                                                                                                                                 | to the right side                          |
| Let the last score Amy needs be s                                                                                                    | We get                                     |
| We have                                                                                                                              | s is greater than or equal to 101          |
| 73 + 81 + s > 85                                                                                                                     | But Amy can never make it due to the       |
| $\frac{3}{3} \ge 85$                                                                                                                 | full mark is 100                           |
|                                                                                                                                      |                                            |
| 73+81+s≥85·3                                                                                                                         |                                            |
|                                                                                                                                      |                                            |
|                                                                                                                                      |                                            |
| 154+s≥255                                                                                                                            |                                            |
|                                                                                                                                      |                                            |
|                                                                                                                                      |                                            |
| s≥101                                                                                                                                |                                            |
| s≥101<br>But the full mark is 100, so Amy <b>cannot</b>                                                                              |                                            |
| s≥101<br>But the full mark is 100, so Amy <b>cannot</b><br>get the average of her scores in math no                                  |                                            |
| s≥101<br>But the full mark is 100, so Amy <b>cannot</b><br>get the average of her scores in math no<br>less than 85 in this semester |                                            |
| s≥101<br>But the full mark is 100, so Amy <b>cannot</b><br>get the average of her scores in math no<br>less than 85 in this semester |                                            |
| s≥101<br>But the full mark is 100, so Amy <b>cannot</b><br>get the average of her scores in math no<br>less than 85 in this semester |                                            |
| s≥101<br>But the full mark is 100, so Amy <b>cannot</b><br>get the average of her scores in math no<br>less than 85 in this semester |                                            |
| s≥101<br>But the full mark is 100, so Amy <b>cannot</b><br>get the average of her scores in math no<br>less than 85 in this semester |                                            |
| s≥101<br>But the full mark is 100, so Amy <b>cannot</b><br>get the average of her scores in math no<br>less than 85 in this semester |                                            |
| s≥101<br>But the full mark is 100, so Amy <b>cannot</b><br>get the average of her scores in math no<br>less than 85 in this semester |                                            |
| s≥101<br>But the full mark is 100, so Amy <b>cannot</b><br>get the average of her scores in math no<br>less than 85 in this semester |                                            |
| s≥101<br>But the full mark is 100, so Amy <b>cannot</b><br>get the average of her scores in math no<br>less than 85 in this semester |                                            |
| s≥101<br>But the full mark is 100, so Amy <b>cannot</b><br>get the average of her scores in math no<br>less than 85 in this semester |                                            |
| s≥101<br>But the full mark is 100, so Amy <b>cannot</b><br>get the average of her scores in math no<br>less than 85 in this semester |                                            |
| s≥101<br>But the full mark is 100, so Amy <b>cannot</b><br>get the average of her scores in math no<br>less than 85 in this semester |                                            |
| s≥101<br>But the full mark is 100, so Amy <b>cannot</b><br>get the average of her scores in math no<br>less than 85 in this semester |                                            |
| s≥101<br>But the full mark is 100, so Amy <b>cannot</b><br>get the average of her scores in math no<br>less than 85 in this semester |                                            |
| s≥101<br>But the full mark is 100, so Amy <b>cannot</b><br>get the average of her scores in math no<br>less than 85 in this semester |                                            |

| Q7:                                                                  | Set the unknown n                        |
|----------------------------------------------------------------------|------------------------------------------|
| Joseph wants to join a game social club.                             | The total Joseph needs to pay on each    |
| The club offers two kinds of plans for                               | choice after n months                    |
| people to choose from.                                               | Plan A: 100 plus 30n                     |
| Plan A: 100 dollars to sign up, then                                 |                                          |
| charges 30 dollars each month                                        | Plan B: 50n                              |
| Plan B: free to sign up, charges 50                                  |                                          |
| dollars each month                                                   | As much as means equal                   |
| For what number of months will plan B                                | At least as much as means at least equal |
| charge at least as much as plan                                      | In other words, greater than or equal to |
| Α?                                                                   |                                          |
|                                                                      |                                          |
|                                                                      |                                          |
|                                                                      |                                          |
| Sol"                                                                 |                                          |
| First we let n be the number of months                               |                                          |
| Then 50n≥100+30n                                                     |                                          |
| 20n≥100                                                              |                                          |
| n≥5                                                                  |                                          |
| So at least 5 months, plan B will charge                             |                                          |
| equal to or more than plan A                                         |                                          |
| Check:                                                               |                                          |
| Let's take n=5                                                       |                                          |
| Plan A charges 100+30·5=250                                          |                                          |
| Plan B charges 0+50·5=250                                            |                                          |
| Plan B charges as much as plan A                                     |                                          |
| Let's take n=6                                                       |                                          |
| Plan A charges 100+30·6=280                                          |                                          |
| Plan B charges 0+50·6=300                                            |                                          |
| 300>280                                                              |                                          |
| Plan B charges more than plan A                                      |                                          |
| If n=4                                                               |                                          |
| Plan A charges 100+30·4=220                                          |                                          |
| Plan B charges 0+50·4=200                                            |                                          |
| 200<220                                                              |                                          |
|                                                                      |                                          |
| Plan B charges less than plan A                                      |                                          |
| Plan B charges less than plan A<br>This doesn't meet the requirement |                                          |

| Q8:                                     |                                          |
|-----------------------------------------|------------------------------------------|
| A YouTuber wants to get a sponsorship   |                                          |
| from a big brand by collecting more     |                                          |
| than fifty thousand viewers. The record |                                          |
| shows he can get 3000 new viewers       |                                          |
| each month. Now he has forty thousand   |                                          |
| viewers already. At least how many      |                                          |
| months does this YouTuber need to get   |                                          |
| enough viewers to reach his goal?       |                                          |
|                                         |                                          |
|                                         |                                          |
|                                         |                                          |
|                                         |                                          |
| Sol:                                    | Set the unknown                          |
| Let the YouTuber need at least x months |                                          |
| to reach his goal                       | Forty thousand is a fixed number, the    |
|                                         | number of his viewers changes as the     |
|                                         | number of months increases               |
| 40000+3000x≥50000                       | Move forty thousand to the right side    |
|                                         | tree thousand times x is greater than or |
|                                         | equal to fifty thousand                  |
| 3000x≥10000                             | Divide both sides by one thousand        |
|                                         | 3 times x is greater than or equal to 10 |
|                                         | Divide 3 on both sides                   |
| 3x≥10                                   | x is greater than or equal to            |
|                                         | 3 point 333                              |
| x≥3.333                                 |                                          |
| Since the number of months is a whole   | So x is greater than or equal to 4       |
| number                                  |                                          |
| So x≥4                                  |                                          |
| This means the YouTuber needs at least  |                                          |
| 4 months to get this sponsorship        |                                          |
| Check:                                  |                                          |
| When x=4                                |                                          |
| This youtuber gets                      |                                          |
| 40000+3000·4=52000 viewers which is     |                                          |
| more than 50 thousand                   |                                          |

| If x=3 then 40000+3000·3=49000       |  |
|--------------------------------------|--|
| 49 thousand is less than 50 thousand |  |
| He doesn't get enough viewers to get |  |
| the sponsorship                      |  |
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |

| Q9:                                    | The ratio of a, b and c is                  |
|----------------------------------------|---------------------------------------------|
| Three integers a, b, and c are in the  | a to b to c is 3 to 4 to 5                  |
| ratio a:b:c=3:4:5, and the sum of the  |                                             |
| numbers are at most 100. Find the      |                                             |
| maximum values of these three          |                                             |
| numbers.                               | Set the unknown x                           |
| Sol:                                   | a equals 3 times x, b equals 4 times x,     |
| Since a:b:c=3:4:5                      | and c equals 5 times x                      |
| Let a=3x, then b=4x, c=5x              |                                             |
|                                        | a plus b plus c is equal to 3 times x plus  |
| The sum of the number is               | 4 times x plus 5 times x                    |
| a+b+c=3x+4x+5x                         |                                             |
| According to the question, we have the | 3 times x plus 4 times x plus 5 times x is  |
| inequality                             | less than or equal to 100                   |
| 3x+4x+5x≤100                           | Combine like terms                          |
|                                        | Divide both sides by 12, we get             |
| 12x≤100                                | x is less than or equal to twenty-five      |
| $x < \frac{25}{-81}$                   | over 3, x is also equal to eight and one    |
| 3 3 3                                  | third                                       |
|                                        | Since a, b and c are the multiples of 3, 4, |
|                                        | and 5 respectively, and under the           |
| a, b and c are integers, x must be an  | condition that a, b and c are integers      |
| integer, so                            | X has to be an integers too                 |
|                                        | X can only be less than 8 or equal to 8     |
| x≤8                                    | The maximum of x would be 8                 |
| We choose x=8                          | Then                                        |
| Then                                   | a equals 3 times 8, a is 24                 |
| a=3x=3·8=24, b=4x=4·8=32,              | b equals 4 times 8, b is 32                 |
| c=5x=5·8=40                            | c equals 5 times 8, c is 40                 |
| The maximum values of a. b and c are   |                                             |
| 24. 32 and 40                          |                                             |
| Check:                                 |                                             |
| Let's try x=9                          |                                             |
| Then a=3x=27, b=4x=36. c=5x=45         |                                             |
| a+b+c=27+36+45=108                     |                                             |
| 108 is more than 100                   |                                             |
| So x=9 is not a solution               |                                             |
| So x=9 is not a solution               |                                             |

| Q10:                                    |                                        |
|-----------------------------------------|----------------------------------------|
| A surf shop has a weekly expense of 50  |                                        |
| thousand dollars. Due to the pandemic   |                                        |
| situation, the shop has slow business   |                                        |
| and wants to boost their business this  |                                        |
| week by having promoting sales as       |                                        |
| "BUY ONE GET ONE FREE"                  |                                        |
| That is: whenever you buy longboard     |                                        |
| then you can get a skimboard for free.  |                                        |
| You can also pay \$1000 for a piece of  |                                        |
| skimboard only.                         |                                        |
| A longboard costs \$3000.               |                                        |
| According to the inventory:             |                                        |
| There are 50 longboards and 20 skim     |                                        |
| boards in the shop                      |                                        |
| At least how many longboards does the   | Make profit means the income is        |
| surf shop need to sell to make a profit | greater than the expense               |
| this week?                              |                                        |
| Please describe the situation of the    |                                        |
| sales for this week.                    |                                        |
| Sol:                                    |                                        |
| Let n be the number of longboards       |                                        |
| which will be sold this week            |                                        |
| Since the shop has only 20 skim boards, |                                        |
| means the shop can only sell at most 20 |                                        |
| longboards for the skimboards have to   |                                        |
| be give-away                            |                                        |
| We have n≤20                            |                                        |
| Assume there're no skim boards left     |                                        |
| Then we have an inequality              |                                        |
| 3000n+1000(20-n)>50000                  | 3 thousand times n plus one thousand   |
|                                         | times the quantity of 20 minus n is    |
|                                         | greater than 50 thousand               |
|                                         | Divide both sides by 1000              |
| 3n+(20-n)>50                            | 3 times n + parentheses twenty minus n |
|                                         | is greater than fifty                  |
|                                         | Combine like terms                     |

| 2n>30           |                |                 | Divide both sides by 2 |
|-----------------|----------------|-----------------|------------------------|
| n>15            | n is a whol    | e number, so    | n is greater than 15   |
| n≥16            |                |                 |                        |
| We have         |                |                 |                        |
| Long            | Skim           | Income          |                        |
| 16.3000         | 0              | 48000           |                        |
| 16.3000         | 1.1000         | 49000           |                        |
| 16.3000         | 2.1000         | 50000           |                        |
| 16.3000         | 3.1000         | 51000           |                        |
| 17.3000         | Any sales      | 51000           |                        |
|                 | of skim        |                 |                        |
|                 | boards is      |                 |                        |
|                 | ok             |                 |                        |
|                 |                |                 |                        |
| 20.3000         | No skim        | 60000           |                        |
|                 | boards left    |                 |                        |
| The shop sells  | S              |                 |                        |
| (1) at least 16 | i longboards a | nd 3            |                        |
| skimboard       | 5              |                 |                        |
| Or              |                |                 |                        |
| (2) 17 longbo   | ards or more,  | up to 20        |                        |
| pieces          |                |                 |                        |
| The surf shop   | can then mal   | ke their profit |                        |
|                 |                |                 |                        |
|                 |                |                 |                        |
|                 |                |                 |                        |
|                 |                |                 |                        |
|                 |                |                 |                        |
|                 |                |                 |                        |
|                 |                |                 |                        |
|                 |                |                 |                        |
|                 |                |                 |                        |
|                 |                |                 |                        |
|                 |                |                 |                        |
|                 |                |                 |                        |
|                 |                |                 |                        |
|                 |                |                 |                        |
|                 |                |                 |                        |

| Q11:                                                | Let the unknown days Kevin needs be d   |
|-----------------------------------------------------|-----------------------------------------|
| Sally has \$5000and she spends \$100                | 2 hundred times d is greater than or    |
| every day. Kevin has no money for now               | equal to 5 thousand minus one hundred   |
| and he saves \$200 every day. How many              | times d                                 |
| days does evin need to have at least as             | Combine like terms and simplify         |
| much money as Sally has?                            | 3 hundred times d is greater than or    |
| Sol:                                                | equal to 5 thousand                     |
| Let Kevin needs at least d days                     | d is greater than or equal to 50 over 3 |
| Then 200d≥5000-100d                                 | or 16 and 2 thirds                      |
|                                                     | Since d is a whole number               |
|                                                     | d has to be greater than or equal to 17 |
|                                                     |                                         |
| 300d≥5000                                           |                                         |
| $50$ 1 $c^2$ dia substant                           |                                         |
| $d \ge \frac{16}{3} = 16 - 3$ , d is a whole number |                                         |
| d≥17                                                |                                         |
| The minimum of d would be 17                        |                                         |
| Kevin needs 17 days or more to have at              |                                         |
| least as much money as Sally has                    |                                         |
| Check:                                              |                                         |
| When d=17                                           |                                         |
| Kevin has 17·200=3400                               |                                         |
| Sally has 5000-100·17=3300                          |                                         |
| 3400>3300                                           |                                         |
| So it's a solution                                  |                                         |
| lf d=16                                             |                                         |
| Kevin has 16·200=3200                               |                                         |
| Sally has 5000-100·16=3400                          |                                         |
| 3200<3400                                           |                                         |
| Kevin has less money than Sally does                |                                         |
|                                                     |                                         |
|                                                     |                                         |
|                                                     |                                         |
|                                                     |                                         |
|                                                     |                                         |
|                                                     |                                         |



| If x=11                            |  |
|------------------------------------|--|
| 2(6+2x)+2(4+2x)=108                |  |
| 108>100                            |  |
| x=11 would be one of the solutions |  |

製作者:北市金華國中 郝曉青