雙語教學主題（國中七年級教材）：解一元一次不等式應用問題

Topic：solving word problems involving linear inequalities in one variable

這個單元常用到的一些用語

Some words or expressions we generally use in this topic minimum，maximum，quotient，division，compare，symbol，requirement，determine， integer，

When we solve word problems，the most important thing is to READ THE QUESTIONS．You have to fully understand the questions and answer yourself：

What do we know？And what don＇t we know？
Just like solving real－world problems，there＇s a procedure we can follow as we solve and write the inequalities to solve real－world problems．

First step：define your variable（set the unknown）
This is＂what don＇t we know？＂
Second step：write an inequality to model the situation
This is＂what do we know？＂and use the appropriate inequality sign to get the inequality statement

Third step：solve the inequality and give the solution

There are some common used words for inequality signs we see in word problems．

$>$	greater，over，above，more，exceed，higher，larger，bigger，
$<$	less，fewer，lower，under，below，smaller，beneath，
\geq	at least，minimum，no less than，
\leq	at most，maximum，no greater than，

Word problems examples

Q2: $\frac{1}{2}$ is greater than the product of $\frac{3}{4}$ and a number Sol: Let the number be x Remember the arrow of the symbol always points to the smaller value Then $\quad \frac{1}{2}>\frac{3}{4} x$ (4) $\frac{1}{2}>\frac{3}{4} \times(4)$ 2>3x $\frac{2}{3}>x$, the same as $x<\frac{2}{3}$	Product means multiplication The product of $\frac{3}{4}$ and a number means Three-quarters times a number Let the unknown be x The inequality would be one half is greater than three-fourths times x We multiply 4(LCD of denominators) on both sides and get two is greater than $3 x$ divide both sides by 3 and two thirds is greater than x or x is less than two thirds

Q4:
A can of soda costs 35 dollars. Harry has 300 dollars with him. Please determine the number of cans of soda he can buy under 300 dollars?

Sol:
Let c be the number of cans of soda
Then we get

$$
\begin{aligned}
& 35 c<300 \\
& \frac{35 \mathrm{c}}{35}<\frac{300}{35}
\end{aligned}
$$

c $<8 \frac{4}{7}$
$c \leq 8$

So Harry can buy at most 8 cans of soda under 300 dollars
Check:
If Harry buys 8 cans, $8 \cdot 35=280$
$280<300$, he is able to pay for them
If Harry wants to buy 9 cans
$9 \cdot 35=315,315>300$, he can't afford it

Set the unknown c
The inequality would be thirty-five times c is less than three hundred
divide both sides by thirty-five we get
c is less than the mixed number eight and four seventh

But c is the number of cans of soda, we cannot buy part of a can of drinks, this means c must be a whole number The largest whole number for c is 8

56 $2 \cdot 28=56,56$ is not more than 56 It doesn't meet the requirement	
	We know that An average is the sum of all scores/number of tests

Q6:
There are three major exams in one semester. Amy has scores 73 and 81 from the last two exams in math. What score does she need in math in the final exam to get an average of no less than 85 in this semester?
(full marks would be 100)
Sol:
Let the last score Amy needs be s
We have

$$
\frac{73+81+s}{3} \geq 85
$$

$73+81+s \geq 85 \cdot 3$
$154+s \geq 255$
$s \geq 101$
But the full mark is 100, so Amy cannot get the average of her scores in math no less than 85 in this semester

Set the unknown score to be s
We have
The quantity of 73 plus 81 plus s over 3 is greater than or equal to 85
Multiply 3 on both sides
73 plus 81 plus s is greater than or equal to 85 times 3
Combine like terms and transpose 154 to the right side
We get
s is greater than or equal to 101
But Amy can never make it due to the
full mark is 100

Q7:
Joseph wants to join a game social club.
The club offers two kinds of plans for people to choose from.
Plan A: 100 dollars to sign up, then charges 30 dollars each month
Plan B: free to sign up, charges 50 dollars each month
For what number of months will plan B charge at least as much as plan A?

Sol"
First we let n be the number of months
Then $50 n \geq 100+30 n$ $20 n \geq 100$ $n \geq 5$
So at least 5 months, plan B will charge equal to or more than plan A
Check:
Let's take n=5
Plan A charges $100+30 \cdot 5=250$
Plan B charges 0+50.5=250
Plan B charges as much as plan A
Let's take n=6
Plan A charges $100+30 \cdot 6=280$
Plan B charges 0+50.6=300
300>280
Plan B charges more than plan A
If $\mathrm{n}=4$
Plan A charges $100+30 \cdot 4=220$
Plan B charges $0+50 \cdot 4=200$
200<220
Plan B charges less than plan A
This doesn't meet the requirement

Set the unknown n
The total Joseph needs to pay on each choice after n months Plan A: 100 plus 30n

Plan B: 50n

As much as means equal
At least as much as means at least equal In other words, greater than or equal to

If $\mathrm{x}=3$ then $40000+3000 \cdot 3=49000$		
49 thousand is less than 50 thousand		
He doesn't get enough viewers to get		
the sponsorship		

Q9:
Three integers a, b, and c are in the ratio $a: b: c=3: 4: 5$, and the sum of the numbers are at most 100. Find the maximum values of these three numbers.

Sol:
Since a:b:c=3:4:5
Let $\mathrm{a}=3 \mathrm{x}$, then $\mathrm{b}=4 \mathrm{x}, \mathrm{c}=5 \mathrm{x}$

The sum of the number is
$a+b+c=3 x+4 x+5 x$
According to the question, we have the inequality
$3 x+4 x+5 x \leq 100$
$12 x \leq 100$
$x \leq \frac{25}{3}=8 \frac{1}{3}$
a, b and c are integers, x must be an integer, so

$$
x \leq 8
$$

We choose $x=8$
Then
$a=3 x=3 \cdot 8=24, b=4 x=4 \cdot 8=32$,
c=5x=5.8=40

The maximum values of a, b and c are
24,32 and 40
Check:
Let's try $\mathrm{x}=9$
Then $a=3 x=27, b=4 x=36, c=5 x=45$
$a+b+c=27+36+45=108$
108 is more than 100
So $x=9$ is not a solution

The ratio of a, b and c is a to b to c is 3 to 4 to 5

Set the unknown x a equals 3 times x, b equals 4 times x, and c equals 5 times x
a plus b plus c is equal to 3 times x plus 4 times x plus 5 times x

3 times x plus 4 times x plus 5 times x is less than or equal to 100

Combine like terms
Divide both sides by 12 , we get x is less than or equal to twenty-five over $3, x$ is also equal to eight and one third
Since a, b and c are the multiples of 3,4 , and 5 respectively, and under the condition that a, b and c are integers
X has to be an integers too
X can only be less than 8 or equal to 8
The maximum of x would be 8
Then
a equals 3 times 8 , a is 24
b equals 4 times $8, b$ is 32
c equals 5 times $8, \mathrm{c}$ is 40

Q10:	
A surf shop has a weekly expense of 50	
thousand dollars. Due to the pandemic	
situation, the shop has slow business	
and wants to boost their business this	
week by having promoting sales as	
"BUY ONE GET ONE FREE"	
That is: whenever you buy longboard	
then you can get a skimboard for free.	
You can also pay \$1000 for a piece of	
skimboard only.	
A longboard costs \$3000.	
According to the inventory:	
There are 50 longboards and 20 skimboards in the shop	
At least how many longboards does the surf shop need to sell to make a profit $\begin{array}{l}\text { Make profit means the income is } \\ \text { greater than the expense }\end{array}$	
this week?	
Please describe the situation of the	
sales for this week.	
Sol:	
Let n be the number of longboards	
which will be sold this week	
Since the shop has only 20 skim boards,	
means the shop can only sell at most 20	
longboards for the skimboards have to	
be give-away	
We have $\mathrm{n} \leq 20$	
Assume there're no skim boards left	
Then we have an inequality	
$3000 n+1000(20-n)>50000$	3 thousand times n plus one thousand
	times the quantity of 20 minus n is
	greater than 50 thousand
	Divide both sides by 1000
$3 n+(20-n)>50$	3 times $\mathrm{n}+$ parentheses twenty minus n
	is greater than fifty
	Combine like terms

$2 \mathrm{n}>30$			Divide both sides by 2 n is greater than 15
	n is a whole number, so		
$\mathrm{n} \geq 16$			
We have			
Long	Skim	Income	
16.3000	0	48000	
16.3000	1-1000	49000	
16.3000	$2 \cdot 1000$	50000	
16.3000	$3 \cdot 1000$	51000	
17.3000	Any sales of skim boards is ok	51000	
...	...		
$20 \cdot 3000$	No skim boards left	60000	
The shop sells (1) at least 16 longboards and 3 skimboards Or (2) 17 longboards or more, up to 20 pieces The surf shop can then make their profit			

Q11:
Sally has \$5000and she spends $\$ 100$ every day. Kevin has no money for now and he saves $\$ 200$ every day. How many days does evin need to have at least as much money as Sally has?

Sol:
Let Kevin needs at least d days
Then 200d $\geq 5000-100 d$
$300 \mathrm{~d} \geq 5000$
$d \geq \frac{50}{3}=16 \frac{2}{3}, d$ is a whole number $d \geq 17$
The minimum of d would be 17
Kevin needs 17 days or more to have at least as much money as Sally has
Check:
When $\mathrm{d}=17$
Kevin has 17-200=3400
Sally has 5000-100•17=3300
$3400>3300$
So it's a solution
If $d=16$
Kevin has 16-200=3200
Sally has 5000-100•16=3400
3200<3400
Kevin has less money than Sally does

Let the unknown days Kevin needs be d 2 hundred times d is greater than or equal to 5 thousand minus one hundred times d
Combine like terms and simplify 3 hundred times d is greater than or equal to 5 thousand d is greater than or equal to 50 over 3 or 16 and 2 thirds Since d is a whole number d has to be greater than or equal to 17

Q12:
Rectangle ABCD is 6 cm long and

4 cm wide. Equal
quantities are to be added to each side, so that the perimeter becomes greater than 100. What possible values must be added?

Sol:
Let the equal quantity to be added be x

Then the new length is $(6+2 x) \mathrm{cm}$
the new width is $(4+2 x) \mathrm{cm}$
The perimeter of the new rectangle has to be greater than 100
The inequality should be
$2(6+2 x)+2(4+2 x)>100$
$12+4 x+8+4 x>100$
$8 x>80$
$x>10$
The equal quantity to be added is any number greater than 10

Check:

Let's take $\mathrm{x}=10$
$2(6+2 x)+2(4+2 x)=100$
100 is not greater than 100
It doesn't meet the requirement

6 plus 2 times x centimeter 4 plus 2 times x centimeter

The perimeter of a rectangle is the sum of the length of all sides

2 times the quantity of 6 plus 2 times x plus 2 times the quantity of 4 plus 2 times x is greater than one hundred Distribute 2 to the parentheses
twelve plus 4 times \times plus 8 plus 4 times x is greater than one hundred Combine like terms 8 times x is greater than 80 x is greater than 10

If $x=11$	
$2(6+2 x)+2(4+2 x)=108$	
$108>100$	
$x=11$ would be one of the solutions	

製作者：北市金華國中 郝曉青

