雙語教學主題(國中七年級教材):解一元一次方程式 Topic: solving linear equations in one variable

這個單元常用到的一些用語 The vocabulary we generally use in this topic Add(addition), subtract(subtraction), multiply(multiplication), divide(division), plus(+), minus(-), times(x), divided(÷), isolate, equality, reflective, symmetric, transitive, substitutive, linear equation, variable, properties of equality (等量公理)

We learned in the last class that equations often have some variables and unknown values. And we also learned that solving an equation is to find out the unknown values of the variables. In this lesson, we are going to solve basic linear equations involving integers, fractions, and decimals.

Before we learn to solve the equations, we need to learn the properties of equality first. These properties of equality help us find the unknown values of the equations.

Reflexive property	
a=a	For any number a, a always equals to
Example:	itself, which is a= <mark>a</mark>
3= <u>3</u>	
Symmetric property	
If a=b, then b=a	If a equals b, then b equals a
Example:	
If 1+6=x, then x= <u>1+6</u>	If 1+6 equals x, then x equals 1 plus 6
Transitive property	
If a=b and b=c, then a=c	If a equals b and b equals c, then a
Example:	equals c
If x=5 and 5=y, then <u>x=y</u>	If x equals 5 and 5 equals y, then
	x equals y
Substitutive property	
If a=b, then we can replace a with b	
Example:	
If x=5 and y=x+3, then <u>y=(5)+3</u>	If x equals 5 and y equals x plus 3, then
	y equals (5) plus 3(replace x with 5)
For the next four properties of basic	

Properties of equality

operation, the quantity of two sides of	
the equal sign is always the same.	
Whenever we apply the properties of	
equality, we have to keep the equal sign	
true; just like the scale, we have to	
keep it in balance. So don't forget to do	
everything on both sides together to	
keep the equal sign true.	
Addition property	Add the same quantity on both sides
If a=b, then a+c=b+c	If a equals b, then a plus c equals b plus
Example:	c for any number c
If x-3=5, then <u>x-3+(3)=5+(3)</u>	If x minus 3 equals 5, then <u>x minus 3</u>
	plus (3) equals 5 plus (3)
Subtraction property	Subtract the same quantity on both
	sides
If a=b, then a-c=b-c	If a equals b, then a minus c equals b
Example:	minus c for any number c
If x+3=5, then <u>x+3-(3)=5-(3)</u>	If x plus 3 equals 5, then <u>x plus 3 minus</u>
	(3) equals 5 minus (3)
Multiplication property	Multiple the same quantity on both
	sides
If a=b, then ac=bc	If a equals b, then a times c equals b
Example:	times c for any number c
If $\frac{x}{-1} = 5$, then $\frac{x}{-1} = (2) = 5(2)$	If x over 2 equals 5, then x over 2 times
$2 \frac{2}{2}$	2 equals 5 times 2
Division property	Divided both sides by the same quantity
	If a equals b, then a divided by c equals
If a=b, then $\frac{a}{a} = \frac{b}{a}$, $c \neq 0$	b divided by c for any non-zero number
c c	c
Example:	
	If 3 times x equals 5, then 3 times x over
If 3x=5, then $\frac{3x}{3} = \frac{5}{3}$	If 3 times x equals 5, then 3 times x over 3 equals 5 over 3

We all know the order of basic operations is:

Multiplication and division first, and then addition and subtraction

Multiplication and division have equal priority. If there are multiplication and division involved together, we do it from left to right For example: $3\div 2\cdot x$ We divide 3 by 2 then the result times x

Also, addition and subtraction have equal priority. If there are addition and subtraction involved together, we do it from left to right as well

But when we solve the equations, we always need to reverse the process. That means we will handle addition and subtraction first, then multiplication and division

Fx 1:	When we need to find out what the
Find out the value of x in the equation	value of x is, we always. I mean always
	keen x on one side of the equal sign and
v-2-5	let the numbers stay on the other side
x-3-5	of the equal sign
	In this equal sign
	in this equation, x is not isolated, x is
	with a number on the left side of the
	equal sign, it's x minus 3 on the left
	side. We need to get rid of this number
	by using the inverse operation of minus ,
x <u>-3</u> +3 =5 +3	that is plus . When we add 3 on both
	sides, minus 3 and positive 3 will be
	canceled and become zero
	Now x is isolated on the left side of the
x=5+3	equation, we can easily find out the
	value of x by adding 5 and 3, which is 8
	So the value of x is 8
x=8	We solved the equation.
Check:	
When we replace x by 8 in the equation,	
we have	
x-3=8-3 =5	
The left side 8-3 is 5, obviously the	
result from the left side is equal to the	
number on the right side	

Let's see the examples below:

5=5	
So the answer is correct.	
Ex 2:	
Solve the equation	We will find out the value of y in this
y+2=6	equation. Since y is not alone, we need
	to isolate y on one side of the equation,
	so we have to take away plus 2. The
	inverse operation of plus 2 is minus 2,
y+2 -2=6 -2	We now minus 2 on both sides of the
	equation to keep the equal sign
	balance.
	Plus 2 is canceled with minus 2, now y is
	alone on the left side of the equation.
	On the right side we have 6 minus 2, we
y=4	know that is 4
Check:	So y equals 4
We replace y=4 on the left side of the	
equation, we get	
y+2=4+2=6	
The result is equal to the number on the	
right side which is 6	
So y=4 is the solution	
Ex 3:	
Find the solution of the equation	
$\frac{3}{-}$ w=6	3 over 4 times w is equal to 6
4	We want w to be isolated by multiplying
	the reciprocal of the fraction $\frac{3}{4}$ which
	is $\frac{4}{3}$ on both sides of the equation
	3 quarters times w times 4 thirds is
	equal to 6 times 4 thirds
	On the right side, numerator 3 is
$\frac{3}{3}$ w $(\frac{4}{3}) = 6(\frac{4}{3})$	canceled by denominator 3, and
$\frac{-4}{4}$ $\frac{-3}{3}$ $\frac{-3}{3}$	numerator 4 is also canceled by
	denominator 4, so w is left alone on the
	left side.
	On the left side, numerator 6 and

	denominator 3 have the common factor
	3, we divided 3 on both of them, then
w=2·4	we get 2 left to times 4 which is 8
w=8	
Check:	
We replace w by 8 on the left side of	
the equation	
$\frac{3}{4}$ w= $\frac{3}{4}$ (8)=3·2=6	
The result from the left side of the	
equation is equal to the number on the	
right side which is 6	
So w=8 is the solution to this equation	
Ex 4:	
Find the value of z in the equation	
4z=3	4 times z is 3
	Since the inverse operation of
	multiplication is division, so here we
	only need to divide both sides by 4,
	then 4 and 4 are canceled and z is left
	alone.
$\frac{4z}{z} = \frac{3}{z}$	4 times z divided by 4 is equal to 3
4 4	divided by 4
2	4 divided by 4 is 1, so
$z = \frac{3}{4}$	z equais 3 over 4
4 Check:	
We replace z on the left side of the	
equation by $\frac{3}{2}$ we get	
4 4	
$(1 - 4)^3$	
42 = 4(-) = 3	
3 is the same of the number on the	
right side 3=3	

So the value of z is $\frac{3}{4}$

After we learn so many basic properties of operations, we now will further our learning by solving more complexed equations.

Ex 5:	As we mentioned before, when we
Solve the linear equation	want to undo the operations to get
2x-3=5	what the value of the variable is, we
	always handle addition and subtraction
	first, then multiplication and division.
	In this example, if we want x to be alone
	on one side of the equation, we need to
	let the operation 'times 2' and 'minus 3'
	disappear. I always say: x 'times 2'
	means x and 2 are more strongly
	connected; but x 'minus 3' shows that x
	and 3 have a weaker link comparing to
	the multiplication.
	So when we undo these operations, we
	start by handling 'minus 3' than 'times
	2'.
	The first step:
2x-3 +3=5 +3	We add positive 3 on both sides
	Then 2 times x is left on the left side
2x=8	and 5 plus 3 is 8 on the right side.
$\frac{2x}{2} = \frac{8}{2}$	Now we divide both sides by the
2 2	common factor of 2 and 8 which is 2
x=4	Then x equals 4
Check:	
We replace x by 4 on the left side of the	
equation	
2x-3=2(4)-3=5	
Which is also equal to the number on	
the right side	
So x=4 is the solution	
Ex 6:	

Let's start with solving a two-step equation

Find the value of y in the equation	
2=3y+5	2 equals 3 times y plus 5
	We need to isolate y, so we want 'times
	3' and 'plus 5' to disappear.
	We undo 'plus 5' by subtract 5 on both
2 - <mark>5</mark> =3y+5 -5	sides
	2 minus 5 is equal to 3 times y plus 5
	minus 5
-3=3y	Then negative 3 equals 3 times y
	Divide both sides by 3
-3 _ 3y	negative 3 divided by 3 is equal to 3
3 3	times y divided by 3
	negative 1 equals y
-1=y	As we mentioned symmetric property
y=-1	above, y is also equal to negative 1
Check:	
Let's replace y by -1 on the right side of	
the equation	
3y+5=3(-1)+5=-3+5=2	
which is equal to the number of the left	
side of the equation	
so the value of y is -1	
Ex 7:	We see some fractions in this equation
Solve the equation	Normally dealing with integers is easier
$\frac{x}{1} + \frac{1}{2} = \frac{5}{2}$	than fractions, so the first step we do is
2 3 6	find out the LCM(least common
	multiple) for the denominators2,3 and 6
	and the LCM is 6.
$6(\frac{x}{1}+\frac{1}{1})=\frac{5}{1}\cdot 6$	We multiply 6 on both sides
2 3 6	Then apply the distributive property
$6 \cdot \frac{x}{x} + 6 \cdot \frac{1}{x} = 5$	6 multiplies all the fractions in
2 3	parentheses
	6 times x over 2 plus 6 times one third is
	equal to 5, then
3x+2=5	3 times x plus 2 equals 5
	Subtract 2 on both sides
	3 times x plus 2 minus 2 is equal to 5

	3 times x equals 3
3x=3	Divided both sides by 3, we get
X=1	X equals 1
Check:	
We replace x by1 on the right side of	
the equation	
$\frac{x}{2} + \frac{1}{3} = \frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{5}{6}$	
The result is the same as the number on	
the right side of the equation $\frac{5}{6}$	
So x=1 is the solution	
Ex 8:	We see some decimals in this equation
Solve the equation	Normally dealing with integers is easier
0.4=3+0.2y	than decimals. All the decimals are in
	the place of tenths, we can multiply 10
	on both sides and the decimals will be
	gone.
	The first step is we multiply 10 on both
	sides
0.4 <mark>(10)</mark> =(3+0.2y)(10)	zero point 4 times 10 is equal to the
	quantity of 3 plus zero point 2 times y
	times 10
4=3(10)+0.2y(10)	Apply the distributive property
	4 equals 3 times 10 plus zero point 2
4=30+2y	times y times 10
	4 equals 30 plus 2 times y
4- <mark>30</mark> =30+2γ- <mark>30</mark>	Subtract 30 on both sides
	4 minus 30 is equal to 30 plus 2 times y
-26=2y	minus 30
-26 _ 2y	Negative 26 is equal to 2 times y
$\frac{1}{2}$ 2	Divide both sides by 2
	Negative 26 over 2 is equal to 2 times y
-13=y	over 2, we get
y=-13	Negative 13 equals y
Check:	The same as y equals negative 13
We replace y by -13 on the right side of	
the equation	

3+0.2y=3+0.2(-13)=3+(-2.6)=0.4	
The same as the number on the left side	
So y=-13 is the solution	
Ex 9:	
Solve the equation	
5-3x=4	5 minus 3 times x is 4
	No matter what the value of x would be,
	we can always add the same quantity
	on both sides of the equation and still
	keep the balance.
	It's more complicated to handle
	negative 3 times x, so I'll show you 2
	ways to solve this equation
Method 1:	Method 1:
5-3x <mark>+3</mark> x=4 +3x	Add 3x on both sides
	5 minus 3 times x plus 3 times x is equal
	to 4 plus 3 times x
	Then we get
5=4+3x	5 equals 4 plus 3 times x
5 -4=4+3x -4	We subtract 4 on both sides
	5 minus 4 is equal to 4 plus 3 times x
	minus 4, we get
1=3x	1 equals 3 times x
$\frac{1}{1} = \frac{3x}{3}$	Divide both sides by 3
3 3	one third is equal to 3 times x over 3
$\frac{1}{x} = x$	one third equals x
3	Also x equals one third
$x=\frac{1}{2}$	
3	
Method 2:	Method 2:
5-3x=4	If we want to keep x on the left side, we
	need to move the numbers 5 and 3 to
	the right side.
	We first subtract 5 on both sides
5-3x <mark>-5</mark> =4 -5	5 minus 3 times x minus 5 is equal to 4
	minus 5, we get
-3x=-1	Negative 3 times x is equal to negative 1
	Divide both sides by negative 3

-3x1	Negative 3 times x over negative 3 is
-3 -3	equal to negative 1 over negative 3
$x=\frac{1}{2}$	Then x equals one third
3	
Check:	
We replace x by $\frac{1}{3}$ on the left side of	
the equation	
$5-3x=5-3(\frac{1}{3})=5-1=4$	
The number on the right side is also 4	
So no doubt $x = \frac{1}{3}$ is the solution	

製作者 北市金華國中 郝曉青